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ABSTRACT 

For several decades, the focus of most studies on endocrine disrupting chemicals (EDCs) 

has been the reproductive system, with fertility and hormone-dependent cancers being the 

most critical issues. 

Cerebral cortex development is very sensitive to hormonal environment, in particular thyroid 

hormones and sex steroids. Experimental data concerning early exposure to polychlorinated 

biphenyls (PCBs) illustrate the detrimental effect of endocrine disrupters on the central 

nervous system. While epidemiological studies have reported a negative correlation between 

prenatal exposure to PCBs and cognitive performances, the molecular and cellular 

mechanisms of such neurotoxicity are incompletely understood. This paper will review the 

role of thyroid hormones and sex steroids in cerebral cortex development and will illustrate, 

with PCBs and bisphenol A, the potential effects of EDCs on cerebral cortex development.
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Introduction 

For a long time, most studies have focused on the peripheral effects of endocrine disrupting 

chemicals (EDCs) on the testis and ovary (review in Diamanti-Kandarakis et al. 2009) as well 

as their effects on sex steroid-sensitive peripheral structures, such as the prostate or breast 

(Diamanti-Kandarakis et al. 2009). However, sex steroids, corticoids and thyroid hormones 

play a key role in the development of the central nervous system and of the cerebral cortex in 

particular. The critical role of these hormonal systems explains the sensitivity of the cerebral 

cortex to EDCs. These brain regions are complex networks of neurons and surrounding glial 

cells, which are modulated by paracrine or autocrine neurotransmitters as well as peripheral 

hormones and chemicals produced in the body or in the environment. Hormones have 

lifelong effects on central functions by influencing cellular proliferation, dendritic outgrowth, 

synaptogenesis or neurotransmitter secretion. Structural changes in the brain following 

hormonal alterations during fetal and perinatal life result in functional consequences in 

adolescence and adulthood. Typical examples are anovulation and infertility after perinatal 

exposure to sex steroids (Sawaki et al. 2003) and cognitive dysfunction after fetal 

hypothyroidism (DeLange 2000). As is the case for other systems, the developing cerebral 

cortex seems particularly sensitive to endocrine disruption. It is known that some 

neurological diseases are explained by an alteration of early processes such as progenitor 

proliferation, migration or differentiation. We could face a similar pattern in the case of EDCs, 

which could affect cortical development and lead to altered cognitive function later in life. 

This review will focus on the effects of EDCs on cerebral cortex development. 

Developmental Processes in the Cortex Regulated 

by Thyroid Hormones and Sex Steroids 

Knowing the developmental processes that depend on sex steroids and thyroid hormones, 

one can hypothesize on the stages potentially affected by EDCs. We will review here the 

multiple actions of thyroid hormones and sex steroids on cortical development. Estradiol is a 

possible factor promoting the development, function and survival of neurons (McEwen and 

Alves 1999) through classical genomic interactions with the nuclear estrogen receptor (ER) 

and also non-genomic interactions with membrane receptors. Neurons, astrocytes and 

neuronal progenitors express ERs. In particular, astrocytes influence neural development in 

part by synthesizing estrogens (Garcia-Segura and Melcangi 2006). Interestingly, alpha-

fetoprotein (AFP) is expressed at high levels in radial glial cells but at lower levels by 

intermediate progenitors. Thus high levels of AFP in the ventricular zone could inhibit E2 (17-

beta Estradiol)-promoted proliferation in this region whereas low levels of AFP in the 

subventricular zone could allow a stronger effect of E2 on intermediate progenitors 

(Martinez-Cerdeno et al. 2006). Estrogens also stimulate neurogenesis in adult rodents and 

increase proliferation in cortical progenitor cells by shortening the G1 phase (Martinez-

Cerdeno et al. 2006). Because EDCs can affect the ER directly or indirectly through estrogen 
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biosynthesis or metabolism, it is important that studies of the action of EDCs examine those 

different structures and functions in the cortex. 

During fetal and neonatal life, neuronal and glial proliferation, migration, and differentiation 

depend on thyroid hormones. Thyroid hormone action is mediated by two classes of nuclear 

receptors (Forrest and Vennstrom 2000) that exhibit differential spatial and temporal 

expression in the brain, suggesting that thyroid hormones have multiple functions during 

brain development (Horn and Heuer 2010). 

Thyroid hormone receptors are expressed in neurons, astrocytes, and oligodendrocytes and 

precursors before the fetal thyroid is functional, suggesting a role for hormones of maternal 

origin. Triiodothyronine (T3) regulates the expression of genes coding for the growth factors, 

cell surface receptors and transcription factors involved in cell cycle regulation and 

proliferation (reviewed in Puzianowska-Kuznicka et al. 2006). The action of T3 is not 

homogeneous and depends on the cell type and its developmental state. T3 blocks 

proliferation and induces differentiation of oligodendrocyte progenitor cells (Baas et al. 1997). 

This effect results from a rapid decrease of the transcription factor E2F1 in oligodendrocyte 

precursors, which induces a decrease of proliferation by arresting the cells in G1 and S 

phases (Nygard et al. 2003). Tokumoto et al. (2001) also showed that thyroid hormones 

promote oligodendrocyte differentiation through another pathway involving p53 proteins. In 

addition to these few studies suggesting a role for thyroid hormones on cell proliferation in 

the cortex, several studies have reported an effect on cell migration and differentiation. For 

example, T4 promotes actin polymerization through non-genomic action in developing 

neurons (reviewed in Cheng et al. 2010). Actin polymerization is necessary to recognize the 

laminin guidance molecule during migration (Farwell et al. 2005). Thyroid hormones also 

regulate the organization of the actin cytoskeleton in astrocytes during development, thus 

affecting the production and deposition of laminin at the surface of astrocytes that is 

necessary for neuronal migration (Farwell and Dubord-Tomasetti 1999). In ex vivo studies, 

maternal hypothyroxinemia alters radial and tangential neuronal migration (Lavado-Autric et 

al. 2003; Auso et al. 2004). In these experiments, green fluorescent protein-medial ganglionic 

eminence (GFP-MGE)-derived neurons from hypothyroxinemic mothers showed a normal 

migratory behavior whereas GFP-MGE-neurons from normal or hypothyroxinemic mothers 

showed disrupted migration when explanted into the neocortex of embryos from 

hypothyroxinemic dams. These studies suggest an effect caused not by the migratory 

neurons themselves but by elements guiding the migration (Cuevas et al. 2005). Thyroid 

hormones also regulate the expression and distribution of molecules, such as actin or 

tenascin (Farwell et al. 2005; Alvarez-Dolado et al. 1998), that interact with the extracellular 

matrix and facilitate neurite outgrowth. Overall, these examples illustrate that thyroid 

hormones are involved in multiple aspects of early brain development including proliferation, 

differentiation and migration of progenitors. Disruption of thyroid function by EDCs such as 

PCBs could thus cause neurological deficits that are very similar to hypothyroidism. 
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Epidemiological Data 

As stated above, thyroid hormones and sex steroids play a fundamental role in the 

development of the cerebral cortex, and many environmental chemicals are able to alter 

thyroid function or sex steroid action. One example is a group of chemicals called 

polychlorinated biphenyls (PCBs), which is a family of 209 different congeners used in 

lubricating oils and plasticizers. Because of their long half-life (Ogura et al. 2005), they are 

still ubiquitous environmental contaminants, found in high concentrations in humans and 

animals, even though they have been banned in Europe and the USA since the 1970s. The 

first observation pointing to the neurotoxic effects of PCBs followed an accidental exposure 

in Taiwan in which children exposed in utero showed impaired cognitive function at5 years of 

age (McKinney and Waller 1994). The major difficulty in such studies is the long delay 

between the exposure and its measurable effect. Several other follow-up studies have shown 

a negative correlation between in utero exposure to PCBs and cognitive performance and 

memory in infants and children (reviewed in Schantz et al. 2003). Those results are 

consistent with observations made in rodents. Itis interesting to note that the levels of 

exposure in recent studies are lower than in earlier studies but still negatively correlate with 

cognitive function. More recent studies are developing analytic methods to correlate 

neurodevelopmental toxicity with specific congeners. Some PCB congeners could lower 

thyroid hormones levels in serum and thus induce a state similar to hypothyroidism. 

However, epidemiological studies reported levels of T3, T4 and thyroid-stimulating hormone 

(TSH) that were in the normal range in pregnant women and newborns. But some studies 

reported that higher levels of PCBs in maternal and cord blood were associated with higher 

levels of TSH in newborns. 

Bisphenol A (BPA) is a ubiquitous industrial chemical used in the manufacture of plastics and 

epoxy resins. It is present in many plastic bottles, baby bottles and food cans and is found in 

the urine of more than 90% of Americans (Melzer et al. 2010). Fetuses and newborns seem 

to be particularly exposed since BPA is known to cross the placenta and is found in high 

concentration in amniotic fluids and cord serum (Sch€onfelder et al. 2002). BPA is a weak 

estrogenic compound binding to ERa and b as well as membrane receptors. It also 

antagonizes T3 activation of the thyroid receptor, and developmental exposure to BPA 

induces a state similar to thyroid hormone resistance. Very little data are available 

concerning the effects of BPA on cerebral function in human. One caveat for those studies is 

that virtually everybody in the Western world has been exposed to BPA. However, knowing 

that BPA alters sex steroid and thyroid hormone function, one can hypothesize that perinatal 

exposure to BPA could lead to alterations in cerebral cortex development. Nakagami et al. 

(2009) reported an alteration in male behavior toward mothers after prenatal exposure to 

BPA in non-human primates, which suggests that, because of its interaction with sex steroid 

receptors, BPA could alter the sexual differentiation of the brain taking place perinatally. 
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Molecular Mechanisms of Endocrine Disruption of 

Cerebral Cortex Development 

The molecular mechanisms by which EDCs can cause alterations of cerebral cortex 

development are still incompletely understood, but some data are available for PCBs. Some 

studies suggest that PCBs cause a state of relative hypothyroidism that could explain their 

neurotoxicity. Interestingly, the cerebellum and the auditory system that depend on thyroid 

hormone are very sensitive to PCBs (Koibuchi and Chin 2000). However, PCBs do not only 

produce effects consistent with hypothyroidism, since the expressions of some thyroid 

hormone-responsive genes are increased after neonatal exposure to PCBs (Gauger et al. 

2004). Some in vitro studies have shown that some PCBs congeners act as thyroid hormone 

receptors agonists (Fritsche et al. 2005). Based on their chemical structure, PCBs can act 

through different pathways (McKinney and Waller 1994). Coplanar congeners bind to 

cytosolic aryl hydrocarbon receptors (AhR), a ligand-dependent transcription factor involved 

in cell proliferation and differentiation (Dietrich and Kaina 2010). However, the neurotoxic 

effects of PCBs on development might not be entirely explained by AhR. Some PCBs can 

also alter neurotransmission and intracellular signaling (Kodavanti 2006). 

BPA is another example of the complexity of the mechanisms of action of EDCs on the brain. 

Some studies suggest that BPA could indeed affect cerebral cortex development. Prenatal 

exposure to BPA does not affect progenitor cell proliferation in mice but it alters the number 

of cells in each of the cortical layers postnatally (Nakamura et al. 2007). It has also been 

shown that BPA could have an antiestrogenic action on synaptogenesis in the rodent and 

non-human primate hippocampus (Hajszan and Leranth 2010; Leranth et al. 2008). BPA is 

classically known to act as an estrogen agonist with an affinity for ERs that is much lower 

than estradiol. It is also able to interact with membrane receptors at very low doses. Besides 

its action on the ER, BPA can also act as a competitive inhibitor for androgen receptors and 

can disrupt their nuclear localization as well as their trans-activation (review in Wolstenholme 

et al. 2010). Those actions at the level of the sex steroids receptors could alter the 

estrogenic/androgenic balance existing in the fetal brain and explain a possible disruption of 

sexual differentiation of the cerebral cortex. Besides its action on sex steroid receptor, BPA 

appears to act as a thyroid hormone receptor antagonist in vitro. It blocks T3-dependent 

oligodendrocyte development (Seiwa et al. 2004) and induces a state similar to thyroid 

hormone resistance in vivo with increased T4 but did not change THS in exposed animals 

(Zoeller et al. 2005). Some new mechanisms of action for BPA have been described in the 

brain. It has recently been shown that low doses of BPA prenatally increase AhR (Nishizawa 

et al. 2005a) and AhR (Nishizawa et al. 2005b) repressor expression in the brain, suggesting 

that BPA could affect the cell proliferation and differentiation regulated by AhR. Very recently, 

perinatal exposure to BPA has been shown to alter methylation of genes involved in prostate 

cancer (Ho et al. 2006) as well as genes coding for fur color (Dolinoy et al. 2007). But only 

one study focused on the methylation status of the brain after exposure to BPA. Prenatal 

exposure to low doses of BPA induced a decreased methylation of two loci, VPS52 and 

LOC72325, in the brain that correlated with an increased expression of those genes (Yaoi et 

al. 2008). The function of those genes is not completely understood but the authors 
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hypothesize that changes in their methylation could promote neuronal differentiation and 

migration. 
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