

COPD: Journal of Chronic Obstructive Pulmonary Disease

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/icop20

Comprehensive Cluster Analysis for COPD Including Systemic and Airway Inflammatory Markers

Halehsadat Nekoee Zahraei , Françoise Guissard , Virginie Paulus , Monique Henket, Anne-Françoise Donneau & Renaud Louis

To cite this article: Halehsadat Nekoee Zahraei, Françoise Guissard, Virginie Paulus, Monique Henket, Anne-Françoise Donneau & Renaud Louis (2020): Comprehensive Cluster Analysis for COPD Including Systemic and Airway Inflammatory Markers, COPD: Journal of Chronic Obstructive Pulmonary Disease, DOI: 10.1080/15412555.2020.1833853

To link to this article: https://doi.org/10.1080/15412555.2020.1833853

View supplementary material

đ	1	ſ	1	
				L
				L
				J.

Published online: 22 Oct 2020.

_	
С	
L	
L	D 1
~	

Submit your article to this journal 🗹

View related articles 🗹

則 🛛 View Crossmark data 🗹

Comprehensive Cluster Analysis for COPD Including Systemic and Airway Inflammatory Markers

Halehsadat Nekoee Zahraei^{a,b}, Françoise Guissard^b, Virginie Paulus^b, Monique Henket^b, Anne-Françoise Donneau^a (b), and Renaud Louis^b

^aBiostatistics Unit, Department of Public Health, University of Liège, Liège, Belgium; ^bDepartment of Pneumology, GIGA, University of Liège, Liège, Belgium

ABSTRACT

Chronic obstructive pulmonary disease (COPD) is a complex, multidimensional and heterogeneous disease. The main purpose of the present study was to identify clinical phenotypes through cluster analysis in adults suffering from COPD. A retrospective study was conducted on 178 COPD patients in stable state recruited from ambulatory care at University hospital of Liege. All patients were above 40 years, had a smoking history of more than 20 pack years, post bronchodilator FEV1/FVC <70% and denied any history of asthma before 40 years. In this study, the patients were described by a total of 84 mixed sets of variables with some missing values. Hierarchical clustering on principal components (HCPC) was applied on multiple imputation. In the final step, patients were classified into homogeneous distinct groups by consensus clustering. Three different clusters, which shared similar smoking history were found. Cluster 1 included men with moderate airway obstruction (n = 67) while cluster 2 comprised men who were exacerbation-prone, with severe airflow limitation and intense granulocytic airway and neutrophilic systemic inflammation (n = 56). Cluster 3 essentially included women with moderate airway obstruction (n = 55). All clusters had a low rate of bacterial colonization (5%), a low median FeNO value (<20 ppb) and a very low sensitization rate toward common aeroallergens (0-5%). CAT score did not differ between clusters. Including markers of systemic airway inflammation and atopy and applying a comprehensive cluster analysis we provide here evidence for 3 clusters markedly shaped by sex, airway obstruction and neutrophilic inflammation but not by symptoms and T2 biomarkers.

Introduction

Chronic obstructive pulmonary disease (COPD) is a complex and heterogeneous disease with a large number of subtypes and a multifactorial background [1, 2]. It may be caused by different pathophysiologic mechanisms (sometimes referred to as endotypes) but may share similar observed characteristics (phenotypes) [3]. These phenotypes divide all patients into several groups with common features that help patients to receive effective care and achieve better clinical results.

Within the data mining framework one of the most recognized methods for discovering knowledge in multivariate dataset, is clustering. Cluster analysis attempt to find groups of patients such that patients in the same cluster are more similar to each other than to patients in another cluster [4]. In recent years, cluster analysis was applied as a popular method to examine heterogeneity of patients with asthma [5, 6] or COPD [7–12]. Within the clustering framework, missing values, which are present in such large datasets, and how to handle it have not been referred among different studies [13]. As different analysis methods exist with their own criterion for clustering and determination of the number of clusters, hierarchical and nonhierarchical, different results are proposed. Another key point is number of variables in clustering, how select them and this fact that correlation exists between initially selected variables, the strategies of data transformation using principal component analysis solved this point [9, 10, 14–17].

In this paper, we introduce a flexible framework for cluster analysis on multidimensional dataset, which handles missing value by multiple imputation. COPD clustering studies have brought insight to the importance of co-morbidities and systemic inflammation as components accounting for disease variability [18]. There are studies that used demographic variables, symptoms, spirometry, imaging and comorbidities to build the clusters [19]. However, there are not many studies using clustering that investigated the airway inflammatory component and the atopic status in large cohort of COPD. As it is recognized that some COPD may express T2 biomarkers [20], we included serum IgE and FeNO in our standard routine investigation of COPD in order to see whether the T2 trait is frequent and strong enough to shape a cluster in a population of COPD denying any existence of asthma before the age of 40 years.

CONTACT Halehsadat Nekoee Zahraei 🐼 H.Nekoee@uliege.be 🗈 Bat.B23 Biostatistics, Quartier Hopital, Avenue de l'Hopital, 3, 4000 Liege, Belgium. 🚯 Supplemental data for this article can be accessed at https://doi.org/10.1080/15412555.2020.1833853.

ARTICLE HISTORY

Received 17 March 2020 Accepted 1 October 2020

KEYWORDS

chronic obstructive pulmonary disease (COPD); cluster analysis; phenotypes; factor analysis of mixed data; missing data

Check for updates

Here we performed clustering analysis on a cohort of 178 COPD patients recruited from ambulatory care in whom detailed lung function, blood and sputum analysis were available.

Material and methods

The retrospective study was conducted on 178 stable COPD patients recruited from ambulatory care in our COPD clinic in the Pneumology Department of the University hospital of Liege. We have a general agreement from the ethics committee to use clinical data collected from routine practice to make retrospective reports. The protocol was approved by the Hospitalo-Facultaire Universitaire ethics committee, Liege (institutional review board 2005/181). Every patient attending ambulatory clinic care signs an informed consent stating that they accept this principle. Selection criteria to be referred to our COPD clinic were symptomatic patients (including at least one of the three following symptoms: dyspnea, cough and sputum production) with FEV1/FVC ratio post bronchodilation less than 70%, age above 40 years and smoking history of at least 20 pack years. None had an asthma history starting before the age of 40. At the COPD clinic the patients had systematic pre and post bronchodilation spirometry, sputum induction, blood sampling, and completed the self-administered CAT questionnaire. From the clinical data, a comprehensive list of 84 variables was derived and divided into six categories, i.e. demographics, pulmonary function tests, treatment features, blood cell counts and systemic inflammatory markers, atopic status, and sputum cell counts and microbiology. One unavoidable problem in huge dataset is the presence of missing value. The percentage of missing values ranged from 0% to 23% and 75% of patients presented at least one missing value. This matter creates serious problems as most of the classical statistical methods are not designed to handle incomplete data. By default, in statistical methods and software, patients with at least one missing value are discarded from the analysis. In practical research, multiple imputation is a popular and very flexible technique for handling missing value [21]. Multiple imputation replaces each missing value with a set of m (>1) plausible values. Therefore, instead of one incomplete dataset, multiple imputation provides *m* separate complete datasets [22]. In the present study, m was fixed to 100. Then, 100 imputed datasets are analyzed by the method that would have been appropriate if the data had been complete. The derived results from the analyses are then combined to produce the final quantity of interest following Rubin's rules [23]. The number of variables is an important issue in cluster analysis specially in determining the number of clusters. Indeed, large number of variables result in poor discrimination distance and misspecification classification. Therefore, in this study with huge numbers of variables, the percentage of contribution of variables was determined, and then, the strategy of variable reduction was applied. Cluster analysis is a powerful but unsupervised method. The big issue in this unsupervised method is, to evaluate the quality of the clustering framework for classification. Clustering validation was

 Table 1. Process of factor analysis and cluster analysis to describe phenotypes in COPD.

- (1) Multiple imputation
- i) Obtain 100 complete dataset by multiple imputation (MICE)
- (2) Factor analysis for mixed data (FAMD)
- i) Determine quantitative and qualitative variable
- ii) Apply FAMD for each imputed dataset
- iii) Determine the number of components for each imputed dataset
- (3) Hierarchical clustering
- i) Choosing the best number of clusters for each imputed dataset
- (4) Partitioning Clustering
- i) Consider the number of clusters in previous step
- ii) Assign patients to each cluster for each imputed dataset by partitioning clustering
- (5) Consensus clustering
- i) Combine all ensemble clustering to get a final best clustering
- (6) Assign patients to the final result of consensus clustering
- i) Allocate patients in raw dataset (dataset with missing value) and each imputed dataset to calculate final result of consensus clustering
- (7) Description of clustering
- i) Calculate median for raw dataset and overall median for imputed datasets
- ii) Comparison between cluster (Kruskal-Wallis and Chi-squared tests and Dunn's multiple comparison test)

considered to evaluate this issue. Statistical methodology is discussed in the online supplement in more detail.

Statistical method

Quantitative variables were summarized using median and interquartile range (P25 - P75); while count and percentage were used for qualitative variables. Outlines of the proposed steps to assign clustering for patients are described in Table 1. Missing values were imputed by draw from the posterior predictive distribution of bayesian model and predictive mean matching (PMM) was used as a robust method to model misspecification in imputing values. Since this study contains quantitative and qualitative variables, factor analysis for mixed data (FAMD) was applied for creating new components. In cluster analysis step, the number of clusters for each imputed dataset was determined by hierarchical clustering and a package of 30 indices for determining the relevant number of clusters, then K-means was applied for assigning clusters to patients. In consensus step, final clustering result was achieved by minimizing the sum of squared distance of existing clustering results. For each clustering output, two indices for internal clustering validation and stability validation were calculated. Output of consensus clustering was considered as the individual final clustering result for raw and all of imputed datasets. Then, median and interquartile range were calculated for all variables in raw dataset and for each imputed dataset. Finally, an overall median with corresponding interquartile range was calculated over all 100 imputed datasets. All variables were compared between the derived clusters using Kruskal-Wallis and Chi-squared tests for quantitative and qualitative variables, respectively. Comparison among clusters was applied according to Dunn's multiple comparison test. Finally, the difference between three groups was displayed by boxplot. All analyses were performed using R statistical software. P values <0.05 were considered as statistically significant.

	Variable		Median (IQR)/percentage (frequency)	Percentage (number) of missing value
Demographic	Age (year)		64.5(57–72)	0% (0)
	Sex (Male)		54.49% (97)	0% (0)
	Height (cm)		167(160–175)	0.56% (1)
	Weight (kg)		67(58–78)	0.56% (1)
	BMI (kg/m ²)		23.62 (21.22–27.18)	0.56% (1)
	Cigarette Packs (year)		37.2 (22.5–50)	2.25% (4)
	Cigarettes (day)		20 (10–23.5)	3.93% (7)
	Smoking Duration(year)		43 (33–50)	2.8% (5)
	OCS Course	0	60.71% (102)	
		1	23.81% (40)	5.62% (10)
		\geq 2	15.48% (26)	
	Antibiotic Course	0	36.47% (62)	4.49% (8)
		1	51.76% (88)	
		\geq 2	11.76% (20)	
	Emergency Room Admission for asthma or COPD	0	84.66% (149)	1.12% (2)
		1	14.77% (26)	
		\geq 2	0.57% (1)	
	Number of hospitalizations for asthma or COPD	0	85.55% (148)	2.8% (5)
		1	12.72% (22)	
		\geq 2	1.73% (3)	
Pulmonary	FeNO (ppb)		16 (10–25)	7.30% (13)
	FEV1 (mL)		1380 (1085–1810)	0% (0)
	FEV1 predicted (%)		53 (43–66)	0% (0)
	FEV1 PD (mL)		1480 (1180–1930)	0.56% (1)
	FEV1 PD predicted (%)		57 (47–71)	0.56% (1)
	Reversibility (%)		7 (1–12)	0.56% (1)
	FVC (mL)		2505 (2020-3067.5)	0% (0)
	FVC predicted (%)		77 (64–89)	0% (0)
	FVC post (mL)		2580 (2080–3200)	0.56% (1)
	FVC post (%)		80 (68–92)	0.56% (1)
	FEV1/ FVC pre (%)		56.4 (48.12–64.27)	0% (0)
	FEV1/ FVC post (%)		57.9 (49.4–66.5)	0.56% (1)
			6.45 (5.3/-/.1/)	16.29% (29)
	ILC predicted (%)		109 (96–123)	16.29% (29)
	RV (L)		3.58 (3.07–4.55)	16.29% (29)
	RV predicted (%)		168 (137-201)	16.29% (29)
	RV/ILC (%)		59.58 (52.79-66.21)	16.29% (29)
	DLCO (mmol/kPa.min)		3.98 (2.91-5.3)	17.41% (31)
			49 (37.5-60)	17.41% (31)
	DLCO/VA		67 (50, 91, 5)	17.41% (51)
	sCow (1/kPo*soc)		07 (00-01.0)	73 03% (41)
	EDC (I)		0.47 (0.34-0.71)	23.03% (41)
	FRC (L) EPC predicted (%)		4.91 (4.09-3.09)	21.34% (38)
Treatment	Treatment (Ves)		61 76% (105)	A 49% (8)
neatment			55 11% (97)	1 12% (2)
	O(S(Yes))		5 11% (9)	1 12% (2)
	LAMA (Yes)		51 13% (90)	1 12% (2)
	LABA (Yes)		67 04% (118)	1 12% (2)
	SABA (Yes)		40.91% (72)	1 12% (2)
	ITRA (Yes)		3 41% (6)	1 12% (2)
	Theophylline (Yes)		2.84% (5)	1.12% (2)
CAT score			25 (16–31)	0% (0)
Blood	Leucocytes (uL)		7.97 (6.67–9.73)	7.86% (14)
	Neutrophils (%)		60.7 (54–67.75)	8.43% (15)
	Lymphocytes (%)		27.8 (21.35–34.3)	8.43% (15)
	Monocytes (%)		7.9 (6.55–9.45)	8.43% (15)
	Eosinophils (%)		2 (1-3.25)	8.43% (15)
	Basophils (%)		0.4 (0.3–0.6)	8.43% (15)
	Neutrophils (µL)		4840.71 (3782.47-6027.27)	8.43% (15)
	Lymphocytes (µL)		2213.4 (1739.08–2710.78)	8.43% (15)
	Monocytes (µL)		646.99 (496.08-836.3)	8.43% (15)
	Eosinophils (μL)		147.63 (77.46–252.0)	8.43% (15)
	Basophils (μL)		31.24 (21.37–48.3)	8.43% (15)
	Fibrinogen (g/l)		3.52 (2.96-4.02)	4.49% (8)
	CRP (mg/l)		2.45 (1.10–5.75)	4.49% (8)
	Alpha 1 antitrypsin (g/l)		1.5 (1.36–1.68)	12.36% (22)
	Calcium (mmol/L)		2.42 (2.36–2.47)	6.74% (12)
	25(OH) Vitamine D (ng/ml)		20 (12–30.97)	13.48% (24)
	Phosphate (mmol/L)		0.93 (0.79–1.06)	6.74% (12)
Atopy	IgE (KU/L)		72.50 (22.75–227.75)	10.11% (18)
	RAST DPT (d1) %>0.35 (KU/L)		11.39% (18)	11.24% (20)
	RAST Cat (e1), %>0.35 (KU/L)		3.75% (6)	10.11% (18)
	KAST Dog (e5), %>0.35 (KU/L)		3.12% (5)	10.11% (18)

Table 2. Characteristics of the COPD cohort.

Table 2. Continued.

	Variable	Median (IQR)/percentage (frequency)	Percentage (number) of missing value
	RAST Grass (GX3), %>0.35 (KU/L)	6.96% (11)	11.24% (20)
	RAST microog (MIX1), %>0.35 (KU/L)	9.37% (15)	10.11% (18)
	RAST Birch (t3), %>0.35 (KU/L)	1.25% (2)	10.67% (19)
Sputum	Positive Aerobic Sputum Culture	8.96% (13)	18.54% (33)
	Weight of sputum (g)	1.72 (1.1–2.98)	20.78% (37)
	Total Cell Counts (10 ⁶ /g)	2.31 (0.98–5.6)	20.78% (37)
	Squamous (%)	10 (3–33)	20.78% (37)
	Viability (%)	69 (55–84)	20.78% (37)
	Macrophages (%)	12.3 (5–23.6)	21.91% (39)
	Lymphocytes (%)	1 (0–2)	21.91% (39)
	Neutrophils (%)	74.8 (56.87–91.05)	21.34% (38)
	Eosinophils (%)	1.35 (0.2–4.40)	21.34% (38)
	Epithelial cells (%)	2.5 (0.6–7.75)	21.91% (39)
	Macrophages (10 ³ /g)	268.28 (80.04-583.8)	23.03% (41)
	Lymphocytes (10 ³ /g)	18.48 (0-43.8)	23.03% (41)
	Neutrophils (10 ³ /g)	1307.5 (503.89–3831.61)	22.47% (40)
	Eosinophils (10 ³ /g)	28.86 (2.77–232.69)	22.47% (40)
	Epithelial cells (10 ³ /g)	55.4 (11.25–202.86)	22.47% (40)

Results

Characteristics of the total patients and percentage of missing values before imputing are presented in Table 2. Patients were mostly males (54.49%) with age ranging from 40 to 84 years and displayed a normal weight (median body mass index was 23.62). Patients had a consistent tobacco consumption history with a median pack/year of 37.

Table 3 shows the order and the impact of each variable on clustering. The highest contribution for variables in clustering is for FEV1 (mL), FEV1 PD (mL), FEV1 PD predicted (%), FEV1 predicted (%) and FVC (mL) (Figure 1). Based on all operational processes indicated in Table 1, three distinct clusters with acceptable values for validation were identified weighing similarly regarding the number of patients from this procedure for COPD dataset and output for 100 imputed datasets displayed in Table 4. In this study, two indices for internal clustering validation and two indices for clustering stability validation are reported. Silhouette Width and Dunn Index values for Internal measures are 0.61 and 0.54, respectively. Average Proportion of Non-overlap and Average Distance between Means for Stability measures are 0.02 and 0.01, respectively (For more information, refer to supplementary, clustering validation). There were striking sex differences between the clusters with a clear dominance of male in clusters 1 and 2 while cluster 3 was essentially composed of women. Smoking history was similar between clusters and BMI was slightly higher in cluster 1 while still remaining in the normal range. Clusters 2 and 3 received more often courses of OCS the year prior to the visit whereas there was no difference regarding the number of antibiotic course. Clusters 2 and 3 were those in which patients received more maintenance treatment including ICS, LAMA, LABA and also used more often SABA as reliever. Cluster 2 and 3 had also more impaired lung function with more severe airway obstruction, lung hyperdistension and severely reduced diffusing capacity and transfer coefficient (Figure 2). As far as inflammation is concerned, the cluster 2 had more severe systemic and airway neutrophilic inflammation, with slightly raised fibrinogen but not CRP. Circulating lymphocytes were reduced in cluster 2 (Figures 3 and 4). Absolute sputum eosinophil counts were higher in cluster 2 than in cluster 1 while no difference was seen in blood (Figure 5). FeNO levels were similar between clusters and no difference was seen regarding total serum IgE (Figure 5) nor sensitizations to aeroallergens, which were rare in all three clusters. Interestingly, CAT score did not differ between the three clusters despite clear differences in lung function impairment (Figure 6).

Discussion

In this study, we characterized COPD patients into three distinctly different groups by applying general and flexible statistical computation in dataset with missing values. In the present study, clustering was applied to a large number of variables instead of selecting a limited number of variables. Although missing values are a common and pervasive problem in diverse datasets such as COPD with large number of variables, missing values have not been considered property in the clustering literature. Based on these restrictions, classification on COPD datasets has not been comprehensively investigated. Therefore, in this exhaustive study, phenotypes in COPD dataset were described by imputing missing values, principal components and cluster analysis with many analytical decisions, which overcome limitations, often reported in previous clustering studies.

The concept of treatable trait has become very popular over the last years and it has been suggested to avoid label of asthma or COPD among patients with severe chronic airway diseases [24]. Adopting this taxonomic view our COPD population could be seen as a population featuring the trait of fixed airway obstruction after a significant smoking history and denying any previous diagnosis of asthma before the age of 40. One strength of our study, compared to previous clustering analysis in COPD, is that it included airway inflammatory features, FeNO and atopic status in the parameters subjected to analysis.

We actually found 3 clusters of COPD, strikingly linked to sex with two clusters showing male dominance while the third was essentially a female cluster. There were clear differences between lung function impairment between the clusters whereas quantitative smoking history was quite

Table 3.	Percentage	of the	contribution	of	variables	in	clustering.
----------	------------	--------	--------------	----	-----------	----	-------------

Order Variables in order of priority value 1 FEV1 (mL) 0.793354 2 FEV1 PD (mL) 0.792187 3 FEV1 PD predicted (%) 0.08569 4 FEV1 PD predicted (%) 0.49998 5 FVC (mL) 0.49998 7 FVC predicted (%) 0.488091 9 RVTLC (%) 0.373624 10 FEV1 FVC post (%) 0.373624 11 DLCO (mmol/RPa.min) 0.290582 12 Emergency Room Admission 0.290175 14 Blood_Neutrophis (%) 0.283042 15 FU/L / FVC pre (%) 0.283042 16 DLCO predicted (%) 0.16534 17 FBood_Lymphocytes (%) 0.16534 18 LAMA (Yes) 0.16634 18 LAMA (Yes) 0.163201 19 LASA (Yes) 0.163201 10 LCS (res) 0.16324 11 Blood_Neutrophits (µL) 0.148225 10 LCSO 0.148225<			Percentage of
Close Variables in Order of priority Variables 1 FEV1 PD 0.752354 2 FEV1 PD predicted (%) 0.755354 3 FEV1 PD predicted (%) 0.768569 4 FEV1 predicted (%) 0.498792 6 FVC post (%) 0.488792 7 FVC predicted (%) 0.488791 9 RVTLC (%) 0.373624 10 FEV1 FVC post (%) 0.328042 11 DLCO (mmol/kPa.min) 0.290582 12 Emergency Room Admission 0.281042 13 FEV1 / FVC pre (%) 0.165331 14 Blood_Lymphocytes (%) 0.165341 15 Blood_Lymphocytes (%) 0.165341 16 LCO predicted (%) 0.162801 17 sGaw (1/kPa*sec) 0.166534 18 LAMA (Yes) 0.162801 14 Blood_Lymphocytes (µL) 0.148252 17 Blood_Lymphocytes (µL) 0.148253 18 IAMA (Yes) 0.158377 10	Order	Variables in order of priority	contribution
1 FEVI PD (mL) 0.79334 2 FEVI PD predicted (%) 0.708569 3 FEV Ppredicted (%) 0.696766 5 FVC (mL) 0.49998 6 FVC post (mL) 0.498991 7 FVC predicted (%) 0.488091 9 RVTLC (%) 0.318253 10 DEC (mon/RAmin) 0.290175 for asthma or COPD 0.230542 11 DLCO (mon/RAminsion 0.290175 for asthma or COPD 0.167344 13 FEVI / FVC pre (%) 0.185377 14 Blood_Lymphocytes (%) 0.162801 15 Blood_Lymphocytes (%) 0.162811 16 DLCO predicted (%) 0.162801 17 Sdaw (1/KPa*sec) 0.161971 16 DLCO kerterophils (µL) 0.148255 21 Blood_Neutrophils (µL) 0.148255 22 Treatment (res) 0.148225 23 RV predicted (%) 0.132193 25 FKC predicted (%) 0.076329 26 Weight (Rg) 0.115799	1		0 705254
3 FEVI PD predicted (%) 0.708569 4 FEVI predicted (%) 0.696766 5 FVC (mL) 0.510238 6 FVC post (mL) 0.488792 7 FVC predicted (%) 0.488792 8 FVC post (%) 0.373624 10 FEVI FVC post (%) 0.373624 11 DLCO (mmo/kPa.min) 0.290582 12 Emergency Room Admission 0.220175 14 Blood_Lymphocytes (%) 0.185377 15 Blood_Lymphocytes (%) 0.165341 14 Blood_Lymphocytes (%) 0.165377 15 Blood_Lymphocytes (%) 0.165377 16 DLCO predicted (%) 0.165877 17 EXA (Yes) 0.165877 18 LAMA (Yes) 0.165877 10 ICS (Yes) 0.148225 21 Blood_Neutrophils (µL) 0.148225 22 RV predicted (%) 0.148225 23 RV predicted (%) 0.15797 24 Blood_Neutrophils (µL) 0.07647 25 FKC predicted (%)	2	FEVT (IIIL) FEV1 PD (mL)	0.793334
4 FEV1 predicted (%) 0.696766 5 FVC post (mL) 0.49998 6 FVC post (%) 0.488791 9 FVC post (%) 0.3378624 10 FEV1 / FVC post (%) 0.313823 11 DLCO (mmol/kPa.min) 0.200582 12 Emergency Room Admission 0.230175 13 FEV1 / FVC post (%) 0.185377 14 Blood_Neutrophils (%) 0.21717 15 Blood_Neutrophils (%) 0.216534 14 Blood_Neutrophils (%) 0.16534 15 Blood_Neutrophils (µL) 0.148255 16 DLCO predicted (%) 0.162801 17 SGaw (1/kPa*sec) 0.16634 18 LAMA (Yes) 0.148225 21 Treatment (Yes) 0.14825 22 Treatment (Yes) 0.14825 23 RV predicted (%) 0.115799 24 Nomber of hospitalizations for asthma or COPD 0.132193 25 FRC predicted (%) 0.06627 24 Number of hospitalizations for asthma or COPD 0.13298	3	FEV1 PD predicted (%)	0.708569
5 FVC (mL) 0.510238 6 FVC post (%) 0.488792 7 FVC predicted (%) 0.37824 9 RVTLC (%) 0.37824 10 FEV/ FVC post (%) 0.318253 11 DLCO (mmol/RPainin) 0.290175 13 FEVI / FVC pret (%) 0.283042 14 Blood_weutrophils (%) 0.167344 15 Blood_Lymphocytes (%) 0.167344 16 DLCO predicted (%) 0.167344 17 SGaw (1/kPa*sec) 0.16634 18 LAMA (Yes) 0.162801 19 LABA (Yes) 0.162801 10 ICS (Yes) 0.148225 21 Riv predicted (%) 0.143311 24 Number of hospitalizations for asthma or COPD 0.132193 25 FRC predicted (%) 0.148225 23 Riv predicted (%) 0.148225 24 Reight (Rg) 0.115709 25 FRC predicted (%) 0.067333 26 Weight (Rg) 0.073329 27 OCS Course 0.066027 <	4	FEV1 predicted (%)	0.696766
6 FVC post (mL) 0.43998 7 FVC post (%) 0.488792 8 FVC post (%) 0.318253 10 FEV1/ FVC post (%) 0.230582 11 DLCO (mmol/kPa.min) 0.290582 12 Emergency Room Admission 0.230175 13 FEV1/ FVC pre (%) 0.283042 14 Blood_Lymphocytes (%) 0.16534 15 Blood_Lymphocytes (%) 0.16534 16 DLCO predicted (%) 0.16534 17 SGaw (1/kPa*sec) 0.166334 18 LAMA (Yes) 0.164820 19 LABA (Yes) 0.148225 18 Blood_Neutrophils (µL) 0.148235 19 LABA (Yes) 0.148225 11 Blood_Neutrophils (µL) 0.148236 12 Blood_Neutrophils (µL) 0.148225 18 Blood_Neutrophils (µL) 0.148225 18 Blood_Neutrophils (µL) 0.148225 19 LABA (Yes) 0.15877 10 CC Course 0.099888 10 DCO/vA 0.07329	5	FVC (mL)	0.510238
7 FVC post (%) 0.488091 9 RV/TLC (%) 0.373624 10 FEV1 / FVC post (%) 0.313223 11 DLCO (mmol/kPa.min) 0.290582 12 Emergency Room Admission 0.290175 13 FEV1 / FVC pre (%) 0.283042 14 Blood_Neutrophils (%) 0.207177 15 Blood_Lymphocytes (%) 0.165344 14 Blood_Lymphocytes (%) 0.166344 15 Blood_Lymphocytes (%) 0.162801 16 DLCO predicted (%) 0.162801 17 SGaw (1/kPa'sec) 0.148225 21 Restring (%) 0.151971 22 Treatment (Yes) 0.148225 23 RV predicted (%) 0.133113 25 FRC predicted (%) 0.1321193 25 FRC predicted (%) 0.132193 26 Weight (kg) 0.15709 27 OCS Course 0.092256 28 RV (L) 0.066027 33 DLCO/VApredicted (%) 0.066027 34 Blood_Lymphocytes (µL) <td< td=""><td>0 7</td><td>EVC predicted (%)</td><td>0.49998 0.488792</td></td<>	0 7	EVC predicted (%)	0.49998 0.488792
9 RV/TLC (%) 0.378244 10 FEV1/ FVC post (%) 0.318253 11 DLCO (mm01/kPa.min) 0.290582 12 Emergency Room Admission 0.290582 13 FEV1/ FVC pre (%) 0.283442 14 Blood_Lwmphocytes (%) 0.185377 15 Blood_Lwmphocytes (%) 0.185377 16 DLCO predicted (%) 0.165344 17 SGaw (1/kPa*sec) 0.162801 19 LABA (Yes) 0.162801 19 LABA (Yes) 0.148225 21 Blood_Neutrophils (µL) 0.148225 23 RV predicted (%) 0.143311 24 Number of hospitalizations for asthma or COPD 0.12998 25 FRC predicted (%) 0.075047 26 Weight (kg) 0.075047 27 Treatment (Yes) 0.132193 28 RV (LG) 0.075047 29 Height (cm) 0.06524 20 Blood_Lwmphocytes (µL) 0.064534 21	8	FVC post (%)	0.488091
10 FEV1/ FVC post (%) 0.318253 11 DLCO (mmol/kPa.min) 0.290582 12 Emergency Room Admission 0.290175 for asthma or COPD 0 0.283042 14 Blood_Lwurpohils (%) 0.185377 16 DLCO predicted (%) 0.167944 17 sGaw (1/kPa*sec) 0.166344 18 LAMA (Yes) 0.162801 19 LABA (Yes) 0.161971 20 LCS (Yes) 0.161971 21 Blood_Neutrophils (µL) 0.14896 22 Treatment (Yes) 0.148225 23 RV predicted (%) 0.132193 25 FRC predicted (%) 0.132193 26 Weight (kg) 0.115709 27 OCS Course 0.099888 28 RV (L) 0.06647 29 Height (rm) 0.08524 310 DLCO/VA 0.073329 32 BMI (kg/m ²) 0.067138 33 DLCO/VApredicted (%) 0.066476	9	RV/TLC (%)	0.373624
11 DLC0 (mmol/kPa.min) 0.290175 for asthma or COPD 0.283042 13 FEV1/ FVC pre (%) 0.28377 16 DLCO predicted (%) 0.185377 16 DLCO predicted (%) 0.167944 17 sGaw (1/kPa*sec) 0.166334 18 LAMA (Yes) 0.168377 19 LABA (Yes) 0.161971 20 ICS (Yes) 0.159877 21 Blood_Neutrophils (µL) 0.148225 23 RV predicted (%) 0.132193 24 Number of hospitalizations for asthma or COPD 0.132193 25 FRC predicted (%) 0.015709 20 CS Course 0.099888 28 RV (L) 0.062256 29 Height (cm) 0.06237 31 DLCO/VA 0.073339 32 Blood_Lwmphocytes (µL) 0.066027 33 DLCO/VA 0.06334 34 Blood_Leucocytes (%) 0.061563 37 Blood_Anocytes (%) 0.06234 38 OCS (Yes) 0.061563 <t< td=""><td>10</td><td>FEV1/ FVC post (%)</td><td>0.318253</td></t<>	10	FEV1/ FVC post (%)	0.318253
12 Emergency Noom Admission $0.29017s$ for asthma or COPD 0.283042 13 FEV1/ FVC pre (%) 0.185377 15 Blood_Leymphocytes (%) 0.185377 16 DLCO predicted (%) 0.16534 18 LAMA (Yes) 0.166334 19 LABA (Yes) 0.16537 20 ICS (Yes) 0.159877 21 Blood_Neutrophils (µL) 0.14826 22 Treatment (Yes) 0.143311 24 Number of hospitalizations for asthma or COPD 0.132193 25 FRC predicted (%) 0.0132193 26 Weight (kg) 0.115709 27 OCS Course 0.099888 28 RV (L) 0.06524 29 Height (cm) 0.067138 31 DLCO/VA 0.073329 32 Blood_Lewocytes (µL) 0.066237 33 DLCO/VA predicted (%) 0.060231 34 Blood_Lownphocytes (%) 0.060231 35 CAT score 0	11	DLCO (mmol/kPa.min)	0.290582
Total Description Construction 13 FEV1/ FVC pre (%) 0.283042 14 Blood_Lymphorytes (%) 0.185377 15 DLCO predicted (%) 0.167944 17 sGaw (1/kPa*sec) 0.162801 18 LAMA (Yes) 0.152801 19 LABA (Yes) 0.158977 21 Blood_Neutrophils (µL) 0.14896 22 Treatment (Yes) 0.14825 23 RV predicted (%) 0.1132193 25 FRC predicted (%) 0.115709 26 Weight (kg) 0.115709 27 OCS Course 0.099888 28 RV (L) 0.062524 30 Blood_Lymphocytes (µL) 0.0673329 31 DLCO/VA 0.073329 32 BMI (kg/m ²) 0.061563 33 DLCO/VApredicted (%) 0.060227 44 Total Cell Counts (10 ⁶ /g) 0.060234 36 OCS (Yes) 0.061563 37 Blood_Monocytes (%) 0.060234	12	for asthma or COPD	0.290175
14 Blood_Neutrophils (%) 0.207177 15 Blood_Lymphocytes (%) 0.185377 16 DLCO predicted (%) 0.167944 17 sGaw (1/kPa*sec) 0.166534 18 LAMA (Yes) 0.162801 19 LABA (Yes) 0.161971 20 ICS (Yes) 0.159877 21 Blood_Neutrophils (µL) 0.148225 23 RV predicted (%) 0.143213 24 Number of hospitalizations for asthma or COPD 0.132193 25 FRC predicted (%) 0.015709 26 Weight (kg) 0.015709 27 OCS Course 0.099888 28 RV (L) 0.067324 29 Height (rm) 0.08524 30 DLCO/VA 0.073329 31 DLCO/VA 0.066027 34 Blood_Leurocytes (µL) 0.064596 35 CAT score 0.062324 36 OCS (Yes) 0.061563 37 Blood_Monocytes (%) 0.050218 38 Total Cell Counts (10 ⁶ /g) 0.054644 <td>13</td> <td>FEV1/ FVC pre (%)</td> <td>0.283042</td>	13	FEV1/ FVC pre (%)	0.283042
15 Blood_Lymphocytes (%) 0.185377 16 DLCO predicted (%) 0.16634 17 sGaw (1/kPa*sec) 0.166534 18 LAMA (Yes) 0.152801 19 LABA (Yes) 0.159877 20 ICS (Yes) 0.159877 21 Blood_Neutrophils (µL) 0.148265 22 Treatment (Yes) 0.143311 24 Number of hospitalizations for asthma or COPD 0.132193 25 FRC predicted (%) 0.115709 26 Weight (kg) 0.115709 27 OCS Course 0.099888 28 RV (L) 0.092256 29 Height (cm) 0.066027 31 DLCO/VA 0.073329 32 BMI (kg/m ²) 0.066734 33 DLCO/VApredicted (%) 0.066027 34 Blood_Leucocytes (µL) 0.066231 35 CAT score 0.061563 36 COS (Yes) 0.060271 37 Blood_Monocytes (%) 0.05234 38 Total Cell Counts (10 ⁶ /g) 0.05234 </td <td>14</td> <td>Blood_Neutrophils (%)</td> <td>0.207177</td>	14	Blood_Neutrophils (%)	0.207177
16 DLC0 predicted (%) 0.16634 17 sGaw (1/kP s) 0.16634 18 LAMA (Yes) 0.152801 19 LABA (Yes) 0.159877 21 Blood_Neutrophils (μ L) 0.148225 22 Treatment (Yes) 0.143213 23 RV predicted (%) 0.12998 24 Number of hospitalizations for asthma or COPD 0.132193 25 FRC predicted (%) 0.115709 26 Weight (kg) 0.115709 27 OCS Course 0.099888 28 RV (L) 0.08524 30 Blood_Lymphocytes (μ L) 0.076047 31 DLCO/VA 0.07329 28 MI (kg/m ²) 0.067138 33 DLCO/VApredicted (%) 0.066027 34 Blood_Leucocytes (μ L) 0.06734 35 CAT score 0.06324 36 OCS (Yes) 0.060734 37 Blood_Monocytes (%) 0.060734 38 Total Cell Counts (10 ⁶ /g) 0.060734 39 Alpha 1 antitrypsin (g/l)	15	Blood_Lymphocytes (%)	0.185377
17 SGAW (1/KPa ^{-s} SeC) 0.162301 18 LAMA (Yes) 0.162301 19 LABA (Yes) 0.161971 20 ICS (Yes) 0.159877 21 Blood_Neutrophils (µL) 0.148225 22 Treatment (Yes) 0.143215 23 RV predicted (%) 0.12998 24 Number of hospitalizations for asthma or COPD 0.132193 25 FRC predicted (%) 0.12998 26 Weight (kg) 0.115709 27 OCS Course 0.099888 28 RV (L) 0.092256 29 Height (cm) 0.08524 30 Blood_Lymphocytes (µL) 0.076047 31 DLCO/VA 0.073329 26 MR (kg/m ²) 0.066027 34 Blood_Leucorytes (µL) 0.066027 35 CAT score 0.062324 36 OCS (Yes) 0.060734 37 Blood_Monocytes (%) 0.057644 38 Total Cell Courts (10 ⁶ /g) 0.052038 39 Alpha 1 antitrypsin (g/l) 0.057644	16	DLCO predicted (%)	0.167944
10 LABA (Yes) 0.161971 11 LABA (Yes) 0.159877 12 Blood_Neutrophils (μ) 0.14896 12 Treatment (Yes) 0.148225 13 RV predicted (%) 0.143311 14 Number of hospitalizations for asthma or COPD 0.132193 15 FRC predicted (%) 0.12998 26 Weight (kg) 0.115709 27 OCS Course 0.099888 28 RV (L) 0.092256 29 Height (cm) 0.08524 30 Blood_Lymphocytes (μ L) 0.076047 31 DLCO/VA 0.073329 32 BMI (kg/m ²) 0.066027 34 Blood_Lococytes (μ L) 0.066027 35 CAT score 0.066234 36 OCS (Yes) 0.060734 37 Blood_Monocytes (%) 0.060734 38 Total Cell Counts (10 ⁶ /g) 0.060281 37 Blood_Monocytes (%) 0.060273 38 Total Cell Counts (10 ⁶ /g) 0.052038 37 Blood_Monocytes (%) <	/ 10	sGaw (1/kPa*sec)	0.166534
1CS (Yes) 0.159877 21 Blood_Neutrophils (µL) 0.14896 22 Treatment (Yes) 0.148225 23 RV predicted (%) 0.132193 24 Number of hospitalizations for asthma or COPD 0.132193 25 FRC predicted (%) 0.115709 26 Weight (kg) 0.115709 27 OCS Course 0.099888 28 RV (L) 0.08524 30 Blood_Lymphocytes (µL) 0.076047 31 DLCO/VA 0.07329 28 Blood_Leucoytes (µL) 0.066027 34 Blood_Leucoytes (µL) 0.066027 35 CAT score 0.062324 36 OCS (Yes) 0.060734 37 Blood_Monocytes (%) 0.060734 38 Total Cell Counts (10 ⁶ /g) 0.060281 39 Alpha 1 antitrypsin (g/l) 0.057644 41 TLC predicted (%) 0.057644 42 Viability (%) 0.052038 43 Sputum_Losinophils (10 ³ /g) 0.051767 44 Alpha 1 antitrypsin (g/l)	10	LAMA (Tes)	0.161971
21 Blood_Neutrophils (μ L) 0.14896 22 Treatment (Yes) 0.148225 23 RV predicted (%) 0.143311 24 Number of hospitalizations for asthma or COPD 0.132193 25 FRC predicted (%) 0.115709 26 Weight (kg) 0.115709 27 OCS Course 0.099888 28 RV (L) 0.076047 30 Blood_Lymphocytes (μ L) 0.076047 31 DLCO/VApredicted (%) 0.066027 34 Blood_Leucocytes (μ L) 0.066027 35 CAT score 0.066224 36 OCS (Yes) 0.067138 37 Blood_Monocytes (%) 0.06734 38 Total Cell Counts (10 ⁶ /g) 0.060281 39 Alpha 1 antitrypsin (g/l) 0.055218 40 Fibrinogen (g/l) 0.057244 41 TLC predicted (%) 0.054684 42 Viability (%) 0.052038 43 Sputum_Eosinophils (10 ³ /g) 0.045241 44 ABA (Yes) 0.046993 45 <t< td=""><td>20</td><td>ICS (Yes)</td><td>0.159877</td></t<>	20	ICS (Yes)	0.159877
22 Treatment (Yes) 0.148225 23 RV predicted (%) 0.13311 24 Number of hospitalizations for asthma or COPD 0.132193 25 FRC predicted (%) 0.12998 26 Weight (kg) 0.115709 27 OCS Course 0.099288 28 RV (L) 0.092256 29 Height (cm) 0.08524 0 DLCO/VA 0.073329 30 Blood_Lymphocytes (µL) 0.067138 31 DLCO/VApredicted (%) 0.066027 33 DLCO/VApredicted (%) 0.066153 34 Blood_Monocytes (%) 0.060234 35 CAT score 0.062324 36 OCS (Yes) 0.060734 37 Blood_Monocytes (%) 0.060734 38 Total Cell Counts ($10^6/g$) 0.052038 37 Blood_Kyen 0.052038 38 Total Cell Counts ($10^3/g$) 0.052038 39 Alpha 1 antitrypsin ($g/1$) 0.052038 40 Fibrinogen ($g/1$) 0.052038	21	Blood_Neutrophils (µL)	0.14896
23 RV predicted (%) 0.143311 24 Number of hospitalizations for asthma or COPD 0.132193 25 FRC predicted (%) 0.12998 26 Weight (kg) 0.115709 27 OCS Course 0.099888 28 RV (L) 0.092256 29 Height (cm) 0.08524 30 Blood_Lymphocytes (µL) 0.076047 31 DLCO/VA 0.073329 32 BMI (kg/m ²) 0.067138 33 DLCO/VA oredicted (%) 0.066027 34 Blood_Leucocytes (µL) 0.064596 35 CAT score 0.065224 36 OCS (Yes) 0.0600734 37 Blood_Monocytes (%) 0.060281 38 Total Cell Counts (10 ⁶ /g) 0.052038 40 Fibrinogen (g/l) 0.052038 41 TLC predicted (%) 0.052038 42 Viability (%) 0.052038 43 Sputum_Losinophils (10 ³ /g) 0.0454541 44 SABA (Yes) 0.046933 45 Artibiotic Course <t< td=""><td>22</td><td>Treatment (Yes)</td><td>0.148225</td></t<>	22	Treatment (Yes)	0.148225
24 Number of nospitalizations for asthma or COPD 0.132193 25 FRC predicted (%) 0.12998 26 Weight (kg) 0.115709 27 OCS Course 0.099888 28 RV (L) 0.092256 29 Height (cm) 0.08524 30 Blood_Lymphocytes (µL) 0.076047 31 DLCO/VA 0.073329 28 BNI (kg/m ²) 0.067138 33 DLCO/VApredicted (%) 0.066027 34 Blood_Leucocytes (µL) 0.064596 35 CAT score 0.062324 36 OCS (Yes) 0.061563 37 Blood_Monocytes (%) 0.060281 38 Total Cell Counts (10 ⁶ /g) 0.054684 41 TLC predicted (%) 0.052038 43 Sputum_Eosionphils (10 ³ /g) 0.051767 44 SABA (Yes) 0.046993 45 Antibiotic Course 0.045641 46 Age (year) 0.044547 47 Weight of sputum (g) 0.04283 49 Sex (Male) 0.03485	23	RV predicted (%)	0.143311
25 The preducter (x_0) 0.12590 26 Weight (kg) 0.115709 27 OCS Course 0.099888 28 RV (L) 0.08524 30 Blood_Lymphocytes (μ L) 0.076047 31 DLCO/VA redicted (%) 0.066027 34 Blood_Leucocytes (μ L) 0.064596 35 CAT score 0.061563 36 OCS (Yes) 0.061734 37 Blood_Monocytes (%) 0.060281 38 Total Cell Counts (10 ⁶ /g) 0.060281 39 Alpha 1 antitrypsin (g/l) 0.057644 41 TLC predicted (%) 0.054684 42 Viability (%) 0.051767 44 Sputum_Eosinophils (10 ³ /g) 0.051767 44 SABA (Yes) 0.045641 46 Age (year) 0.044593 50 Sputum_Lorphils (10 ³ /g) 0.031767 74 SABA (Yes) 0.04283 49 Sex (Male) 0.04283 50 Sputum_Neutrophils (10 ³ /g) 0.034857 51 Theophylline (Yes)	24	EPC predicted (%)	0.132193
27 OCS Course 0.099888 28 RV (L) 0.092256 29 Height (cm) 0.08524 30 Blood_Lymphocytes (μ L) 0.076047 31 DLCO/VA 0.073329 32 BMI (kg/m ²) 0.066027 34 Blood_Leucorytes (μ L) 0.066537 35 CAT score 0.062324 36 OCS (Yes) 0.060734 38 Total Cell Courts (10 ⁶ /g) 0.060281 39 Alpha 1 antitrypsin (g/l) 0.0557644 41 TLC predicted (%) 0.054684 42 Viability (%) 0.052038 43 Sputum_Losinophils (10 ³ /g) 0.051767 44 SABA (Yes) 0.045641 46 Age (year) 0.044547 47 Weight of sputum (g) 0.04281 49 Sex (Male) 0.031767 54 Antibiotic Course 0.045641 46 Age (year) 0.04281 50 Sputum_Neutrophils (10 ³ /g) 0.034257 51 Theophylline (Yes) 0.034557 </td <td>26</td> <td>Weight (kg)</td> <td>0.115709</td>	26	Weight (kg)	0.115709
28 RV (L) 0.092256 29 Height (cm) 0.08524 30 Blood_Lymphocytes (µL) 0.076047 31 DLCO/VA 0.073329 32 BMI (kg/m ²) 0.066133 33 DLCO/VApredicted (%) 0.066027 34 Blood_Leucocytes (µL) 0.064596 35 CAT score 0.0612324 36 OCS (Yes) 0.060281 37 Blood_Monocytes (%) 0.060281 38 Total Cell Counts (10 ⁶ /g) 0.057644 41 TLC predicted (%) 0.052038 42 Viability (%) 0.052038 43 Sputum_Eosinophils (10 ³ /g) 0.045641 44 SABA (Yes) 0.044547 47 Weight of sputum (g) 0.044547 47 Weight of sputum (g) 0.0445351 50 Sputum_Lymphocytes (10 ³ /g) 0.035228 51 Theophylline (Yes) 0.034857 52 Smoking Duration(year) 0.030539	27	OCS Course	0.099888
29 Height (cm) 0.08524 30 Blood_Lymphocytes (µL) 0.076047 31 DLCO/VA 0.073329 32 BMI (kg/m ²) 0.067138 33 DLCO/VApredicted (%) 0.066027 34 Blood_Leuccytes (µL) 0.062324 36 OCS (Yes) 0.061563 37 Blood_Monocytes (%) 0.060281 38 Total Cell Counts ($10^6/g$) 0.060281 39 Alpha 1 antitrypsin (g/l) 0.057644 41 TLC predicted (%) 0.057644 42 Viability (%) 0.052038 43 Sputum_Eosinophils ($10^3/g$) 0.051767 44 SABA (Yes) 0.044593 45 Antibiotic Course 0.044583 46 Age (year) 0.044547 47 Weight of sputum (g) 0.042916 48 Sputum_Lymphocytes ($10^3/g$) 0.035228 51 Theophylline (Yes) 0.030115 52 Smoking Duration(year) 0.0301539 53 CRP (mg/l) 0.032528 <	28	RV (L)	0.092256
30 Blood_Lymphocytes (μ L) 0.0763429 31 DLCO/VA 0.067138 33 DLCO/VApredicted (%) 0.066027 34 Blood_Leucocytes (μ L) 0.064396 35 CAT score 0.062324 6 OCS (Yes) 0.061563 37 Blood_Monocytes (%) 0.060734 38 Total Cell Counts (10 ⁶ /g) 0.060281 39 Alpha 1 antitrypsin (g/l) 0.057644 41 TLC predicted (%) 0.052088 42 Viability (%) 0.052088 43 Sputum_Eosinophils (10 ³ /g) 0.051767 44 Age (year) 0.044547 47 Weight of sputum (g) 0.042916 48 Sputum_Lupmphocytes (10 ³ /g) 0.035228 51 Theophylline (Yes) 0.036339 54 FRC (L) 0.032527 55 Positive Aerobic Sputum Culture 0.030115 54 FRC (L) 0.032528 57 Smoking Duration(year) 0.030539 58 Sputum_Lymphocytes (10 ³ /g) 0.03115 54 <td>29</td> <td>Height (cm)</td> <td>0.08524</td>	29	Height (cm)	0.08524
31 DLCO/VA 0.07138 32 BMI (kg/m ²) 0.067138 33 DLCO/VApredicted (%) 0.066027 34 Blood_Leucocytes (μ L) 0.064596 35 CAT score 0.062324 36 OCS (Yes) 0.060734 37 Blood_Monocytes (%) 0.060281 38 Total Cell Counts (10 ⁶ /g) 0.060281 39 Alpha 1 antitrypsin (g/l) 0.059218 40 Fibrinogen (g/l) 0.057644 41 TLC predicted (%) 0.052038 42 Viability (%) 0.052038 43 Sputum_Eosinophils (10 ³ /g) 0.045641 44 SABA (Yes) 0.046993 45 Antibiotic Course 0.044547 46 Age (year) 0.044547 47 Weight of sputum (g) 0.04283 48 Sputum_Lymphocytes (10 ³ /g) 0.035228 50 Sputum_Lymphocytes (10 ³ /g) 0.03539 52 Smoking Duration(year) 0.030539 53 CRP (mg/l) 0.03115 54 FRC (L)	30	Blood_Lymphocytes (µL)	0.076047
32 Divin (kg/m) 0.066027 33 DLCO/VApredicted (%) 0.066027 34 Blood_Leucocytes (μ L) 0.064596 35 CAT score 0.062324 36 OCS (Yes) 0.060734 38 Total Cell Counts (10 ⁶ /g) 0.060281 39 Alpha 1 antitrypsin (g/l) 0.059218 40 Fibrinogen (g/l) 0.057644 41 TLC predicted (%) 0.054684 42 Viability (%) 0.052038 43 Sputum_Eosinophils (10 ³ /g) 0.051767 44 SABA (Yes) 0.046993 45 Antibiotic Course 0.044547 46 Age (year) 0.04281 47 Weight of sputum (g) 0.04283 49 Sex (Male) 0.04351 50 Sputum_Lymphocytes (10 ³ /g) 0.035228 51 Theophylline (Yes) 0.030115 54 FRC (L) 0.023539 55 Positive Aerobic Sputum Culture 0.02198 56 Sputum_Neutrophils (%) 0.02198 57 RAST Grass (31 22	DLCO/VA PML (kg/m ²)	0.0/3329
State Blood_Leucocytes (µL) 0.064596 34 Blood_Leucocytes (µL) 0.062324 36 OCS (Yes) 0.060734 37 Blood_Monocytes (%) 0.060734 38 Total Cell Counts (10 ⁶ /g) 0.060734 39 Alpha 1 antitrypsin (g/l) 0.059218 40 Fibrinogen (g/l) 0.057644 41 TLC predicted (%) 0.052038 43 Sputum_Eosinophils (10 ³ /g) 0.051767 44 SABA (Yes) 0.046993 45 Antibiotic Course 0.044547 47 Weight of sputum (g) 0.042916 48 Sputum_Neutrophils (10 ³ /g) 0.04283 49 Sex (Male) 0.040351 50 Sputum_Lymphocytes (10 ³ /g) 0.03228 51 Theophylline (Yes) 0.034857 52 Smoking Duration(year) 0.0303115 54 FRC (L) 0.028202 55 Positive Aerobic Sputum Culture 0.027121 56 Blood_Eosinophils (%) 0.01398 <td>32</td> <td>DICO/VApredicted (%)</td> <td>0.007138</td>	32	DICO/VApredicted (%)	0.007138
35 CAT score 0.062324 36 OCS (Yes) 0.061563 37 Blood_Monocytes (%) 0.060734 38 Total Cell Counts ($10^6/g$) 0.060281 39 Alpha 1 antitrypsin (g/l) 0.059218 40 Fibrinogen (g/l) 0.057644 41 TLC predicted (%) 0.052038 42 Viability (%) 0.052038 43 Sputum_Eosinophils ($10^3/g$) 0.051767 44 SABA (Yes) 0.046993 45 Antibiotic Course 0.044547 46 Age (year) 0.042916 47 Weight of sputum (g) 0.042916 48 Sputum_Neutrophils ($10^3/g$) 0.042916 49 Sex (Male) 0.040351 50 Sputum_Lymphocytes ($10^3/g$) 0.03228 51 Theophylline (Yes) 0.0314857 52 Smoking Duration(year) 0.030153 53 CRP (mg/l) 0.032115 54 FRC (L) 0.028202 55 Positive Aerobic Sputum Culture 0.027121 56	34	Blood Leucocytes (µL)	0.064596
36 OCS (Yes) 0.061563 37 Blood_Monocytes (%) 0.060734 38 Total Cell Counts ($10^6/g$) 0.060281 39 Alpha 1 antitrypsin (g/l) 0.059218 40 Fibrinogen (g/l) 0.057644 41 TLC predicted (%) 0.052038 42 Viability (%) 0.052038 43 Sputum_Eosinophils ($10^3/g$) 0.051767 44 SABA (Yes) 0.046993 45 Antibiotic Course 0.045641 46 Age (year) 0.04281 47 Weight of sputum (g) 0.04281 48 Sputum_Neutrophils ($10^3/g$) 0.04283 49 Sex (Male) 0.040351 50 Sputum_Lymphocytes ($10^3/g$) 0.035228 51 Theophylline (Yes) 0.030115 52 Smoking Duration(year) 0.030115 53 CRP (mg/l) 0.021198 57 RAST Grass (GX3), %>0.35 (KU/L) 0.020597 58 Sputum_Neutrophils (%) 0.01398 59 Positive Aerobic Sputum Culture 0.013011	35	CAT score	0.062324
37 Blood_Monocytes (%) 0.060734 38 Total Cell Counts ($10^6/g$) 0.060281 39 Alpha 1 antitrypsin (g/l) 0.059218 40 Fibrinogen (g/l) 0.057644 41 TLC predicted (%) 0.052038 42 Viability (%) 0.052038 43 Sputum_Eosinophils ($10^3/g$) 0.051767 44 SABA (Yes) 0.046993 45 Antibiotic Course 0.044547 46 Age (year) 0.042216 48 Sputum_Neutrophils ($10^3/g$) 0.04283 49 Sex (Male) 0.040351 50 Sputum_Lymphocytes ($10^3/g$) 0.035228 51 Theophylline (Yes) 0.034857 52 Smoking Duration(year) 0.030115 54 FRC (L) 0.02202 55 Positive Aerobic Sputum Culture 0.022121 56 Blood_Eosinophils (%) 0.024198 57 RAST Grass (GX3), %>0.35 (KU/L) 0.00967 58 Sputum_Neutrophils (%) 0.01926 59 Positive Aerobic Sputum Culture 0.013916<	36	OCS (Yes)	0.061563
38 Total Cell Counts (10 ⁻⁷ 9) 0.060281 39 Alpha 1 antitrypsin (g/l) 0.059218 40 Fibrinogen (g/l) 0.057644 41 TLC predicted (%) 0.052038 42 Viability (%) 0.052038 43 Sputum_Eosinophils (10 ³ /g) 0.045641 46 Age (year) 0.044547 47 Weight of sputum (g) 0.042916 48 Sputum_Neutrophils (10 ³ /g) 0.04283 49 Sex (Male) 0.044547 50 Sputum_Lymphocytes (10 ³ /g) 0.035228 51 Theophylline (Yes) 0.034857 52 Smoking Duration(year) 0.030539 53 CRP (mg/l) 0.030115 54 FRC (L) 0.022121 56 Blood_Eosinophils (%) 0.01398 59 Positive Aerobic Sputum Culture 0.013011 54 FRC (L) 0.008521 55 Sputum_Neutrophils (%) 0.01398 59 Positive Aerobic Sputum Culture 0.013011 60 IgE (KU/L) 0.008521 <td< td=""><td>37</td><td>Blood_Monocytes (%)</td><td>0.060734</td></td<>	37	Blood_Monocytes (%)	0.060734
35Applie 1 antitypsin (g/l)0.03521640Fibrinogen (g/l)0.05764441TLC predicted (%)0.05203842Viability (%)0.05203843Sputum_Eosinophils (10^3 /g)0.05176744SABA (Yes)0.04699345Antibiotic Course0.04564146Age (year)0.04454747Weight of sputum (g)0.04291648Sputum_Neutrophils (10^3 /g)0.0428349Sex (Male)0.04035150Sputum_Lymphocytes (10^3 /g)0.03522851Theophylline (Yes)0.03015552Smoking Duration(year)0.0301554FRC (L)0.02212156Blood_Eosinophils (%)0.02419857RAST Grass (GX3), %>0.35 (KU/L)0.02059758Sputum_Neutrophils (%)0.0139859Positive Aerobic Sputum Culture0.01301160IgE (KU/L)0.0085216125(OH) Vitamine D (ng/ml)0.00852163FeNO (ppb)0.00852164RAST Birch (t3), %>0.35 (KU/L)0.00792265Squamous (%)0.00758768Sputum_Eosinophils (%)0.0052569Cigarettes (day)0.00524670Blood_Monocytes (µL)0.00243371RAST DPT (d1) %>0.35 (KU/L)0.00243	30	Iotal Cell Counts (10 ⁻ /g)	0.060281
41 TLC predicted (%) 0.054684 42 Viability (%) 0.052038 43 Sputum_Eosinophils (10^3 /g) 0.051767 44 SABA (Yes) 0.046993 45 Antibiotic Course 0.044547 46 Age (year) 0.042916 47 Weight of sputum (g) 0.042916 48 Sputum_Neutrophils (10^3 /g) 0.04283 49 Sex (Male) 0.040351 50 Sputum_Lymphocytes (10^3 /g) 0.035228 51 Theophylline (Yes) 0.030155 52 Smoking Duration(year) 0.030155 53 CRP (mg/l) 0.028202 55 Positive Aerobic Sputum Culture 0.027121 56 Blood_Eosinophils (%) 0.024198 57 RAST Grass (GX3), %>0.35 (KU/L) 0.0020597 58 Sputum_Neutrophils (%) 0.01398 59 Positive Aerobic Sputum Culture 0.013011 60 IgE (KU/L) 0.008521 61 25(OH) Vitamine D (ng/ml) 0.008171 62 Blood_Basophils (%) 0.007922	40	Fibringgen (g/l)	0.057644
42 Viability (%) 0.052038 43 Sputum_Eosinophils ($10^3/g$) 0.051767 44 SABA (Yes) 0.046993 45 Antibiotic Course 0.044547 46 Age (year) 0.044547 47 Weight of sputum (g) 0.042916 48 Sputum_Neutrophils ($10^3/g$) 0.04283 49 Sex (Male) 0.040351 50 Sputum_Lymphocytes ($10^3/g$) 0.035228 51 Theophylline (Yes) 0.030155 52 Smoking Duration(year) 0.030539 53 CRP (mg/l) 0.028202 55 Positive Aerobic Sputum Culture 0.027121 56 Blood_Eosinophils (%) 0.024198 57 RAST Grass (GX3), %>0.35 (KU/L) 0.020597 58 Sputum_Neutrophils (%) 0.01391 60 IgE (KU/L) 0.010926 61 25(OH) Vitamine D (ng/ml) 0.008521 63 FeNO (ppb) 0.008171 64 RAST Birch (t3), %>0.35 (KU/L) 0.00792 66 Sputum_Epithelial cells (%) 0.005246 <	41	TLC predicted (%)	0.054684
43 Sputum_Eosinophils ($10^3/g$) 0.051767 44 SABA (Yes) 0.046993 45 Antibiotic Course 0.044547 46 Age (year) 0.044547 47 Weight of sputum (g) 0.04283 49 Sex (Male) 0.040351 50 Sputum_Lymphocytes ($10^3/g$) 0.035228 51 Theophylline (Yes) 0.030135 52 Smoking Duration(year) 0.030339 53 CRP (mg/l) 0.028202 55 Positive Aerobic Sputum Culture 0.027121 56 Blood_Eosinophils (%) 0.024198 57 RAST Grass (GX3), %>0.35 (KU/L) 0.020597 58 Sputum_Neutrophils (%) 0.01398 59 Positive Aerobic Sputum Culture 0.013011 60 IgE (KU/L) 0.01926 61 25(OH) Vitamine D (ng/ml) 0.008521 63 FeNO (ppb) 0.008171 64 RAST Birch (t3), %>0.35 (KU/L) 0.007922 65 Squamous (%) 0.005787 <td>42</td> <td>Viability (%)</td> <td>0.052038</td>	42	Viability (%)	0.052038
44 SABA (Yes) 0.046993 45 Antibiotic Course 0.045641 46 Age (year) 0.044547 47 Weight of sputum (g) 0.042916 48 Sputum_Neutrophils (10^3 /g) 0.04283 49 Sex (Male) 0.040351 50 Sputum_Lymphocytes (10^3 /g) 0.035228 51 Theophylline (Yes) 0.030135 52 Smoking Duration(year) 0.030539 53 CRP (mg/l) 0.028202 55 Positive Aerobic Sputum Culture 0.027121 56 Blood_Eosinophils (%) 0.024198 57 RAST Grass (GX3), %>0.35 (KU/L) 0.020597 58 Sputum_Neutrophils (%) 0.01391 59 Positive Aerobic Sputum Culture 0.013011 60 IgE (KU/L) 0.010926 61 25(OH) Vitamine D (ng/ml) 0.008521 63 FeNO (ppb) 0.008171 64 RAST Birch (t3), %>0.35 (KU/L) 0.007922 65 Squamous (%) 0.005787 68 Sputum_Eoinophils (%) 0.00525	43	Sputum_Eosinophils (10 ³ /g)	0.051767
45 Antibiotic Course 0.044547 46 Age (year) 0.044547 47 Weight of sputum (g) 0.042916 48 Sputum_Neutrophils (10^3 /g) 0.04283 49 Sex (Male) 0.040351 50 Sputum_Lymphocytes (10^3 /g) 0.035228 51 Theophylline (Yes) 0.030135 52 Smoking Duration(year) 0.030339 53 CRP (mg/l) 0.028202 55 Positive Aerobic Sputum Culture 0.027121 56 Blood_Eosinophils (%) 0.024198 57 RAST Grass (GX3), %>0.35 (KU/L) 0.020597 58 Sputum_Neutrophils (%) 0.01391 60 IgE (KU/L) 0.010926 61 25(OH) Vitamine D (ng/ml) 0.008521 63 FeNO (ppb) 0.008171 64 RAST Birch (t3), %>0.35 (KU/L) 0.007922 65 Squamous (%) 0.007922 66 Sputum_Epithelial cells (%) 0.005787 68 Sputum_Eosinophils (%) 0.00525 69 Cigarettes (day) 0.005246 <td>44</td> <td>SABA (Yes)</td> <td>0.046993</td>	44	SABA (Yes)	0.046993
10 196 (JCuT) 0.044216 47 Weight of sputum (g) 0.042916 48 Sputum_Neutrophils (10^3 /g) 0.04283 49 Sex (Male) 0.040351 50 Sputum_Lymphocytes (10^3 /g) 0.035228 51 Theophylline (Yes) 0.030339 52 Smoking Duration(year) 0.030339 53 CRP (mg/l) 0.028202 55 Positive Aerobic Sputum Culture 0.027121 56 Blood_Eosinophils (%) 0.024198 57 RAST Grass (GX3), %>0.35 (KU/L) 0.020597 58 Sputum_Neutrophils (%) 0.01398 59 Positive Aerobic Sputum Culture 0.013011 60 IgE (KU/L) 0.010926 61 25(OH) Vitamine D (ng/ml) 0.008521 63 FeNO (ppb) 0.008171 64 RAST Birch (t3), %>0.35 (KU/L) 0.007922 65 Squamous (%) 0.005787 68 Sputum_Epithelial cells (%) 0.005255 69 Cigarettes (day) 0.005246 70 Blood_Monocytes (µL) 0.002943	45 46		0.045641
48 Sputum_Neutrophils $(10^3/g)$ 0.04283 49 Sex (Male) 0.040351 50 Sputum_Lymphocytes $(10^3/g)$ 0.035228 51 Theophylline (Yes) 0.034857 52 Smoking Duration(year) 0.030339 53 CRP (mg/l) 0.030115 54 FRC (L) 0.028202 55 Positive Aerobic Sputum Culture 0.027121 56 Blood_Eosinophils (%) 0.024198 57 RAST Grass (GX3), %>0.35 (KU/L) 0.020597 58 Sputum_Neutrophils (%) 0.01398 59 Positive Aerobic Sputum Culture 0.013011 60 IgE (KU/L) 0.010926 61 25(OH) Vitamine D (ng/ml) 0.008521 63 FeNO (ppb) 0.008171 64 RAST Birch (t3), %>0.35 (KU/L) 0.007922 65 Squamous (%) 0.007922 66 Sputum_Epithelial cells (%) 0.005255 69 Cigarettes (day) 0.00525 69 Cigarettes (day) 0.0	47	Weight of sputum (g)	0.042916
49 Sex (Male) 0.040351 50 Sputum_Lymphocytes $(10^3/g)$ 0.035228 51 Theophylline (Yes) 0.034857 52 Smoking Duration(year) 0.030539 53 CRP (mg/l) 0.030115 54 FRC (L) 0.028202 55 Positive Aerobic Sputum Culture 0.027121 56 Blood_Eosinophils (%) 0.024198 57 RAST Grass (GX3), %>0.35 (KU/L) 0.020597 58 Sputum_Neutrophils (%) 0.01398 59 Positive Aerobic Sputum Culture 0.013011 60 IgE (KU/L) 0.010926 61 25(OH) Vitamine D (ng/ml) 0.008521 63 FeNO (ppb) 0.008171 64 RAST Birch (t3), %>0.35 (KU/L) 0.007922 65 Squamous (%) 0.007922 66 Sputum_Epithelial cells (%) 0.005787 68 Sputum_Eosinophils (%) 0.005255 69 Cigarettes (day) 0.004644 71 RAST	48	Sputum_Neutrophils (10 ³ /g)	0.04283
50 Sputum_Lymphocytes $(10^3/g)$ 0.035228 51 Theophylline (Yes) 0.034857 52 Smoking Duration(year) 0.030539 53 CRP (mg/l) 0.030115 54 FRC (L) 0.028202 55 Positive Aerobic Sputum Culture 0.027121 56 Blood_Eosinophils (%) 0.024198 57 RAST Grass (GX3), %>0.35 (KU/L) 0.020597 58 Sputum_Neutrophils (%) 0.01398 59 Positive Aerobic Sputum Culture 0.013011 60 IgE (KU/L) 0.010926 61 25(OH) Vitamine D (ng/ml) 0.008521 63 FeNO (ppb) 0.008171 64 RAST Birch (t3), %>0.35 (KU/L) 0.007922 65 Squamous (%) 0.005787 68 Sputum_Eoinophils (%) 0.00525 69 Cigarettes (day) 0.00525 69 Cigarettes (day) 0.005246 70 Blood_Monocytes (µL) 0.002464 71 RAST DPT (d1) %>0.35 (KU/L) 0	49	Sex (Male)	0.040351
51 Theophylline (Yes) 0.034857 52 Smoking Duration(year) 0.030539 53 CRP (mg/l) 0.030115 54 FRC (L) 0.028202 55 Positive Aerobic Sputum Culture 0.027121 56 Blood_Eosinophils (%) 0.024198 57 RAST Grass (GX3), %>0.35 (KU/L) 0.020597 58 Sputum_Neutrophils (%) 0.01398 59 Positive Aerobic Sputum Culture 0.013011 60 IgE (KU/L) 0.010926 61 25(OH) Vitamine D (ng/ml) 0.008521 63 FeNO (ppb) 0.008521 64 RAST Birch (t3), %>0.35 (KU/L) 0.007092 65 Squamous (%) 0.005787 68 Sputum_Epithelial cells (%) 0.00525 69 Cigarettes (day) 0.005246 70 Blood_Monocytes (µL) 0.004644 71 RAST DPT (d1) %>0.35 (KU/L) 0.002943	50	Sputum_Lymphocytes (10 ³ /g)	0.035228
32 Shicking Dulation(year) 0.030339 53 CRP (mg/l) 0.030115 54 FRC (L) 0.028202 55 Positive Aerobic Sputum Culture 0.027121 56 Blood_Eosinophils (%) 0.024198 57 RAST Grass (GX3), %>0.35 (KU/L) 0.020597 58 Sputum_Neutrophils (%) 0.01398 59 Positive Aerobic Sputum Culture 0.013011 60 IgE (KU/L) 0.010926 61 25(OH) Vitamine D (ng/ml) 0.008521 63 FeNO (ppb) 0.008521 64 RAST Birch (t3), %>0.35 (KU/L) 0.007092 65 Squamous (%) 0.005941 67 TLC (L) 0.005787 68 Sputum_Eosinophils (%) 0.00525 69 Cigarettes (day) 0.005246 70 Blood_Monocytes (µL) 0.004644 71 RAST DPT (d1) %>0.35 (KU/L) 0.002943	51	Theophylline (Yes)	0.03485/
53 Chi (hig)r) 0.038105 54 FRC (L) 0.028202 55 Positive Aerobic Sputum Culture 0.027121 56 Blood_Eosinophils (%) 0.024198 57 RAST Grass (GX3), %>0.35 (KU/L) 0.020597 58 Sputum_Neutrophils (%) 0.01398 59 Positive Aerobic Sputum Culture 0.013011 60 IgE (KU/L) 0.00967 61 25(OH) Vitamine D (ng/ml) 0.008521 63 FeNO (ppb) 0.008171 64 RAST Birch (t3), %>0.35 (KU/L) 0.007092 65 Squamous (%) 0.005941 67 TLC (L) 0.005787 68 Sputum_Eosinophils (%) 0.00525 69 Cigarettes (day) 0.00525 70 Blood_Monocytes (µL) 0.004464 71 RAST DPT (d1) %>0.35 (KU/L) 0.00246	52	CRP (mg/l)	0.030339
55 Positive Aerobic Sputum Culture 0.027121 56 Blood_Eosinophils (%) 0.024198 57 RAST Grass (GX3), %>0.35 (KU/L) 0.020597 58 Sputum_Neutrophils (%) 0.01398 59 Positive Aerobic Sputum Culture 0.013011 60 IgE (KU/L) 0.00967 61 25(OH) Vitamine D (ng/ml) 0.008521 63 FeNO (ppb) 0.008521 64 RAST Birch (t3), %>0.35 (KU/L) 0.007232 65 Squamous (%) 0.00792 66 Sputum_Epithelial cells (%) 0.005787 68 Sputum_Eosinophils (%) 0.00525 69 Cigarettes (day) 0.005246 70 Blood_Monocytes (µL) 0.002464 71 RAST DPT (d1) %>0.35 (KU/L) 0.002943	55	FRC (L)	0.028202
56 Blood_Eosinophils (%) 0.024198 57 RAST Grass (GX3), %>0.35 (KU/L) 0.020597 58 Sputum_Neutrophils (%) 0.01398 59 Positive Aerobic Sputum Culture 0.013011 60 IgE (KU/L) 0.00967 61 25(OH) Vitamine D (ng/ml) 0.008521 63 FeNO (ppb) 0.008171 64 RAST Birch (t3), %>0.35 (KU/L) 0.007092 65 Squamous (%) 0.005941 67 TLC (L) 0.005787 68 Sputum_Eosinophils (%) 0.00525 69 Cigarettes (day) 0.005246 70 Blood_Monocytes (µL) 0.002464 71 RAST DPT (d1) %>0.35 (KU/L) 0.002943	55	Positive Aerobic Sputum Culture	0.027121
57 RAST Grass (GX3), %>0.35 (KU/L) 0.020597 58 Sputum_Neutrophils (%) 0.01398 59 Positive Aerobic Sputum Culture 0.013011 60 IgE (KU/L) 0.010926 61 25(OH) Vitamine D (ng/ml) 0.008521 63 FeNO (ppb) 0.008171 64 RAST Birch (t3), %>0.35 (KU/L) 0.007092 65 Squamous (%) 0.005941 67 TLC (L) 0.005787 68 Sputum_Eosinophils (%) 0.00525 69 Cigarettes (day) 0.005246 70 Blood_Monocytes (µL) 0.004464 71 RAST DPT (d1) %>0.35 (KU/L) 0.00243	56	Blood_Eosinophils (%)	0.024198
58 Sputum_Neutrophils (%) 0.01398 59 Positive Aerobic Sputum Culture 0.013011 60 IgE (KU/L) 0.00926 61 25(OH) Vitamine D (ng/ml) 0.00967 62 Blood_Basophils (%) 0.008521 63 FeNO (ppb) 0.008171 64 RAST Birch (t3), %>0.35 (KU/L) 0.007092 65 Squamous (%) 0.005941 67 TLC (L) 0.005787 68 Sputum_Eosinophils (%) 0.00525 69 Cigarettes (day) 0.005246 70 Blood_Monocytes (µL) 0.002443 71 RAST DPT (d1) %>0.35 (KU/L) 0.002943	57	RAST Grass (GX3), %>0.35 (KU/L)	0.020597
39 Positive Aerolic Sputin Cuture 0.013011 60 IgE (KU/L) 0.01926 61 25(OH) Vitamine D (ng/ml) 0.00967 62 Blood_Basophils (%) 0.008521 63 FeNO (ppb) 0.007232 65 Squamous (%) 0.00792 66 Sputum_Epithelial cells (%) 0.005941 67 TLC (L) 0.00525 69 Cigarettes (day) 0.00525 70 Blood_Monocytes (μL) 0.004464 71 RAST DPT (d1) %>0.35 (KU/L) 0.002943	58	Sputum_Neutrophils (%) Positive Acrobic Sputum Culture	0.01398
61 25(OH) Vitamine D (ng/ml) 0.00967 62 Blood_Basophils (%) 0.008521 63 FeNO (ppb) 0.008171 64 RAST Birch (t3), %>0.35 (KU/L) 0.007232 65 Squamous (%) 0.00792 66 Sputum_Epithelial cells (%) 0.005941 67 TLC (L) 0.00525 69 Cigarettes (day) 0.00525 70 Blood_Monocytes (µL) 0.004464 71 RAST DPT (d1) %>0.35 (KU/L) 0.002943	60		0.010926
62 Blood_Basophils (%) 0.008521 63 FeNO (ppb) 0.008171 64 RAST Birch (t3), %>0.35 (KU/L) 0.007232 65 Squamous (%) 0.007092 66 Sputum_Epithelial cells (%) 0.005941 67 TLC (L) 0.005787 68 Sputum_Eosinophils (%) 0.00525 69 Cigarettes (day) 0.005246 70 Blood_Monocytes (μL) 0.004464 71 RAST DPT (d1) %>0.35 (KU/L) 0.002943	61	25(OH) Vitamine D (ng/ml)	0.00967
63 FeNO (ppb) 0.008171 64 RAST Birch (t3), %>0.35 (KU/L) 0.007232 65 Squamous (%) 0.007092 66 Sputum_Epithelial cells (%) 0.005941 67 TLC (L) 0.005787 68 Sputum_Eosinophils (%) 0.00525 69 Cigarettes (day) 0.005246 70 Blood_Monocytes (µL) 0.004464 71 RAST DPT (d1) %>0.35 (KU/L) 0.002943	62	Blood_Basophils (%)	0.008521
64 RAST Birch (t3), %>0.35 (KU/L) 0.007232 65 Squamous (%) 0.007092 66 Sputum_Epithelial cells (%) 0.005941 67 TLC (L) 0.005787 68 Sputum_Eosinophils (%) 0.00525 69 Cigarettes (day) 0.005246 70 Blood_Monocytes (µL) 0.004464 71 RAST DPT (d1) %>0.35 (KU/L) 0.002943	63	FeNO (ppb)	0.008171
os Squamous (%) 0.007092 66 Sputum_Epithelial cells (%) 0.005941 67 TLC (L) 0.005787 68 Sputum_Eosinophils (%) 0.00525 69 Cigarettes (day) 0.005246 70 Blood_Monocytes (μL) 0.004464 71 RAST DPT (d1) %>0.35 (KU/L) 0.002943	64	RAST Birch (t3), %>0.35 (KU/L)	0.007232
67 TLC (L) 0.005787 68 Sputum_Eosinophils (%) 0.00525 69 Cigarettes (day) 0.005246 70 Blood_Monocytes (µL) 0.004464 71 RAST DPT (d1) %>0.35 (KU/L) 0.002943	60 66	Sputum Epithelial cells (%)	0.007092
68 Sputum_Eosinophils (%) 0.00525 69 Cigarettes (day) 0.005246 70 Blood_Monocytes (μL) 0.004464 71 RAST DPT (d1) %>0.35 (KU/L) 0.002943	67		0.005941
69 Cigarettes (day) 0.005246 70 Blood_Monocytes (μL) 0.004464 71 RAST DPT (d1) %>0.35 (KU/L) 0.002943	68	Sputum_Eosinophils (%)	0.00525
70 Blood_Monocytes (μL) 0.004464 71 RAST DPT (d1) %>0.35 (KU/L) 0.002943	69	Cigarettes (day)	0.005246
/I KASI DPI (d1) %>0.35 (KU/L) 0.002943	70	Blood_Monocytes (μL)	0.004464
(continued)	/1	KASI DPT (at) %>0.35 (KU/L)	0.002943

Γal	hl	e	3		C	۱n	tiı	าม	ed	
ıa	U.	с.	•	•	$- \cdot$,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	LII.	ιu	cu.	

		Percentage of contribution
Order	Variables in order of priority	value
72	Sputum_Lymphocytes (%)	0.002614
73	RAST microog (MIX1), %>0.35 (KU/L)	0.002255
74	Sputum_Macrophages (10 ³ /g)	0.001858
75	Phosphate (mmol/L)	0.001491
76	RAST Cat (e1), %>0.35 (KU/L)	0.001486
77	LTRA (Yes)	0.001457
78	Sputum_Macrophages (%)	0.001438
79	Blood_Basophils (µL)	0.001318
80	RAST Dog (e5), %>0.35 (KU/L)	0.001291
81	Calcium (mmol/L)	0.001184
82	Blood_Eosinophils (µL)	0.000887
83	Reversibility (%)	0.00079
84	Cigarette Packs (year)	0.00077

similar, pointing to different susceptibility to tobacco among patients. The percentage of contribution of the different variables to the clustering. It appears that functional criteria including airway flow and the degree of airway obstruction and lung hyperdistension and the % of blood lymphocytes are amongst the most important criteria to structure the cluster while variables like smoking history, FeNO and Vitamin D level were rather homogeneous between the subjects.

The cluster 2 is conspicuously the most severe group of patients with marked airway obstruction, lung hyperdistension capacity together with intense neutrophilic inflammation both at the systemic and the airway level, in keeping with the previously reported relationship between the severity of airway obstruction and the neutrophilic inflammation [25]. Cluster 2 and 3 had also impaired diffusing capacity and transfer coefficient pointing to emphysema. Despite severe emphysema the level of α 1- antitrypsin was higher in cluster 2, perhaps indicating a response of the body trying to counteract the lung destruction favored by the intense neutrophilic inflammation.

Associated with neutrophilic inflammation, cluster 2, displays a small rise in fibrinogen level even through the median value remained within the normal range and below the threshold of 5.1 g/l, shown to be predictive of an excess of mortality [26]. Of note is the fact that the intensity in neutrophilic airway inflammation is not associated with bacterial colonization identified by classical bacterial culture, which was rather low come close to 10% for the whole cohort. Of course, it does not imply that microbiome may be profoundly disturbed in COPD and more sophisticated microbiological analyses might have revealed differences between the clusters. Altered microbiome may be the consequence of frequent antibiotic courses received by the patients as shown in our cohort since almost two third of the patients had received antibiotics for bronchitis the year prior the visit. It is worth noting that there was no difference between clusters in the number of antibiotic courses. As opposed to exacerbation defined by OCS course, exacerbation defined by antibiotic course was not related the severity of lung function impairment nor to the severity of airway inflammation.

Table 4. Characteristics of patients with COPD after imputation, Median (IQR) / Percentage (frequency) in each cluster and comparison between clusters.

			Result	t for clustering on 100 imputed	d datasets	_
	Variable		Cluster 1 (<i>n</i> = 67)	Cluster 2 (<i>n</i> = 56)	Cluster 3 (n = 55)	P-value
Demographic	Age (year)		62(55–66) ^a	67(60.75–74.25) ^b	67(58.5–73) ^{b+}	< 0.001
5 1	Sex (Male)		76.12%(51) ^a	75%(42) ^a	7.27%(4) ^b	< 0.0001
	Height (cm)		173(166.5–178) ^a	169.5(162–17.25) ^a	161(156–165) ^b	< 0.0001
	Weight (kg)		77(65–89) ^a	67(56.75–76) ^b	60(53–66) ^c	< 0.0001
	BMI (kg/m ²)		25.59(22.34–30.21) ^a	23.08(20.55–24.89) ^b	23.15(19.89–25.55) ^b	< 0.001
	Cigarette Packs (year)		36.9(21.52–50) ^a	42.5(24.62–52.5) ^a	34.5(21.42–43.87) ^a	>0.05
	Cigarettes (day)		20(10–25) ^a	20(10–21.25) ^a	20(10–20) ^a	>0.05
	Smoking Duration(year)		40(31–46) ^a	46.5(34.25–52.25) ^b	44(37–50) ^b	< 0.05
	OCS Course	0	80.59%(54) ^a	30.35%(17) ^b	61.82%(34) ^a	< 0.0001
		1	13.43%(9)	32.14%(18)	23.64%(13)	
		≥2	4.48%(3)	35.71%(20)	10.91%(6)	
	Antibiotic Course	0	43.28%(29) ^a	32.14%(18) ^a	32.73%(18) ^a	>0.05
		1	46.27%(31)	50%(28)	58.18%(32)	
		≥ 2	8.95%(6)	16.07%(9)	10.91%(6)	
	Emergency Room Admission	0	95.52%(64) ^a	71.43%(40) ^b	85.45%(47) ^a	<0.0001
	for asthma or COPD	1	4.48%(3)	26.78%(15)	14.54%(8)	
		≥ 2	0%(0)	1.78%(1)	0%(0)	
	Number of hospitalizations	0	97.01%(65) ^a	67.86%(38) ^b	89.09%(49) ^a	<0.0001
	for asthma or COPD	1	2.98%(2)	26.78%(15)	10.91%(6)	
		≥ 2	0%(0)	5.36%(3)	0%(0)	
Pulmonary	FeNO (ppb)		15(10.5–23) ^a	18.5(10–30.5) ^a	14(8–25.5) ^a	>0.05
	FEV1 (mL)		1950(1700–2205) ^a	1085(780–1352.5) ^b	1240(1075–1390) ^b	<0.0001
	FEV1 predicted (%)		66(56–78) ^a	37(30–45.25) ^b	55(47.5–66) ^c	<0.0001
	FEV1 PD (mL)		2000(1820–2405) ^a	1190(837.5–1380) ^b	1310(1135–1470) ^b	<0.0001
	FEV1 PD (%)		69(60.5–81.5) ^a	40(32.75–50) ^b	59(51.5–69.5) ^c	<0.0001
	Reversibility (%)		7(1–10.5) ^a	6.5(1–11.25) ^a	8(2–13.5) ^a	>0.05
	FVC (mL)		3200(2625–3780) ^a	2427.5(1705–2767.5) ^b	2140(1820–2390) ^c	<0.0001
	FVC predicted (%)		86(74–99.5) ^a	65(55.75–74.25) ^b	77(68.5–85.5) ^c	< 0.0001
	FVC post (mL)		3320(2805–3870) ^a	2385(1797.5–2900) ^b	2130(1870–2445) ^c	< 0.0001
	FVC post (%)		90(79.5–101) ^a	68(56.75–76.5) ^b	80(71.5–91.5) ^c	< 0.0001
	FEV1/ FVC pre (%)		63.1(56.45–66.65) ^a	47(40.37–50.42) ^b	57.1(53.15–64.5) ^a	< 0.0001
	FEV1/ FVC post (%)		64(58.3–68.55) ^a	47.5(42.8–53.2) ^b	59.9(54.5–67.05) ^a	< 0.0001
	TLC (mL)		6725(5725–7385) ^a	6830(5847.5–8107.5) ^a	5440(4975–6005) ^b	< 0.0001
	TLC predicted (%)		103(93–112) ^a	113(100.75–125.25) ^ь	115(102–127.5) ^b	< 0.001
	RV (mL)		3320(2970–3820) ^a	4515(3690–5277.5) ^b	3270(2920–3725) ^a	<0.0001
	RV (%)		141(128–171.5) ^a	183.5(163.87–228.5) ^b	172(148.5–193.25) ^c	<0.0001
	RV/TLC (%)		52.99(46.71–57.18) ^a	66.37(61.28–69.14) ^b	60.84(57.03–64.06) ^c	< 0.0001
	DLCO (mmol/kPa.min)		5.2(4.06–5.88) ^a	3.47(2.67–4.44) ^b	3.27(2.69–4.03) ^b	<0.0001
	DLCO predicted (%)		57(46.5–67) ^a	41.5(30.75–58) ^b	45(37.5–53.5) ^b	<0.0001
	DLCO/VA		1.03(0.79–1.28) ^a	0.80(0.63–0.99) ^b	0.93(0.71–1.15) ^D	<0.0001
	DLCO/VA predicted (%)		70(57–88) ^a	59.5(45.75–79) ^b	60(50–77.5) ^b	< 0.001
	sGaw (1/kPa*sec)		0.65(0.44–0.88) ^a	0.35(0.24–0.45) ^b	0.47(0.34–0.73) ^c	<0.0001
	FRC (L)		4.83(4.08–5.43) ^a	5.87(4.82–6.49) ^b	4.24(3.77–4.95) ^c	<0.0001
	FRC predicted (%)		143(122–161) ^a	174(154.75–192) ^b	160.5(141.5–180.5) ^c	<0.0001
Treatment	Treatment (Yes)		44.78%(30) ^a	78.57%(44) ^b	67.27%(37) ^b	<0.0001
	ICS (Yes)		29.85%(20) ^a	71.43%(40) ^b	69.10%(38) ^b	<0.0001
	OCS (Yes)		1.49%(1) ^a	16.07%(9) ^b	0%(0) ^a	<0.0001
	LAMA (Yes)		34.33%(23) ^a	73.21%(41) ^b	49.09%(27) ^a	<0.0001
	LABA (Yes)		44.78%(30) ^a	82.14%(46) ^b	76.36%(42) ^a	<0.0001
	SABA (Yes)		25.37%(17) ^a	50%(28)	49.09%(27)	<0.001
	LTRA (Yes)		2.98%(2) ^a	0%(0) ^a	7.27%(4) ^a	>0.05
	Theophylline (Yes)		1.49%(1) ^a	5.36%(3) ^a	1.82%(1) ^a	>0.05
CAT score			22(15–31)°	26(19–30)°	24(17–30)°	>0.05
Blood	Leucocytes (µL)		7.71(6.52–9.43)°	8.56(6.87–11.10)°	7.81(6.64–9.2)°	>0.05
	Neutrophils (%)		58.2(52.75–63.55)ª	67.6(60.1–73.22) ^b	58.3(53.25–64.85) ^a	<0.0001
	Lymphocytes (%)		30.3(25.65–35)°	20.95(15.7–27.27)	29(23.82–35.12)°	< 0.0001
	Monocytes (%)		8.7(7.1–9.8)°	7.8(6.34–9.82)	7.1(6.4–8.67)	< 0.05
	Eosinophils (%)		2(1.1-3.25) ^a	1.9(0.9–3.22)	2.1(0.95–3.35)	>0.05
	Basophils (%)		0.4(0.3–0.6)"	0.3(0.2–0.5)"	0.4(0.3–0.7)"	>0.05
	Neutrophils (µL)		4529.13(3723.5–5501.7)°	5574.91(4097.7–7842.7) ⁵	4840.71(3393.7–5743.1)°	< 0.05
	Lymphocytes (µL)		2346.8(1844.6–2968.1)°	1847.22(1340.4–2382.2)	2253.3(1846.6–2/10.8) ^a	< 0.0001
	Monocytes (µL)		668.82(507.24–831.28) ^a	652.58(511./2-864.82) ^a	605.82(485.32-748.05)°	>0.05
	Eosinophils (μ L)		138(75.12-240.24)"	168./8(69.23-258.42)*	14/.03(88.26-255.9/)"	>0.05
	Basophils (µL)		30.84(21.48–42.58) ^e	$2/.63(18.88-46.25)^{\circ}$	32.04(23.95-48.97)°	>0.05
	Fibrinogen (g/l)		3.43(2.88-3.86)"	3.65(3.08-4.50)	3.54(2.98-3.80)	< 0.05
			2.3(1.25-4.95)°	$2.9(0.8/-1.7)^{\circ}$	1.8(1-4./5)	>0.05
	Alpha T antitrypsin (g/l)		$1.49(1.34-1.57)^{\circ}$	$1.61(1.39 - 1.76)^{\circ}$	$1.49(1.35 - 1.64)^{\circ}$	< 0.05
	Calcium (mmol/L)		$2.42(2.3/-2.4/)^{\circ}$	2.41(2.35-2.48)	2.44(2.38–2.4/)"	>0.05
	25(OH) Vitamine D (ng/ml)		18(12-30.9)"	17.5(10-26.75)"	$24(15.5-33)^{\circ}$	>0.05
A 4	Phosphate (mmol/L)		U.89(U.//-U.95)°	$0.88(0.72 - 1.06)^{3}$	1.01(0.93-1.11)~	<0.0001
нтору			52(23-184.5) [°]	91.5(28./5-304./5)"	/3(21-1/0)~	>0.05
	KASI DPI (d1) %>0.35 (KU/L)		13.43%(9)"	16.07%(9)"	/.2/%(4)	>0.05

(continued)

Table 4. Continued.

		Resu	Result for clustering on 100 imputed datasets				
	Variable	Cluster 1 (<i>n</i> = 67)	Cluster 2 (<i>n</i> = 56)	Cluster 3 (<i>n</i> = 55)	P-value		
	RAST Cat (e1), %>0.35 (KU/L)	1.49%(1) ^a	7.14%(4) ^a	1.82%(1) ^a	>0.05		
	RAST Dog (e5), %>0.35 (KU/L)	2.98%(2) ^a	5.36%(3) ^a	0%(0) ^a	>0.05		
	RAST Grass (GX3), %>0.35 (KU/L)	5.97%(4) ^a	14.28%(8) ^a	1.82%(1) ^a	>0.05		
	RAST microog (MIX1),%>0.35 (KU/L)	7.46%(5) ^a	12.5%(7) ^a	10.91%(6) ^a	>0.05		
	RAST Birch (t3), %>0.35 (KU/L)	0%(0) ^a	3.57%(2) ^a	0%(0) ^a	>0.05		
Sputum	Positive Aerobic Sputum Culture	8.95%(6) ^a	16.07%(9) ^a	12.73%(7) ^a	>0.05		
	Weight of sputum (g)	1.77(1.28–3.01) ^a	1.45(0.97–3.05) ^a	1.65(0.93–3.28) ^a	>0.05		
	Total Cell Counts (10 ⁶ /g)	1.70(0.90–4.41) ^a	4.90(1.58–15.96) ^b	2.65(1.08-5.43) ^a	< 0.05		
	Squamous (%)	19(6–42) ^a	7(2–31.12) ^b	9.5(2–23.5) ^b	< 0.05		
	Viability (%)	68(53.5–85.5) ^a	69(51–86) ^a	67(48.5–79.5) ^a	>0.05		
	Macrophages (%)	14(6.7–26.1) ^a	6.5(2.54–15.15) ^b	17(7–29.95) ^a	< 0.0001		
	Lymphocytes (%)	1.2(0–2.3) ^a	0.6(0.15–1.5) ^a	1.2(0-3) ^a	>0.05		
	Neutrophils (%)	71.4(56.35–88.2) ^a	78.9(58.8–92.19) ^a	60.4(39.3–81.05) ^b	< 0.001		
	Eosinophils (%)	1.4(0.2–4.92) ^a	2.3(0.2–9.12) ^a	2(0.7–9.15) ^a	>0.05		
	Epithelial cells (%)	2.4(0.4–8.1) ^a	3.25(0.57–11.05) ^a	4.7(1.3–15.2) ^a	>0.05		
	Macrophages (10 ³ /g)	233.55(53.28-691.65) ^a	301.29(31.37–755.45) ^a	330.48(58.13-816.67) ^a	>0.05		
	Lymphocytes (10 ³ /g)	14.2(0–43.07) ^a	23.75(4.39-63.9) ^a	25.2(3.42-72.5) ^a	>0.05		
	Neutrophils (10 ³ /g)	1090(490.86–2339.64) ^a	2482.84(883.9–11720.8) ^b	1110(493.04–3483.82) ^a	< 0.05		
	Eosinophils (10 ³ /g)	19.92(0–166.96) ^a	71.67(0–638.26) ^b	33.04(5.65–293.7) ^a	< 0.001		
	Epithelial cells (10 ³ /g)	38.45(5.66–142.29) ^a	94(18.07–292.65) ^a	81.36(16.4–301.24) ^a	>0.05		

⁺There are no significant differences between two clusters with the same letter.

Figure 1. Percentage of the contribution of variables in clustering.

We also looked at phosphocalcic metabolism and found, as expected in western Europe, reduced levels of 25 OH Vit D (< 30 ng/ml) in all clusters without any difference between the groups. While Calcium levels, a tightly regulated ion, were normal and similar between the three clusters, there were striking differences in the levels of phosphates, which were clearly lower in cluster 1 and 2. The literature about phosphate level in COPD is virtually absent and the clinical meaning of our finding remains obscure though there might be a sex effect as this demographic trait best differentiates cluster 1 and 2 from cluster 3.

Eosinophilic trait is a marker of response to corticoids in asthma but also in COPD. In our study, blood eosinophilic inflammation does not appear to be discriminant feature between the clusters but cluster 2 shows a greater absolute, but not relative, sputum eosinophil cell count. However, the three clusters had median value of sputum eosinophil counts greater than that we found in a healthy population [27] and,

Figure 2. Lung function in three clusters.

Figure 3. Blood in three clusters.

actually, rather similar to what is found in large population of unselected asthmatics [28]. Furthermore, the greater amount of eosinophils present in sputum of COPD was noted despite heavier treatment with ICS in this cluster, which points to some corticoresistance in this cluster.

Atopic status based on positive RAST toward aeroallergens was low in the three clusters but total serum IgE was

Figure 4. Sputum in three clusters.

Figure 5. T2 biomarkers in three clusters.

Figure 6. Cat Score in three clusters.

Table 5. Characteristics of patients with COPD before imputation, Median (IQR) / Percentage (frequency) in each cluster and comparison between clusters.

		Result for clustering on raw dataset							
	Variable		Cluster 1		Cluster 2		Cluster 3	P-va	alue
Demographic	Age (year)		62(55–66) ^b		67(60.75–74.25) ^a		67(58.5–73) ^a	<0.0)01
	Sex (Male)		76.12%(51[67]) ^a		75%(42[56]) ^a		7.27%(4[55]) ^b	<0.0)001
	Height (cm)		174(167–178) ^a		169.5(162–175.25) ^a		161(156–165) ^b	<0.0)001
	Weight (kg)		77(65–89) ^c		67(56.75–76) ^a		60(53–66) ^b	<0.0)001
	BMI (kg/m²)		25.59(22.21–30.21) ^b		23.08(20.56–24.89) ^a		23.15(19.89–25.55) ^a	<0.0	01
	Cigarette Packs (year)		36.9(21–50) ^a		42.5(23.25–52.5) ^a		35(22.05–43.87) ^a	>0.0)5
	Cigarettes (day)		20(10–25) ^a		20(10-21.25)°		20(10-20) ^a	>0.0)5
	Smoking Duration(year)	0	40(32-46.5)°		4/(34.25-52.25)°	a	$44(37-50)^{ab}$	<0.0	J5
	OCS Course	0	81.25%(52[64])		31.37%(10[51]) 25.200/(19[51])		04.15%(34[53])	<0.0	1001
		1	14.00%(9[04])		35.29%(18[51])		24.53%(15[55]) 11.20%(6[52])		
	Antibiotic Course	<u></u>	4.09%(S[04]) 42.96%(27[62]) ^a		22.22%(1/[21]) 22.070/(17[52])	a	11.52%(0[55]) 22.220/(10[54]) a	>00	05
	Antibiotic Course	1	42.80%(27[03])		52.07%(17[55]) 50.04%(27[53])		55.55%(10[54]) 57.41%(21[54])	>0.0	5
		י גע	47.02%(50[03])		16 08%(0[53])		0.26%(5[54])		
	Emergency Boom Admission	0	95 45%(63[66]) ^b		70 91%(39[55])	a	85 45%(47[55]) b	< 0.0	0001
	for asthma or COPD	1	4 54%(3[66])		27 27%(15[55])		14 54%(8[55])	<0.0	/001
		>2	0%(0[66])		1.82%(1[55])		0%(0[55])		
	Number of hospitalizations	0	96.97%(64[66]) ^b		67.92%(36[53])	а	88.89%(48[54]) b	<0.0	0001
	for asthma or COPD	1	3.03%(2[66])		26.41%(14[53])		11.11%(6[54])		
		>2	0%(0[66])		1.89%(1[53])		0%(0[54])		
Pulmonary	FeNO (ppb)	_	15(10.5–23) ^a		19(10-32.25) ^a		15(8–24) ^a	>0.0)5
	FEV (mL)		1950(1700-2205) ^b		1085(780-1352.5) ^a		1240(1075–1390) ^a	<0.0	0001
	FEV1 predicted (%)		66(56–78) ^c		37(30-45.25) ^a		55(47.5–66) ^b	<0.0	0001
	FEV1 PD (mL)		2000(1820–2405) ^b		1190(837.5–1380) ^a		1310(1135–1470) ^a	<0.0)001
	FEV1 PD predicted (%)		69(60.5–81.5) ^c		40(32.75-50) ^a		59(51.5–69.5) ^b	<0.0)001
	Reversibility (%)		6(0.5–10.5) ^a		6.5(1–11.25) ^a		8(2–13.5) ^a	>0.0)5
	FVC (mL)		3200(2625–3780) ^c		2427.5(1705-2767.5) ^a		2140(1820–2390) ^b	<0.0)001
	FVC predicted (%)		86(74–99.5) ^c		65(55.75–74.25) ^a		77(68.5–85.5) ^b	<0.0)001
	FVC post (mL)		3320(2805–3870) ^c		2385(1797.5–2900) ^a		2130(1870–2445) ^b	<0.0)001
	FVC post (%)		90(79.5–101) ^c		68(56.75–76.5) ^a		80(71.5–91.5) ^b	<0.0)001
	FEV1/ FVC pre (%)		63.1(56.45–66.65) ^b		47(40.37–50.42) ^a		57.1(53.15–64.5) ^b	<0.0)001
	FEV1/ FVC post (%)		63.9(58.3–68.55) ^b		47.5(42.8–53.2) ^a		59.9(54.5–67.05) ^b	<0.0)001
	TLC (mL)		6710(5725–7385) ^a		6945(5832.5-8107.5) ^a		5430(4890–6005) ^b	<0.0	0001
	TLC predicted (%)		103(93–112.5) ^o		112.5(100–125.25)		117(102–127) ^a	<0.0)01
	RV (mL)		3450(2990–3820)		4640(3687.5–5277.5)°		3250(2845–3690) ⁶	<0.0	0001
	RV predicted (%)		$141(128-1/3)^{2}$		182.5(162.5–228.5) [°]		168(145.5–189.5) ⁵	<0.0	0001
	RV/ILC (%)		53.18(4/.13–56.82) ^c		66.23(61.34–69.03)°		60.95(56.93–64.04)°	<0.0	0001
	DLCO (mmol/kPa.min)		$5.13(3.80-5.87)^{-1}$		3.55(2.69–4.45) ⁻		3.2/(2.6/-4)	<0.0	1001
	DLCO predicted (%)		$56(43-67)^{-1}$		$42.5(30.75-57.25)^{-1}$		$45(38-55)^{-1}$	<0.0	1001
	DLCO/AV		1(0.79-1.20) 70(56 5 99) ^b		0.05(0.05-1.02)		0.95(0.09-1.15)	< 0.0	001
	sCow (1/kPo*soc)		70(30.3-00) 0.68(0.47, 0.02) ^c				02(30-73) 0.47(0.25, 0.76) ^b	< 0.0	001
	FRC (I)		$4.88(4.09-5.44)^{\circ}$		5 86(4 88_6 49) ^a		4 24(3 77_5 05) ^b	<0.0	1001
	FRC predicted (%)		$143(122-162)^{\circ}$		171(154–195 75) ^a		161(141 5–183 5) ^b	< 0.0	001
Treatment	Treatment (Yes)		43 75%(28[64]) ^a		78 84%(41[52]) ^b		66 67%(36[54]) ^b	< 0.0	0001
meatment	ICS (Yes)		30,30%(20[66]) ^a		70.91%(39[55]) ^b		69.09%(38[55]) ^b	< 0.0	0001
	OCS (Yes)		$1.51\%(1[66])^{a}$		14.54%(8[55]) ^b		0%(0[55]) ^a	< 0.0	0001
	LAMA (Yes)		34.85%(23[66]) ^a		72.73%(40[55]) ^b		49.09%(27[55]) ^a	< 0.0	0001
	LABA (Yes)		45.45%(30[66]) ^a		83.64%(46[55]) ^b		76.36%(42[55]) ^a	< 0.0	0001
	SABA (Yes)		25.76%(17[66]) ^a		50.91%(28[55]) ^b		49.09%(27[55]) ^b	<0.0	001
	LTRA (Yes)		3.03%(2[66]) ^a		0%(0[55]) ^a		7.27%(4[55]) ^a	>0.0)5
	Theophylline (Yes)		1.51%(1[66]) ^a		5.45%(3[55]) ^a		1.82%(1[55]) ^a	>0.0)5
CAT score			22(15–31) ^a		26(19–30) ^a		24(17–30) ^a	>0.0)5
Blood	Leucocytes (µL)		7.44(6.44–9.43) ^a		8.58(7.02–10.75) ^a		7.77(6.64–9.2) ^a	>0.0)5
	Neutrophils (%)		58.9(52.75–63.75) ^b		68.6(61.27–73.22) ^a		57.7(53.25–64.55) ^b	<0.0)001
	Lymphocytes (%)		30.1(25.65–35) ^b		20.7(15.7–26.85) ^a		29(23.85–35.15) ^b	<0.0)001
	Monocytes (%)		8.7(7–9.8) ^b		7.8(6.37–9.82) ^a		7.1(6.4–8.75) ^a	<0.0)5
	Eosinophils (%)		2.1(1.1–3.25) ^a		1.8(0.85–3.12) ^a		2.1(0.95–3.35) ^a	>0.0)5
	Basophils (%)		0.4(0.3–0.6) ^a		0.3(0.2–0.52) ^a	_	0.4(0.3–0.7) ^a	>0.0)5
	Neutrophils (µL)		4503.6(3554.3-5501.7) ^D		5574.9(4116.2-7842.7)	a -	4840.71(3393.7-5743.1)	<0.0)5
	Lymphocytes (µL)		2346.79(1853.9–3019.6) ^b		1885.8(1294.4-2424.2)	a 	2267.98(1846.6-2710.8)	< 0.0	0001
	Monocytes (µL)		668.82(494.15-857.91) ^a		/07.29(534.38-864.82)	u	605.82(457.16-761.76) ^a	>0.0)5
	Eosinophils (µL)		150./2(84.57–240.24) ^d		169.5/(75.89-275.16)		14/.63(85.47-248.25)	>0.0	J5
	Basophils (μL)		30.84(21.37-42.16) ^d		27.63(18.64–47.66) ^a		32.04(23.95–49.36) ^d	>0.0)5
	Fibrinogen (g/l)		3.42(2.8/-3.86)		3./1(3.08-4.58)°		3.54(2.91-3.80)°	< 0.0	J5
	CRP (mg/l)		2.3(1.25-5.6)"		2.9(0.9-7.7)"		2.1(1-5.15)"	>0.0	J5
	Alpha I antitrypsin (g/l)		1.49(1.35-1.57)		1.03(1.39-1./6)"		1.45(1.35-1.65)	< 0.0	72 DE
	Calcium (mmol/L)		2.42(2.3/-2.4/)" 10(12, 22) ³		2.41(2.35-2.48) [°]		2.44(2.38-2.48) [°]	>0.0	לג סר
	25(UH) VILAMINE D (NG/MI)		19(12-52)		10.3(10-24.25) ^{°°}		24(13-32.5) ⁻ 1.01(0.02, 1.12) ^b	>0.0	12 1001
Atoni	Phosphale (mmol/L)		U.09(U./9-U.95)- 52(22 222 5/a				1.UI(U.93-1.12) ⁻ 72(10, 170) ^a	< 0.0	700 I
люру			JZ(Z)-Z)) 12 220/(0)a		21.3(23-300.23) 14 300//7 ^{1a}		/ J(19-1/U) 6 120/(2) ^a	>0.0	72 75
	NAJI DEI (UI) %20.33 (NU/L)		13.3370(0)		17.2070(7)		0.1270(3)	>0.0	JJ

(continued)

		Result for clustering on raw dataset				
	Variable	Cluster 1	Cluster 2	Cluster 3	P-value	
	RAST Cat (e1), %>0.35 (KU/L)	1.64%(1) ^a	8.16%(4) ^a	2%(1) ^a	>0.05	
	RAST Dog (e5), %>0.35 (KU/L)	3.28%(2) ^a	6.12%(3) ^a	0%(0) ^a	>0.05	
	RAST Grass (GX3), %>0.35 (KU/L)	6.67%(4) ^a	12.24%(6) ^a	2.04%(1) ^a	>0.05	
	RAST microog (MIX1), %>0.35 (KU/L)	6.56%(4) ^a	12.24%(6) ^a	10%(5) ^a	>0.05	
	RAST Birch (t3), %>0.35 (KU/L)	0%(0) ^a	4.08%(2) ^a	0%(0) ^a	>0.05	
Sputum	Positive Aerobic Sputum Culture	5.26%(3) ^a	13.95%(6) ^a	8.89%(4) ^a	>0.05	
	Weight of sputum (g)	1.95(1.37–3.88) ^a	1.46(1.06–3.07) ^a	1.64(0.93–3.94) ^a	>0.05	
	Total Cell Counts (10 ⁶ /g)	1.46(0.96–2.81) ^b	4.15(1.50–15.96) ^a	1.75(0.98–3.43) ^b	< 0.05	
	Squamous (%)	21(6.5–42) ^b	7.5(2–38.25) ^a	7(2–14.5) ^a	< 0.05	
	Viability (%)	67(50–81) ^a	69.5(51–86.25) ^a	61(41–77.5) ^a	>0.05	
	Macrophages (%)	14(5.8–28.15) ^b	6.25(2.2–15.45) ^a	18(9.25–35.65) ^b	< 0.0001	
	Lymphocytes (%)	1(0–2.1) ^a	0.6(0.15–1.57) ^a	1(0–2.6) ^a	>0.05	
	Neutrophils (%)	70.6(53.3-88.2) ^a	77.5(55.4–92.25) ^a	52(37.6–80) ^b	< 0.001	
	Eosinophils (%)	1.6(0.2–5.45) ^a	2.3(0.35–10.95) ^a	2.8(0.9–20.6) ^a	>0.05	
	Epithelial cells (%)	1.8(0.4–7.1) ^a	2.6(0.57–10.97) ^a	2.4(1.2–8.35) ^a	>0.05	
	Macrophages (10 ³ /g)	231.57(40.01–564.3) ^a	317.39(32.25-801.83) ^a	154(15.65–557.81) ^a	>0.05	
	Lymphocytes (10 ³ /g)	12.84(0-40.65) ^a	23.75(1.12–66.3) ^a	14.08(0-46.22) ^a	>0.05	
	Neutrophils (10 ³ /g)	1090(484.54–1788.33) ^b	2333.6(814.1–12390.5) ^a	814.05(486.85–2726.72) ^b	< 0.05	
	Eosinophils (10 ³ /g)	13.16(0–68.89) ^b	44.27(0-511.5) ^a	22(0–209.46) ^b	< 0.001	
	Epithelial cells (10 ³ /g)	44.1(5.66–142.29) ^a	165.44(36.15–302.1) ^a	67.52(13.7–252.84) ^a	>0.05	

Table 5. Continued.

⁺There are no significant differences between two clusters with the same letter.

measured at higher level than those usually found in a general population of this age, maybe pointing to a role of IgE mediated processes in the pathophysiology of the disease. It has also been suggested that smoking may stimulate IgE production [29]. However, it is a production clearly directed toward something different from the classical aeroallergens encountered in asthma. The reason why atopic status is so low in COPD, clearly lower than in a general population, is likely to be related to the age of the COPD patients. Indeed, it was demonstrated in population studies that specific IgE levels decreased with age [30] and we have shown in a large asthmatic population that the rate of sensitization to aeroallergens was sharply declining with age after 60 years [31].

Of interest, and also perhaps surprising, is the fact the CAT score does not differ between the groups despite clear differences in lung function impairment and extent in airway inflammation. This shows that CAT score cannot capture the airflow limitation nor airway inflammation, indicating that symptoms, lung function and airway inflammation are different domains accounting for the disease variability [32].

Our study has obviously limitations as we have not taken into account comorbidities, exercise capacity and lung imaging in our parameters, which are key variables in phenotyping the COPD patients in clinical practice. Our purpose here was rather to explore variables traditionally linked to asthma such FeNO, IgE and eosinophilic inflammation and to see whether they can play a significant contribution in defining the variability of the disease in patients > 40 years with smoking history and persistent airway obstruction. Our data indicate that FeNO, blood eosinophils and serum IgE, though being significantly different from what is found in a healthy population for total serum IgE, are not able to single out a particular cluster. Therefore, most of the T2 biomarkers had not enough variability among the patients to shape a cluster. However, eosinophilic (together with neutrophilic) airway inflammation is raised in the cluster that shows the most severe lung function impairment. These data may have importance as it has been shown by retrospective post hoc analysis that ICS treatment in eosinophilic COPD might actually slow down the lung function decline [33]. The impact of targeting eosinophilic inflammation in COPD should be given careful consideration in long term clinical trials using not only ICS but also anti-interleukine-5.

Another important limitation of our study is the lack of a validation cohort whereas Castaldi *et al* have shown that reproducibility of COPD clustering across studies was rather modest. The size of our cohort was however too small to split our population and perform meaningful clustering with our extensive set of variables. However, we presented validation with two statistical indices.

In conclusion, in a cohort of COPD we found 3 clusters of patients with similar age and smoking history but very different sex distributions and lung function and inflammatory parameter. In particular, we identified a cluster of male patients with intense granulocytic airway inflammation combined with severe airway flow limitation and lung hyperdistention, who are prone to exacerbate and undergo recurrent hospitalizations. These clusters need to be confirmed in a new cohort of patients, ideally from other centers.

Disclosure of interest

The author reports no conflicts of interest in this work.

ORCID

Anne-Françoise Donneau (b) http://orcid.org/0000-0001-8948-7545

References

 Rennard SI, Drummond MB. Early chronic obstructive pulmonary disease: definition, assessment, and prevention. Lancet Lond Engl. 2015;385(9979):1778–1788. DOI:10.1016/S0140-6736(15)60647-X

- Fabbri LM, Luppi F, Beghe B, et al. Complex chronic comorbidities of COPD. Eur Respir J. 2008;31(1):204–212. DOI:10.1183/ 09031936.00114307
- Deliu M, Sperrin M, Belgrave D, et al. Identification of asthma subtypes using clustering methodologies. Pulm Ther. 2016;2: 19–41. DOI:10.1007/s41030-016-0017-z
- Johnson RA, Wichern DW. Applied multivariate statistical analysis: international edition. 6th ed. Pearson; ISBN-13 : 978-0135143506 Publisher: Pearson (4 May 2007)
- Haldar P, Pavord ID, Shaw DE, et al. Cluster analysis and clinical asthma phenotypes. Am J Respir Crit Care Med. 2008; 178(3):218–224. DOI:10.1164/rccm.200711-1754OC
- Moore WC, Meyers DA, Wenzel SE, National Heart, Lung, and Blood Institute's Severe Asthma Research Program, et al. Identification of asthma phenotypes using cluster analysis in the severe asthma research program. Am J Respir Crit Care Med. 2010;181(4):315–323. DOI:10.1164/rccm.200906-0896OC
- Castaldi PJ, Benet M, Petersen H, et al. Do COPD subtypes really exist? COPD heterogeneity and clustering in 10 independent cohorts. Thorax. 2017;72(11):998–1006. DOI:10.1136/thoraxjnl-2016-209846
- Vanfleteren LEGW, Spruit MA, Groenen M, et al. Clusters of comorbidities based on validated objective measurements and systemic inflammation in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2013;187(7): 728–735. DOI:10.1164/rccm.201209-1665OC
- Burgel P-R, Roche N, Paillasseur J-L, INITIATIVES BPCO Scientific Committee, et al. Clinical COPD phenotypes identified by cluster analysis: validation with mortality. Eur Respir J. 2012; 40(2):495–496. DOI:10.1183/09031936.00228511
- Burgel P-R, Paillasseur J-L, Caillaud D, Initiatives BPCO Scientific Committee, et al. Clinical COPD phenotypes: a novel approach using principal component and cluster analyses. Eur Respir J. 2010;36(3):531–539. DOI:10.1183/09031936.00175109
- Garcia-Aymerich J, Gomez FP, Benet M, on behalf of the PAC-COPD Study Group, et al. Identification and prospective validation of clinically relevant chronic obstructive pulmonary disease (COPD) subtypes. Thorax. 2011;66(5):430–437. DOI:10.1136/thx. 2010.154484
- Fens N, van Rossum AGJ, Zanen P, et al. Subphenotypes of mild-to-moderate COPD by factor and cluster analysis of pulmonary function, CT imaging and breathomics in a populationbased survey. COPD J Chronic Obstr Pulm Dis. 2013;10(3): 277–285. DOI:10.3109/15412555.2012.744388
- Basagaña X, Barrera-Gómez J, Benet M, et al. A framework for multiple imputation in cluster analysis. Am J Epidemiol. 2013; 177(7):718-725. DOI:10.1093/aje/kws289
- Pistolesi M, Camiciottoli G, Paoletti M, et al. Identification of a predominant COPD phenotype in clinical practice. Respir Med. 2008;102(3):367–376. DOI:10.1016/j.rmed.2007.10.019
- Paoletti M, Camiciottoli G, Meoni E, et al. Explorative data analysis techniques and unsupervised clustering methods to support clinical assessment of Chronic Obstructive Pulmonary Disease (COPD) phenotypes. J Biomed Inform. 2009;42(6):1013–1021. DOI:10.1016/j.jbi.2009.05.008
- Burgel P-R, Nesme-Meyer P, Chanez P, et al. Cough and sputum production are associated with frequent exacerbations and hospitalizations in COPD subjects. Chest. 2009;135(4):975–982. DOI: 10.1378/chest.08-2062
- 17. Burgel P-R, Paillasseur J-L, Peene B, et al. Two distinct chronic obstructive pulmonary disease (COPD) phenotypes are

associated with high risk of mortality. Sethi. S, ed. PLoS ONE. 2012;7(12):e51048. DOI:10.1371/journal.pone.0051048

- Burgel P-R, Paillasseur J-L, Janssens W, et al. A simple algorithm for the identification of clinical COPD phenotypes. Eur Respir J. 2017;50(5):1701034. DOI:10.1183/13993003.01034-2017
- Burgel P-R, Paillasseur J-L, Roche N. Identification of clinical phenotypes using cluster analyses in COPD patients with multiple comorbidities. BioMed Res Int. 2014;2014:420134–420139. DOI:10.1155/2014/420134
- Cataldo D, Corhay J-L, Derom E, et al. A Belgian survey on the diagnosis of asthma-COPD overlap syndrome. COPD. 2017; Volume 12:601–613. DOI:10.2147/COPD.S124459
- Molenberghs G, Kenward M. Missing data in clinical studies. John Wiley & Sons; ISBN:9780470849811 Publisher is: John Wiley & Sons: Chichester, 2007.
- 22. Buuren S. v. Flexible imputation of missing data. CRC Press; ISBN-13: 978-1439868249 Publisher: Chapman and Hall/CRC; 1st Edition (March 29, 2012).
- Rubin DB. Multiple imputation for nonresponse in surveys. John Wiley & Sons; ISBN:0470317361, 9780470317365 Publisher: John Wiley & Sons, Inc. 2009.
- Agusti A, Pavord ID. Do we really need a new classification of airway diseases? Lancet Respir Med. 2018;6(12):891–893. DOI:10. 1016/S2213-2600(18)30386-2
- Moermans C, Heinen V, Nguyen M, et al. Local and systemic cellular inflammation and cytokine release in chronic obstructive pulmonary disease. Cytokine. 2011;56(2):298–304. DOI:10.1016/j. cyto.2011.07.010
- Celli BR, Locantore N, Yates J, for the ECLIPSE Investigators, et al. Inflammatory biomarkers improve clinical prediction of mortality in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2012;185(10):1065–1072. DOI:10.1164/rccm. 201110-1792OC
- 27. Demarche S, Schleich F, Henket M, et al. Detailed analysis of sputum and systemic inflammation in asthma phenotypes: are paucigranulocytic asthmatics really non-inflammatory? BMC Pulm Med. 2016;16(1):46. DOI:10.1186/s12890-016-0208-2
- Schleich FN, Chevremont A, Paulus V, et al. Importance of concomitant local and systemic eosinophilia in uncontrolled asthma. Eur Respir J. 2014;44(1):97–108. DOI:10.1183/09031936. 00201813
- 29. O'Connor GT, Sparrow D, Weiss ST. The role of allergy and nonspecific airway hyperresponsiveness in the pathogenesis of chronic obstructive pulmonary disease. Am Rev Respir Dis. 1989;140(1):225–252. DOI:10.1164/ajrccm/140.1.225
- Amaral AFS, Newson RB, Abramson MJ, et al. Changes in IgE sensitization and total IgE levels over 20 years of follow-up. J Allergy Clin Immunol. 2016;137(6):1788–1795.e9. DOI:10.1016/j. jaci.2015.09.037
- Manise M, Bakayoko B, Schleich F, et al. IgE mediated sensitisation to aeroallergens in an asthmatic cohort: relationship with inflammatory phenotypes and disease severity. Int J Clin Pract. 2016;70(7):596–605. DOI:10.1111/ijcp.12837
- 32. Lapperre TS, Snoeck-Stroband JB, Gosman MME, Groningen and Leiden Universities Corticosteroids in Obstructive Lung Disease Study Group, et al. Dissociation of lung function and airway inflammation in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2004;170(5):499–504. DOI:10.1164/ rccm.200401-112OC
- Pavord ID, Lettis S, Locantore N, et al. Blood eosinophils and inhaled corticosteroid/long-acting β-2 agonist efficacy in COPD. Thorax. 2016;71(2):118–125. DOI:10.1136/thoraxjnl-2015-207021