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ABSTRACT

Context. Beyond the choice of wavefront control systems or coronographs, advanced data processing methods play a crucial role in
disentangling potential planetary signals from bright quasi-static speckles. Among these methods, angular differential imaging (ADI)
for data sets obtained in pupil tracking mode (ADI sequences) is one of the foremost research avenues, considering the many observing
programs performed with ADI-based techniques and the associated discoveries.
Aims. Inspired by the field of econometrics, here we propose a new detection algorithm for ADI sequences, deriving from the regime-
switching model first proposed in the 1980s.
Methods. The proposed model is very versatile as it allows the use of PSF-subtracted data sets (residual cubes) provided by various
ADI-based techniques, separately or together, to provide a single detection map. The temporal structure of the residual cubes is used
for the detection as the model is fed with a concatenated series of pixel-wise time sequences. The algorithm provides a detection
probability map by considering two possible regimes for concentric annuli, the first one accounting for the residual noise and the
second one for the planetary signal in addition to the residual noise.
Results. The algorithm performance is tested on data sets from two instruments, VLT/NACO and VLT/SPHERE. The results show an
overall better performance in the receiver operating characteristic space when compared with standard signal-to-noise-ratio maps for
several state-of-the-art ADI-based post-processing algorithms.

Key words. techniques: image processing – techniques: high angular resolution – methods: statistical – methods: data analysis –
planetary systems – planets and satellites: detection

1. Introduction

High contrast imaging (HCI) is one of the most challenging
techniques for exoplanet detection, but is also one of the most
promising (see Bowler 2016, for a review). The main difficulties
encountered with HCI arise from the small angular separation
between the host star and the potential exoplanets, the flux ratio
between them (usually below 10−3), and the image degradation
caused by the Earth’s atmosphere. Adaptive optics (AO) and
coronagraphic techniques are now widely used to improve the
quality and reduce the dynamic range of the images in dedi-
cated instruments such as GPI (Macintosh et al. 2008), SPHERE
(Beuzit et al. 2019), or SCExAO (Lozi et al. 2018). However,
despite the use of these cutting-edge technologies, the result-
ing images are still affected by residual aberrations. Under good
observing conditions, the performance of HCI instruments is
limited by aberrations arising in the optical train of the tele-
scope and instrument, generating quasi-static speckles in the
field of view. Different processing techniques along with observ-
ing strategies have been proposed in the last decade to deal with
these quasi-static speckles, whose shape and intensity (about
10−4) are similar to potential companions.

Angular differential imaging (ADI, Marois et al. 2006) is
nowadays the most commonly used observing strategy to miti-
gate quasi-static speckles in HCI. This observing strategy con-
sists in acquiring images in pupil tracking mode, that is, with
the instrument derotator keeping the pupil orientation fixed. The

aim of this approach is to keep the quasi-static speckles fixed in
the focal plane, so that they can easily be identified with respect
to astrophysical objects rotating around the star along with the
parallactic angle. Using this temporal diversity, a model of the
speckle field, often referred to as the reference point spread func-
tion (PSF), may be built from the data. This reference PSF is then
subtracted from the set of ADI images. The resulting residuals
frames are eventually aligned and combined to detect the signal
of potential exoplanets or discs, which should not have suffered
too much from subtraction of the reference PSF.

Several methods using this approach have been proposed to
maximise the noise reduction, such as for example a locally opti-
mised combination of images (LOCI, Lafreniere et al. 2007),
principal component analysis (PCA, Soummer et al. 2012), non-
negative matrix factorization (NMF, Ren et al. 2018), and low
rank plus sparse decomposition (LLSG, Gomez Gonzalez et al.
2016), allowing the user to reach contrasts down to 10−6 at
0.5 arcsec in the H-band (1.6 µm) with the latest generation
of HCI instruments (e.g. Vigan et al. 2015). Another family of
post-processing algorithms replaces the reference PSF subtrac-
tion by a forward modelling of the planetary companion using
an inverse problem framework (ANDROMEDA, Cantalloube
et al. 2015; FMMF, Pueyo 2016; Ruffio et al. 2017). In both
cases, the detection is typically performed via the estimation of
signal-to-noise-ratio (S/N) maps. In contrast with the forward-
model-based algorithms, which provide a S/N map as a by-
product of the model, in the case of reference PSF subtraction
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the S/N map is usually generated by using the median-averaged
residual frames to estimate the annulus-wise S/N of every pixel it
contains. The detection of planetary candidates is then done via
the definition of an S/N threshold. Several methods have been
proposed to generate S/N maps from the set of reference PSF-
subtracted images (e.g. Mawet et al. 2014; Bottom et al. 2017;
Pairet et al. 2019).

In this paper, we propose a novel approach to dealing with
this last step of the ADI sequence post-processing. Instead of
averaging the set of de-rotated images obtained after the refer-
ence PSF subtraction and computing an S/N map, we propose
to consider the entire set of residual frames and rely on a
regime-switching algorithm to classify the pixel values into two
categories, regrouping either the planetary signals or the quasi-
static speckles. The probability associated with the planetary
regime then allows the creation of a detection map. The algo-
rithm derives from the Markov regime-switching model first
proposed by Hamilton (1988), which is widely applied to analyse
economic and financial time series. The aim of our new detec-
tion algorithm is to more effectively treat the residual noise still
observed in the cube of residuals provided by ADI methods,
increasing our ability to disentangle faint signals from bright
speckles. The flexibility of the algorithm allows the use of ADI
cubes treated with most post-processing methods. The cubes of
residuals obtained from the different post-processing methods
may be used separately, but can also be used together, further
improving the sensitivity of the detection algorithm to faint
companions.

The rest of the paper is organised as follows. In Sect. 2,
we describe the new regime-switching model for the detection
of exoplanets. Section 3 presents in detail the model estimation
and the definition of the different parameters. The ability of our
model to disentangle faint planetary signals from bright speck-
les is tested in Sect. 4 by injecting fake companions into two
different data sets and by comparing the results with state-of-
the-art ADI-based post-processing techniques. Finally, Sect. 5
concludes on this work.

2. Regime-switching model

The proposed detection algorithm derives from the Markov-
switching regressions introduced by Goldfeld & Quandt (1973)
and Cosslett & Lee (1985) and further improved by Hamilton
(1988, 1994), who developed an iterative inference algorithm
to estimate the model parameters, namely the Markov regime-
switching model (RSM). This approach is one of the most
popular non-linear time series models in the econometric litera-
ture and many variants have been proposed. The aim of the RSM
is to take into account possible dramatic changes in the behaviour
of time series such as the transition between economic expansion
and contraction in the case of financial time series. The regime-
switching model relies on several linear equations to describe the
different states of a system described by a time series. The prob-
ability of being in a given state depends on both a pre-defined
transition probability and on the ability of the different equa-
tions to properly describe the evolution of the time series. One of
the model outcomes is the probability associated with different
regimes. For each element of the time series, the RSM provides
the probability of being in any one of the different regimes. Our
detection map derives directly from these probabilities.

In the case of our RSM detection map, the time series is
built from the de-rotated cube of residuals obtained after the
PSF subtraction and de-rotation steps of the ADI sequence
post-processing. Several cubes of residuals treated with different

ADI PSF subtraction techniques may be stacked in the time axis
to provide additional information and increase the ability of the
model to detect faint companions. To allow for the detection
of planetary signals, we rely on two different regimes to model
the de-rotated cube of residuals: a regime in which the residuals
time series is described by speckle noise and a second regime
with speckle noise plus a planetary signal. The planetary signal
may be modelled as the measured off-axis PSF1 or as a forward
model of the off-axis PSF after the subtraction. We consider in
this paper the measured off-axis PSF for simplicity, although the
algorithm may be easily adapted to a forward modelled off-axis
PSF.

The RSM we propose here is a modified version of the orig-
inal Markov-switching model, in which only one parameter is
determined via a maximum log-likelihood estimation. We rely
on the characteristics of the data set to define the other model
parameters. Having presented the basic principles behind our
RSM, we may now describe the detailed procedure for our RSM
detection map computation.

2.1. Building the time series

The first step of our estimation procedure is to build the time
series that the regime switching model will try to model. As
the noise properties are expected to evolve with radial distance,
the regime switching model is applied annulus-wise. For each
annulus a, a specific residuals time series Xia is built by vectoriz-
ing that part of the cube of residuals, indexed by ia the flattened
pixel number. The length of the time series Xia depends on the
number of pixels in the considered annulus La but also on the
number of frames in the original de-rotated cube of residuals T .
We indeed take advantage of all the individual frames contained
in the de-rotated cube of residuals instead of collapsing the cube
as is usually done when estimating an S/N map. As can be seen
from Fig. 1, the time series Xia is built by concatenating the set
of T observations for every pixel contained in the annulus a,
i.e. Xia = {X1,1, X2,1, . . . , XT,1, X1,2, . . . , XT,2, . . . , XT,La } with ia ∈
{1, . . . ,T × La}. The first subscript of X indicates the selected
frame in the de-rotated cube of residuals, while the second one
provides the position of the considered pixel in the selected
annulus a. Both subscripts are replaced by a single index ia to
form the residuals time series that feeds the RSM.

We consider first the time axis and then the spatial axis in
order to stay in the planetary regime during T steps of the itera-
tive process used to build the detection map, instead of switching
T times between both regimes when a planetary signal is present
in a given annulus. Indeed, when travelling through the residuals
time series, the planetary signal observed in a given pixel will
act on the regime-switching model during T steps, allowing the
probability of being in the planetary regime to build up thanks
to the short-term memory of the model. This helps to enhance
the sensitivity of the algorithm to faint signals as it allows the
probability to build up for a longer period of time.

2.2. Model description

The second step of the RSM detection map computation con-
sists in defining the set of equations describing the residuals

1 For coronagraphic imaging, an off-axis non-coronagraphic image of
the target is routinely acquired before and after the observing sequence.
This PSF reference is used to calibrate the flux of the star and provide
a model of the planetary signal for a forward model-based algorithm.
For non-coronagraphic imaging, this reference PSF is the unsaturated
exposure.
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Fig. 1. Residuals time series for a given annulus a is obtained by
stacking the pixel values of the considered annulus along the time axis.

Fig. 2. Residuals matrices obtained from the first frame of the cube of
residuals for the last three pixels of the annulus with θ equal to 3. The
time series Xia is created by considering matrices of dimension θ × θ
centred on every Xia in the cube of residuals.

time series for the two considered regimes. In the first regime,
the time series Xia is described by a residual noise following the
statistics of the quasi-static speckle residuals contained in the
annulus. In the second regime, the time series Xia is described
by both the residual noise and the planetary signal model (off-
axis PSF). The PSF being two-dimensional, we consider not only
one pixel at a time but a batch of pixels in a square of size θ
equal to the full width at half maximum (FWHM) of the PSF.
In order to define the probability of observing a planetary sig-
nal at a given pixel Xia , we therefore need to consider a number
of neighbouring pixels depending on the value of θ. As depicted
in Fig. 2, we define Xia as the residuals matrices of dimension
θ × θ centred on Xia , which will replace the time series Xia used
so far. Larger values of θ may be considered in the case of a
forward-modelled off-axis PSF to take into account the signal
self-subtraction, which, for instance, could create negative wings
in the azimuthal direction. Our RSM is therefore characterised

by the following equations:

Xia = µ + βRia P + εs,ia =

{
µ + ε0,ia if S ia = 0
µ + βP + ε1,ia if S ia = 1,

(1)

where β provides the strength of the planetary signal, µ the mean
of the quasi-static speckle residuals, and εs,ia their time and space
varying part characterised by the quasi-static speckle residuals
statistics (see Table 1 for a summary of all the variables used in
the RSM). Here, P is the model of the planetary signal, which is
the normalised off-axis PSF in the FWHM region.

As can be seen from Eq. (1), there exist two possible states
S ia , which are reflected in the value taken by the parameter Ria ,
with Ria = 1 in the case of a planetary signal detection and Ria =
0 in the other case. Here, S ia is not directly observable, but we
see its effect on the behaviour of Xia via the realisation Ria .

The parameter Ria is a realisation of a two-state Markov chain
allowing short-term memory. This implies that we only consider
the state S ia−1 in which the system was at index ia − 1 to define
the probability of being in a given state S ia for the current index
ia. The fact that the realisation Ria is a probabilistic outcome
implies that we cannot consider being in only one of the two
regimes. We have instead a given probability of being in each of
them. Our RSM tries to describe the behaviour of the time series
Xia via a probability-weighted sum of the values generated by
the equation describing each regime.

2.3. Definition of the model probabilities

The probability of Xia being in a state or regime S ia = s is charac-
terised by the set of parameters of Eq. (1), that is, P the planetary
signal model, and µ and β, the statistical properties of the resid-
ual noise εs,ia . We make the simplifying assumption here that
the quasi-static speckles residuals εs,ia may be characterised to
a good level of precision by their mean µ and variance σ. We
write the probability of observing Xia in the state s at step ia as
follows:

ξs,ia = P(S ia = s|Ωia , P, µ, β, σ), (2)

where P, µ, β, σ and Ωia = {Xia , Xia−1} provide the parameters of
the model.

This probability ξs,ia is the key element of our RSM detection
map as the map is constructed based on the value taken by ξ1,ia
for every pixel of every annulus. Indeed, ξ1,ia provides a detec-
tion probability for each pixel and each frame of the de-rotated
cube of residuals. The final RSM detection map is created by
averaging these probabilities along the time axis of the cube of
residuals.

In the case of a two-state Markov chain, the computation
of ξs,ia necessitates the estimation of (i) the probability ξq,ia−1
of observing the system in the state q at step ia − 1, (ii) the
transition probability pq,s from state q to state p and (iii) the
likelihood of observing Xia in state s at step ia, which we note
ηs,ia . The probability of being in a state s at index ia can be com-
puted as the normalised likelihood of being in state s at index
ia multiplied by the probability of having been in either of the
two states at index ia − 1 and by the transition probability pq,s,
which accounts for the short-term memory of the algorithm. The
expression of the state probability ξs,ia is therefore given by the
following expression (Hamilton 1988):

ξs,ia =

1∑

q=0

ηs,ia pq,s ξq,ia−1

f (Xia |Ωia−1, P, µ, β, σ)
, (3)
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Table 1. Description of the mathematical notations for the variables used in the RSM detection map computation.

Symbol Dimension Comments

Xia T La Vector of residuals for the annulus a
Xia θ × θ × T La Matrices of residuals centred on Xia
a 1 Annulus index
La 1 Number of pixels included in the annulus a
T 1 Number of frames in the cube of residuals
ia 1 Index associated with every pixel from every frame in the annulus a (ranges from 1 to T La)
θ 1 Angular size of the considered planetary signal (set to 1 λ/D)
µ 1 Mean of the residuals contained in an annulus a, with width equal to θ
σ 1 Standard deviation of the residuals contained in an annulus a, with width equal to θ
β 1 Parameter representing the intensity of the planetary signal in the cube of residuals
Ria T La Realisation of a two-state Markov chain representing the state in which the system is in for pixel ia
P θ × θ Planetary signal (off-axis PSF)
εs,ia 2 × θ × θ × T La Error terms associated with the two regimes
S ia T La State in which the system is in for every pixel ia
ξs,ia 2 × T La Probability associated with state s for every pixel ia
ηs,ia 2 × T La Likelihood of being in each state for every pixel ia
pq,s 2 × 2 Transition probabilities between the regimes

with the sum f of conditional densities for index ia given by:

f (Xia |Ωia−1, P, µ, β, σ) =

1∑

q=0

1∑

s=0

ηs,ia pq,s ξq,ia−1, (4)

and the transition probabilities given by:

pq,s = P(S ia = s | S ia−1 = q), (5)

with q, s ∈ {0, 1}. We consider the two possible states describ-
ing the system at index ia − 1 via the sum over q. The function
f (Xia |Ωia−1, P, µ, β, σ), which represents the numerator summed
over the two possible states taken at index ia, ensures that the
sum of the probability ξs,ia equals one for every index ia.

2.4. Transition probabilities estimation

For our two-regime model, the transition probability pq,s
regroups the probabilities of staying in either regime along with
the probabilities of switching to the other regime. The estimation
of pq,s is relatively straightforward by imposing on the algorithm
the potential existence of no more than one planetary signal per
annulus. A number of planetary signals per annulus in the inter-
val ]0, 1] may therefore be considered. Following our testing,
a value of one companion per annulus must be privileged in
the case of faint companions as lower values decrease both the
residual speckles and the companion intensities in our model.
Considering the number of pixels La and the number of frames
T , the parametrisation of pq,s translates as follows in the case of
one planetary signal per annulus:

pq,s =

(
p0,0 = 1 − 1/(T × La) p1,0 = 1/T

p0,1 = 1/(T × La) p1,1 = 1 − 1/T

)
. (6)

2.5. Likelihood function definition

The determination of the likelihood is the key step of the model
estimation. The challenge is to select the right probability
distribution function to properly describe εs,ia , the residual
noise due to the quasi-static speckles. Indeed, the value taken
by ηs,ia depends directly on the position of the elements of

Xia , or the elements of Xia − βP, in the probability distribution
of the quasi-static speckle residuals. Considering the small
transition probabilities p0,1, the probability of planetary signal
detection ξ1,ia depends heavily on the value taken by η1,ia . The
parametrisation of the selected probability distribution function
also plays an important role.

Different probability distribution functions may be used. For
the sake of clarity, we illustrate the likelihood function defini-
tion with a simple Gaussian distribution as is done in Hamilton
(1988). However, the following section will allow us to investi-
gate the question of the optimal probability distribution function
selection as different post-processing algorithms provide differ-
ent noise distributions for different separations. The Gaussian
distribution allows us to construct a likelihood function for state
s at index ia in the following manner:

ηr,ia =

θ2∑

n

1
θ2

1√
2πσ

exp

−
(
Xn

ia
− RiaβPn − µ

)2

2σ2

 , (7)

with n the index of the matrix elements for Xia and P. The sum
over the matrix elements allows us to obtain only one value per
considered θ × θ patch.

2.6. Model estimation

Since the estimation of ξs,ia depends on its value at the previous
step, we rely on an iterative procedure to estimate the entire set of
ξs,ia . This iterative procedure requires the definition of an initial
condition for ξq,0. Assuming that the considered Markov chain
is ergodic, we can simply set ξq,0 = P(S t = q | P, µ, β, σ) equal
to the unconditional probability ξq,0 = P(S t = q). Following the
approach proposed by Hamilton (1994), the two initial probabil-
ities ξ0,0 and ξ1,0 may be estimated using the following system of
equations:


ξ0,0 = ξ0,0 p0,0 + ξ1,0 p1,0

ξ1,0 = ξ1,0 p1,1 + ξ0,0 p0,1

ξ1,0 + ξ0,0 = 1,
(8)

which translates in terms of matrices into:

Aξ = ψ, (9)
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with ε =
[
ξ0,0, ξ1,0

]
the set of initial probabilities, ψ = [0, 0, 1] ,

and A given by:

A =

(
I2×2 − P

1 1

)
, (10)

with P the matrix of pq,s, I2×2 a diagonal matrix of dimension
2 × 2. Solving the system of Eq. (8) to obtain the initial proba-
bilities, ξ, is then equivalent to taking the third row of the matrix
(At A)−1 At.

3. Detection map estimation

We propose in this section a procedure to produce a RSM
detection map. The model we developed so far necessitates the
computation of cubes of residuals along with the definition of
several parameters: the probability distribution function of the
quasi-static speckles residuals εs,ia and its first two moments, the
planetary signal model P, the intensity parameter β, and the tran-
sition probability pq,r. The transition probability pq,r is already
defined in Sect. 2.4. We therefore consider the remaining three
model parameters.

3.1. Computation of de-rotated cubes of residuals

The first step to create a RSM detection map is the production
of the de-rotated cubes of residuals for the selected ADI-based
post-processing techniques feeding our regime-switching algo-
rithm. As an illustration of the ability of our model to improve
the detection when considering several methods at once, in this
paper we consider three different post-processing techniques:
annular PCA, NMF, and LLSG. For the two first approaches,
the estimation of the cubes of residuals starts with the definition
of a reference PSF. Annular PCA follows the PCA principles
by computing the directions of maximal variance from the main
matrix representing the ADI sequence, M ∈ Rn×p, with n the
number of frames and p the number of pixels in the considered
annulus. The determination of a reference PSF is done via the
estimation of the eigenvectors V of the matrix M by taking Vk,
the first k components of V. Annular PCA relies on a separate
estimation for each annulus composing the original cube of data
to take into account the radial evolution of the noise distribution;
it allows the user to consider the local structure of the speckle
noise instead of the entire frame. The cube of residuals is then
obtained via the subtraction of the low rank matrix MVT

k Vk from
the initial ADI sequence M.

As for annular PCA, NMF can be understood as a low rank
approximation, with an additional non-negativity condition. This
method consists in the decomposition of a matrix into two fac-
tors of non-negative values via the minimisation of the Frobenius
norm:

argminW,H
1
2
‖M −WH‖2FN =

1
2

∑

i, j

(Mi, j −WHi, j)2, (11)

where W ∈ Rn×k and H ∈ Rk×p. The method allows the defini-
tion of a matrix WH with rank k lower than that of the original
matrix M, keeping only the main components of M. The matrix
WH provides a reference PSF for the entire set of frames rep-
resenting the structure of the residual starlight. As for annular
PCA, this matrix is subtracted from the original ADI sequence
to obtain the cube of residuals, M −WH.

Finally, the LLSG estimation is based on the decomposi-
tion of the cube intensities in three separate components: L, a

low-rank matrix, S, a sparse matrix expected to contain the
potential planetary signal, and G, the Gaussian part of the
background noise. This partly explains why the distribution of
the resulting residuals observed in Fig. 3 is far from being
Gaussian, the Gaussian part of the noise having already been
removed. More information about the algorithm may be found in
Gomez Gonzalez et al. (2016). The cube of residuals is directly
provided by S.

3.2. Probability distribution function

We then move to the model parameters definition by first con-
sidering the selection of the probability distribution function
describing the speckle residuals. Figures 3a–d provides the dis-
tribution of the residuals for a VLT/NACO ADI sequence (see
Sect. 4 for a description of the data set) obtained with respec-
tively the annular PCA, the NMF, and the LLSG methods.
We see from these graphs that the distribution of the residu-
als is either close to a Lapacian or to a Gaussian distribution
depending on the selected post-processing techniques and on the
angular separation. At small angular separations, the tails of the
distributions of the residuals seem to be closer to a Laplacian,
while at larger separation they seem closer to a Gaussian, except
for LLSG processing. This radial evolution is mainly due to the
higher (relative) number of intense speckles, the lower number
of pixels, and the lower field rotation at small separation. Over-
all, the distribution of the residuals is close to a Gaussian for
annular PCA and NMF, and close to a Laplacian for LLSG.
This partially confirms the findings of Pairet et al. (2019), who
demonstrated that the residuals were closer to a Laplacian than a
Gaussian distribution, especially when looking at the tails of the
distribution.

The results of Fig. 3 illustrate the difficulty of defining the
residuals distribution as there exists a dependence on both the
separation and the post-processing technique along with differ-
ences between the tails and the core of the distribution. We
therefore consider both the Gaussian and Laplacian distributions
in the performance assessment of Sect. 4.

The proposed regime-switching model provides a local
detection probability as it considers one annulus at a time. The
parameters of the residuals probability distribution should there-
fore be estimated locally. In the previous section, we considered
not a single pixel at a time but a θ × θ matrix of pixels cen-
tred on the pixel of interest. We therefore estimate the pixel-wise
mean and variance of the residuals empirically by considering an
annulus with a width of θ pixels centred on the selected annulus.
The entire set of frames is used for the estimation of these two
parameters. Although planetary signal may be included in the
annulus, the effect of this signal on the estimation of the mean
and variance is limited and decreases with angular separation.

3.3. Intensity parameter

For the estimation of the intensity parameter β, we rely on the
estimated variance of the pixel intensity in the annulus. We were
inspired here by the S/N maps that are usually created with
the final frame provided by most of the ADI techniques. We
define the intensity parameter β as a multiple of the estimated
variance σ:

β = δσ. (12)

The β parameter is the only parameter we propose to esti-
mate via a maximum log likelihood. Several values of δ are
tested in a given interval starting at δ = 1, as δ = 0 would
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(a) Annular PCA at 1λ/D
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(b) Annular PCA at 8 λ/D
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(c) NMF at 1λ/D

15 10 5 0 5 10 15
Value

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Pr
ob

ab
ilit

y

Residuals distribution NMF
Gaussian fit
Laplacian fit

(d) NMF at 8 λ/D
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(e) LLSG at 1λ/D
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(f) LLSG at 8 λ/D

Fig. 3. Distribution of the residuals for a VLT/NACO data set after PSF subtraction by annular PCA (top), NMF (middle), and LLSG (bottom)
along with a Gaussian (orange line) and Laplacian (green line) fit at small (left) and large separations (right), with respectively 20 components for
the annular PCA and the NMF and a rank of 5 for the LLSG.

imply a single regime model. The optimal δ in an annu-
lus a is the one leading to the highest log-likelihood sum∑La×T

ia
log

[
f (Xia |Ωia−1, P, µ, β, σ)

]
in the considered interval.

Relying on this definition of β allows us to obtain informa-
tion about the position of the detected planetary signal inside
the probability distribution of the residual speckles. A higher δ
implies that the detected signal is farther in the distribution tails,
which indicates a higher level of confidence (which will gener-
ally translate into a higher probability in the RSM map) about
the detected planet and a higher flux for a given noise distribu-
tion. However, the β parameter does not provide an estimation

of the planetary flux as we are not using a forward model of the
PSF for the planetary signal.

3.4. Planetary signal model

Using a forward model for the planetary signal would allow us
to take into account the distortions (such as self-subtraction) cre-
ated by ADI-based post-processing treatment when estimating
cubes of residuals. Although a forward-modelled PSF should
provide more accurate results, it should be noted that some
ADI PSF subtraction techniques do not lend themselves to the
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analytical computation of a forward model (e.g. LLSG, NMF).
A more universal numerical way to compute a forward model is
to compare the initial cube of residuals and the one in which a
fake companion has been injected. Following this approach, we
tested numerical estimation of forward modelled PSF for gener-
ating RSM detection maps but without managing to improve the
algorithm accuracy compared to the use of measured off-axis
PSF. We therefore decided to only consider measured off-axis
PSFs in the rest of this paper. However, a forward model variant
of the proposed algorithm is still under development and should
be a valuable improvement of the current model, at the expense
of its computation time.

3.5. Regime switching model detection map estimation

Now that we have defined the procedure to estimate the cubes
of residuals feeding the RSM algorithm as well as the model
parameters, we may summarise the main steps of the algorithm
as follows:
1. Compute the residuals cubes for the selected ADI techniques

and de-rotate all the resulting frames;
2. define the separation to the star for the first and last

annuli, respectively aini = FWHM/2 + 1 and afin = ( fsize −
FWHM)/2 with fsize the size of the frame;

3. define the series Xia for the first annulus;
4. estimate the mean and variance of the residuals inside the

annulus separately for each residuals cube;
5. using the iterative procedure described in Sect. 2, estimate

ξr,ia for each index ia for the set of tested δ;
6. include the probability of planetary signal ξ1,ia providing

the maximum likelihood in a three-dimensional matrix U ∈
RLa×T ;

7. repeat steps 2–6 for the next annulus (a + 1) until afin is
reached;

8. average the detection probability contained in U along the
time axis to obtain the final RSM detection map.

The resulting detection map provides the averaged probability
of observing a planetary signal in a given cube of data, along
with the optimal β. The following section explores the effective-
ness of this new approach when applied to observational data
sets.

4. Performance assessment

4.1. Data

We propose the use of two ADI sequences acquired with two
instruments of the Very Large Telescope (VLT): NACO and
SPHERE. This allows us to investigate the ability of our model
to deal with the different noise profiles produced by these
instruments.

The first data set focuses on β Pictoris and its planetary
companion β Pictoris b. It was obtained in L′ band in January
2013 with NACO in its AGPM coronagraphic mode (Absil et al.
2013). The ADI sequence is composed of 612 individual frames
obtained by averaging 40 successive individual exposures, each
frame providing an effective integration time of 8 s. The paral-
lactic angle ranges from −15◦ to +68◦. We use every third frame
to reduce the CPU time and cropped the central 101× 101 pixels
region to consider mainly the first arc-second.

The second data set is an ADI sequence on 51 Eridani pro-
duced by the SPHERE-IRDIS instrument using an apodized
pupil Lyot coronagraph (Samland et al. 2017). The sequence was
taken in K1 band in September 2015 and regroups 194 frames

with 16 s of integration time. The parallactic angle ranges from
297◦ to 339◦. The data set was pre-processed using the SPHERE
Data Center pipeline (for more details about the reduction see
Delorme et al. 2017; Maire et al. 2019).

4.2. Detection maps

We start our analysis by considering the RSM detection map gen-
erated with the proposed algorithm and based on the residual
cubes provided by annular PCA, NMF, and LLSG, and compare
it with the S/N map obtained with the same three post-processing
algorithms. The post-processing as well as the S/N detection
maps are generated for all three methods with the VIP package
developed by Gomez Gonzalez et al. (2017) using the standard
parametrisation. Both annular PCA and LLSG are performed
annulus-wise, with each annulus being divided into four seg-
ments in the case of LLSG. Other parametrisations are possible
as the proposed approach works with any de-rotated cube of
residuals. The three cubes of residuals obtained with the selected
post-processing techniques are then stacked to create a single
cube to feed the RSM. The variance and the mean of the resid-
uals are estimated separately for each subcube as their noise
profiles are specific, as demonstrated in the previous section
when looking at the residual distributions.

Figure 4 displays the RSM detection map and the S/N
maps obtained for the SPHERE-IRDIS 51 Eridani data set (see
Fig. A.1 for similar detection maps for the NACO β Pictoris
data set). As can be seen, the difference in intensity between
the planetary signal and the background speckles is much higher
with our new approach than with the usual S/N maps. Fifty-one
Eridani b (contrast of 6.73 × 10−6 ± 9.02 × 10−7 at a separation
of 453.4± 4.6 mas, Samland et al. 2017; Maire et al. 2019) can be
clearly identified on the lower left quadrant with RSM, annular
PCA, and LLSG, although we observe a higher number of false
positives in the case of LLSG. The visual identification becomes
more difficult when looking at the S/N map provided by NMF,
which shows brighter wind-driven halo residuals.

To illustrate the computation of the RSM map, Fig. 5 shows
how the probability ξ1,ia builds up when getting closer to a plane-
tary signal; it reports the RSM map probabilities along the radial
axis crossing the peak value attributed to 51 Eridani b, along
with the optimal δ for the respective annuli. The data includes
7 pixels × 197 frames × 3 ADI-based post-processing techniques
and is centred on the pixel showing the highest probability. As
can be seen, no signal may be found in the first 591 patches
representing the first pixel. The probability builds up steadily
for the next three pixels until reaching a peak probability of over
95%. The value of the optimal δ increases as well with a peak
value of 4 reached at the fifth pixel, illustrating the displacement
of the signal farther into the residuals distribution tail due to
the increasing flux coming from the planetary candidate. We
then observe a decrease of the probability and optimal δ, which
eventually gets back to the background speckle noise level. The
stacked cube of residuals encompasses the cubes of residuals
generated first by the annular PCA, then by the NMF, and finally
by the LLSG. Looking at the sharp increase observed at the
beginning of every pixel, we see that the strongest signal may
be found in the annular PCA cube of residuals, confirming the
visual analysis of the S/N maps. However the signal is still strong
in the two other cubes of residuals to be able to maintain the
high probability observed for the three central pixels. Changing
the order of the cubes of residuals when computing the RSM
detection map does not significantly affect the probabilities.
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(a) RSM Probability map (b) Annular PCA S/N map

(c) LLSG S/N map (d) NMF S/N map

Fig. 4. Probability map obtained for the SPHERE-IRDIS 51 Eridani data set, with the RSM using a Gaussian distribution along the S/N map
generated with the cube of residuals obtained with annular PCA, LLSG, and NMF. The annular PCA and the NMF use 20 components, and the
LLSG has a rank of 7. The colour scale indicates the probability for the RSM map and the S/N for the three S/N maps (Mawet et al. 2014). The
maps are centred on the star 51 Eridani while 51 Eridani b is identified by the white circle in the lower left quadrant.

4.3. Receiver operating characteristic curves

In order to explore in more detail the properties of our new
approach and compare its performance with other state-of-the-
art methods, we generated synthetic data sets based on the two
ADI sequences presented in the previous section. We rely on the
injection of fake companions in the initial ADI sequences, an
approach widely accepted by the HCI community for generating
synthetic data to assess the sensitivity of post-processing meth-
ods. Since the contrast that can be reached as well as the noise
structure both depend on the angular separation, we consider
three different annuli as described in Table 2. The comparison
with the other methods is based on receiver operating char-
acteristic (ROC) curves, which are widely used to assess the
performance of binary classifiers. In these curves, one axis pro-
vides the true positive rate and the other the false positive rate.
When using ROC curves for performance assessment, the main
proxy for the classifier performance is the area under the ROC
curve: the better the classifier, the higher the area under the
ROC curve, i.e. the higher the true positive rate for a given false

positive rate. We replace the false positive rate by the number
of false positives for the entire frame, averaged over the number
of test data sets considered for a given separation as is done in
Gomez Gonzalez et al. (2018).

The fake companions are defined as the normalised off-axis
PSF, generally measured by offsetting the target star from the
coronograph, multiplied by flux values from a predefined inter-
val defined to challenge the set of tested methods. Five different
flux values are tested for each separation with step size of 0.5
times the initial value. For each flux value, eight positions are
tested to mitigate the impact of bright speckles or local min-
ima. The resulting 40 test data sets are then used to estimate
the ROC curves for each separation. The contrasts for the three
selected separations are provided for the NACO and SPHERE
data sets in Table 2. Before injecting the fake companion, we
removed the known companions and some bright disc structures
for the β Pictoris data set using the negative fake companion
technique (Lagrange et al. 2010). We consider a false positive
to be a detected companion at any other location than the one
selected for the fake companion injection.
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Fig. 5. Evolution of the probability in the RSM detection map around
the location where 51 Eridani is detected along with the optimal δ for
the respective annuli.

Table 2. Injected companions contrast range for the three considered
separations.

NACO (β Pic) SPHERE (51 Eri)
Separation contrast contrast

2 λ/D 3.3–8.2 ×10−4 1.0–2.6 ×10−4

4 λ/D 0.5–1.3 ×10−4 1.2–3.1 ×10−5

8 λ/D 1.3–3.3 ×10−5 2.1–5.2 ×10−6

The exoplanet detections for the annular PCA, the NMF, and
the LLSG methods are based on S/N maps generated using the
procedure of Mawet et al. (2014).The detection of a true or false
positive is done on the de-rotated median-combined individual
frame by estimating the S/N for every pixel. This estimation is
done annulus-wise in order to take into account the evolution
of the residuals distribution. The S/N is calculated by comparing
the flux inside an aperture with a diameter of one FWHM centred
on the considered pixel (i.e., 5 pixels for both data sets) with the
flux of all the other apertures included in the annulus (for more
details about the estimation see Mawet et al. 2014). Once the S/N
map is computed, successive thresholds are applied onto the S/N
map to create the ROC curves. For each threshold, the detection
of the fake companion as well as the number of false positives
are recorded and averaged over the entire set of synthetic data
sets generated for the considered annulus to construct our false
and true positive rates. We follow a similar procedure for the
RSM detection map, simply replacing the S/N thresholds by
successive percentage thresholds applied to the detection map.

The parameters of the different post-processing techniques
have been selected to maximise the area under the ROC curves,
that is, to maximise the true positive rate while minimising the
number of false positives. For annular PCA and NMF, the num-
ber of principal components used to construct the reference PSF
was set to 20 for both data sets. As for LLSG, we selected a rank
value of 5 for the estimation of the matrix S for the β NACO
data set and 7 for the SPHERE-IRDIS data set. As regards the
RSM, the mean and variance of the residuals distribution are
again estimated annulus-wise. As the fake companions injected
into our simulations have relatively low flux values, we tested δ
in the interval [1, 5] and kept the one leading to the highest total
log-likelihood to generate the final RSM map.

As an illustration of the detection map calculation for the
generation of ROC curves, Fig. 6 shows the probability and S/N

maps obtained by injecting fake companions with high contrast
values at three different separations from the star 51 Eridani (2, 4
and 8 λ/D). As can be seen, apart from the signal injected at
8 λ/D which appears relatively clearly in the S/N for all three
post-processing methods, the RSM map is the only map pro-
viding a clear detection for all three fake companions. A set of
detection maps is shown in Fig. A.2 for the NACO β Pictoris data
set, leading to similar conclusions.

4.3.1. Influence of the probability distribution

We now turn to the estimation of the ROC curves which will pro-
vide more comprehensive results. We start by considering two
different variants of RSM to investigate the choice of the prob-
ability distribution for the likelihood function definition. The
two variants presented in Fig. 7 use the Gaussian and Laplacian
distribution, respectively, to construct the likelihood function
appearing in ηr,ia . The ROC curves are estimated for different
separations; as we have seen in the previous section, the proba-
bility distribution describing the residuals evolves with angular
separation. As can be seen from Fig. 7, the results of the two
variants are very close in the case of the β Pictoris data set, while
the distance between them becomes significant for the 51 Eridani
data set. In both cases, the RSM model using the Laplacian dis-
tribution performs better for small separation while the Gaussian
distribution leads to better results for larger separations.

These results confirm the findings made with Fig. 3 and
the importance of tails fit when selecting the optimal probabil-
ity distribution. It demonstrates the interest of considering the
residuals distribution evolution along the radial axis to optimally
parametrise our model. We therefore propose to start the RSM
detection map estimation with an analysis of the noise profile
to select the right probability distribution for every separation.
This additional step has been included in the RSM detection map
python package that we developed based on the model presented
in this paper2. The function allows the user (i) to select one of the
two distributions, (ii) to automatically select the best distribution
based on a best-fit approach, or (iii) to create a hybrid distri-
bution consisting in a weighted sum of both distributions. This
last possibility can be useful when facing asymmetrical proba-
bility distributions as the parameters of both distributions may
be estimated separately based on a best-fit approach.

4.3.2. Comparison with S/N-based detection

We now address the question of the performance of our algo-
rithm compared to the three post-processing methods using S/N
maps. For the two data sets, Fig. 8 reports the ROC curves of
all four methods for the same separations as before. Consider-
ing the results presented in Fig. 7, we selected for each data
set and each separation the distribution that provided the highest
area under the ROC curve. The results demonstrate the interest
of the new approach considering that the RSM performs bet-
ter in every case. This may be explained by the ability of our
model to be fed with multiple cubes of residuals, but also by
its ability to focus only on relevant data thanks to the regime-
switching feature. This allows our model to take advantage of
the strength of the different post-processing methods used to pro-
duce the cubes of residuals. As speckles are not treated equally
by these post-processing techniques, it is easier to remove them
by taking into account several cubes of residuals. This ability to

2 The RSM detection map python package is available on GitHub:
https://github.com/chdahlqvist/RSMmap
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(a) RSM Probability map (b) Annular PCA S/N map

(c) LLSG S/N map (d) NMF S/N map

Fig. 6. Detection map obtained after injecting three fake companions in the SPHERE-IRDIS 51 Eridani reference cube used for the ROC estimation,
at a distance of 2, 4, and 8 λ/D with a contrast of 1.0 ×10−4, 1.2 ×10−5 and 3.7 ×10−6, respectively. The colour scale indicates the probability for
the RSM map and the S/N for the three S/N maps. The maps are centred on the star 51 Eridani while the fake companions are identified by the
white circles.

remove speckles is further improved by the memory of the RSM.
Indeed, the dependence of ξs,ia on the transition matrix pq,s and
on the probabilities at step ia − 1 (see Eq. (3)) partly mitigates
the effect of speckles on the detection map. Outliers caused by
quasi-static speckles do not lead to a clear regime switch, while
when facing a planetary signal the detection probability builds
up along the time axis as we see in Fig. 5. The dependence on
the past observation reduces the noise in the final detection map
significantly.

Furthermore, the possibility of selecting the right probability
distribution to describe the residuals allows us to more precisely
describe the behaviour of these residual speckles, which is not
possible with the S/N approach. The more significant improve-
ments for the 51 Eridani data set may be explained by the lower
level of noise inside this ADI sequence, which suggests that
our model should perform better with the latest generation of
instruments.

5. Conclusion

Here, we explore the possibility of improving exoplanet detec-
tion using an RSM derived from the field of econometrics,
with one regime representing the planetary signal in addition

to the speckle noise and the other only the speckle noise. This
novel approach allows the creation of probability maps based
on cubes of residuals obtained with different ADI-based post-
processing techniques. The RSM algorithm can be associated
with any ADI-based post-processing techniques as it can be fed
with different cubes of residuals separately or jointly. The short
memory process at the heart of our RSM detection map allows
quasi-static speckles to be treated more effectively when using
several cubes of residuals provided by different post-processing
algorithms and thereby allows the user to reach better detection
performance.

The RSM is easy to use as most of the parameters are
estimated empirically. The only parameter that may need to be
tuned is δ, which defines the strength of the signal coming from
the planetary candidates. The model automatically selects this
parameter via a maximum log-likelihood approach. However,
an upper value has to be defined for the interval. The estimation
of the RSM map takes between three and ten times longer than
the standard Mawet et al. (2014) S/N map computation time,
depending on the size of the ADI sequence and on the upper
value for the parameter δ.

We demonstrate the interest of our approach by injecting fake
companions into two data sets provided by the VLT/NACO and
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(a) β Pictoris at 2 λ/D
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(b) 51 Eridani at 2 λ/D
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(c) β Pictoris at 4 λ/D

0 1 2 3 4
Full-frame mean FPs

0.0

0.2

0.4

0.6

0.8

1.0
TP

R

0.910

0.880

0.850

0.825

0.785

0.715

0.665

0.455

0.195

0.045

0.015

0.005

0.905

0.825

0.735

0.675

0.605

0.510

0.405

0.125

0.065

0.010

0.005

Gaussian RSM
Laplacian RSM

(d) 51 Eridani at 4 λ/D
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(e) β Pictoris at 8 λ/D
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Fig. 7. Receiver operating characteristic curves for the β Pictoris and 51 Eridani data sets, with the RSM using a Gaussian (blue) and Laplacian
(red) distribution, respectively, to construct the likelihood function.
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(a) β Pictoris at 2 λ/D
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(b) 51 Eridani at 2 λ/D
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(c) β Pictoris at 4 λ/D
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(d) 51 Eridani at 4 λ/D
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(e) β Pictoris at 8 λ/D
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Fig. 8. ROC curves for the β Pictoris and 51 Eridani data sets. The RSM variant (in blue) providing the highest area under the ROC curve in Fig.7
has been selected. The red, yellow, and green ROC curves are computed using the S/N map generated with respectively the annular PCA, the NMF
and the LLSG.
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VLT/SPHERE instruments. We compared the proposed RSM
map with standard S/N maps obtained with three state-of-the-
art methods: annular PCA, NMF, and LLSG. The ROC curves
clearly demonstrate the interest of our model as it outperforms
all the other methods for the three angular separations consid-
ered, and for both data sets. The results also confirm that the
probability distribution of the residuals evolves with radial dis-
tance and that it should be taken into account in our model when
defining the likelihood function used to estimate the probability
of being in one of the two regimes. Indeed, the Laplacian dis-
tribution clearly performs better for close separations while the
Gaussian one provides better results for larger angular distances.
The possibility of optimally selecting the probability distribution
based on the residual noise profile has been included in the RSM
detection map python package that we have developed.
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Appendix A: NACO β Pictoris

(a) RSM Probability map (b) Annular PCA S/N map

(c) LLSG S/N map (d) NMF S/N map

Fig. A.1. Probability map obtained for the NACO β Pictoris data set, with the RSM using a Gaussian distribution along the S/N map generated with
the cube of residuals obtained with annular PCA, LLSG, and NMF. The annular PCA and the NMF use 20 components and the LLSG has a rank
of 5. The colour scale indicates the probability for the RSM map and the S/N for the three S/N maps. The maps are centred on the star β Pictoris
while β Pictoris b is identified by the white circle in the lower left quadrant.
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(a) RSM Probability map (b) Annular PCA S/N map

(c) LLSG S/N map (d) NMF S/N map

Fig. A.2. Detection map obtained after injecting three fake companions in the NACO β Pictoris reference cube used for the ROC estimation at a
distance of 2, 4, and 8 λ/D with a contrast of 3.3 ×10−4, 0.4 ×10−4 and 1.7 ×10−5, respectively. The colour scale indicates the probability for the
RSM map and the S/N for the three S/N maps. The maps are centred on the star β Pictoris while the fake companions are identified by the white
circles.
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