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ABSTRACT
A statistical analysis of the observed perturbations in the density of stellar streams can in principle set stringent
constraints on the mass function of dark matter subhaloes, which in turn can be used to constrain the mass of
the dark matter particle. However, the likelihood of a stellar density with respect to the stream and subhaloes
parameters involves solving an intractable inverse problem which rests on the integration of all possible
forward realisations implicitly defined by the simulation model. In order to infer the subhalo abundance,
previous analyses have relied on Approximate Bayesian Computation (ABC) together with domain-motivated
but handcrafted summary statistics. Here, we introduce a likelihood-free Bayesian inference pipeline based
on Amortised Approximate Likelihood Ratios (AALR), which automatically learns a mapping between the
data and the simulator parameters and obviates the need to handcraft a possibly insufficient summary statistic.
We apply the method to the simplified case where stellar streams are only perturbed by dark matter subhaloes,
thus neglecting baryonic substructures, and describe several diagnostics that demonstrate the effectiveness of
the new method and the statistical quality of the learned estimator.
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1 INTRODUCTION

Cold Dark Matter (CDM) models (Peebles 1982; Blumenthal et al.
1984) predict a hierarchical collapse in which large haloes form
through the merging of smaller dark matter clumps (Moore et al.
1999; Avila-Reese et al. 1998; Zhao et al. 2003). This process is
driven by CDM’s scale-free halo mass function (Hofmann et al.
2001; Schneider et al. 2013) and depends on the initial conditions
of the matter power spectrum, which in turn anticipates the ex-
istence of dark matter haloes down to 10−4 M� (Bertschinger
2006). Warm Dark Matter (WDM) models (Bond & Szalay 1983;
Dodelson & Widrow 1994; Bode et al. 2001) on the other hand, in
which the dark matter particle is much lighter, influence structure
formation down to the scale of dwarf galaxies. While at large scales
the collapse in WDM is hierarchical as well, it becomes strongly
suppressed below the half-mode mass scale of the corresponding
dark matter model, where the non-negligible velocity dispersion of
dark matter particles prevents haloes to form and smooths the den-
sity field instead (Smith & Markovic 2011). Therefore, a powerful
method of probing the particle nature of dark matter is to mea-
sure the abundances of the lowest mass subhaloes in our galaxy.
While higher mass subhaloes will eventually initiate star formation
and manifest themselves as dwarf galaxies, detecting low mass sub-
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haloes (. 109 M�) remains particularly hard since they either have
very few faint stars or none at all.

Cold stellar streams that formed due to the tidal disruption
of globular clusters by the Milky Way potential are a powerful
probe for detecting and measuring the abundances of these low
mass subhaloes (Ibata et al. 2002; Johnston et al. 2002; Yoon et al.
2011; Carlberg 2012; Erkal & Belokurov 2015a,b).When a subhalo
flies past a stellar stream, it gravitationally perturbs the orbit of the
stream stars around the point of closest approach, which leaves a
visible imprint in the form of a region of low stellar density or a gap.
Such gaps can be individually analyzed to infer the properties of
a single subhalo perturber (Erkal & Belokurov 2015b). However,
a stream is expected to encounter many subhalo impacts over its
dynamical age, leading to complicated density structures that can
be hard to separate into individual gaps. Therefore, amore pragmatic
approach is to study the full stream density and statistically infer the
subhalo abundance within the galactocentric radius of the stream
(Bovy et al. 2017).

Stream-subhalo encounters are described by various quantities
such as the impact parameter, the flyby velocity of the subhalo, mass
and size of the subhalo, and the time and angle of the subhalo im-
pact. While simulating stream-subhalo encounters and their effects
on the stellar density through these parameters is relatively straight-
forward, the forward model does not easily lend itself to statistical
inference. The reason for this is that the likelihood of a stellar den-
sity with respect to these parameters involves solving an intractable
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inverse problem which rests on the integration of all possible for-
ward realisations implicitly defined by the simulation model. It re-
mains however possible to infer the underlying probabilities by rely-
ing on likelihood-free approximations (Cranmer et al. 2020). From
this perspective, Bovy et al. (2017) applied Approximate Bayesian
Computation (ABC) (Rubin 1984) to infer subhalo abundance using
the power spectrum and bispectrum of the stream density as a sum-
mary statistic. With the same ABC technique, Banik et al. (2018);
Banik et al. (2019b) applied the stream density power spectrum as
a summary statistic to infer the particle mass of thermal relic dark
matter.

It should be noted that ABC posteriors are only exact when-
ever the handcrafted summary statistic is sufficient, and the distance
function chosen to express the similarity between observed and
simulated data tends to 0, which in practice is never achievable.
We address this issue by introducing a likelihood-free Bayesian
inference pipeline based on amortised approximate likelihood ra-
tios (aalr) (Hermans et al. 2019), which automatically learns a
mapping between the data and the simulator parameters by solving
a tractable minimization problem. Afterwards, the learned estima-
tor is able to accurately approximate the posterior density function
of arbitrary stellar streams supported by the simulation model. By
automatically learning this relation from data, we obviate the need
to handcraft a possibly insufficient summary statistic, therefore en-
abling domain-scientists to pivot from solving the intractable in-
verse problem to the more natural forward modeling. In addition,
we describe several diagnostics to inspect the statistical quality of
the learned estimators with respect to the simulation model. We
demonstrate the effectiveness of this method by inferring the parti-
cle mass of dark matter within the stellar stream framework.

The paper is outlined as follows. In Section 2 we present the
steps to forward model the stream-subhalo encounter simulations,
and highlight our assumptions. Section 3 outlines the statistical
formalism and the proposed methodology. Several diagnostics are
discussed to probe the statistical quality. Section 4 evaluates the
proposed methodology. We conclude in Section 5.

To support the reproducibility of this work, we document and
provide all code onGitHub1. A tutorial demonstrating the technique
on a toy problem is provided as well. Steps to obtain the simulated
data and pretrained models are described there. Additionally, we
annotate every result and figure with , which links to the code or
Jupyter notebook used to generate it.

2 STREAM MODELING

We use the streampepperdf simulator2 that is based within the
galpy framework (Bovy 2015) to model stream-subhalo interac-
tions. Baryonic structures in our galaxy, namely, the bar, spiral arms
and the Giant Molecular clouds can induce stream density varia-
tions similar to those caused by subhalo impacts (Amorisco et al.
2016; Erkal et al. 2017; Pearson et al. 2017; Banik & Bovy 2019).
However, owing to its retrograde orbit and a perigalacticon of
∼ 14 kpc, the effect of the baryonic structures on the GD-1 stream
(Grillmair & Dionatos 2006) is expected to be subdominant com-
pared to that by a CDM like population of subhalos. Therefore, we

1 Available at https://git.io/JUvmj.
2 Available at https://github.com/jobovy/streamgap-pepper .

have used the GD-1 stream for our analyses and ignored the effects
from the baryonic structures. Since the location of GD-1’s progen-
itor is not known, we adopt the model presented in Webb & Bovy
(2019), which proposes that the progenitor cluster disrupted in its
entirety approximately 500 Myr ago and resulted in the gap at the
observed stream coordinate φ = −40◦. The dynamical age of the
GD-1 stream is also unknown and so following the arguments in
(Banik et al. 2019a), we consider all stream models in the range of
3-7 Gyr.

Our simulation model samples subhaloes in the sub-dwarf-
galaxy mass range [105 − 109]M� , since density perturbations due
to subhaloes lessmassive than 105 M� are below the level of noise in
the current data.WarmDarkMatter (WDM) ismodeled as a thermal
relic candidate which is completely described by its particle mass.
The implementation of the subhaloes follows the same procedure
as in (Bovy et al. 2017; Banik et al. 2018; Banik et al. 2019a).

We summarize the salient steps of the forward model for
completeness. The WDM mass function is modeled following
Lovell et al. (2014):(

dn
dM

)
WDM

=

(
1 + γ

Mhm
M

)−β (
dn
dM

)
CDM

, (1)

where γ = 2.7, β = 0.99 and
(
dn
dM

)
CDM

∝ M−1.9. Here, Mhm
is the half-mode mass that quantifies the scale below which the
mass function is strongly suppressed. Both the CDM and WDM
mass functions were obtained by fitting the subhaloes within a
Milky Way like analogue from the Aquarius cosmological simu-
lations (Springel et al. 2008). Being dark matter only simulations,
these mass functions do not account for the disruption of subhaloes
due to baryonic structures such as the disk, which has been shown
to be capable of destroying around ∼ 10 − 50% of the subhaloes
within the galactocentric radius of the GD-1 stream and in the mass
range 106.5 − 108.5 M� (D’Onghia et al. 2010; Sawala et al. 2017;
Garrison-Kimmel et al. 2017; Kelley et al. 2019; Webb & Bovy
2020). Moreover, the disrupted fraction of WDM subhaloes is ex-
pected to be even higher due to their lower concentrations. In this
paper we have ignored subhalo disruptions due to baryonic effects
and defer a full analysis to a future publication.

For each simulated stream density, we consider the region
−34◦ < φ < 10◦ in the observed coordinate frame, and normalize
the stream density by dividing it by the mean density. The latter step
is different from what was done in (Bovy et al. 2017; Banik et al.
2019a), where the authors normalize the stream density by dividing
it by a 3rd order polynomial fit. We tested that both normaliza-
tion procedures gave similar results. This was also demonstrated
in Bovy et al. (2017), where they found that changing the order of
the smoothing polynomial did not significantly affect the (ABC)
posterior. Finally, noise is added to every simulated stream density
by sampling a Gaussian realisation of the noise from the observed
GD-1 data from de Boer et al. (2020).

3 METHOD

3.1 Statistical formalism

This work considers two inference scenarios. In the first we jointly
infer the WDM mass mwdm and the stream age tage. The second
scenario solely considers mwdm while marginalizing the stream age.
Because our methodology generalizes to various domains, we ease
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Constraining WDM with simulation-based inference 3

the discussion by simplifying the nomenclature into the following
concepts:

Target parameters ϑ denote the main parameters of our sim-
ulation model. Depending on the inference scenario at hand,
ϑ , (mwdm, tage) or ϑ , (mwdm). Given the Bayesian perspective
of this analysis, we define the priors over the WDMmass mwdm and
stream age tage to be uniform(1, 50) keV and uniform(3, 7) bil-
lion years (Gyr) respectively. The upper bound of 50 keV is justified
since it corresponds to a half-mode mass of ∼ 4×104 M� , which is
below the sensitivity of stellar streams given current observational
uncertainties.

Observables x encapsulate the simulated stellar density of mock
streams and the observed GD-1 density. An observable is encoded
as a 66-dimensional vector along the linear angle φ between -34 and
10 degrees.

Nominal value ϑ∗ or groundtruth used to simulate the observable
x of a mock stream, i.e., x ∼ p(x |ϑ∗).

Nuisance parameters η such as the impact angle and subhalo mass
are not of direct interest, but their (random) effects must be ac-
counted for to infer ϑ (Neyman & Scott 1948). However, this leaves
us with the likelihood function p(x |ϑ, η). Given the Bayesian per-
spective of this work, we incorporate nuisance parameter uncer-
tainty (Berger et al. 1999) by integration. The priors associated with
the nuisance parameters are implicitly defined through the simula-
tion model.

3.2 Motivation

Our multi-faceted simulation model induces an extensive space of
possible execution paths, which, for example, correspond to ran-
domly sampled dark matter haloes that impact the stellar stream
throughout its evolution. The evaluation of the likelihood p(x |ϑ) of
an observable x therefore involves amongst others the integration
over a large variety of possible collision histories that are consistent
with ϑ. Given the high-dimensional nature of this integral, directly
evaluating data likelihoods is intractable.

A common Bayesian approach to address the intractability of
the likelihood is to reduce the dimensionality of an observable x by
means of a summary statistic s(x). The reduction in dimensionality
allows the posterior to be approximated numerically by collecting
samples ϑ ∼ p(ϑ) for which observables produced by the forward
model s(x) ∼ p(x |ϑ) are similar, in terms of some distance, to
the compressed representation of the observed data s(xo). This re-
jection sampling scheme is commonly referred to as Approximate
Bayesian Computation (Rubin 1984) (ABC) and is, as the name
indicates, approximate. Although the compression of x into a sum-
mary statistic makes the numerical approximation of the posterior
tractable, it may reduce the statistical power of an analysis because
the selected summary statistic often destroys relevant information.
In fact, ABC is only exact whenever the summary statistic is suf-
ficient and the distance function chosen to express the similarity
between between s(x) and s(xo) tends to 0. This is in practice never
achievable because for a given simulation budget (i) a small accep-
tance threshold severely impacts the rate at which proposed samples
are accepted, affecting the approximation of the posterior density
function, and (ii) the assumed sufficiency of the summary statis-
tic is virtually never thoroughly demonstrated in practice. Despite

these shortcomings, ABC has been fruitfully applied in cosmol-
ogy to constrain dark matter models within the context of stellar
streams (Banik et al. 2018; Bovy 2019; Banik et al. 2019b), and
more recently gravitational lensing (Gilman et al. 2020).

This work tackles the intractability of the likelihood from a dif-
ferent perspective. Instead of manually crafting a summary statistic
and a distance function with a specific acceptance threshold, we
propose to learn an amortised mapping from target parameters ϑ
and observables x to posterior densities by solving a tractablemini-
mization problem. The learnedmapping has the potential to increase
the statistical power of an analysis since the procedure, in contrast
to ABC, automatically attempts to learn an internal sufficient sum-
mary statistic of the data. The automated procedure therefore en-
ables domain-experts to solely focus on the forward modeling of
the phenomena of interest, because the method does not require any
consideration whether synthetic observables are compressible into
low-dimensional summary statistics.Although the proposedmethod
treats the simulation model as a black box, we would like to point
out that it is possible to improve the efficiency of the minimization
problem, provided that latent information can be extracted from
the simulation model (Brehmer et al. 2018; Brehmer et al. 2019;
Brehmer et al. 2020), albeit at some implementation cost.

3.3 Inference

The Bayesian paradigm finds model parameters compatible with
observation by computing the posterior

p(ϑ |x) = p(ϑ)p(x |ϑ)
p(x) . (2)

Evaluating the posterior density for a given target parameter ϑ and
an observable x in our setting is not possible because the likelihood
p(x |ϑ) is per definition intractable. To enable the tractable evaluation
of the posterior, we have to rely on likelihood-free surrogates for key
components in Bayes’ rule. Note that Equation 2 can be factorized
into the product of the tractable prior probability and the intractable
likelihood-to-evidence ratio r(x |ϑ):

p(ϑ |x) = p(ϑ) p(x |ϑ)
p(x) = p(ϑ) p(ϑ, x)

p(ϑ)p(x) = p(ϑ)r(x |ϑ). (3)

Hermans et al. (2019) show that an amortised estimator r̂(x |ϑ) of
the intractable likelihood-to-evidence ratio can be obtained by train-
ing a discriminator d(ϑ, x) with inputs ϑ and x, to distinguish be-
tween samples from the joint p(ϑ, x) with class label 1 and samples
from the product of marginals p(ϑ)p(x) with class label 0 using
a discriminative criterion such as the binary cross entropy. When-
ever the training criterion is minimized, the authors theoretically
demonstrate that the optimal discriminator d(ϑ, x)models the Bayes
optimal decision function

d(ϑ, x) = p(ϑ, x)
p(ϑ, x) + p(ϑ)p(x) . (4)

Subsequently, given a model parameter ϑ and an observable x, we
can use the discriminator as a density ratio estimator to compute
the likelihood-to-evidence ratio

r(x |ϑ) = 1 − d(ϑ, x)
d(ϑ, x) =

p(ϑ, x)
p(ϑ)p(x) =

p(x |ϑ)
p(x) . (5)

However, the computation of this formulation suffers from sig-
nificant numerical issues in the saturating regime where the out-
put of the discriminator tends to 0. Considering that log r(x |ϑ) =
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log r̂(x |ϑ)

log p(ϑ)

d̂(ϑ, x)

+

σ(log r̂(x |ϑ))

mwdm

1 10 20 30 40 50

log p̂(ϑ |x) exp(log p̂(ϑ |x))

ϑ

ϑ

x

Observed stellar density

Figure 1. Graphical representation of the inference procedure after training the ratio estimator (neural network). The ratio estimator accepts a target parameter
ϑ and an observable x as inputs, which are subsequently used to approximate the likelihood-to-evidence ratio r̂(x |ϑ). The discriminator output d̂(ϑ, x) —
the sigmoidal projection σ(·) of log r̂(x |ϑ) — is only used during training. Given that the log prior probability of ϑ is a tractable quantity, we can easily
approximate the log posterior probability log p̂(ϑ |x) by adding the approximated log likelihood-to-evidence ratio. Taking the exponent of the produced quantity
results in a direct estimate of the posterior density. This procedure can be repeated for arbitrary target parameters ϑ supported by the prior. It should be noted
that the neural network depicted here is an abstract representation. Our technique does not put any constraints on the architecture of the neural network. It is
therefore possible to use of-the-shelf architectures of arbitrary complexity available in the Machine Learning literature.

logit(d(ϑ, x)) for classifiers with a sigmoidal projection at the out-
put, it is possible to directly obtain log r(x |ϑ) from the classifier by
extracting the quantity before the sigmoidal operation. This strategy
ensures that the approximation of log r(ϑ |x) is numerically stable.
In addition, randomly shuffling ϑ in a batch ϑ, x ∼ p(ϑ, x) instead
of drawing a new samples from the product of marginals signifi-
cantly aids the convergence rate of the discriminator. After training,
estimates of the posterior probability density function can be ap-
proximated for arbitrary (without retraining) target parameters ϑ
and observables x by computing

log p(ϑ |x) ≈ log p(ϑ) + log r̂(x |ϑ), (6)

provided that ϑ and x are supported by the prior p(ϑ) and the
marginal model p(x) respectively, thereby enabling consistent and
fast likelihood-free posterior inference. Figure 1 provides a graph-
ical overview. We refer the reader to Hermans et al. (2019) or our
GitHub repository for implementation details.

The ratio estimator can likewise be adapted to compute a cred-
ible region (CR) at a desired level of uncertainty α by constructing
a region Θ in the model parameter space which satisfies∫
Θ

p(ϑ)r(x |ϑ) dϑ = 1 − α. (7)

Since many such regions Θ exist, we select the highest posterior
density region, which is the smallest CR.

Although our analysis focuses on the Bayesian paradigm,
it is possible use the ratio estimator in a frequentist set-
ting (Cranmer et al. 2015; Brehmer et al. 2019). The likelihood-
ratio λ(x |ϑ0, ϑ1) between two hypotheses ϑ0 and ϑ1 can easily be
computed with the ratio estimator as the denominators of r(x |ϑ0)
and r(x |ϑ1) cancel out, i.e.,

λ(x |ϑ0, ϑ1) =
p(x |ϑ0)
p(x |ϑ1)

=
r(x |ϑ0)
r(x |ϑ1)

. (8)

The same strategy applies to the likelihood-ratio (Cowan et al. 2011)
test statistic for a specific observable x

−2 log λ(ϑ) = −2 log
p(x |ϑ)
p(x |ϑ̂)

, (9)

where the maximum likelihood estimate ϑ̂ is

ϑ̂ = arg max
ϑ

r(x |ϑ). (10)

The test statistic can thus be expressed (Cranmer et al. 2015) as

−2 log λ(ϑ) = −2
[
log r(x |ϑ) − log r(x |ϑ̂)

]
. (11)

As a result of Wilks’ theorem (Wilks 1938), we can directly convert
the test statistic into a confidence level (CL) under the assumption
that the statistic is X2

k
-distributed with k degrees of freedom (in

function of ϑ’s dimensionality).

3.4 Diagnostics

Before making any scientific conclusion, it is crucial to verify the
result of the involved statistical computation. This is especially
challenging in the likelihood-free setting because evaluating the
likelihood is intractable. The following subsections describe several
diagnostics to assess the quality of the amortised ratio estimates. No
additional training or fine-tuning is applied as this would change the
statistical properties of the ratio estimator.

3.4.1 Proper probability density

A ratio estimator r̂(x |ϑ)which correctly models the true likelihood-
to-evidence ratio should satisfy∫
ϑ

p(ϑ)r̂(x |ϑ) dϑ ≈ 1 ∀x. (12)

The diagnostic should be applied to observables x of an evaluation
dataset and real observables xo. Passing the diagnostic on the eval-
uation dataset, while failing on xo indicates that xo is not supported
by the marginal model p(x), because ratio estimates in this regime
are undefined and can therefore take on arbitrary values.

3.4.2 Coverage

Coverage quantifies the reliability of a statistical method to recon-
struct the nominal value (Neyman 1937; Schall 2012; Strege et al.
2012; Prangle et al. 2013). The approximation of the ratio estimator
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Figure 2. Demonstration of the mode convergence diagnostic described in Section 3.4.3. The figures show, from left to right, the posteriors for 1, 10, 100 and
1000 independent and identically distributed mock GD-1 observables. Every figure adopts the same nominal value or groundtruth, which is highlighted by
the red star. As the amount of observables increases, the posteriors are becoming increasingly more tight around the nominal value. This indicates that the
individual posteriors do not, in expectation, introduce significant bias for independent and identically distributed observables.

can thus be assessed by determining whether the empirical cover-
age probability matches the nominal coverage probability, which
corresponds to the confidence level 1 − α. The empirical cover-
age probability is estimated using samples from a (large) presimu-
lated evaluation dataset. This evaluation dataset consists of samples
ϑ, x ∼ p(ϑ, x). For every pair (ϑ, x) in the evaluation dataset, we
compute the corresponding credible or confidence interval. The
fraction of samples for which the groundtruth was contained within
the interval corresponds to the empirical coverage probability. If
the empirical coverage probability ≥ 1 − α, then the ratio estimator
passes the diagnostic. It is of course desirable that the empirical
coverage probability of the ratio estimator converges to the confi-
dence level. A substantially larger empirical coverage probability
corresponds to intervals which are overly conservative. This im-
plies that the ratio estimates are wrong, but, that in expectation the
estimated posteriors are conservative, which is not an undesirable
property. It should be noted that coverage can only be computed ef-
ficiently because our ratio estimator amortizes the estimation of the
likelihood-to-evidence ratio. An equivalent study for ABC would
have a significant computational cost.

3.4.3 Convergence of the mode towards the nominal value

The diagnostic is based on the idea that the maximum a posteri-
ori (map) estimate converges towards the nominal value ϑ∗ for an
increasing number of independent and identically distributed ob-
servables x ∼ p(x |ϑ∗). If the approximation of r̂(x |ϑ) is correct,
the map should in the limit coincide with the nominal value ϑ∗.
Let X = {x1, . . . , xn} be a set of i.i.d. observables. To compute the
map, we need p(ϑ |X). As noted by Brehmer et al. (2019), Bayes’
rule can be rewritten as

p(ϑ |X) = p(ϑ)∏x∈X p(x |ϑ)∫
p(ϑ′)∏x∈X p(x |ϑ′) dϑ′

(13)

= p(ϑ)
[∫

p(ϑ′)
∏
x∈X

p(x |ϑ′)
p(x |ϑ) dϑ

′
]−1

(14)

≈ p(ϑ)
[∫

p(ϑ′)
∏
x∈X

r̂(x |ϑ′)
r̂(x |ϑ) dϑ

′
]−1

. (15)

The integral can be estimated through Monte Carlo sampling. By
checking whether the map concurs with the nominal value, we ef-
fectively probe the bias. Ideally, this diagnostic should be repeated

for various groundtruths to inspect the behaviour of the ratio esti-
mator over the complete model parameter space. In some settings
however, the posterior may be multi-modal. In such scenarios the
convergence of the mode(s) instead of the map should be assessed.
A trial of the diagnostic is shown in Figure 2.

3.4.4 Receiver operating characteristic

We note that r̂(x |ϑ) is only exact whenever

p(x) p(x |ϑ)
p(x) = p(x)r̂(x |ϑ) = p(x |ϑ), (16)

is satisfied for all ϑ and x. Although p(x) and p(x |ϑ) cannot be eval-
uated directly, it remains possible to sample from these densities.
Given samples from the reweighted marginal model p(x)r̂(x |ϑ),
and from a specific likelihood p(x |ϑ), the idea is that r̂(x |ϑ) can
only be equivalent to r(x |ϑ) whenever a classifier tasked to distin-
guish between p(x)r̂(x |ϑ) and p(x |ϑ), cannot extract any predictive
features. The discriminative performance of this classifier can be
assessed by means of a Receiver Operating Characteristic (ROC)
curve. A diagonal ROC, which has an Area Under Curve (AUC) of
0.5, corresponds to a classifier which is insensitive. In that case, the
ratio estimator passes the diagnostic. We emphasize that the ratio
estimator can incorrectly pass the diagnostic whenever the classifier
is not sufficiently expressive.

3.4.5 Alternative diagnostics

Our list of diagnostics is not exhaustive. Some diagnostics are spe-
cific to our ratio estimator and can only be computed efficiently
because ratio estimates are amortised. In fact, the development of
diagnostics for the simulation-based inference literature is an active
area of research. For more recent methodologies we refer the reader
to Talts et al. (2018) and Dalmasso et al. (2020).

3.5 Overview of the proposed recipe

(i) Simulate a train and test dataset by sampling from the joint p(ϑ, x).
This is done by drawing samples ϑ ∼ p(ϑ) and conditioning the
simulation model on ϑ to generate observables x ∼ p(x |ϑ). These
simulations can be parallelised arbitrarily because the samples are
drawn independently. The effective number of simulations depends
on the problem at hand. In practice additional simulations were
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added whenever the ratio estimators did not pass the coverage di-
agnostic, or, if we found over-fitting to be a significant issue during
training.

(ii) Train several discriminators d(ϑ, x) on the previously simulated
dataset. This has several uses. First, the ratio estimators can be
ensembled to reduce the variance of the approximation. Secondly,
as there is only a single true likelihood-to-evidence ratio r(x |ϑ), the
variability of ratio estimates within the ensemble can be used to
quickly assess the convergence. A significant deviation in the ratio
estimates is indicative of a ill-tuned optimization procedure.

(iii) Probe the trained ratio estimators for flaws with the diagnostics.
Afterwards, apply the diagnostic described in Section 3.4.1 to the
observable(s) xo.

(iv) Compute the posterior p̂(ϑ |xo) = p(ϑ)r̂(xo |ϑ) and the desired
credible or confidence intervals.

4 EXPERIMENTS AND RESULTS

We demonstrate the usage of our technique on various synthetic
realisations of GD-1. Diagnostics are applied to probe the statis-
tical quality of the approximated posteriors under the specified
simulation model. By comparing our technique against ABC, we
highlight the gain in statistical power our technique can bring to
the scientific community. We compute preliminary constraints on
mwdm based on observations of GD-1 by Gaia proper motions
(Gaia Collaboration & Brown 2018; Gaia Collaboration & Prusti
2016) and Pan-STARRS photometry. It should be noted these con-
straints only hold under the assumed simulation model. An analysis
of (simulation) model misspecification is outside the scope of this
work.

4.1 Setup

Simulations We follow the simulation formalism described in
Section 2 and the priors defined in Section 3.1. 10 million pairs
(ϑ, x) ∼ p(ϑ, x) are drawn from the simulation model for training,
and 100,000 for testing. The simulations in the training dataset are
reused in our ABC analyses.

Ratio estimator training All architectures are trained with iden-
tical hyperparameter settings. No exhaustive hyperparameter op-
timization or architecture-search was conducted. Options such as
weight-decay and batch-normalization (bn) (Ioffe & Szegedy 2015)
were evaluated to reduce over-fitting. All ratio estimators use
selu (Klambauer et al. 2017) activations and were trained using
the adamw (Loshchilov & Hutter 2017) optimizer for 50 epochs
with a batch-size of 4096. We found that larger batch-sizes, for our
setting, generalized better. Appendix A investigates the influence
of the batch-size on the approximations in detail. We empirically
found selu and elu activations to be preferable over relu-like acti-
vations, because the approximation of the posterior density function
was generally smoother. This work considers 3 main architectures;
(i) a simple feedforward mlp, and variants to resnet (He et al.
2016) such as (ii) resnet-18 and (iii) resnet-50. Both use 1 di-
mensional convolutions without dilations since the usage of dilated
convolutions did not yield any significant improvements in terms
of test loss. Because our methodology treats ϑ as an input fea-
ture, we cannot easily condition the convolutional layers of the
resnet-based architectures on ϑ. This would require conditional
convolutions (Yang et al. 2019) or hypernetworks (Ha et al. 2016)

to generate specialized kernels for a given ϑ. To retain the sim-
plicity of our architecture, we inject the dependency on ϑ in the
fully connected trunk of the convolutional ratio estimators. Other
architectural considerations were not explored. Appendix B lists the
hyperparameter settings.

Approximate Bayesian Computation Instead of using the stream
density power as summary statistics as in Bovy et al. (2017);
Banik et al. (2019a), we construct a summary statistics based on
the stream density itself. We divide the synthetic observable x (with
n = 66 bins) by the observable of interest xo to obtain the bin-wise
stellar density ratio d = x/xo. Our summary statistic and distance
function are jointly expressed as

s(x) = 1
n

n∑
i=1
(di − d̄)2, (17)

where d̄ is the mean stellar density ratio. Ideally, if both observables
match perfectly, then s(x) = 0. The acceptance threshold is tuned
such that for any given observable of interest xo, the number of
accepted posterior samples is 0.1% of the simulation budget, there-
fore yielding the smallest threshold with respect to the specified
acceptance rate. This corresponds to approximately 10,000 poste-
rior samples. Our goal is to highlight generic aspects of ABC with
respect to the proposed method in terms of tuning of the analyses,
and its statistical quality for the given simulation budget. We empha-
size that several scheduling and threshold strategies for ABC exist
in the literature, see e.g. (Lintusaari et al. 2017; Prangle 2017). We
opted here for a method that is based on the same number of simula-
tions used for training the neural network. The threshold was chosen
heuristically to obtain sufficiently smooth posteriors across the en-
tire parameter space, and was not tuned depending on the WDM
mass and stream age. This is different from the targeted convergence
check and simulation strategy in previous ABC-based streams anal-
yses (Bovy et al. 2017; Banik et al. 2018; Bovy 2019; Banik et al.
2019b). We cannot exclude that the ABC results shown here could
further improve by significantly increasing the number of simula-
tions beyond what was needed for the neural network training. This
is beyond the scope of the current work.

4.2 Statistical quality

We now assess the statistical properties of the trained ratio estima-
tors. For every architecture, we select the weights which achieved
the smallest test-loss.

Proper probability density The computational cost of the inte-
gration does not allow us to do an exhaustive analysis. Instead,
we apply the diagnostic to 1000 randomly sampled observables.
As before, we repeat the experiment 10 times. The following re-
sults were obtained: mlp (1.023 ± 0.11), mlp-bn (1.037 ± 0.09),
resnet-18 (1.00 ± 0.02), resnet-18-bn (0.973 ± 0.03), resnet-50
(0.993 ± 0.03), and resnet-50-bn (1.001 ± 0.04) . Although
the average integrated area under the approximated posterior den-
sity functions approaches 1 for all ratio estimator architectures, the
results suggest that the approximations of the resnet-based archi-
tectures are more robust. A more careful analysis of the integrated
areas, presented in Figure 3, confirms this. Interestingly, the in-
tegrated areas for resnet architectures with batch-normalization
have a larger spread compared to their counterparts without batch-
normalization. Our evaluations on GD-1 will therefore focus on
resnet-based architectures without batch-normalization.
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Empirical coverage probability
Architecture 68% CR 95% CR 99.7% CR 68% CL 95% CL 99.7% CL

r̂(x |ϑ) with ϑ , (mwdm)

mlp 0.685 ±0.004 0.954 ±0.002 0.997 ±0.001 0.750 ±0.004 0.968 ±0.002 0.999 ±0.000
mlp-bn 0.687 ±0.006 0.951 ±0.002 0.997 ±0.000 0.760 ±0.003 0.970 ±0.002 0.999 ±0.000
resnet-18 0.667 ±0.004 0.943 ±0.002 0.996 ±0.001 0.721 ±0.005 0.960 ±0.002 0.997 ±0.000
resnet-18-bn 0.672 ±0.004 0.945 ±0.001 0.996 ±0.001 0.736 ±0.003 0.961 ±0.002 0.998 ±0.000
resnet-50 0.671 ±0.005 0.947 ±0.003 0.996 ±0.001 0.726 ±0.005 0.963 ±0.000 0.998 ±0.001
resnet-50-bn 0.678 ±0.004 0.949 ±0.004 0.996 ±0.001 0.743 ±0.002 0.966 ±0.001 0.998 ±0.000

r̂(x |ϑ) with ϑ , (mwdm, tage)

mlp 0.685 ±0.005 0.953 ±0.002 0.998 ±0.000 0.752 ±0.003 0.968 ±0.001 0.999 ±0.000
mlp-bn 0.685 ±0.004 0.952 ±0.003 0.997 ±0.000 0.758 ±0.003 0.970 ±0.002 0.999 ±0.000
resnet-18 0.666 ±0.005 0.945 ±0.002 0.995 ±0.001 0.724 ±0.005 0.961 ±0.002 0.998 ±0.000
resnet-18-bn 0.671 ±0.003 0.945 ±0.003 0.996 ±0.001 0.736 ±0.004 0.961 ±0.002 0.998 ±0.000
resnet-50 0.674 ±0.006 0.944 ±0.002 0.996 ±0.001 0.740 ±0.004 0.970 ±0.002 0.999 ±0.000
resnet-50-bn 0.677 ±0.004 0.947 ±0.003 0.997 ±0.000 0.738 ±0.004 0.970 ±0.002 0.999 ±0.000

Table 1. Results of the overage diagnostic. Architectures with the bn suffix make use of Batch Normalization. For all ratio estimator architectures, we report
Bayesian credible regions and frequentist confidence intervals. Although credible regions do not necessarily have a frequentist interpretation, they are in fact
much closer to the nominal coverage probability compared to the confidence intervals. On the contrary, the confidence intervals have coverage, but are slightly
conservative. Our analyses will therefore focus on constraints based on confidence intervals.
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Figure 3. Result of the proper probability density diagnostic. As expected,
high-capacity models (resnet) have tighter approximations compared to the
mlp architectures. An interesting discrepancy between the usage of with and
without batch normalization is observed. (Left) With batch-normalization.
(Right) Without batch-normalization.

Coverage Table 1 summarizes the empirical coverage probability
of the ratio estimators. For every ratio estimator, we compute the
credible and confidence intervals as described in Section 3.3. For
both paradigms, we evaluate the interval construction on 10,000
observables, which is repeated 10 times. The empirical coverage
probability of a ratio estimator is therefore based on approximately
100,000 observables in total. We empirically find that mlp-based
architectures have coverage under both Bayesian credible and fre-
quentist confidence intervals. This is not the case for resnet-based
architectures. It is noteworthy that the empirical coverage probabil-
ity of the credible regions are much closer to the nominal coverage
probabilities compared to their frequentist counterparts. Additional
statistical power could therefore be extracted if the credible regions
could be tuned to sufficiently cover the groundtruth at a given nom-
inal coverage probability.

Receiver operating characteristic We now directly probe the
correctness of the approximated likelihood-to-evidence ratios.
Every ratio estimator is evaluated on 10 uniformly sampled
test-hypotheses. 10,000 observables are drawn from every test-
hypothesis. For every test-hypothesis, we repeat the computation
of the area under curve 10 times to account for the stochastic train-

ing of the classifier tasked to distinguish between samples from the
reweighted marginal model and samples from the test-hypothesis.
Figure 4 summarizes the results. In general, we find that all ratio
estimators are unable to perfectly approximate r(x |ϑ). This result
is not unexpected, because the coverage diagnostic indicates that
the confidence intervals are conservative, which implies that our
estimates of the true likelihood-to-evidence ratio must be wrong.
Incorrect, but conservative estimates of the posterior are not a sig-
nificant issue because we mainly seek to constrain mwdm.

We additionally find that the quality of the ratio estimates de-
grades for larger values of mwdm across all architectures. Several
strategies could be applied to address this. First, more expressive ar-
chitectures could be explored which potentially make more efficient
use of the available data. Second, by using additional observables
could be simulated to aid the approximation of the underlying den-
sities. In our specific case, a straightforward application of this
strategy would be to simulate additional observables for ϑ ' 20
keV. We would like to emphasize that increasing the size of the
training dataset by simulating additional observables at specific tar-
get parameters ϑ should not be done, because this implicitly changes
the prior and therefore the underlying marginal model. Instead, ad-
ditional observables should only be simulated by sampling from the
joint p(ϑ, x).

4.3 Evaluation

The performance of both methods is assessed on various randomly
sampled GD-1 mock simulations with distinct nominal target pa-
rameters. A compact overview of the computed posteriors is shown
in Figure 5. A full overview can be found in Appendix D. We find
the proposed methodology to be preferable over the ABC analysis
regarding the reconstruction of the nominal target parameters, and
with respect to our stronger, statistically tested, confidence intervals.

In conjunction with the foregoing statistical validation of the
ratio estimators, these results highlight the fact that ABC requires
a carefully crafted summary statistic; a problem that is absent, or
effectively automatised, in the proposed method. As mentioned ear-
lier, an ABC posterior is only exact whenever the summary statistic
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Figure 4. Summary of the receiver operating curve diagnostic. (Top) Area
Under Curve (AUC) for all test-hypotheses. A baseline measurement, indi-
cated by the black line, does not reweigh the marginal model. Although the
ratio estimators perform significantly better compared to the baseline, the
diagnostic indicates that all ratio estimators do not perfectly approximate
the likelihood-to-evidence ratio (since AUC , 0.5). This is not necessarily
an issue, because the coverage diagnostic demonstrates that the confidence
intervals are conservative. (Bottom) Average AUC of the test-hypotheses
under consideration. Larger values of mwdm are associated with a degraded
quality of the ratio estimates.

is sufficient and the acceptance threshold tends to 0. If these condi-
tions are not met, the posterior is possibly inaccurate or biased. The
necessity of a sufficient summary statistic underlines an important
issue with ABC in practice; the assumed sufficiency. Determining
the statistical validity of an ABC analysis is computationally de-
manding and often not feasible. Our method does not suffer from
this issue, because the estimation of the posterior density is amor-
tised.

4.4 Towards constraining mWDM with GD-1

We now apply our methodology to obtain a preliminary constraint
on mwdm, based on the observed stellar density along the GD-1
stream. The posteriors in this section are computed using the previ-
ously trained and statistically validated resnet-50 ratio estimator.
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Figure 5.Compact summary of comparisons against ABC. All comparisons
are listed in Appendix D. Every column relates to a single mock simulation.
The rows show, from top to bottom, the observable, the approximate posterior
ABC, and our method respectively. The red cross indicates the groundtruth.
ABC and our method are in agreement for most mock simulations.

We would like to remind the reader that the coverage diagnostic
indicates that the derived confidence intervals are slightly conser-
vative. Our results suggest a strong preference for CDMoverWDM.
The posteriors and credible intervals at various confidence levels
are shown in Figure 6. We find the integrated area under the ap-
proximated posterior to be (0.96 ± 0.011 ). After marginalizing
the stream age, the proposed methodology yields mwdm ≥ 17.5 keV
(95% CR) and mwdm ≥ 10.5 keV (99.7% CR). No significant con-
straints can be put on the age of GD-1, although an older stream is
preferred. A frequentist perspective based on likelihood ratio limits
finds mwdm ≥ 13.15 keV (95% CL) and mwdm ≥ 7.85 keV (99.7%
CL) after marginalizing the stream age. Assuming the posterior ap-
proximated by ABC is exact, we find mwdm ≥ 10.8 keV (95% CL)
and mwdm ≥ 3.5 keV (99.7% CL). We emphasize that our simu-
lation model does not account for baryonic effects, disturbances
caused by massive (& 109 M�) subhaloes, and effects induced by
variations in the Milky Way potential.

However, our results are promising. We expect that the pro-
posed method will enable an optimal discrimination between
dark matter and baryonic effects (provided the latter can be
convincingly modeled). It thus constitutes a powerful probe for
constraining the mass of thermal or sterile neutrino dark mat-
ter (Dodelson & Widrow 1994; Shi & Fuller 1999; Abazajian et al.
2001; Asaka & Shaposhnikov 2005; Boyarsky et al. 2009) (al-
though a discrimination between suchWDMmodels might be chal-
lenging).

5 SUMMARY AND DISCUSSION

This work proposes a general recipe for the usage of neural
simulation-based inference in the natural sciences. Although the
procedure generalizes to many domains, we apply our methodology
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Figure 6. Age-marginalized results based on the observed stellar density variations of GD-1. The results shown here illustrate the power of the proposed
methodology, but should be considered as preliminary, since e.g. baryonic effects are not yet fully included in the simulation model. (Left) Direct comparison
of the reference ABC and the proposed analysis. Both posteriors indicate a preference for CDM over WDM within the assumed simulation model. We find that
the proposed method is able to put stronger constraints on mwdm. (Right) Likelihood ratio test-statistic used to derive the lower limit confidence intervals.

in the stellar stream framework to determine the nature of the dark
matter particle. We summarize our findings as follows:

• Bayesian inference based on Amortised Approximate Likelihood
Ratios (aalr) is a powerful and convenient analysis framework
to study the statistical properties of density variations of stellar
streams. In Figure 5 we demonstrate that (at least in the absence
of the uncertainties from the baryonic effects), GD-1-like streams
could be used to simultaneously constrain the mass of thermal relic
dark matter and the age of the stream.
• aalr, in contrast to ABC, does not require handcrafted summary
statistics and tuned acceptance thresholds. Our out-of-the-box aalr
analysis are expected to be at least as good as any ABC implemen-
tation, and to often significantly outperform ABC, as evident in
Figure 6.
• The amortised posterior estimation in aalr allows for a variety
of diagnostics, including coverage and bias tests, which are compu-
tationally demanding and often infeasible for ABC. We explicitly
demonstrate that posteriors approximated by aalr are unbiased and
that the corresponding confidence intervals have coverage, as show
in in see Figure 2 and Table 1 respectively.

Finally, our preliminary results for GD-1 are promising as they
indicate that aalr is an excellent and versatile method to probe the
nature of dark matter with stellar streams. At face value, we can
probe WDM masses up to 17.5 keV (95% credible lower limit for
a GD-1-like stream). We emphasize however that our simulation
codes do not account for baryonic effects, which are expected to
significantly impact the results. In upcoming analyses we plan to
use the improved statistical power achieved through aalr to obtain
more statistically robust and tighter constraints on the particle mass
of dark matter. However, we do expect some loss in sensitivity
when including baryonic effects, because we expect the task of

discriminating between CDM and WDM impacted streams to be
harder for aalr.
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Figure A1. (Left) The expected log posterior probability of the nominal ϑ∗
for ϑ∗, x ∼ p(ϑ, x). Under the assumption that p(ϑ)r̂(x |ϑ) is a proper
probability density, this quantity captures the ability of the approximated
posteriors to reconstruct the nominal value. (Right) Average test-loss curve
for various batch-sizes. For a given learning rate, there is a clear inverse
relation between the test-loss and expected log posterior probability of the
nominal value. Larger batch-sizes should therefore be preferred.

APPENDIX A: INFLUENCE OF THE BATCH-SIZE
DURING TRAINING ON THE APPROXIMATED
POSTERIORS

To investigate the effect of the batch-size on the approximated
posteriors, we train several ratio estimators based on the mlp-bn
(batch normalization) architecture with batch-sizes 64, 256, 1024
and 4096. At 95% CR, the empirical coverage probabilities of these
ratio estimators are 0.961±0.004, 0.954±0.004, 0.952±0.008 and
0.952±0.006 respectively . Figure A1 shows the test-loss curves
and Eϑ,x∼p(ϑ,x) [log p̂(ϑ = ϑ |x)] for every batch-size setting.
Under the assumption that p(ϑ)r̂(x |ϑ) is a proper probability
density, Equation A captures the ability of r̂(x |ϑ) to reconstruct the
groundtruth. As indicated by Figure A1, there is a clear negative
correlation between the test-loss and the expected log posterior
probability of the nominal value. Although not entirely unexpected,
this suggests that larger batch-sizes have the potential to further
reduce the test-loss at a given learning rate. Practitioners should
therefore analyze the behaviour of their optimization procedure
with respect to the batch-size as well.

The observations made here are in line with the machine learn-
ing literature (Hoffer et al. 2017), although others (Keskar et al.
2017; Masters & Luschi 2018) have suggested that smaller batch-
sizes lead to models which generalize to a greater degree. This espe-
cially seems to be the case whenever the testing loss surface differs
from the training loss surface (Keskar et al. 2017). Unlike typical
deep learning applications with a fixed dataset, this issue can easily
be addressed within the likelihood-free setting, because the similar-
ity of these loss surfaces can be ensured by continuously drawing
new samples from the simulation model. For a given learning rate,
larger batch-sizes should therefore be preferred (Smith et al. 2017).
Alternatively, this could also be explained due to the fact that larger
batch-sizes provide more empirical evidence (less stochasticity) to
approximate the ratio.

APPENDIX B: HYPERPARAMETERS

The same hyperparameters are used across all architectures. We
did not explore specific settings for every individual architecture,
demonstrating the robustness of our technique. A learning rate
of 0.0001 with a batch-size of 4096 and a weight-decay factor
of 0.1 was used during training. The ratio estimators do not use

Empirical coverage probability
Architecture 68% CR 95% CR 99.7% CR

r̂(x |ϑ) with ϑ , (mwdm)

mlp 0.704 ±0.004 0.972 ±0.002 0.999 ±0.000
mlp-bn 0.706 ±0.003 0.970 ±0.001 0.999 ±0.000
resnet-18 0.687 ±0.004 0.955 ±0.002 0.998 ±0.000
resnet-18-bn 0.693 ±0.004 0.966 ±0.002 0.999 ±0.000
resnet-50 0.689 ±0.006 0.967 ±0.001 0.998 ±0.000
resnet-50-bn 0.698 ±0.004 0.969 ±0.001 0.999 ±0.000

r̂(x |ϑ) with ϑ , (mwdm, tage)

mlp 0.704 ±0.004 0.973 ±0.001 0.999 ±0.000
mlp-bn 0.709 ±0.004 0.970 ±0.001 0.999 ±0.000
resnet-18 0.688 ±0.005 0.965 ±0.002 0.998 ±0.000
resnet-18-bn 0.692 ±0.006 0.967 ±0.002 0.999 ±0.000
resnet-50 0.694 ±0.005 0.968 ±0.002 0.999 ±0.000
resnet-50-bn 0.695 ±0.006 0.968 ±0.001 0.999 ±0.000

Table C1. Summary of the coverage diagnostic with an artificially lowered
highest density level. In doing so, we make the credible intervals more
conservative such that the procedure has coverage at the specified confidence
levels.

dropout (Hinton et al. 2012). The remaining hyperparameters (e.g.,
of Batch Normalization) were set to the PyTorch defaults. .

APPENDIX C: NEYMAN CONSTRUCTION WITH RATIO
ESTIMATORS AND BAYESIAN CREDIBLE REGIONS

As indicated by Table 1, the method responsible for computing the
Bayesian credible regions closely approximates the nominal cov-
erage probability, even though credible regions do not necessarily
have a frequentist interpretation. For most ratio estimators however,
the method does not sufficiently cover the groundtruth. The credible
regions in question are derived from the intersection between the
posterior density and the highest density such that the area below
the intersection is approximately 1 − α. Credible regions can there-
fore be made more conservative by artificially lowering the highest
density level until they have coverage at some given confidence
level. We achieve this by introducing a bias term αb such that the
integrated area under the credible region Θ is 1 − α − αb . Using
the same ratio estimators as in Table 1, we repeat the experiment
with αb 0.002, 0.02 and 0.02 across all architectures for 68% CR,
95% CR and 97.7% CR respectively . The results are shown in
Table C1. As expected, the credible regions with the additional bias
term have coverage.

APPENDIX D: COMPARISONS AGAINST
APPROXIMATE BAYESIAN COMPUTATION

See next page.
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Figure D1. Direct comparison of ABC against the proposed method. The top row shows the observable. The second row the marginalized posteriors for both
methods. Finally, row 3 and 4 show the joint posterior for our method and ABC respectively. The nominal target parameter is indicated by the red line. It is
visually apparent that the proposed methodology produces stronger constraints of the groundtruth compared to ABC.
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Figure D2. Direct comparison of ABC against the proposed method. Refer to Figure D1 for the initial results.
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