
A&A 644, A108 (2020)
https://doi.org/10.1051/0004-6361/202038942
c© ESO 2020

Astronomy
&Astrophysics

The impact of mass map truncation on strong lensing simulations
Lyne Van de Vyvere1, Dominique Sluse1, Sampath Mukherjee1, Dandan Xu2, and Simon Birrer3

1 STAR Institute, Quartier Agora, Allée du six Août 19c, 4000 Liège, Belgium
e-mail: lyne.vandevyvere@uliege.be

2 Department of Astronomy, Tsinghua University, Beijing 100084, PR China
3 Kavli Institute for Particle Astrophysics and Cosmology and Department of Physics, Stanford University, Stanford, CA 94305,

USA

Received 16 July 2020 / Accepted 11 October 2020

ABSTRACT

Strong gravitational lensing is a powerful tool to measure cosmological parameters and to study galaxy evolution mechanisms. How-
ever, quantitative strong lensing studies often require mock observations. To capture the full complexity of galaxies, the lensing galaxy
is often drawn from high resolution, dark matter only or hydro-dynamical simulations. These have their own limitations, but the way
we use them to emulate mock lensed systems may also introduce significant artefacts. In this work we identify and explore the spe-
cific impact of mass truncation on simulations of strong lenses by applying different truncation schemes to a fiducial density profile
with conformal isodensity contours. Our main finding is that improper mass truncation can introduce undesired artificial shear. The
amplitude of the spurious shear depends on the shape and size of the truncation area as well as on the slope and ellipticity of the lens
density profile. Due to this effect, the value of H0 or the shear amplitude inferred by modelling those systems may be biased by several
percents. However, we show that the effect becomes negligible provided that the lens projected map extends over at least 50 times the
Einstein radius.
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1. Introduction

The diversity and increasing precision of cosmological probes
used by the astrophysical community to measure the Hubble
constant H0 provides a unique opportunity to test our cosmo-
logical paradigm. In past years, a growing tension developed
between the H0 inference from methods based on the cosmic
microwave background and baryonic oscillations and most of
the other measurements (Planck Collaboration VI 2020; Abbott
et al. 2018; Philcox et al. 2020; Riess et al. 2019; Wong et al.
2019). While the multiplicity of probes suggests that system-
atic errors are not a plausible explanation for the tension, each
technique should continue to be scrutinised for potential sys-
tematic errors independently of its inferred value of H0. The
time-delay cosmology technique, which uses multiply-imaged
strongly lensed quasars to measure H0, offers a poweful means
of obtaining the H0 measurement independent of the local dis-
tance ladder (Wong et al. 2019; Birrer et al. 2020). The accu-
racy of this technique relies on our understanding of galaxies
and on assumption(s) on their total mass density profiles (e.g.
Schneider & Sluse 2013; Birrer et al. 2016; Millon et al. 2020).
An important way to validate the technique consists in using
simulated lensed systems with various levels of complexity. The
Time Delay Lens Modelling Challenge has recently been used
to test the accuracy of the H0 measurement using mock images
of strongly lensed quasars with Hubble Space Telescope (HST)
image quality (Ding et al. 2018, 2020). Mock gravitationally
lensed systems based on “numerical” galaxies have been used
for various other applications, including the validation of analy-
sis frameworks, the training of lens-finding algorithms, and stud-
ies of galaxy and dark matter properties (e.g. Xu et al. 2015,
2016; Despali et al. 2018; Mukherjee et al. 2018, 2019; Metcalf
et al. 2019; Denzel et al. 2020; Enzi et al. 2020).

The most commonly used technique to create a mock lens
system from simulated galaxies is to extract a mass map from a
particle-based simulation and use it to calculate lensing quanti-
ties (i.e. lensing potential and its first and second derivatives)
needed to emulate the gravitationally lensed images. For this
purpose, galaxies from high resolution hydrodynamical simula-
tions, including, for example, EAGLE (Evolution and Assem-
bly of GaLaxies and their Environments, Schaye et al. 2015;
Crain et al. 2015) or Illustris (Vogelsberger et al. 2014b,a),
have been widely used. Different types of software, such as
lenstronomy (Birrer & Amara 2018) and GLAMER (Gravi-
tational Lensing Simulations with Adaptive Mesh Refinement,
Metcalf & Petkova 2014), can handle the inference of lensing
quantities from mass maps using fast Fourier transform convo-
lution. Fast Fourier is a commonly used technique to speed up
the calculation of lensing quantities, which imply computation-
ally expansive numerical integration but it remains a demanding
procedure (Metcalf & Petkova 2014; Plazas 2020). One could
wonder what mass map resolution should be used and what size
of map is relevant to be sufficiently precise in the mock creation
while minimising the computational time. One generally con-
siders that a strongly lensed system is determined by the pro-
jected mass inner to the lensed images. This would suggest that
a region extending over a few Einstein radii (θE) is sufficient for
the simulations. However, this consists in effectively ignoring
any source of shear, and/or perturbations caused by substructures
and/or anisotropy in the mass distributions. Moreover, depend-
ing on the symmetry of the problem, cutting the mass distribu-
tion at a given radius not only automatically removes the mass
beyond that radius, but it may also introduce numerical artefacts
that could wrongly be attributed to properties of the examined
lens mass distribution. In this paper we focus on this latter point
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and quantify the impact of the shape (and size) of the integration
domain on the lensing quantities inference.

We used a smooth analytical cored power-law model, includ-
ing the isothermal case, with conformal isodensity contours, that
is, isocontours all having their axis aligned with each other. We
discretised this analytical model on a grid to emulate mass maps
from numerical simulations. Such a cored density profile was
chosen to mimic galaxy mass profiles from numerical simula-
tions (e.g. Mukherjee et al. 2019; Du et al. 2020). We then trun-
cated those maps and, applying masks spanning a broad range
of shapes and extent, used a standard pipeline to create mock
lens systems and subsequently modelled them. We find that an
“artificial” shear is created during the mock contruction if the
truncation does not follow isodensity contours of the input con-
formal power-law lens distribution.

In Sect. 2, we explain how a strongly lensed system can be
built from a convergence map (i.e. surface mass density nor-
malised by critical density). In Sect. 3, we explain our methodol-
ogy and synthesise the results in Sect. 4. We discuss our results
and the potential existence of artificial shear in other works in
Sect. 5. We finally summarise and conclude in Sect. 6.

Calculations presented in this work assume the following
cosmological parameters ΩΛ = 0.693, Ωm = 0.307, and H0 =
67.77 km s−1 Mpc−1. This cosmology is the same as the one used
in the EAGLE simulations (Schaye et al. 2015; McAlpine et al.
2016).

2. From convergence maps to lensed images

Constructing a mock lens system with time-delays requires one
to create a mapping between the source and lens plane. In the
case of a single-plane lensing, this is performed through the lens
equation (see e.g. Refsdal 1964a,b):

β = θ − α, (1)

where β is the unlensed position, θ is the observed lensed posi-
tion, and α is the deflection angle. Moreover, the excess arrival
time needed to reach the observer (compared to the unperturbed
path) for a light source at an unlensed position β is

t(θ,β) =
D∆t

c

(
(θ − β)2

2
− ψ(θ)

)
, (2)

where ψ(θ) is the lensing potential at position θ. The time-delay
distance D∆t is defined as

D∆t ≡ (1 + zl)
DlDs

Dls
, (3)

where zl is the lens redshift, Dl is the angular distance between
the observer and the lens, Ds is the angular distance between the
observer and the source, and Dls is the one between the lens and
the source. The lensing potential is defined such that its gradi-
ent is equal to the deflection, ∇ψ = α, and half its Laplacian
is equal to the convergence (i.e. lens surface mass density nor-
malised by the critical density), ∇2ψ = 2κ. The source magnifi-
cation is given by the determinant of the magnification 2D tensor
M with

M−1 = 1 − ∇∇ψ. (4)

We see that to generate an artificial lens system, we need to
know the lensing potential ψ, its first derivatives (the deflection),
and its second derivatives. However, the gravitational potential is
generally not directly accessible from the numerical simulations,

but instead one has access to the surface mass density of the
lensing galaxy. Once the source and lens redshifts are chosen,
a convergence map can be calculated, normalising the surface
mass density by the critical surface density:

κ ≡
Σ

Σcr
with Σcr =

c2

4πG
Ds

DlDls
. (5)

Fortunately, retrieving the potential and deflections is possible
through (Schneider et al. 2006):

α(θ) =
1
π

∫
IR2

d2θ′ κ(θ′)
θ − θ′

|θ − θ′|2
, (6)

ψ(θ) =
1
π

∫
IR2

d2θ′ κ(θ′) ln|θ − θ′|. (7)

Those integrations are generally performed by means of con-
volution using a fast Fourier transform (FFT): They both are
a convolution of the κ map with a kernel and κ ⊗ kernel =
FT−1(FT(κ) ∗ FT(kernel)).

The second derivatives (∇∇ψ) cannot be obtained the same
way as the potential and the deflection. This Hessian matrix is
thus constructed through a discrete derivation of the deflection α.

3. Practical specifications

To quantify the impact of the truncation on the lensing observ-
ables, we used a known analytical density profile, and we discre-
tised and truncated it at different radii and for different shapes
of the truncation region. This has allowed us to compare α and
ψ, which were derived numerically (Sect. 2), to their expected
values derived analytically. Based on the discretised κ map and
inferred lensing quantities, a mock lensed system can also be
generated and modelled. This modelling step allowed us to quan-
tify the impact of introduced artefacts on model parameters (e.g.
external shear).

We used an analytical non-singular isothermal ellipsoid
(NIE, Keeton & Kochanek 1998) mass distribution and discre-
tised its convergence on a grid. The NIE with its major axis ori-
ented along the x-axis has the following analytical expressions
for κ, ψ, and α :

κ(x, y) =
b
2

(
q2(s2 + x2) + y2

)−1/2
(8)

ψ(x, y) = xαx + y αy − bs
1
2

ln
(
(φ + s)2 + (1 − q2)x2

)
(9)

αx(x, y) =
∂ψ(x, y)
∂x

=
b√

1 − q2
arctan

 √
1 − q2x
φ + s

 (10)

αy(x, y) =
∂ψ(x, y)
∂y

=
b√

1 − q2
arctanh

 √
1 − q2y

φ + q2s

 , (11)

where b is the scale radius of the convergence (it is equal to the
Einstein radius if s = 0), q is the axis ratio, s is the core radius,
and φ2 = q2(x2 + s2) + y2. To ease the discussion with literatur-
eresults, we decided to mimic a galaxy with a morphology and
redshift similar to a galaxy extracted from an EAGLE hydro-
simulation (Schaye et al. 2015; McAlpine et al. 2016). More
specifically, we chose the fiducial parameters b = 2′′, s = 0.2′′,
q = 0.7522, and PA = −22.5◦. In addition, we set the lens red-
shift to zl = 0.271.

We used different grid sizes ranging from 16.1′′ × 16.1′′ to
88.5′′ × 88.5′′. To emulate the truncation, we multiplied the
κ map with a numerical mask. We considered three different
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Fig. 1. Sketch of the method followed to unveil the artificial shear arising due to truncation of the κ map: mock lens system (left) created with
a pure NIE κ map truncated with a circular mask of diameter 40′′ – i.e. corresponding to a truncation radius of 10× θE – and modelled (middle)
using an NIE profile (upper) and NIE+shear (bottom) with associated residuals expressed in the percentage of the input flux (right).

shapes: squared (i.e. taking the κ map as it is); circular (i.e. mul-
tiplying with a circular mask whose diameter has the size of the
κ map); and elliptical (i.e. multiplying with an elliptical mask
whose major-axis has the size of the κ map). We used a grid
with a pixel size of 0.025′′. This resolution is half the typi-
cal HST sampling for drizzled images, and it corresponds to
0.1 kpc pixel−1 in the lens plane. This resolution is high enough
so as to not impact our tests: Increasing the resolution by a factor
of two yields an offset on the image positions by less than 1 milli-
arcsecond, and on relative time delays by less than 1 milli-day.

With this set-up, we implemented the numerical integra-
tion1 discussed in Sect. 2. This allowed us to create, within
lenstronomy, a model internally labeled “INTERPOL”2.

In order to create mock lensed images, we needed to chose a
source luminosity profile. We decided to emulate a system sim-
ilar to those used for time-delay cosmography, namely a lensed
quasar. More specifically, we considered a source at redshift
z = 2.0 constituted of a point source and a circular Sersic host,
and we simulated a cross configuration image without lens light.
To avoid introducing artefacts with a complex point spread func-
tion (PSF), we chose to convolve the image with a Gaussian
PSF with FWHM = 0.15′′. The image was constructed on a
161× 161 pixels map with a pixel size equal to 0.05′′.

This system (see left panel of Fig. 1) may then be modelled
in a standard way (e.g. Millon et al. 2020). To avoid introducing
biases due to degeneracies between source and lens parameters
(e.g. Unruh et al. 2017), we fixed the image positions and the
scale radius of the Sersic source. The only varying parameters

1 Within lenstronomy, the convolution between the κ map and
the kernel having twice the κ map size is performed using
scipy.signal.fftconvolve, a standard FFT convolution algorithm
with zero-padding to reach sizes that are a power of 2.
2 The “INTERPOL” model works the following way: It takes the maps
(potential and its first and second derivatives) and interpolates between
the points if needed using a bivariate spline approximation of order 3
over a rectangular mesh as implemented in scipy.

during the modelling step are the lensing galaxy parameters, the
source centre, and the time delay distance.

In addition, during the modelling, we also introduced an ana-
lytical shear model, defined as γ ≡ γ1 + iγ2. The associated lens-
ing quantities are:

ψ(x, y) =
1
2

(
γ1 x2 + 2 γ2 xy − γ1 y

2
)

(12)

αx(x, y) = γ1 x + γ2 y (13)
αy(x, y) = γ2 x − γ1 y (14)

M−1 =

(
1 − γ1 γ2
γ2 1 + γ1

)
(15)

κ(x, y) = 0. (16)

4. Results

Figure 1 shows our fiducial mock system (see Sect. 3) created
with a κ map of 40′′ and a circular mask. One can see that mod-
elling the mock system with our fiducial model leaves substan-
tial residuals (see upper panel of Fig. 1). In addition, the fitted
model parameters, such as the Einstein radius and the elliptic-
ity, are biased compared to the fiducial ones at a level of a few
percent. If a shear is fitted in addition to the NIE, we recover
the fiducial NIE parameters and a non-zero shear (amplitude of
0.007 in our example). In this case, residuals are compatible with
zero (see lower panel of Fig. 1).

Since this modelled shear does not have any physical mean-
ing (it is an artefact created in the mock process), we dub it “arti-
ficial shear”.

By modifying the characteristics of our mock lensed sys-
tems, we find that the amplitude of this artificial shear depends
on (i) the ellipticity of the lens; (ii) the slope of the density pro-
file; (iii) the size of the masking region; and (iv) the shape of the
mask. To characterise this external shear, we varied those param-
eters in a systematic way. More specifically, we (i) compared the
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Fig. 2. Artificial shear amplitude as a function of the mask size for a
given ellipticity module |e| = 0.14. The different markers are for dif-
ferent truncation shapes (circular or squared) and for different slopes of
the input cored power-law model γ′. The solid lines represent the loga-
rithmic linear fits (log(y) = a+b log(x)). The best-fit values of the slope
b are written in the legend.

axis ratio of 0.7522 and 0.5590 (i.e. doubling the complex ellip-
ticity module defined as |e| =

1−q
1+q , where q is the minor/major

axis ratio); (ii) varied the slope of the density profile; (iii) var-
ied the size between 16.1′′ and 88.5′′; and (iv) compared the
shear dependence on the truncation size for circular and squared
masks. The results of these systematic tests are summarised
below:
i) The artificial shear has an amplitude proportional to the ellip-

ticity module of the input NIE: Doubling the ellipticity mod-
ule doubles the shear.

ii) The amplitude of the shear is found to decrease when the
density profile is steeper (see Fig. 2).

iii) The bigger the mask is, the lower the shear is. We empirically
find that log(γart) = a + b log(size), where γart is the artificial
shear amplitude and size is the mask size (see Fig. 2). A least
square regression through this relation for each power-law
slope γ′ shows that b ≈ (1 − γ′), in other words, the artificial
shear amplitude decreases as size−(γ′−1).

iv) The dependence of the shear with the size is the same for the
square and circular mask (see Fig. 2).
We also note the following properties of the artificial shear:

– The artificial shear combines vectorialy with a true external
shear: γtot = γart + γreal.

– Using the mock time-delays as an additional constraint in the
likelihood used in lens modelling does not modify the fitting
results.

In all the cases shown, not accounting for the shear in the mod-
elling yields a biased H0 value. For our fiducial NIE with a mask
size of 40′′, that is, truncation at 10× θE , the bias is typically 4–
5% depending on the mask shape. This bias can decrease to 2%
with a mask of 80′′. There is, however, no bias when the shear is
included in the model.

Finally, if an elliptical mask, which has an ellipticity module
and position angle identical to one of the underlying NIE, is used
instead of a squared or circular truncation, no artificial shear is
produced. This is true even for small mask sizes (e.g. size = 10′′).

5. Discussion

The previous section demonstrates that to first order, the lensed
images are sheared when the truncated κ region considered to

calculate α and ψ is small and does not follow an isodensity
contour. Specifically, a quadrupole (or higher order) contribu-
tion, which arises from mass beyond the last complete isodensity
contour but is enclosed within the truncation area, is artificially
added in the calculation of α and ψ, hence producing an artificial
shear.

We have shown numerically that this “artificial shear” is
effectively a shear term by calculating the lensing quantities
associated to a convergence map ∆κ = κmask − κiso, that is to say
resulting from the difference between a truncated NIE and the
same NIE truncated following an iso-density contour. Figure 3
shows that the deflection created with such a ∆κ map is identical
to the one produced by a shear. In the case of the squared mask,
the deflection created by ∆κ is only approximately the one of a
shear in the region where lensed images are located (see Fig. 4)
due to the contribution of higher order terms to the deflection.

We have seen that artificial shear could remain unnoticed in
simulated lensed systems as it is mostly identical to a real shear.
We identify and discuss hereafter two applications of gravita-
tional lensing simulations where artificial shear has a spurious
impact if it is not properly anticipated.

5.1. Mocks from simulation to test H0 inference

When mock lensed systems are created from simulations for the
H0 inference, the artificial shear modifies both the image position
and the lensing potential, potentially biasing the H0 inference if
it is not accounted for. If shear is not fitted when modelling a
mock system, we have seen that a bias as large as 2% exists for a
κ map truncated at 20 θE for our fiducial NIE. We have observed
that this bias is also accompanied by substantial residuals, but
a common interpretation of the latter would often be to blame
the simplicity of the mass model. Residuals might also remain
acceptable depending on the signal-to-noise ratio (S/N) added
to the mock system, on the contrast between the quasar and its
host galaxy as well as on the lens modelling strategy (i.e. point-
source only versus full image). We are aware of a few published
works where numerical simulations were used to investigate the
robustness of strong lens modelling on the H0 inference.

The time delay lens modelling challenge (TDLMC, Ding
et al. 2020) has invited the community to test their lens mod-
elling techniques on an ensemble of mock lensed systems with
time delays. In their so called Rung3, they used lensing galax-
ies from Illustris (Vogelsberger et al. 2014b) and zoom-in (Frigo
et al. 2019) hydrodynamical simulations. Half of the systems that
were produced for Rung3 were built using a custom code (Xu
et al. 2009) and cross-checked with the mesh-based FFT algo-
rithm of GLAMER software (Metcalf & Petkova 2014); each
time matter distribution up to R200 was considered (i.e. the radius
at which the average density is equal to 200 times the critical
density of the Universe). The other half were built using a ray-
tracing code developed by Hilbert (Hilbert et al. 2007, 2009)
based on convergence maps extending up to 2 virial radii. Since
the truncation occurs at typically more than 100 θE, one can
therefore be confident that a negligible amount of artificial shear
is included in those mocks, with a potential impact on H0 below
the percent level.

Tagore et al. (2018) used EAGLE (Schaye et al. 2015) hydro-
dynamical simulations to measure the H0 bias from strong lens-
ing and galaxy dynamics. They calculated the deflection and
potential using Eqs. (6) and (7) in their discretised form with a
convergence map going up to R200 (see Appendix A.2 of Tagore
et al. 2018). This work should thus not be affected by artificial
shear as described in this analysis.
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Fig. 3. Comparison of the excess deflection appearing for a circular truncation with the deflection associated to a shear. Left: ∆κ map for a circular
truncation and underlying NIE density profile. Middle: αx map (first component of the deflection α vector) created using FFT convolution for
Eq. (6) using ∆κ. Right: αx map for a pure shear (Eq. (13)).

Fig. 4. Comparison of the excess deflection appearing for a squared truncation with deflection associated to a shear. Left: ∆κ map for a squared
truncation and underlying NIE density profile. Middle: αx map created using FFT convolution for Eq. (6) using ∆κ. Right: difference between αx
map created using ∆κ (middle) and αx map from a shear; the hatched region is the 3′′-radius region where the lensed images are formed.

5.2. Mocks from simulation to infer galaxy properties

When mock lensed systems from simulation are used to infer
galaxy properties, a systematic shear linked to the galaxy prop-
erties may arise. We identify a few published works where a spu-
rious shear may be present.

The mock lensed systems created as part of the SEAGLE
project (Mukherjee et al. 2018) may be affected by artificial
shear. SEAGLE aims to study galaxy formation through gravita-
tional lensing using the EAGLE simulation (Schaye et al. 2015;
McAlpine et al. 2016; Mukherjee et al. 2018). As strong lens-
ing galaxies, Mukherjee et al. (2018) used EAGLE galaxies at
redshift z = 0.271, sampled over a 161× 161 pixels grid with a
spatial resolution on the sky of 0.05′′ per pixel, that is, a squared
truncation of 8′′ × 8′′. With such a set-up, we estimate the ampli-
tude of the artificial shear to be γart ∼ 0.23 × |e| in the case of
an isothermal mass distribution. In SEAGLE–I, Mukherjee et al.
(2018) find that their lens models require a shear that is propor-
tional to 0.226 × |e|. They attribute this relation to a degeneracy
between shear and ellipticity in lens mass modelling. We rather
suggest that most of the effect they unveil is in fact caused by
an artificial shear. We note that their modelled density profiles
should be correctly retrieved and not affected by this issue since
shear is included in their mass modelling.

In another work, Denzel et al. (2020) aimed to find ensem-
bles of free-form mass distributions reproducing SEAGLE-
simulated lens data and to compare each ensemble to the true
input mass profile. The SEAGLE mocks suffer from artificial
shear but a shear is allowed in Denzel et al. (2020) modelling.
Thus, the retrieved shear should be biased, while the other
parameters characterising the mass distribution should be cor-
rectly retrieved.

6. Conclusion

Mass profiles from hydro-dynamical simulations can be used to
emulate realistic gravitationally lensed systems. This generally
requires deriving the lensing potential, the deflection, and mag-
nification through the integration of the numerical mass distri-
bution. Depending on the size and resolution of the numerical
mass density profile, this process can become time-consuming,
so that one may consider truncating the mass distribution to a
region which encloses the lensed images, that is to say soon
beyond the Einstein radius. However this truncation, which has
been routinely carried out in a circular aperture, would generally
introduce numerical artefacts, such as artificial shear, that may
be wrongly attributed to intrinsic properties of the mass distribu-
tion.

To quantify the biases introduced by truncation, we used
elliptical cored power-law models with conformal isodensity
contours. When the truncation does not follow an isodensity con-
tour, for example when a circular aperture truncation is used, an
artificial shear can be created. Its amplitude depends on the trun-
cation size as well as on the slope and ellipticity of the lens mass
density profile. Mukherjee et al. (2018), having used a squared
truncation of 8′′ × 8′′, that is, θtrunc = 3−4 × θE, report on the
existence of a correlation between external shear and elliptic-
ity (see Eq. (8) therein) when modelling lensed systems from
EAGLE hydro-dynamical simulations. While most of the rela-
tion they found should be attributed to spurious shear, the rest of
their analysis remains unaffected.

We discourage truncating κ maps at low radius, although this
procedure may benefit from minimising the computation needs.
Our fiducial isothermal mass distribution, which is characterised
by an axis ratio q ∼ 0.75, can serve as a practical guideline
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regarding the artificial shear introduced by truncation. Based on
our fiducial mass distribution, we recommend a minimum trun-
cation radius of 50×θE which corresponds to a maximal spurious
shear of 0.001. While this seems to be conservative, we stress
that not accounting for a shear when modelling such a mock may
yield a systematic error on the time-delay as large as 1%. For a
galaxy profile that decreases more steeply or is rounder than this
fiducial case, truncation can be performed at smaller radii (see
Fig. 2). Conversely, truncation should take place farther away
for shallower density or galaxies with a smaller axis ratio.

This work has focused on numerical artefacts introduced by
the truncation. However, one should not ignore that truncation
also means that some of the mass at the outskirts of the lens-
ing galaxy halo gets removed in the lensing calculation. This
mass generally contributes to the lensing plane through a (con-
stant) convergence and (internal) shear (e.g. Keeton et al. 1997).
The impact of internal shear on, for example, the H0 inference is
beyond the scope of this work and will be presented in a forth-
coming paper.
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