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Abstract

Understanding broadcast videos is a challenging task in
computer vision, as it requires generic reasoning capabil-
ities to appreciate the content offered by the video editing.
In this work, we propose SoccerNet-v2, a novel large-scale
corpus of manual annotations for the SoccerNet [24] video
dataset, along with open challenges to encourage more re-
search in soccer understanding and broadcast production.
Specifically, we release around 300k annotations within
SoccerNet’s 500 untrimmed broadcast soccer videos. We
extend current tasks in the realm of soccer to include ac-
tion spotting, camera shot segmentation with boundary de-
tection, and we define a novel replay grounding task. For
each task, we provide and discuss benchmark results, re-
producible with our open-source adapted implementations
of the most relevant works in the field. SoccerNet-v2 is pre-
sented to the broader research community to help push com-
puter vision closer to automatic solutions for more general
video understanding and production purposes.

1. Introduction
Sports is a profitable entertainment sector, capping $91

billion of annual market revenue over the last decade [15].
$15.6 billion alone came from the Big Five European Soc-
cer Leagues (EPL, La Liga, Ligue 1, Bundesliga and Serie
A) [16, 17, 18], with broadcasting and commercial activities
being the main source of revenue for clubs [19]. TV broad-
casters seek to attract the attention and indulge the curiosity
of an audience, as they understand the game and edit the
broadcasts accordingly. In particular, they select the best
camera shots focusing on actions or players, allowing for
semantic game analysis, talent scouting and advertisement

(*) Equal contributions. More at https://soccer-net.org/.
Contacts: adrien.deliege@uliege.be, anthony.cioppa@uliege.be, sil-
vio.giancola@kaust.edu.sa, meisamjam@gmail.com, jvdu@create.aau.dk.

Figure 1. SoccerNet-v2 constitutes the most inclusive dataset for
soccer video understanding and production, with ~300k annota-
tions, 3 computer vision tasks and multiple benchmark results.

placement. With almost 10,000 games a year for the Big
Five alone, and an estimated audience of 500M+ people at
each World Cup [60], automating the video editing process
would have a broad impact on the other millions of games
played in lower leagues across the world. Yet, it requires an
understanding of the game and the broadcast production.

Recent computer vision works on soccer broadcasts fo-
cused on low-level video understanding [50], e.g. localizing
a field and its lines [13, 20, 32], detecting players [12, 82],
their motion [21, 47], their pose [6, 87], their team [34], the
ball [67, 72], or pass feasibility [3]. Understanding frame-
wise information is useful to enhance the visual experience
of sports viewers [59] and to gather player statistics [73],
but it falls short of higher-level game understanding needed
for automatic editing purposes (e.g. camera shot selection,
replay selection, and advertisement placement).

In this work, we propose a large-scale collection of man-
ual annotations for holistic soccer video understanding and



several benchmarks addressing automatic broadcast pro-
duction tasks. In particular, we extend the previous Soc-
cerNet [24] dataset with further tasks and annotations, and
propose open challenges with public leaderboards. Specif-
ically, we propose three tasks represented in Figure 1: (i)
Action Spotting, an extension from 3 to 17 action classes
of SoccerNet’s main task, (ii) Camera Shot Understanding,
a temporal segmentation task for camera shots and a cam-
era shot boundary detection task, and (iii) Replay Ground-
ing, a task of retrieving the replayed actions in the game.
These tasks tackle three major aspects of broadcast soccer
videos: action spotting addresses the understanding of the
content of the game, camera shot segmentation and bound-
ary detection deal with the video editing process, and re-
play grounding bridges those tasks by emphasizing salient
actions, allowing for prominent moments retrieval.

Contributions. We summarize our contributions as fol-
lows. (i) Dataset. We publicly release SoccerNet-v2, the
largest corpus of manual annotations for broadcast soc-
cer video understanding and production, comprising ~300k
annotations temporally anchored within SoccerNet’s 764
hours of video. (ii) Tasks. We define the novel task of re-
play grounding and further expand the tasks of action spot-
ting, camera shot segmentation and boundary detection, for
a holistic understanding of content, editing, and production
of broadcast soccer videos. (iii) Benchmarks. We release
reproducible benchmark results along with our code and
public leaderboards to drive further research in the field.

2. Related Work

Video understanding datasets. Many video datasets pro-
pose challenging tasks around human action understand-
ing [25, 68], with applications in movies [45, 48, 70],
sports [40, 53, 61], cooking [14, 44, 62], and large-scale
generic video classification [2, 41, 71]. While early ef-
forts focused on trimmed video classification, more re-
cent datasets provide fine-grained annotations of longer
videos at a temporal [30, 38, 70, 84, 88] or spatio-temporal
level [27, 49, 61, 80]. THUMOS14 [38] is the first bench-
mark for temporal activity localization, introducing 413
untrimmed videos, totalling 24 hours and 6k temporally
anchored activities split into 20 classes, then extended to
65 classes in MultiTHUMOS [84]. ActivityNet [30] gath-
ers the first large-scale dataset for activity understanding,
with 849 hours of untrimmed videos, temporally annotated
with 30k anchored activities split into 200 classes. A yearly
ActivityNet competition highlights a variety of tasks with
hundreds of submissions [22, 23]. Some datasets consider
videos at an atomic level, with fine-grained temporal anno-
tations from short snippets of longer videos [27, 51, 88].
Multi-Moments in Time [52] provides 2M action labels for
1M short clips of 3s, classified into 313 classes. Something-

Something [26] collects 100k videos annotated with 147
classes of daily human-object interactions. Breakfast [44]
and MPII-Cooking 2 [63] provide annotations for individual
steps of cooking activities. EPIC-KITCHENS [14] scales
up those approaches with 55 hours of cooking footage, an-
notated with around 40k action clips of 147 classes.
Soccer-related datasets. SoccerNet [24] is the first large-
scale soccer video dataset, with 500 games from major Eu-
ropean leagues and 6k annotations. It provides complete
games with a distribution faithful to official TV broadcasts,
but it only focuses on 3 action classes, making the task too
simplistic and of moderate interest. SoccerDB [37] adds 7
classes and player bounding boxes for half of SoccerNet’s
videos and 76 extra games. However, it misses a complete
set of possible actions and editing annotations to allow for
a full understanding of the production of TV broadcasts.
Yu et al. [85] released a dataset with 222 halves of soccer
matches with annotations of actions, shot transitions, and
player bounding boxes. They have few annotations and do
not carry out any experiment nor propose any task. Pap-
palardo et al. [58] released a large-scale dataset of soccer
events, localized in time and space. However, they focus on
player and team statistics rather than video understanding,
as they do not release any video. We address the limitations
of these datasets by annotating all the interesting actions of
the 500 SoccerNet games. Also, we provide valuable anno-
tations for video editing, and we connect camera shots with
actions to allow for salient moments retrieval.
Action spotting. Giancola et al. [24] define the task of ac-
tion spotting in SoccerNet as finding the anchors of soccer
events in a video and provide baselines based on temporal
pooling. Rongved et al. [64] focus on applying a 3D ResNet
directly to the video frames in a 5-second sliding window
fashion. Vanderplaetse et al. [77] combine visual and audio
features in a multimodal approach. Cioppa et al. [11] intro-
duce a context-aware loss function to model the temporal
context surrounding the actions. Similarly, Vats et al. [78]
use a multi-tower CNN that accounts for the uncertainty of
the action locations. Tomei et al. [74] fine-tune a feature
extractor and use a masking strategy to focus on the frames
after the actions. We build upon those works to provide
benchmark results on our extended action spotting task.
Camera shot segmentation and boundary detection.
Camera shot boundaries are typically detected by differ-
ences between frames, using pixels [5], histograms [56],
motion [86] or deep features [1]. In soccer, Hu et al. [33]
combine motion vectors and a filtration scheme to improve
color-based methods. Lefèvre et al. [46] consider adaptive
thresholds and features from a hue-saturation color space.
Jackman [35] uses popular 2D and 3D CNNs but detects
many false positives, as it appears difficult to efficiently pro-
cess the temporal domain. Yet, these works are fine-tuned
for only a few games. Regarding camera classification,



Tong et al. [75] first detect logos to select non-replay cam-
era shots, further classified as long, medium, close-up or
out-of-field views based on color and texture features. Con-
versely, Wang et al. [79] classify camera shots for the task
of replay detection. Sarkar et al. [66] classify each frame
in the classes of [75] based on field features and player di-
mensions. Kolekar et al. [43] use audio features to detect
exciting moments, further classified in camera shot classes
for highlight generation. In this paper, we offer a unified
and enlarged corpus of annotations that allows for a thor-
ough understanding of the video editing process.

Replay grounding. In soccer, multiple works focus on de-
tecting replays [66, 79, 81, 83, 89], using either logo transi-
tions or slow-motion detection, but grounding the replays
with their action in the broadcast has been mostly over-
looked. Babaguchi et al. [4] tackle replay linking in Amer-
ican football but use a heuristic approach that can hardly
generalize to other sports. Ouyng et al. [57] introduce a
video abstraction task to find similarities between multiple
cameras in various sports videos, yet their method requires
camera parameters and is tested on a restricted dataset. Re-
play grounding can be likened to action similarity retrieval,
as in [28, 39] for action recognition. Jain et al. [36] use a
Siamese structure to compare the features of two actions,
and Roy et al. [65] also quantify their similarity. We pro-
pose a task of replay grounding to connect replay shots with
salient moments of broadcast videos, which could find fur-
ther uses in action retrieval and highlight production.

3. SoccerNet-v2 Dataset

Overview. Table 1 compares SoccerNet-v2 with the rel-
evant video understanding datasets proposing localization
tasks. SoccerNet-v2 stands out as one of the largest over-
all, and the largest for soccer videos by far. In particular,
we manually annotated ~300k timestamps, temporally an-
chored in the 764 hours of the 500 games of SoccerNet [24].
We center the vocabulary of our classes on the soccer game
and soccer broadcast domains, hence it is well-defined and
consistent across games. Such regularity makes SoccerNet-
v2 the largest dataset in term of events instances per class,
thus enabling deep supervised learning at scale. As shown
in Figure 2, SoccerNet-v2 provides the most dense annota-
tions w.r.t. its soccer counterparts, and flirts with the largest
fine-grained generic datasets in density and size.

We hired 33 annotators for the annotation process, all
frequent observers of soccer, for a total of ~1600 hours of
annotations. The quality of the annotations was validated
by observing a large consensus between our annotators on
identical games at the start and at the end of their annotation
process. More details are provided in supplementary mate-
rial. The annotations are divided in 3 categories: actions,
camera shots, and replays, discussed hereafter.
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Figure 2. Datasets comparison. The areas of the tiles represent
the number of annotations per dataset. SoccerNet-v2 (SN-v2) ex-
tends the initial SoccerNet [24] (SN-v1) with more annotations
and tasks, and it focuses on untrimmed broadcast soccer videos.
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Figure 3. SoccerNet-v2 actions. Log-scale distribution of our
shown and unshown actions among the 17 classes, and propor-
tion that each class represents. The dataset is unbalanced, with
some of the most important actions in the less abundant classes.

Actions. We identify 17 types of actions from the most im-
portant in soccer, listed in Figure 3. Following [24], we
annotate each action of the 500 games of SoccerNet with a
single timestamp, defined by well-established soccer rules.
For instance, for a corner, we annotate the last frame of the
shot, i.e. showing the last contact between the player’s foot
and the ball. We provide the annotation guidelines in sup-
plementary material. In total, we annotate 110,458 actions,
on average 221 actions per game, or 1 action every 25 sec-
onds. SoccerNet-v2 is a significant extension of the actions
of SoccerNet [24], with 16x more timestamps and 14 ex-
tra classes. We represent the distribution of the actions in
Figure 3. The natural imbalance of the data corresponds to
the distribution of real-life broadcasts, making SoccerNet-
v2 valuable for generalization and industrial deployment.

Additionally, we enrich each timestamp with a novel bi-
nary visibility tag that states whether the associated action
is shown in the broadcast video or unshown, in which case
the action must be inferred by the viewer. For example, this
happens when the producer shows a replay of a shot off tar-
get that lasts past the clearance shot of the goalkeeper: the
viewer knows that the clearance has been made despite it
was not shown on the TV broadcast. Spotting unshown ac-
tions is challenging because it requires a fine understanding



Table 1. Datasets. Comparative overview of relevant datasets for action localization or spotting in videos. SoccerNet-v2 provides the
second largest number of annotations and the largest in soccer. ∗computed with the 116k annotations of the 200 fully annotated games.

Dataset Context Duration #Actions Classes Density Avg. events Avg. video
(hrs) (act./hr) per class length (sec)

THUMOS14 [38] General 24 6,363 20 260.4 318 209.2
ActivityNet [30] General 648 30,791 200 47.5 154 116.7
Charades [70] General 82 66,500 157 811 424 30
AVA [27] Movies 107.5 385,446 80 3,585 4,818 900
HACS [88] Human ~2,166 139,000 200 64.2 695 156
EPIC-Kitchen [14] Cooking 55 39,596 149 720 266 514.3

SoccerNet [24] Soccer 764 6,637 3 8.7 2,212 2750.4
SoccerDB [37] Soccer 669 37,715 11 56 3,428 14.1
Yu et al. [85] Soccer 167 6,850 11 41 623 2708.1
SoccerNet-v2 (actions) Soccer 764 110,458 17 144 6,498 2750.4
SoccerNet-v2 (cameras) Soccer 306 158,493 13 381∗ 8,976∗ 2750.4
SoccerNet-v2 (replays) Soccer 764 32,932 – 43 – 2750.4
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Figure 4. Camera shots. Log-scale distribution of our camera
shot timestamps among the classes in terms of instances (top) and
video duration (bottom), separated in replays and live or other
sequences, and percentage of timestamps that each bar represents.

of the game, beyond frame-based analysis, as it forces to
consider the temporal context around the actions. We anno-
tate the timestamps of unshown actions with the best possi-
ble temporal interpolation. They represent 18% of the ac-
tions (see Figure 3), hence form a large set of actions whose
spotting requires a sharp understanding of soccer. Finally,
to remain consistent with SoccerNet [24], we annotate the
team that performs each action as either home or away, but
leave further analysis on that regard for future work.
Cameras. We annotate a total of 158,493 camera change
timestamps, 116,687 of which are comprehensive for a sub-
set of 200 games, the others delimiting replay shots in the
remaining games (see hereafter). For the fully annotated
games, this represents an average of 583 camera transitions

per game, or 1 transition every 9 seconds. Those times-
tamps contain the type of camera shot that has been shown,
among the most common 13 possibilities listed in Figure 4.
We display their distribution in terms of number of occur-
rences and total duration. The class imbalance underpins a
difficulty of this dataset, yet it represents a distribution con-
sistent with broadcasts used in practical applications.

Besides, different types of transitions occur from one
camera shot to the next, which we append to each times-
tamp. These can be abrupt changes between two cameras
(71.4%), fading transitions between the frames (14.2%), or
logo transitions (14.2%). Logos constitute an unusual type
of transition compared with abrupt or fading, which are
common in videos in the wild or in movies, yet they are
widely used in sports broadcasts. They pose an interesting
camera shot detection challenge, as each logo is different
and algorithms must adapt to a wide variety thereof. For
logo and fading camera changes, we locate the timestamps
as precisely as possible at the middle of the transition, while
we annotate the last frame before an abrupt change.

Eventually, we indicate whether the camera shot happens
live (86.7%) with respect to the game, or shows a replay of
an action (10.9%), or another type of replay (2.4%). The
distribution in Figure 4 provides per-class proportions of re-
play camera shots and groups other replays and live shots.

Replays. For the 500 games of SoccerNet [24], we bound
each video shot showing a replay of an action with two
timestamps, annotated in the same way as for the camera
shot changes. For each replay shot, we refer the timestamp
of the action replayed. When several replays of the same
action are shown consecutively with different views, we an-
notate all the replay shots separately. This gives one replay
shot per type of view, all of which are linked to the same ac-
tion. In total, 32,932 replay shots are associated with their
corresponding action, which represents an average of 66 re-
play shots per game, for an average replay shot duration of



6.8 seconds. Retrieving a replayed action is challenging be-
cause typically, 1 to 3 replays of the action are shown from
different viewpoints hardly ever found in the original live
broadcast video. This encourages a more general video un-
derstanding rather than an exact frame comparison.

4. Broadcast Video Understanding Tasks

We propose a comprehensive set of tasks to move com-
puter vision towards a better understanding of broadcast
soccer videos and alleviate the editing burden of video pro-
ducers. More importantly, these tasks have broader impli-
cations as they can easily be transposed to other domains.
This makes SoccerNet-v2 an ideal playground for develop-
ing novel ideas and implementing innovative solutions in
the general field of video understanding.

In this work, we define three main tasks on SoccerNet-
v2: action spotting, camera shot segmentation with bound-
ary detection, and replay grounding, which are illustrated in
Figure 5. They are further motivated and detailed hereafter.
Action spotting. In order to understand the salient actions
of a broadcast soccer game, SoccerNet [24] introduces the
task of action spotting, which consists in finding all the ac-
tions occurring in the videos. Beyond soccer understand-
ing, this task addresses the more general problem of re-
trieving moments with a specific semantic meaning in long
untrimmed videos. As such, we foresee moment spotting
applications in e.g. video surveillance or video indexing.

In this task, the actions are anchored with a single times-
tamp, contrary to the task of activity localization [30],
where activities are delimited with start and stop times-
tamps. We assess the action spotting performance of an
algorithm with the Average-mAP metric, defined as fol-
lows. A predicted action spot is positive if it falls within
a given tolerance δ of a ground-truth timestamp from the
same class. The Average Precision (AP) based on PR curves
is computed then averaged over the classes (mAP), after
what the Average-mAP is the AUC of the mAP computed
at different tolerances δ ranging from 5 to 60 seconds.
Camera shot segmentation and boundary detection. Se-
lecting the proper camera at the right moment is the crucial
task of the broadcast producer to trigger the strongest emo-
tions on the viewer during a live game. Hence, identifying
camera shots not only provides a better understanding of the
editing process but is also a major step towards automating
the broadcast production. This task naturally generalizes to
any sports broadcasts but could also prove interesting for
e.g. cultural events or movies summarization.

Camera shot temporal segmentation consists in classify-
ing each video frame among our 13 camera types and is
evaluated with the mIoU metric. Concurrently, we define
a task of camera shot boundary detection, where the objec-
tive is to find the timestamps of the transitions between the

camera shots. For the evaluation, we use the spotting mAP
metric with a single tolerance δ of 1 second as transitions
are precisely localized and happen within short durations.
Replay grounding. Our novel replay grounding task con-
sists in retrieving the timestamp of the action shown in a
given replay shot within the whole game. Grounding a re-
play with its action confers it an estimation of importance,
which is otherwise difficult to assess. Derived applications
may be further built on top of this task, e.g. automatic high-
light production, as the most replayed actions are usually
the most relevant. Linking broadcast editing to meaningful
content within the video not only bridges our previous tasks,
but it can also be applied to any domain focusing on salient
moments retrieval. We use the Average-AP to assess perfor-
mances on this task, computed as described for the spotting
task but without averaging over the classes. We choose this
metric as replay grounding can be seen as class-independent
action spotting conditioned by the replay sequence.

5. Benchmark Results

General comments. SoccerNet [24] provides high and low
quality videos of the 500 games. For easier experimenta-
tion, it also provides features from ResNet [29], I3D [8]
and C3D [76] computed at 2 fps, further reduced with PCA
to 512 dimensions. Following [11, 24], in our experiments,
we use the ResNet 512-dimensional frame features acting
as compressed video representations as they yielded better
results in early experiments. We adapt the most relevant ex-
isting methods to provide benchmark results on the Soccer-
Net [24] test set. We release our codes to reproduce them,
and we will host leaderboards on dedicated servers.

5.1. Action Spotting

Methods. We adapt or re-implement efficiently all the
methods that released public code on SoccerNet [24].

1. MaxPool and NetVLAD [24]. Those models pool tem-
porally the ResNet features before passing them through a
classification layer. Non-overlapping segments of 20 sec-
onds are classified as to whether they contain any action
class. In testing, a sliding window of 20 seconds with a
stride of 1 frame is used to infer an actionness score in time,
reduced to an action spot using NMS. We consider the ba-
sic yet lightweight max pooling and a learnable NetVLAD
pooling with 64 clusters. We re-implement the method
based on the original code for a better scaling to 17 classes.

2. AudioVid [77]. The network uses NetVLAD to pool
temporally 20-second chunks of ResNet features, as well
as VGGish [31] synchronized audio features, subsampled
at 2 fps. The two sets of features are temporally pooled,
concatenated and fed to a classification module, as in [24].
Similarly, the spotting prediction is at the center of the video
chunk. We scaled the classification module to 17 classes.



Figure 5. Tasks overview. We define a 17-class action spotting task, a 13-class camera shot segmentation and boundary detection
tasks, and a novel replay grounding task, with their associated performance metrics. They respectively focus on understanding the
content of broadcast soccer games, addressing broadcast video editing tasks, and retrieving salient moments of the game.

3. CALF [11]. This network handles 2-minute chunks
of ResNet features and is composed of a spatio-temporal
features extractor, kept as is, a temporal segmentation mod-
ule, which we adapt for 17 classes, and an action spotting
module, adapted to output at most 15 predictions per chunk,
classified in 17 classes. The segmentation module is trained
with a context-aware loss having four context slicing hyper-
parameters per class. Following [11], we determine opti-
mal values for them with a Bayesian optimization [54]. We
re-implement the method and optimize the training strategy
based on the existing code to achieve a decent training time.
Results. We provide the leaderboard of our benchmark re-
sults for action spotting in Table 2. We further compute the
performances on shown/unshown actions as the Average-
mAP for predicted spots whose closest ground truth times-
tamp is a shown/unshown action. We show qualitative re-
sults obtained with CALF in Figure 6.

The pooling approaches MaxPool and NetVLAD are not
on par with the other methods on SoccerNet-v2. We believe
the hard pruning with MaxPool has a restricted learning ca-
pacity, limited to a single fully connected layer. Similarly,
NetVLAD may lag behind because of a non-optimal choice
in the design of the spotting module, in particular the Non-
Maximum Suppression that discards the results with confi-
dence score below 0.5. AudioVid prevails on the shown in-
stances and on 5/17 actions classes. Injecting audio features
appears to help with visible actions, as the sound is usually
synchronized with the image. Also, it performs best on ac-

Figure 6. Action spotting result obtained from CALF adapted:
temporal segmentation, ground truth, and spotting predic-
tions. The network performs well on corners with only one false
positive, and moderately on fouls with a few false negatives.

tions preceded or followed by the whistle of the referee, un-
derlining the importance of audio features. Yet, the audio
features appear less useful on unshown instances. CALF
performs best globally, on the unshown instances and on
most action classes. The context-aware loss focuses on the
temporal context to spot the actions, which is useful for this
task. This emphasizes the benefits of the temporal context
surrounding the actions, that contains valuable information.

5.2. Camera Segmentation and Boundary Detection

Methods. 1. Basic model. For our first baseline for the seg-
mentation part, we train a basic model composed of 3 layers
of 1D CNN with a kernel of 21 frames, hence aggregated in
time, on top of ResNet features, and a MSE loss.



Table 2. Leaderboard for action spotting (Average-mAP %). Methods with codes publicly available were tested on SoccerNet-v2.
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Counts (test set) 1369 22551 18641 3910 6460 3809 2414 2283 1631 1175 1058 999 579 514 431 416 382 337 41 14 8

MaxPool [24] - 18.6 21.5 15.0 38.7 34.7 26.8 17.9 14.9 14.0 13.1 26.5 40.0 30.3 11.8 2.6 13.5 24.2 6.2 0.0 0.9

NetVLAD [24] 49.7 31.4 34.3 23.3 47.4 42.4 32.0 16.7 32.7 21.3 19.7 55.1 51.7 45.7 33.2 14.6 33.6 54.9 32.3 0.0 0.0

AudioVid [77] 56.0 39.9 43.0 23.3 54.3 50.0 55.5 22.7 46.7 26.5 21.4 66.0 54.0 52.9 35.2 24.3 46.7 69.7 52.1 0.0 0.0

CALF [11] 62.5 40.7 42.1 29.0 63.9 56.4 53.0 41.5 51.6 26.6 27.3 71.8 47.3 37.2 41.7 25.7 43.5 72.2 30.6 0.7 0.7
Other SoccerNet-v1 results but with no public code available: Rongved et al. [64]: 32.0 ; Vats et al. [78]: 60.1 ; Tomei et al. [74]: 75.1.

2. CALF (seg.) [11]. We adapt CALF as it provides a
segmentation module on top of a spatio-temporal features
extractor. We replace its loss with the cross-entropy for eas-
ier experimentation and we focus on the segmentation by
removing the spotting module. The number of parameters is
reduced by a factor of 5 compared with the original model.

3. Content [9]. For the boundary detection task, we test
the popular scene detection library PySceneDetect. We use
the Content option, that triggers a camera change when the
difference between two consecutive frames exceeds a par-
ticular threshold value. This method is tested directly on
the broadcast videos provided in SoccerNet [24].

4. Histogram, Intensity [69]. We test two scene detection
methods of the Scikit-Video library. The Histogram method
reports a camera change when the intensity histogram dif-
ference between subsequent frames exceeds a given thresh-
old [55]. The Intensity method reports a camera change
when variations in color and intensity between frames ex-
ceed a given threshold. Those methods are tested directly
on the broadcast videos provided in SoccerNet [24].

5. CALF (det.) [11]. Since we can see the camera shot
boundary detection as a spotting task, we recondition the
best spotting method CALF by removing the segmentation
module to focus on detection. Following a grid search op-
timization, we use 24-second input chunks of ResNet fea-
tures and allow at most 9 detections per chunk.
Results. We provide a leaderboard of our benchmark results
for these task in Table 3. We further compute the perfor-
mances per transition type as the mAP for predicted spots
grouped by the transition of their closest ground truth.

Regarding the segmentation, even with 5x more param-
eters, the basic model trails behind CALF. Hence, simplis-
tic architectures may not suffice for this task, and more so-
phisticated designs can rapidly boost performances. For the
boundary detection, Histogram prevails, yet it ranks only
third on fading transitions where the deep learning-based
CALF is the best. The learning capacity of CALF may
explain its performance consistency across transition types.
Intensity, Content, and Histogram are intrinsically tailored

Table 3. Leaderboard for Camera Shot Segmentation (mIoU
%) and Boundary Detection (mAP %).

Camera Bound. Transition
Method Seg. Det. Abrupt Fading Logo

Basic model 35.8 - - - -
CALF [11] (seg.) 47.3 - - - -
CALF [11] (det.) - 59.6 59.0 58.0 61.8

Intensity [69] - 64.0 74.3 57.2 28.5
Content [9] - 62.2 68.2 49.7 35.5

Histogram [69] - 78.5 83.2 54.1 82.2

for abrupt transitions. Intensity and Content are particularly
bad on logos, while Histogram still performs well.

5.3. Replay Grounding

Methods. Given the novelty of this task, there is no off-the-
shelf method available. We choose to adapt our optimized
implementations of NetVLAD [24] and CALF [11] within
a Siamese neural networks approach [7, 10, 42].

As input for the networks, we provide the ResNet fea-
tures representations of a fixed-size video chunk and a re-
play shot. We either repeat or shorten the latter at both sides
so that it has the same duration as the former. Ideally, for a
chunk containing the action replayed (positive sample), the
networks should output a high confidence score along with
a localization prediction for spotting the action within the
chunk. Otherwise (negative sample), they should only pro-
vide a low confidence score, and spotting predictions will
be ignored. Negative samples are sampled either among
chunks containing an action of the same class as the ac-
tion replayed (hard negative), or among chunks randomly
located within the whole video (random negative). The hard
negatives ensure that the network learns to spot the correct
actions without simply identifying their class, while the ran-
dom negatives bring some diversity in the negative mining.

We test two sampling strategies. At each epoch, for each
replay shot, we select: (S1) only 1 sample: a positive with
probability 0.5, or a hard or random negative each with
probability 0.25; (S2) 5 samples: 1 positive, 2 hard and 2



Figure 7. Replay grounding pipeline of our adaptation of CALF.
In a Siamese network approach, the replay shot and the video
chunk share a frame features extractor. Their features are con-
catenated and fed to the segmentation module. The grounding
module outputs a confidence score on the presence or absence of
the action in the replay shot, and an action spotting prediction.

random negatives. For both S1 and S2, the positive is a
chunk randomly shifted around the action timestamp. The
adaptations specific to each method are the following.

1. NetVLAD [24]. We use NetVLAD to pool tempo-
rally the replay shot and the video chunk separately, but
with shared weights. We compare the features obtained for
the shot with those of the chunk through a cosine similarity
loss, zeroed out when smaller than 0.4 to help the networks
focus on improving their worst scores. In parallel, we feed
the video features to a 2-layer MLP acting as spotting mod-
ule to regress the spotting prediction within the chunk.

2. CALF [11]. We feed the replay shot and a video chunk
to the shared frame feature extractor. Then, we concatenate
the feature vectors along the temporal dimension, and give
the resulting tensor to the remaining modules of the net-
work. We set the number of classes to 1 in the segmentation
module to provide per-frame insight. The spotting module
outputs the confidence score on the presence of the replayed
action in the chunk. We further set its number of detections
to 1 as one action is replayed and might be spotted in the
chunk. This architecture is represented in Figure 7.

For these methods, at test time, we slice the video as-
sociated with the replay in chunks. We obtain at most one
grounding prediction per chunk, all of which are kept when
computing the Average-AP metric.
Results. The leaderboard providing our benchmark results
for action spotting is given in Table 4 for video chunks of
different sizes. NetVLAD with S1 performs poorly, so no
result is reported. Our adaptation of CALF achieves the
best performance, with a chunk size of 60 seconds and with
S2 as sampling strategy. Its demonstrated ability to aggre-
gate the temporal context may explain this success. All the
methods yield their best results with chunk sizes around 60
seconds, which presumably provides the most appropriate
compromise between not enough and too much temporal

Figure 8. Replay grounding result of CALF adapted. We display
the replay shot of a goal, its ground truth spot, the other goals,
the temporal segmentation output, and the grounding predic-
tions. The replayed goal is correctly spotted, two goals are rightly
avoided, but two false positive predictions are also spotted, inci-
dentally when other goals occurred. An insightful visualization
can be appreciated in our video in supplementary material.

Table 4. Leaderboard for replay grounding (Average-AP %),
along with sampling strategy during training.

Video chunk size (seconds)
Method 30 40 50 60 120 180 240

NetV. [24]+S2 23.9 22.9 24.3 22.4 7.5 – –
CALF[11]+S1 16.7 19.6 28.0 32.3 32.0 26.9 22.0
CALF[11]+S2 8.2 14.7 28.9 41.8 40.3 27.2 14.4

context for an efficient replay grounding. An example of
result from CALF is given in Figure 8, showing that it can
correctly learn to link a replay with its action without neces-
sarily spotting all the actions of the same class. This under-
lines both the feasibility and the difficulty of our novel task.
For a more relevant visualization experience, we invite the
reader to consult our video in supplementary material.

6. Conclusion
We release SoccerNet-v2, the largest soccer-related set

of annotations, anchored on top of the original Soccer-
Net [24]’s 500 untrimmed broadcast games. With our
~300k annotations, we further extend the tasks of action
spotting, camera shot segmentation and boundary detection,
and we define the novel task of replay grounding. We pro-
pose and discuss several benchmark results for all of them.
In addition, we provide codes to reproduce our experiments,
and we will host public leaderboards to drive research in
this field. With SoccerNet-v2, we aim at pushing computer
vision closer to automatic solutions for holistic broadcast
soccer video understanding, and believe that it is the ideal
dataset to explore new tasks and methods for more generic
video understanding and production tasks.
Acknowledgments. This work is supported by the Deep-
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[46] Sébastien Lefèvre and Nicole Vincent. Efficient and robust
shot change detection. Journal of Real-Time Image Process-
ing, 2:23–34, August 2007. 2

[47] Mehrtash Manafifard, Hamid Ebadi, and Hamid Abrishami
Moghaddam. A survey on player tracking in soccer videos.
Computer Vision and Image Understanding, 159:19–46,
June 2017. 1

[48] Marcin Marszalek, Ivan Laptev, and Cordelia Schmid. Ac-
tions in context. In IEEE International Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages 2929–
2936, June 2009. 2

[49] Pascal Mettes, Jan C van Gemert, and Cees GM Snoek. Spot
on: Action localization from pointly-supervised proposals.



In European Conference on Computer Vision (ECCV), pages
437–453, October 2016. 2

[50] Thomas B. Moeslund, Graham Thomas, and Adrian Hilton.
Computer Vision in Sports. Springer, 2014. 1

[51] Mathew Monfort, Alex Andonian, Bolei Zhou, Kandan Ra-
makrishnan, Sarah Adel Bargal, Tom Yan, Lisa Brown,
Quanfu Fan, Dan Gutfreund, Carl Vondrick, et al. Moments
in time dataset: one million videos for event understanding.
IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 42(2):502–508, February 2020. 2

[52] Mathew Monfort, Kandan Ramakrishnan, Alex Andonian,
Barry A McNamara, Alex Lascelles, Bowen Pan, Quanfu
Fan, Dan Gutfreund, Rogerio Feris, and Aude Oliva. Multi-
moments in time: Learning and interpreting models for
multi-action video understanding. CoRR, November 2019.
2

[53] Juan Carlos Niebles, Chih-Wei Chen, and Li Fei-Fei. Model-
ing temporal structure of decomposable motion segments for
activity classification. In European Conference on Computer
Vision (ECCV), pages 392–405, September 2010. 2

[54] Fernando Nogueira. Bayesian Optimization: Open
source constrained global optimization tool for
Python, 2014. https : / / github . com / fmfn /
BayesianOptimization. 6

[55] Kiyotaka Otsuji and Yoshinobu Tonomura. Projection de-
tecting filter for video cut detection. In ACM Interna-
tional Conference on Multimedia, pages 251––257, Septem-
ber 1993. 7

[56] Kiyotaka Otsuji and Yoshinobu Tonomura. Projection-
detecting filter for video cut detection. Multimedia Systems,
1(5):205–210, March 1994. 2

[57] Jian-quan Ouyang, Jin-tao Li, and Yong-dong Zhang. Replay
scene based sports video abstraction. In International Con-
ference on Fuzzy Systems and Knowledge Discovery, pages
689–697, August 2005. 3

[58] Luca Pappalardo, Paolo Cintia, A. Rossi, Emanuele Mas-
succo, P. Ferragina, D. Pedreschi, and F. Giannotti. A public
data set of spatio-temporal match events in soccer competi-
tions. Scientific Data, 6:236, October 2019. 2

[59] Konstantinos Rematas, Ira Kemelmacher-Shlizerman, Brian
Curless, and Steve Seitz. Soccer on your tabletop. In IEEE
International Conference on Computer Vision and Pattern
Recognition (CVPR), pages 4738–4747, June 2018. 1

[60] Felix Richter. Super bowl can’t hold the candle to the
biggest game in soccer. In Statista - The Statistics Por-
tal, 2020. Retrieved October 25, 2020, from https://
www.statista.com/chart/16875/super-bowl-
viewership-vs-world-cup-final/. 1

[61] Mikel D Rodriguez, Javed Ahmed, and Mubarak Shah. Ac-
tion MACH a spatio-temporal maximum average correla-
tion height filter for action recognition. In IEEE Interna-
tional Conference on Computer Vision and Pattern Recogni-
tion (CVPR), pages 1–8, June 2008. 2

[62] Marcus Rohrbach, Sikandar Amin, Mykhaylo Andriluka,
and Bernt Schiele. A database for fine grained activity detec-
tion of cooking activities. In IEEE International Conference
on Computer Vision and Pattern Recognition (CVPR), pages
1194–1201, June 2012. 2

[63] Marcus Rohrbach, Anna Rohrbach, Michaela Regneri,
Sikandar Amin, Mykhaylo Andriluka, Manfred Pinkal, and
Bernt Schiele. Recognizing fine-grained and composite ac-
tivities using hand-centric features and script data. Interna-
tional Journal of Computer Vision, 119(3):346–373, Septem-
ber 2016. 2
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Michael A. Riegler, and Pål Halvorsen. Real-time detec-
tion of events in soccer videos using 3D convolutional neural
networks. In IEEE International Symposium on Multimedia
(ISM), December 2020. In press. 2, 7

[65] Debaditya Roy, C Krishna Mohan, and K Sri Rama Murty.
Action recognition based on discriminative embedding of ac-
tions using siamese networks. In IEEE International Confer-
ence on Image Processing (ICIP), pages 3473–3477, Octo-
ber 2018. 3

[66] Saikat Sarkar, Sazid Ali, and Amlan Chakrabarti. Shot clas-
sification and replay detection in broadcast soccer video. In
Advanced Computing and Systems for Security, pages 57–66,
February 2020. 3

[67] Saikat Sarkar, Amlan Chakrabarti, and Dipti Prasad Mukher-
jee. Generation of Ball Possession Statistics in Soccer Using
Minimum-Cost Flow Network. In IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR) Workshops,
pages 2515–2523, June 2019. 1

[68] Christian Schuldt, Ivan Laptev, and Barbara Caputo. Rec-
ognizing human actions: a local svm approach. In Inter-
national Conference on Pattern Recognition (ICPR), pages
32–36, August 2004. 2

[69] Scikit-Video Developers. Scikit-video: Video processing
in python, 2015. https://github.com/scikit-
video/scikit-video. 7

[70] Gunnar A. Sigurdsson, Gül Varol, Xiaolong Wang, Ali
Farhadi, Ivan Laptev, and Abhinav Gupta. Hollywood in
homes: Crowdsourcing data collection for activity under-
standing. In European Conference on Computer Vision
(ECCV), pages 510–526, October 2016. 2, 4

[71] Khurram Soomro, Amir Roshan Zamir, and Mubarak Shah.
UCF101: A dataset of 101 human actions classes from
videos in the wild. CoRR, December 2012. 2

[72] Rajkumar Theagarajan, Federico Pala, Xiu Zhang, and Bir
Bhanu. Soccer: Who has the ball? Generating visual analyt-
ics and player statistics. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR) Workshops, pages
1830–1838, June 2018. 1

[73] Graham Thomas, Rikke Gade, Thomas B. Moeslund, Peter
Carr, and Adrian Hilton. Computer vision for sports: Current
applications and research topics. Computer Vision and Image
Understanding, 159:3–18, June 2017. 1

[74] Matteo Tomei, Lorenzo Baraldi, Simone Calderara, Simone
Bronzin, and Rita Cucchiara. Rms-net: Regression and
masking for soccer event spotting. In International Confer-
ence on Pattern Recognition (ICPR), 2020. 2, 7

[75] Xiaofeng Tong, Qingshan Liu, and Hanqing Lu. Shot clas-
sification in broadcast soccer video. Electronic Letters on
Computer Vision and Image Analysis, 7(1):16–25, Novem-
ber 2008. 3



[76] Du Tran, Lubomir Bourdev, Rob Fergus, Lorenzo Torresani,
and Manohar Paluri. Learning spatiotemporal features with
3d convolutional networks. In IEEE International Confer-
ence on Computer Vision (ICCV), pages 4489–4497, 2015.
5

[77] Bastien Vanderplaetse and Stephane Dupont. Improved soc-
cer action spotting using both audio and video streams. In
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR) Workshops, pages 3921–3931, June 2020. 2, 5,
7

[78] Kanav Vats, Mehrnaz Fani, Pascale Walters, David A Clausi,
and John Zelek. Event detection in coarsely annotated sports
videos via parallel multi-receptive field 1d convolutions. In
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR) Workshops, pages 882–883, June 2020. 2, 7

[79] Jinjun Wang, EngSiong Chng, and Changsheng Xu. Soc-
cer replay detection using scene transition structure analy-
sis. IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pages ii/433–ii/436, March
2005. 3

[80] Philippe Weinzaepfel, Xavier Martin, and Cordelia Schmid.
Human action localization with sparse spatial supervision.
CoRR, May 2016. 2

[81] Wei Xu and Yang Yi. A robust replay detection algorithm for
soccer video. IEEE Signal Processing Letters, 18(9):509–
512, July 2011. 3

[82] Ying Yang and Danyang Li. Robust player detection and
tracking in broadcast soccer video based on enhanced parti-
cle filter. Journal of Visual Communication and Image Rep-
resentation, 46:81–94, July 2017. 1

[83] Ying Yang, Shouxun Lin, Yongdong Zhang, and Sheng Tang.
A statistical framework for replay detection in soccer video.
In International Symposium on Circuits and Systems, pages
3538–3541, May 2008. 3

[84] Serena Yeung, Olga Russakovsky, Ning Jin, Mykhaylo An-
driluka, Greg Mori, and Li Fei-Fei. Every moment counts:
Dense detailed labeling of actions in complex videos. In-
ternational Journal of Computer Vision, 126(2-4):375–389,
April 2018. 2

[85] Junqing Yu, Aiping Lei, Zikai Song, Tingting Wang,
Hengyou Cai, and Na Feng. Comprehensive dataset of
broadcast soccer videos. In IEEE Conference on Multimedia
Information Processing and Retrieval (MIPR), pages 418–
423, 2018. 2, 4

[86] Ramin Zabih, Justin Miller, and Kevin Mai. A feature-based
algorithm for detecting and classifying scene breaks. In
ACM International Conference on Multimedia, pages 189–
200, November 1995. 2

[87] Dan Zecha, Moritz Einfalt, and Rainer Lienhart. Refining
joint locations for human pose tracking in sports videos. In
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR) Workshops, pages 2524–2532, June 2019. 1

[88] Hang Zhao, Antonio Torralba, Lorenzo Torresani, and
Zhicheng Yan. Hacs: Human action clips and segments
dataset for recognition and temporal localization. In IEEE
International Conference on Computer Vision (ICCV), pages
8668–8678, October-November 2019. 2, 4

[89] Zhao Zhao, Shuqiang Jiang, Qingming Huang, and Guangyu
Zhu. Highlight summarization in sports video based on re-
play detection. In IEEE International Conference on Multi-
media and Expo (ICME), pages 1613–1616, July 2006. 3


