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Abstract:  

Quantifying the complexity of the EEG signal during prolonged wakefulness and during sleep is 

gaining interest as an additional mean to characterize the mechanisms associated with sleep and 

wakefulness regulation.  Here, we characterized how EEG complexity, as indexed by Multiscale 

Permutation Entropy (MSPE), changed progressively in the evening prior to light off and during the 

transition from wakefulness to sleep. We further explored whether MSPE was able to discriminate 

between wakefulness and sleep around sleep onset and whether MSPE changes were correlated with 

spectral measures of the EEG related to sleep need during concomitant wakefulness (theta power – 

Ptheta: 4-8 Hz). To address these questions, we took advantage of large datasets of several hundred of 

ambulatory EEG recordings of individual of both sexes aged 25 to 101y. Results show that MSPE 

significantly decreases before light off (i.e. before sleep time) and in the transition from wakefulness 

to sleep onset. Furthermore, MSPE allows for an excellent discrimination between pre-sleep 

wakefulness and early sleep. Finally, we show that MSPE is correlated with concomitant Ptheta. Yet, 

the direction of the latter correlation changed from before light-off to the transition to sleep. Given the 

association between EEG complexity and consciousness, MSPE may track efficiently putative 

changes in consciousness preceding sleep onset. MSPE stands as a comprehensive measure that is not 

limited to a given frequency band and reflects a progressive change brain state associated with sleep 

and wakefulness regulation. It may be an effective mean to detect when the brain is in a state close to 

sleep onset.  
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Statement of Significance 

Quantifying the complexity of the EEG signal during prolonged wakefulness and sleep is an 

additional mean to understand the mechanisms associated with sleep and wakefulness regulation. We 

computed EEG signal complexity, using Multiscale Permutation Entropy (MSPE) analysis, over the 

2h preceding light-off and in the transition to sleep. We find that EEG complexity decreases 

progressively prior to light-off and during the transition from wakefulness to sleep. Furthermore, EEG 

signal complexity allows for an excellent discrimination between pre-sleep wakefulness and early 

sleep. MSPE stands as a comprehensive measure that is not limited to a given frequency band and 

reflects a progressive change brain state associated with sleep and wakefulness regulation. It may be 

an effective mean to detect when the brain is in a state close to sleep onset. 
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1. Introduction 

Sleep is determined by the interaction between homeostatic and circadian processes 
1
. The 

neuroanatomy, neurochemistry and neurophysiology of the changes associated with this interaction 

have been partly elucidated 
2-4

. The aspect that may appear best characterized may be the 

electrophysiology of sleep-wake regulation and its link with the need for sleep.   

Fourier transformations of the electroencephalography (EEG) signal are typically used to 

characterize sleep-wake regulation. During wakefulness the build-up of sleep need can be captured in 

the power of EEG theta rhythm 
5
, which encompasses EEG components in the frequency range of 4-8 

Hz 
6-8

. Theta rhythm of EEG is associated with a variety of psychological states including hypnagogic 

imagery, low levels of alertness or vigilance and drowsiness 
9
. It has for instance been widely 

investigated in drowsy driving detection 
10-14

.  

 However, the EEG signal is nonlinear and non-stationary with a high degree of complexity, 

so that it may not be fully appropriate for Fourier transformation 
15

. In recent years, with increased 

awareness of complexity theories, entropy-based approaches have been used as nonlinear analyses of 

EEG to provide independent and complementary measures to conventional EEG spectral analysis 
16, 

17
. Permutation Entropy (PE) has received substantial attention 

18
 : its low computational cost and 

robustness to observational noise 
19

, trends
20

 and even common blink and eye-movement artifact in 

EEG 
21

, makes it an interesting approach for large datasets that could, otherwise, require long 

processing, as well as for, potential noisier, ambulatory recordings. PE was found to be useful in 

detecting epileptic seizure 
22-25

, assessing the effects of anesthesia 
26-28

, understanding cognitive brain 

activity 
29, 30

 and assessing disorders of consciousness 
31, 32

 Moreover, PE was found to progressively 

decrease during slow wave sleep 
33, 34

. How PE changes during wakefulness over the few hours 

preceding sleep and in the transition from wake to sleep is not established. In addition, its ability to 

discriminate between wakefulness and sleep states around sleep onset has not yet been investigated as 

well as whether pre-sleep PE is related to typical spectral EEG measures. 
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As an outcome of the brain with its complex self-regulation and inputs from multiple spatial and 

temporal scales, EEG activity in a healthy human brain possesses scale-free structure over multiple 

time scales
35, 36

. Multiscale entropy analysis, proposed by Costa et al 
37, 38

, was widely used to quantify 

the complexity of physiologic time series, such as EEG 
39-41

 and heart rate 
42-44

. The application of 

multiscale approach could account for the multiple time scales inherent in healthy physiologic 

dynamics and thus provide a more comprehensive tool to capture the dynamical characteristics of 

physiological time series than single-scale analysis does. Take PE for example, Li et al found that 

measurement of multiscale PE (MSPE) behaves much better than the single-scale PE to track the 

effect of sevoflurane anesthesia on the central nervous system 
45

.  

Here, we characterized the changes in EEG signal complexity, using MSPE, during the 2h 

wakefulness period preceding light-off and in the transition from wake to sleep. We further explored 

whether MSPE could discriminate wakefulness and sleep around sleep onset and whether pre-sleep 

MSPE was significantly correlated to simultaneous theta power. We took advantage of large datasets 

of several hundred of ambulatory EEG recordings to address these questions. We hypothesized that 

MSPE would decrease in the evening as well as after light-off, during the transition from wake to 

sleep.  

2. Methods 

2.1 Datasets 

Data analyzed in this study were obtained from two datasets: the PhysioNet and the Sleep Heart 

Health Study (SHHS) datasets. Subjects and recordings of the PhysioNet dataset were described in 

reference 
46

. Briefly, two polysomnograms (PSGs) of about 20 hours each were recorded during two 

subsequent day-night periods at the subjects’ homes. Subjects were of both sexes and aged between 

25 and 101y and continued their normal activities but wore a modified Walkman-like cassette-tape 

recorder. Two channel of EEGs, Fpz/Cz and Pz/Oz, sampled at 100 Hz, were included.  

The SHHS is a multi-center cohort study that was implemented by the American National Heart, 

Lung, and Blood Institute to determine cardiovascular and other consequences of sleep-disordered 
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breathing, and its characteristics have been described in detail elsewhere 
47, 48

. One overnight PSG was 

obtained at home using an unattended setting placed by trained and certified technicians in individuals 

of both sexes aged 39 to 90y. Two EEG channels, C3/A2 and C4/A1, were included and sampled at 

125 Hz. 

In the current study, Pz/Oz and C4/A1 derivations were using in PhysioNet and SHHS datasets, 

respectively. For both datasets, sleep stages were visually scored per 30-second EEG epoch based on 

Rechtschaffen and Kales (R&K) rules 
49

 by trained sleep technologists, including wakefulness, rapid 

eye movement sleep (REM) and stage 1-4 of non-REM sleep (NREM).  

2.2 Included subjects 

78 participants who were free of any sleep-related medication intake were recruited for two 

consecutive day-night PSGs in the PhysioNet dataset. However, one participant was excluded due to 

the loss of PSG data in the second night. Therefore, 77 participants were included and their EEG data 

of the second night were involved in further analysis. 

378 healthy adults from SHHS were considered based on the following inclusion criteria: (1) no 

benzodiazepines, tricyclic or non-tricyclic antidepressants intake within 2 weeks of the SHHS visit; 

(2) no history of stroke; (3) apnea-hypopnea index, representing the number of apnea and hypopnea 

events with ≥3% oxygen desaturation per hour of sleep, < 5; (4) no major trouble falling asleep (the 

frequency of trouble falling asleep <16 x/month); (5) night time wake up or difficulty resuming sleep 

<16 x/month; (6) waking up too early or unable to resume sleep <16 x/month; (7) no chronic use of 

sleeping pills or other medication intake to help sleep (the frequency <16 x/month); (8) entire 

recording was scored; scoring stared before light-off and ended after light-on; (9) sleep latency (SL), 

defined as the duration from light-off to sleep-onset, ≥10 minutes. Each participant in SHHS has one-

night PSG recording, leading to 367 EEG recordings for further analysis. A study code varying from 

outstanding to fair was given to each recording in SHHS based on the quality and duration of EEG, 

respiratory and oximetry signals 
50

. Such a code was used as a measure of signal quality in the 
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statistical analyses of the present study. For the 378 recordings included, 20.4% rated as outstanding, 

23.8% as excellent, 24.1% as very good, 23% as good and 8.73% as fair. 

Table 1 illustrated the demographics and sleep structures for the included subjects from both 

datasets. 

2.3 MSPE Algorithm 

There are two main steps in the MSPE algorithm, one is a coarse-graining process and the other is 

the calculation of PE for each coarse-grained time series.  

2.3.1 The coarse-graining process  

Given a time series with N data points {          }, a consecutive coarse-grained time series, 

{y
(s)

}, can be constructed according to the Equation (1), where s represents the scale factor.  

  
   

  
 

 
∑   

  
                            (1) 

The length of {y
(s)

}, denoted as Ns in the following, is equal to the length of the original time 

series N divided by s. When s equals to 1, the coarse-grained time series {y
(1)

} is exactly the original 

time series. Figure 1(a) illustrated the construction of {y
(3)

} of time series {          }. 

2.3.2 The calculation of PE for each coarse-grained series 

According to the algorithm proposed by Bandt and Pompe 
19

, PE values can be calculated for each 

coarse-grained time series {y
(s)

} with length Ns. {y
(s)

} is first embedded in a m-dimensional space with 

a lag  , leading to           vectors. The construction of the i
th
 vector is shown in Equation (2).   

   [  
        

         
               

   
]                             (2) 

Each vector    is then mapped into an ordinal pattern, i.e., a permutation, based on the rankings 

of its elements after sorting them in an ascending order. For example, the vector [8, 12, 7, 15] in a 4-

dimensional space can be mapped to the ordinal pattern [2, 3, 1, 4]. In the case of two or more equal 

elements, the equal values will be ordered by their time of appearance within the vector. Therefore, 
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the vector [11, 13, 11, 15] will be mapped to the ordinal pattern [1, 3, 2, 4]. Figure 1(b) indicates how 

the mapping is developed, in which Ns,   and m are set as 20, 1 and 4, respectively.   

As aforementioned, there will be           vectors after embedding {y
(s)

} in a m-

dimensional space with lag  , and each vector corresponds to an ordinal pattern. For a m-dimensional 

vector, the number of its possible ordinal patterns equals the factorial of m (denoted as m!). For each 

ordinal pattern   , we can count its occurrence on all the m-dimensional vectors and then obtain its 

probability, denoted as      , by calculating the ratio of its occurrence to          . Take the 

time series shown in Figure 1(b) as an example, the pattern [2, 3, 1, 4] occurs three times in all the 17 

vectors, resulting in a probability of 3/17 for this pattern. Therefore, the PE of the coarse-grained time 

series {y
(s)

} in m-dimensional embedding space can be defined as the Shannon entropy associated to 

the distribution of all possible ordinal patterns and normalized as shown in equation (3). 

    
 ∑      

  
             

        
         (3) 

In simple words, PE estimates the complexity of a time series by taking into account the temporal 

order of the values. As similar fluctuations can be identified as the same pattern, it is possible to 

derive information about the dynamics of the underlying system by assessing probabilities of the 

ordinal patterns embedded in a time series. In order to assess the quantity of information encoded by 

such distribution, the logarithm is usually in base 2. PE value will be 1 when all patterns have equal 

probability, i.e. when the signal contains a variety of likely pattern. Conversely, PE will be small if 

the time series is regular, i.e. when a single or few pattern have higher probably than most others. 

Thus, the more regular the time series, the smaller the PE value.  

2.3.3 The measurement of MSPE 

In this study, the coarse graining process was conducted at ten scales, i.e., scale factor ranging 

from 1 to 10, with steps of 1. PE for each coarse-grained time series was computed and averaged as 

the final measurement of the MSPE analysis. In agreement with the R&K rules, MSPE analysis was 

performed on each 30s EEG epoch from both datasets. 
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The calculation of PE of a time series depends on the selection of the data length Ns, embedding 

dimension m and lag  . For the EEG recordings in PhysioNet dataset, the maximal Ns is 3000 (30s 

*100 Hz at scale one) and the minimal is 300 (at scale ten). For the EEG recordings in SHHS dataset, 

the maximal and minimal Ns are 3750 and 375, respectively. As far as the embedding dimension m is 

considered, Bandt and Pompe 
19

 recommended            in practice. Since there is a necessary 

condition m! < Ns, here we only considered and compared the results obtained with m = 3, 4 or 5. In 

the literature, τ = 1 was often chosen for EEG signals while other values of τ were suggested to 

possibly provide additional information related with the intrinsic time scales of the system 
18

. 

Considering that multiscale approach has been adopted, we only considered τ = 1 in the present study. 

2.3.4 The computational complexity of MSPE algorithm 

Theoretically, the computational complexity of MSPE on a time series with N data point depends 

on the maximal scale S, the embedding dimension m, and the lag τ. According to Table 2, the time 

complexity of the MSPE (TMSPE) can be evaluated as,  

            ∑(               )  (
 

 
         )            

 

   

        

                      

Considering the requirements m! < N/S, m << N and S << N in the practice of MSPE algorithm, 

TMSPE can be further simplified as O(N), suggesting a superior performance (especially when N is 

large) than the FFT algorithm as its time complexity is O(Nlog2N) 
51.  

2.4 Spectral analyses 

For each 30s EEG epoch, theta (4-8 Hz) power, denoted as Ptheta in the following, was computed 

and averaged on successive 5-s bins by using the period-gram procedure method with direct current 

filtering and Hamming windowing. Theta band definition varies slightly in the literature 
52-57

 and 4-

8Hz is very common 
6-8

.  
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2.5 The exclusion of artifacts and outliers 

If the MSPE value or Ptheta of a 30s epoch was extremely high, i.e., larger than the 3
rd

 quartile (of 

each included 30s epochs at each acquisition period) plus 1.5 times of interquartile ranges, or was 

extremely low, i.e., lower than 1
st
 quartile minus 1.5 times of interquartile ranges, it was considered as 

an artifact in this study and excluded from the statistical analysis of MSPE or Ptheta. If all the epochs in 

a subject were determined as artifacts, the subject was excluded as outliers. 

2.6 Framework of the Current Research 

The framework of the current research is illustrated in Figure 2. In all the analyses, sleep-onset was 

defined as the first presence of 2 consecutive sleep epochs (i.e. Stage 1/2).  

2.6.1 Analysis on the PhysioNet dataset 

 Including at least 2h pre-light-off data is the most appealing advantage of the included PhysioNet 

dataset compared with the SHHS dataset. Thus, EEG recordings obtained from PhysioNet dataset (on 

Pz/Oz channel) were employed first to assess whether MSPE changed over the 2h preceding light off and 

whether this change was correlated to concomitant theta power. Furthermore, we investigated the alteration 

of MSPE during three different periods, i.e., the 2h preceding light off, the transition of wake to sleep after 

light-off, and the first sleep cycle (Figure 2A). For each subject, MSPE and Ptheta were calculated on 30s 

EEG epochs acquired in those periods.  

The definition of sleep cycle used corresponded to Feinberg’s criteria 
58

, that is : (1) each sleep cycle 

contains a continuous NREM and a continuous REM period except for the first cycle, in which there is no 

requirement for the REM sleep; (2) For each NREM period in a sleep cycle, it must start with stage 2 and 

last no less than 15 minutes. If wakefulness interrupts NREM sleep, it should be last less than 5 minutes 

for the cycle not to be interrupted; (3) REM period should last more than 5 minutes with possible 

wakefulness interruption(s) ≤ 1 minute.  
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2.6.2 Analysis on the SHHS dataset 

We further tested the hypothesis that MSPE is significantly altered in the transition from 

wakefulness to sleep with SHHS dataset, because it includes many more subjects than the PhysioNet 

dataset. For each EEG recording, MSPE was thus computed over each 30s epoch within the 10 

minutes immediately preceding sleep onset (Figure 2B). During this period, the participants were still 

awake and most likely eyes closed. Furthermore, concomitant Ptheta was computed and whether pre-

sleep MSPE was correlated to pre-sleep theta power on SHHS dataset (C4/A1 channel) was assessed.  

 Moreover, with the help of the large sample included in SHHS dataset, we estimated the 

ability of MSPE to discriminate between wakefulness and sleep around sleep onset by using the area 

under the receiver operating characteristic curve (ROC), denoted as AUC. AUC is an effective way to 

summarize the overall accuracy of the test with values ranging from 0 to 1. A value of 0 indicates a 

perfectly inaccurate test and a value of 1 reflects a perfectly accurate test. In general, an AUC of 0.5 

suggests no discrimination, 0.7 to 0.8 is considered acceptable, 0.8 to 0.9 is considered excellent, and 

more than 0.9 is considered outstanding 
59

. Furthermore, the optimal cutoff value, below which sleep 

possibly initiates, was calculated at the ROC through Youden index analysis 
60

. Here, for each 

participant included in SHHS dataset, ROC was computed on the MSPE of 20 consecutive 30s epochs 

immediately before and after sleep onset, respectively. We also calculated the ROC, AUC and cutoff 

values for Ptheta in a similar way for comparison.  

2.7 Statistical Analyses 

MATLAB (Mathworks Inc., Natick, MA) and SAS® (SAS® Institute Inc., Cary, NC) were used 

for statistical analyses. Descriptive statistics were reported as number or percentage for categorical 

data, and for continuous data, presented as median [lower quartile, upper quartile] as the data violates 

the normality. Generalized linear mixed models (GLMMs) were employed to investigate changes in 

MSPE over the period of interest and its association with Ptheta. GLMMs first included MSPE as 

dependent variable with lognormal distribution and fixed effects included in the models consisted of 

acquisition period, sex, age and recording quality (only in Analysis of SHHS dataset). To assess the 
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link between sleep need marker and MSPE, GLMMs included MSPE, acquisition period, sex, age, 

and recording quality as fixed effects and Ptheta as dependent variable with lognormal distribution. 

When present as factor, period of acquisition was included as repeated measure in all GLMMs. For 

completeness, we computed Spearman's rho between MSPE and Ptheta 
61

, however, only GLMM 

output were considered for statistical considerations. Moreover, two tailed Mann-Kendall test 
62

 was 

employed to test the null hypothesis of trend absence in the vector of MSPE or Ptheta across different 

acquisition period, i.e., 2h before light-off or 10 minutes before sleep-onset in the transition from 

wake to sleep. A one-way analysis of variance (ANOVA) was adopted to evaluate the effect of state 

(wakefulness during 2h before light-off, sleep transition in the sleep latency after light-off, and the 

first sleep cycle) on MSPE or Ptheta. 

 The GLMM evaluation was conducted in SAS while the Spearman correlation analysis and 

Mann-Kendall test were performed in MATLAB. In all GLMMs, subjects were used as random 

factors and a p-value less than 0.05 was considered statistically significant. Moreover, the Kenward 

and Roger (KR) approach 
63

 was used to estimate degrees of freedom and to obtain standard errors 

and associated statistical significance. 

3. RESULTS  

For each subject, we calculated MSPE and Ptheta on each 30s epoch during the periods of interest 

for both datasets (Figure 2). Artifacts and outliers were detected and excluded based on MSPE or Ptheta 

before further analysis. Table 3 summaries the artifacts and outliers excluded.  

3.1 Analysis on Physionet dataset: MSPE gradually decreases and correlates with concomitant 

theta power towards light off 

We first wondered whether MSPE would vary over the 2 hours preceding light off and correlate 

with concomitant Ptheta. To address this question, we used Physionet dataset as it contains > 2h of data 

preceding light-off.  

Figure 3A illustrates the average PE value (for all the participants) of each scale across the 

acquisition period before light off with embedding dimension m = 3 (the display obtained with m = 4 
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or 5 is similar; not shown here). Intuitively, the PE values at most of the scales fluctuate with a 

tendency of decreasing towards light-off. Figure 3B illustrated the MSPE values (mean±standard 

errors) obtained with m = 3, 4 or 5 and the lines were fitted with the averaged MSPE values across the 

acquisition periods. Progressive decline of MSPE towards light-off can be observed regardless of the 

value of m (Figure 3B; Mann-Kendall test, z = -10.9, -11.9 and -12.8 for m=3, 4 and 5, respectively, 

with p < 0.0001). GLMMs also show a significant change of MSPE with time (Table 4; main effect of 

acquisition period, p = 0.0002, 0.002 and 0.022 for m=3, 4 and 5, respectively).  Moreover, at each 

time bin, MSPE value consistently decreases as m increases from 3 to 5 because the larger the 

embedding dimension, the more details are obtained from the signal; thus, less random the signal 

becomes and the smaller its MSPE value 
64

. 

Similarly, an increase tendency towards light-off was observed in Ptheta (Mann-Kendall test, z = 

5.88 and p < 0.0001; Figure 3C). After controlling for all confounding factors in a GLMM, no 

significant effect of acquisition period on Ptheta was found (Table 4; GLMM, main effect of acquisition 

period, p > 0.05). Moreover, in line with the literature 
65

, sex and age were significantly associated 

with Ptheta with women showing higher theta power and theta power declining with age (Table 4; 

GLMM, for sex and age, p < 0.0001 and p = 0.01, respectively, regardless of m). Importantly, 

Spearman’s correlation analyses over time bins indicate that Ptheta shows a significant positive link 

with MSPE for most time bins within 2h before light off (occurs at 227, 234 and 235 out 240 time 

bins for m=3, 4 and 5, respectively) (Figure 3D). Such a positive association is surprising given that, 

overall, both metrics evolve in opposite direction. GLMMs confirm however the significant positive 

association (Table 4; main effect of MSPE, p < 0.0001 regardless of m) after controlling for the 

effects of age and sex.  

Furthermore, for each participant, we computed and compared the median values of MSPE 

during three periods of interest (Figure 2A), i.e, 2h before light-off, sleep transition after light-off, and 

the first sleep cycle. As the results obtained with m=3,4 or 5 are similar, only these with m=3 are 

displayed in Figure 4 which shows that MSPE gradually decrease from wakefulness to sleep 

transition and then to the first sleep cycle (Figure 4A). The results of ANOVA further indicate that 
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period is a main effect of MSPE (F = 332, p < 0.0001) and post-hoc analysis suggests there is 

significant difference between the MSPE values of each two periods. As for the concomitant Ptheta, 

although ANOVA also indicates a significant effect of period (F = 35, p < 0.0001), only significant 

difference between the pre-light-off state and the sleep state was revealed (Figure 4B).  

3.2 Analysis on SHHS dataset: MSPE decreases in wake-to-sleep transition and predicts sleep-

onset 

We then asked whether MSPE would vary during the transition from wake to sleep preceding 

sleep-onset (Figure 2B). To address this question, we switched to SHHS datasets as it includes many 

more subjects.  

Figure 5A illustrates the average PE value for all the participants (m=3; the display is similar in 

the situation of m=4 and 5; not shown) over each time bin within 10 minutes immediately before sleep 

onset. A progressive decline of PE towards sleep can be observed at scale one and two (Figure 5A). 

Although Mann-Kendall test only indicates significant decline of MSPE towards sleep in the situation 

of m=3 (Figure 5B; z = -3.34 and p <0.0001), GLMM analysis (Table 5) shows significant effect of 

acquisition period on MSPE (p < 0.05) regardless of m used. Likewise, significant decrease of Ptheta 

with time was found (Figure 5C; Mann-Kendall test, z =-2.11 and p = 0.035; Table 5, GLMM, main 

effect of acquisition period, p < 0.05, regardless of m). Spearman’s correlation analyses over each 

time bin indicated significant negative association between Ptheta and MSPE for most of the time bins 

and for all the embedding dimensions considered (Figure 5D). GLMMs confirmed that Ptheta was 

significantly negatively associated to MSPE (Table 5; main effect of MSPE, p <0.001, regardless of 

m) including sex and age as covariates. The negative association comes again as a surprise given that, 

overall, both metrics evolve in the same direction in the transition to sleep (i.e. they both decrease).  

To investigate further the switch in correlation direction from pre-light-off wakefulness to the 

transition to sleep, we assesses the association between MSPE (m=3) and the ratio of EEG power in 

theta band and the fast beta frequency band (beta, 13-30Hz; theta/beta ratio, TBR). The analyses 

indicates that both during the 2h preceding light-off (Physionet dataset) and during the transition 
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towards sleep (SHHS dataset), the more theta, relative to faster frequencies, the lower the EEG signal 

complexity (Figure 6A-B, significant negative correlation between TBR and MSPE; Table 6, 

GLMM, main effect of MSPE, p <0.001). 

We finally focused on the ability of PE measures to discriminate between sleep and wakefulness 

around sleep onset. PE at different scales was found to have different ability to discriminate epochs 

before or after sleep onset (i.e., wake or sleep stages; Figure 7A) and excellent AUCs (more than 0.8) 

can be obtained at scales from 2 to 5 for all the embedding dimensions considered. Moreover, PEs 

calculated with a parameter m=3 outperforms those obtained with m=4 or 5 at all the scales. In the 

situation of m=3, PE of the original time series yielded to an acceptable AUC of 0.753, while the 

highest AUC, 0.870, was achieved at scale 4 (Figure 7A). We can also conclude from Figure 7B that 

MSPE with a parameter m=3 serves as the most discriminative method while the ROC of Ptheta is 

nearest to the diagonal line. The AUC and cutoff values of the ROCs obtained by MSPE, PE of the 

original time series and Ptheta are further shown in Table 7, which indicates an obvious promotion of 

discriminative ability with the application of multiscale analysis. In consistence with Figure 7B, an 

excellent AUC of 0.856 was achieved by MSPE with m=3. However, the AUC was 0.730 when Ptheta 

was used (Table 7), even less than those obtained by the PE values of the original time series. 

 

 

 

4. DISCUSSION 

Quantifying the complexity of the EEG signal during prolonged wakefulness and during sleep is 

gaining interest as an additional mean to characterize the mechanisms associated with sleep and 

wakefulness regulation.  Here, we report significant changes in EEG complexity, as indexed by 

MSPE, immediately prior to light off and during the transition from wakefulness to sleep. We further 

report that MSPE can reach excellent (AUC > .8) discrimination between wakefulness and sleep 

around sleep onset and that MSPE changes are correlated with concomitant Ptheta spectral measures.  
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Standard Fast Fourier transformations (FFT) assume that the measured EEG signal consists in a 

linear combination of fluctuations of different frequencies. Brain oscillations are, however, not a 

linear combination of frequency components that could be added up. In other words, they are 

intrinsically nonlinear 
17

. Two main types of non-linear methods have been proposed to enrich the 

characterization of the (sleep) EEG, fractal-based and entropy methods. Here, we used the latter type 

which measures the uncertainty about the information source and the probability distribution of the 

samples drawn from it, so that entropy can be an indicator of the complexity of the EEG signal 
17

. By 

utilizing the recurrence of ordinal patterns in the signal, the calculation of PE takes into account time 

causality between the values of the time series and reflects the time characteristics of the underlying 

dynamics 
19

. A high PE value of scalp EEG signal was reported as a direct reflection of a more active 

cortex with an EEG output which is less regular and exhibits higher frequency content 
33

. Entropy of 

the sleep EEG has consistently been reported to gradually decrease from wake to sleep stage N1, N2 

and N3, indicating that brain activity becomes less complex, more coherent and periodic, while 

entropy increases during REM as compare to NREM sleep 
17, 64, 66, 67

. Entropy likely decreases during 

sleep because neurons are more synchronized (i.e., regular interactions within the neuronal network) 

68
: frequency content slows down and amplitude increases, generating a less complex signal. The 

entropy decrease during NREM sleep could also arise from the fact that fewer neurons are involved in 

information processing. There are indeed several reports that brain signal remains more local during 

sleep with less interaction between distant brain regions 
69, 70

, and therefore potentially less neurons 

contributing to the EEG signal. Here, we report that there is a decrease in MSPE during the 2h 

preceding light-off and in the transition from wakefulness to sleep, suggesting that, as for NREM 

sleep progression from N1 to N3 
71

, falling asleep is a gradual process. This is reminiscent of previous 

intracranial recording in epileptic patients that detected spindles before sleep onset, particularly in the 

hippocampus 
72

. As for sleep, lower MSPE likely arises from a progressively more synchronized 

neuronal activity. Whether reduced signal propagation also contributes is unclear as previous reports 

suggest that signal scattering increases in the evening before decreasing during nighttime wakefulness 

73-75
.  
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Complexity measures have been used to differentiate conscious from unconscious states by 

quantifying the information content of the spatiotemporal cortical activity. Compared to wakefulness, 

reduced complexity was recorded during anesthesia, sleep and disorders of consciousness 
76-78

, 

suggesting that complex brain activity is a prerequisite or a consequence of consciousness. Previous 

studies also demonstrated PE is maximal during wakefulness while decreases during sleep 
64

 and 

tends to be greatest when the subjects are in fully alert states while falling in states with loss of 

awareness or consciousness 
79

. In line with these findings, we find that EEG complexity (or MSPE) 

can effectively differentiate pre-sleep wakefulness, when computed over the 10 min preceding sleep-

onset onset (defined as the first 2 consecutives epoch of N1 or N2 stages), from early sleep, when 

computed over the 10 min following sleep onset. It outperforms in fact theta band power in doing so. 

Furthermore, we show that MSPE decreases over the 2h preceding light off and over the 10 minutes 

preceding sleep (especially when m=3). Whether these changes reflect a progressive loss of 

consciousness remains an open question. While one can posit that it is the case over the transition 

between sleep and wakefulness, it may be more difficult to argue that our sample of healthy 

participants was progressively less conscious before light-off.  

We stress that any settings of MSPE computation could be used to efficiently track pre-sleep 

signal complexity changes. However, the results obtained from an embedding dimension of 3 and 

scale factor of 4 appear best for discriminating pre- and after- sleep-onset states. Future research will 

confirm whether the MSPE parameters (m=3, τ = 1 and maximal scales = 10) we used to be indeed the 

most effective to track pre-sleep EEG signal complexity alterations. We further emphasize that MSPE 

is an efficient method which is, in principle, more efficient than FFT. In computer science, an 

algorithm with a time complexity of O(N), as MSPE, is considered to be more efficient than that with 

a time complexity of O(NlogN), such as FFT. In this respect, the MSPE has less computational cost 

than FFT. In practice, however, especially when N, representing the length of an EEG signal, is small 

(for example, less than 3000), the difference of the running times between both methods should be 

small.  
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Our explorations of the link with Ptheta shows that this well accepted spectral measure of sleep 

need is significantly associated with MSPE. Yet, the link is puzzling. While MSPE and Ptheta evolve in 

overall opposite direction over the 2h preceding light-off, their values are positively associated. In 

contrast in the transition to sleep, both metrics are globally decreasing and yet they are negatively 

correlated. Faster frequencies are progressively dominated by slower theta power during pre-light-off 

wakefulness as a reflection of the increase in sleep need 
80

. Our results suggest that during this period, 

the more theta, relative to faster frequencies, the lower the EEG signal complexity. Following light-

off, in the eye-closed transition toward sleep, the EEG further slows downs so that the dominant 

frequency likely lies in the theta/delta. This likely explains why our results show that during transition 

to sleep, the link with theta power switches to being negative. From a frequency analysis point of 

view, MSPE covers the entire spectrum of oscillations included in a time series, so one could consider 

it as a comprehensive measure that is not limited to a given frequency band and yet reflects a 

progressive change brain state associated with sleep and wakefulness regulation. 

We acknowledge that our study bears some limitations. First, as stated above, recording was 

ambulatory, thus providing less control over the experimental condition. We do not have information 

regarding the behavior of the participants, e.g. when they went to bed relative to light-off or the type 

of activities they were engaged in prior to going to bed. It is therefore unclear whether participants’ 

behavior may underlie part of the evolution of MSPE prior to light-off. This limitation may however 

constitute a strength: our findings are valid in real life situations. Second, artifacts in the data were not 

excluded following visual or validated automatic procedures, but were rather considered to be 

efficiently removed by excluding sudden variations in MSPE or Ptheta within each recording. In 

addition, while the current findings are based on large set of data in individuals devoid of sleep 

disorders (N=378), providing relatively high statistical sensitivity, MSPE may come with the cost of 

reduced sensitivity for some individual differences such as sex and age which are typically associated 

to EEG spectral analyses. Yet, MSPE significantly varied close to light-off and sleep onset, 

particularly when setting the embedding dimension to 3. It may therefore constitute an entropy 
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approach more sensitive than others that previously failed to identify significant changes during in-lab 

sleep deprivation protocols 
34, 74

.  

Modern society lifestyle often leads to sleep loss 
81-83

 and chronic sleep restriction 
84

 that cause 

fatigue and impairment in vigilance, working memory, and cognitive throughput 
85

 and may lead to 

accidents 
86

. MSPE is a low computation time method that may be an effective mean to detect when 

the brain is in a state close to sleep onset. 
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Figure Captions 

Figure 1. (color online) Illustration of the MSPE algorithm. (A) the coarse-graining procedure for scale 

factor of 3. Each black dot represents a data point in the original time series. (B) the ordinal patterns in MSPE 

calculation with embedding dimension of 4 and time lag of 1. The circle dots in (B) represent the data points in 

a time series, and the combination of four numbers under a rectangle or a horizontal line stands for an ordinal 

pattern of the segment in the rectangle or right above the line. The segments in the rectangles have the same 

pattern [2, 3, 1, 4]. 

 

Figure 2. Schematic diagram of the timeline in the analyses. (A) The timeline for the analysis on PhysioNet 

dataset. MSPE and Ptheta were evaluated in three different periods, i.e., 2h pre-light-off, the sleep transition from 

light-off to sleep onset, and the first sleep cycle. (B) The timeline for the analysis on SHHS dataset. The 

included subjects must have a sleep latency more than 10 minutes. MSPE and Ptheta were computed over each 

30s epoch within the 10 minutes immediately preceding and following sleep onset. 

 

Figure 3. (color online) Variations in MSPE and Ptheta values before light off. (A) Average value of PE for 

all the participants in PhysioNet datasets using different scale factors. For the calculation of PE, the embedding 

dimension m was set as 3. (B) Average MSPE at m = 3, 4 or 5 at each time bin; shade areas represent the 

standard errors of the mean. (C) Average Ptheta at each time bin; shade areas represent the standard errors of the 

mean. (D) p-values of the Spearman correlation between MSPE (with m set as 3, 4 or 5) and concomitant Ptheta 

over each time bin.  

 

Figure 4. The values of MSPE (A) and Ptheta (B) during pre-light-off wakefulness, pre-sleep wakefulness 

and 1
st
 sleep NREM-REM cycle. Each dot represents the median value of MSPE or Ptheta for a participant 

during the corresponding period. The box-plots illustrate the distributes of these median values for all the 

participants in PhysioNet dataset. The symbol ‘*’ represents for a significant difference of median values 

between groups (post-hoc tests of ANOVA, p<0.05).  

 

Figure 5. (color online) Variations in MSPE and Ptheta values within 10 minutes immediately before sleep-

onset. (A) Average value of PE for all the participants in PhysioNet datasets using different scale factors. For 

the calculation of PE, the embedding dimension m was set as 3. (B) Average MSPE at m = 3, 4 or 5 at each time 

bin; shade areas represent the standard errors of the mean. (C) Average Ptheta at each time bin; shade areas 

represent the standard errors of the mean. (D) p-values of the Spearman correlation between MSPE (with m set 

as 3, 4 or 5) and concomitant Ptheta over each time bin.  

Figure 6. (color online) The Spearman's rho and its p-value between MSPE and TBR during (A) 

the 2h pre-light-off with PhysioNet dataset and (B) the 10min before sleep-onset with SHHS dataset. 

Here, m was set as 3 in the calculation of MSPE and TBR represents the ratio of EEG power in theta 

band and beta band.  

Figure 7. (color online) The AUC values to differentiate states before and after sleep-onset. (A) AUC 

values of PE obtained with different scale factors and different embedding dimensions (3, 4 or 5). AUC values 

above the dashed line corresponds to an excellent ability of the test. (B) ROC curves of Ptheta and MSPE obtained 

with m = 3, 4 or 5. 
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Tables  

Table 1. Demographics and sleep structures of the included subjects. 

Dataset Subjects 
Sex 

male/female 
age SL 

Stage (%) 

S1 S2 S3 S4 REM Wakefulness 

PhysioNet 77 36/41 
57 

[46,73] 

10 

[5,22] 

6.1 

[4.5,9.4] 

23 

[19,26] 

3.2 

[0.8,4.8] 

0.2 

[0,2] 

8.8 

[6.4,11] 

57 

[54,62] 

SHHS 378 130/248 
58 

[50,66] 

21 

[15,33] 

3 

[1.9,4.6] 

39 

[31,45] 

12 

[7.6,17] 

0 

[0,0.1] 

15 

[11,18] 

28 

[21,36] 

Note: Values are expressed as median [lower quartile, upper quartile]. Abbreviations: SL, Sleep latency; S1, Stage 1 of NREM sleep; S2, 

Stage 2 of NREM sleep; S3, Stage 3 of NREM sleep; S4, Stage 4 of NREM sleep; REM, Rapid Eye Movement; SHHS, the Sleep Heart 

Health Study. 
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Table 2. A pseudocode of the MSPE algorithm 

[Entropy] = MSPE(N, S, m, tau)   
% N is the data length of the original signal, S is the maximal scale, m is the embedding dimension, and tau is the lag 

     Entropy = 0  

for ( i = 1 : S )  % treat the ith coarse-grained time series 
        for ( j = 1 : (N/i – (m-1)) * tau) )  % process the jth m-dimensional vector 

           % sort the vector with a lowest computational complexity of O(mlogm)  

           % increase the count for its corresponding pattern with a computational complexity of O(1) 
        PE = 0    % the PE value of the ith coarse-grained time series 

for ( k = 1: m! )  % calculate the Shannon_entropy of all the possible patterns 

      % calculate - p(k) * log(k) and add it to PE with a computational complexity of O(1) 
   % normalize PE with a computational complexity of O(1)  

   Entropy = Entropy + PE 

Entropy = Entropy / S   % multiple-scales average 
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Table 3. Artifacts and outliers detected for the periods of interest in both datasets, based on MSPE or Ptheta values. 

Dataset Period 

Artifacts (%) Outliers 

MSPE 
Ptheta 

MSPE 
Ptheta m = 3 m= 4 m= 5 m = 3 m= 4 m= 5 

PhysioNet 

2h pre-light-off 5.67 ± 2.34 4.03 ± 1.77 3.67 ± 1.63 5.30 ± 2.32 0 0 0 0 

Sleep transition 3.37 ± 11.9 3.21 ± 11.5 3.28 ± 11.6 9.22 ± 24.5 0 0 0 3 

the 1
st
 sleep cycle 2.82 ± 8.43 2.58 ±7.83 2.29 ±7.03 5.85 ± 16 0 0 0 0 

SHHS  
10min before sleep onset 3.88 ± 1.19 4.35 ± 1.00 4.46 ± 1.08 7.99 ± 1.18 2 2 2 5 

10min after sleep onset 1.27 ± 0.85 1.3 ± 0.94 1.43 ± 0.95 5.11 ± 1.34 0 0 0 5 
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Table 4. Results of GLMM evaluating the association between acquisition periods preceding light off and MSPE or Ptheta. 

Dependent 

variable 
Factors 

m = 3  m = 4  m = 5 

Estimate p R
2
  Estimate p R

2
  Estimate p R

2
 

MSPE period  0.0002 0.019   0.002 0.018   0.022 0.017 

age <.0001 0.343 0.012  <.0001 0.362 0.011  <.0001 0.318 0.014 
sex -0.004 0.021 0.075  -0.007 0.017 0.081  -0.01 0.016 0.083 

Ptheta period  0.429 0.015   0.642 0.014   0.7 0.014 

MSPE 3.771 <.0001 0.004  2.55 <.0001 0.005  2.02 <.0001 0.005 

age -0.008 0.01 0.096  -0.008 0.010 0.094  -0.008 0.01 0.094 

sex -0.654 <.0001 0.313  -0.65 <.0001 0.316  -0.652 <.0001 0.312 
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Table 5. Results of GLMM evaluating the association between acquisition periods preceding sleep onset and MSPE or Ptheta. 

Dependent 

variable 
Factors 

m = 3  m = 4  m = 5 

Estimate p R
2
  Estimate p R

2
  Estimate p R

2
 

MSPE period  0.0001 0.008   0.016 0.006   0.02 0.005 

age <.0001 0.116 0.007  <.0001 0.072 0.009  0.0001 0.082 0.009 

sex -0.0004 0.598 0.001  -0.0009 0.494 0.001  -0.001 0.453 0.002 

quality <.0001 0.969 <.0001  -0.0001 0.762 0.003  -0.0004 0.521 0.001 

Ptheta period  0.039 0.005   0.012 0.006   0.007 0.006 

MSPE -16.50 <.0001 0.054  -10.76 <.0001 0.063  -9.08 <.0001 0.073 

age -0.001 0.575 0.001  -0.001 0.602 0.0008  -0.001 0.596 0.001 

sex 0.05 0.463 0.0014  0.046 0.492 0.001  0.044 0.513 0.001 

quality -0.024 0.33 0.003  -0.025 0.302 0.003  -0.026 0.28 0.003 
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Table 6. Results of GLMM evaluating the association between MSPE (m=3) and TBR during two periods.  

Dependent variable Factors 
2h pre-light-off  10min before sleep onset 

Estimate p R
2
  Estimate p R

2
 

TBR period  <.0001 0.022   <.0001 0.093 

MSPE -23 <.0001 0.131  -31.12 <.0001 0.161 

age -0.001 0.685 0.002  0.001 0.578 0.001 

sex 0.169 0.176 0.025  -0.016 0.743 0.0003 

quality     0.012 0.467 0.002 

TBR: the ratio of EEG power in theta band and beta band. 
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Table 7. The AUC and cutoff values of MSPE and original PE obtained with m = 3, 4, or 5 and of Ptheta. 

 MSPE  Original PE 
Ptheta 

 m = 3 m = 4 m = 5  m=3 m=4 m=5 

AUC 0.856 0.846 0.84  0.753 0.737 0.736 0.73 

cutoff 0.968 0.947 0.921  0.848 0.780 0.741 18.33/uV
2
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Figure 1 
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Figure 2 

 

  

D
ow

nloaded from
 https://academ

ic.oup.com
/sleep/advance-article/doi/10.1093/sleep/zsaa226/5959865 by U

niversity of Liege user on 17 D
ecem

ber 2020



Acc
ep

ted
 M

an
us

cri
pt

 

 
 

35 

Figure 3 
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Figure 4 
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Figure 5 
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Figure 6 
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Figure 7 
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