
Modern Perl for Biologists II | Deeper Concepts
M-BIM / INBTBI

Denis BAURAIN / ULiège

Edition 2020–2021

Denis BAURAIN / ULiège ii Modern Perl for Biologists II | Deeper Concepts

Acknowledgment
This course has been developed over eight years (2013–2020) primarily as teaching materials for the
Modern Perlmodule of the (INBTBI) Bioinformatics Training organized by the Biotechnology Training
Centre in theGIGATower of theUniversity of Liège (Belgium). Until 2016, the Biotechnology Training
Centre was directed by Laurent Corbesier, who is warmly thanked for his support.
The training itself was funded through the Bioinformatics Training Program, 6th call 2010–2014, BioWin
(the Health Cluster of Wallonia), Le Forem (the Walloon Office for Employment and Training), and
the Biotechnology Training Centre (Forem-GIGA).
This two-part document benefitted from the feed-back of about 150 students, trainees and colleagues,
among which Arnaud Di Franco, Agnieszka Misztak, Loïc Meunier and Sinaeda Anderssen are espe-
cially acknowledged.
If you spot typos, grammatical or technical errors, or have any suggestion on how to improve the next
edition of this course, let me know (denis.baurain@uliege.be). I will answer all messages.
Finally, I thank Pierre (Pit) Tocquin for his help with the mighty triad Markdown / Pandoc / LATEX.

How to read this course?
This document is written in American English.
The first time they are introduced, programming terms and biological terms are typeset in bold and
italic, respectively, whereas computer keywords are always typeset in a monospaced font (Consolas).
All these terms are indexed at most once per section in which they appear (see Index).
While the main text is typeset in Palatino, user statements (either at the shell or as small code excerpts)
and computer answers are typeset in the same monospaced font as computer keywords.
$ echo "Hello world!" # user statement (note the shell prompt)
Hello world! # computer answer

Example BOX
Advanced material that can be skipped on first reading is enclosed in boxes with a light blue
background. A List of Boxes is available for convenience.

General programming advices and good practices that apply beyond the Perl language are typeset in a
smaller size and introduced by a yellow bar surmounted by an icon.

1 say <<'EOT';
2 Complete program listings are typeset
3 in the same monospaced font as keywords.
4 Their lines are numbered.
5 EOT

Denis BAURAIN / ULiège iii Modern Perl for Biologists II | Deeper Concepts

mailto:denis.baurain@uliege.be

Denis BAURAIN / ULiège iv Modern Perl for Biologists II | Deeper Concepts

Contents

Acknowledgment . iii
How to read this course? . iii

I Lesson 6 1

1 Thinking in list context 3
1.1 Old-school plots in the terminal . 3
1.2 Perl values: Lists . 7
1.3 Storing lists in arrays . 12
1.4 Storing lists in hashes . 16
1.5 Working with lists . 17

2 Formatting output 21
2.1 check_overlap.pl output sample . 21
2.2 How to round numbers? . 21

2.2.1 floor and ceil . 22
2.2.2 sprintf . 22

2.3 The repetition operator . 23
2.4 More on Smart::Comments . 25

3 Functions 27
3.1 What are functions? . 27
3.2 Defining and using functions . 27
3.3 Function parameters and return values . 29

3.3.1 The default array @_ . 29
3.3.2 return . 29
3.3.3 Argument aliasing . 29
3.3.4 Lexical and file variables . 31
3.3.5 Argument slurping . 31
3.3.6 Argument currying . 31
3.3.7 Bare return statements . 33
3.3.8 Argument flattening . 33

3.4 Bonus—Computing anagrams using recursive function calls 35

Homework 39

Denis BAURAIN / ULiège v Modern Perl for Biologists II | Deeper Concepts

CONTENTS

II Lesson 7 41

4 Sorted codon usage 43
4.1 A gentle introduction to references . 43

4.1.1 Motivation . 43
4.1.2 Defining references . 45
4.1.3 Using references . 46
4.1.4 Anonymous arrays . 46
4.1.5 Peeking into nested data structures . 48

4.2 Sorting tables . 49
4.2.1 sort . 49
4.2.2 Sort blocks and sort comparison operators . 49
4.2.3 Sorting contexts . 50
4.2.4 The dereferencing arrow . 52
4.2.5 Short-circuiting and multiple sorting criteria 53

5 In silico restriction mapping 55
5.1 Your very personal cutter . 55

5.1.1 How to build an enzyme database? . 55
5.1.2 How to fetch sequences from the NCBI website? 56
5.1.3 How to try the program? . 56

5.2 The code for cutter.pl . 57

Homework 67

III Lesson 8 69

6 The innards of cutter.pl 71
6.1 Plain Old Documentation . 71
6.2 Getopt::Euclid . 74
6.3 Overview of cutter.pl . 75

6.3.1 Command-line interface . 75
6.3.2 Architecture . 77

6.4 More on references . 80
6.4.1 Tabular file parsing . 82

6.4.1.1 read_enzymes . 82
6.4.2 Defining and using nested data structures . 84

6.4.2.1 compute_cuts . 84
6.4.2.2 collect_sites . 87
6.4.2.3 infer_fragments . 88

7 Parsing BLAST reports 93
7.1 BLAST tabular format . 93
7.2 How to write a Perl module? . 94

7.2.1 The code for blast_table.t . 95
7.2.2 The code for parser.pl . 96
7.2.3 The code for BlastTable.pm . 97

Homework 101

Denis BAURAIN / ULiège vi Modern Perl for Biologists II | Deeper Concepts

CONTENTS

IV Lesson 9 103

8 More on Perl modules 105
8.1 Structure of a Perl distribution . 105
8.2 Installing Perl modules . 106

8.2.1 Fine-tuning the installation process . 107
8.2.2 Specifying module dependencies . 107

8.3 Anatomy of a Perl module . 110
8.3.1 packages and namespaces . 110
8.3.2 Exporting symbols . 112

8.4 Automated tests . 113

9 Our ultimate killer app 115
9.1 Annotating sequences with reference sequences . 115
9.2 Packaging read_fasta and friends . 115

9.2.1 The code for fasta_file.t . 117
9.2.2 The code for FastaFile.pm . 118

9.3 Building our application . 123
9.3.1 The code for annotate.pl . 123

Homework 129

V Lesson 10 131

10 Idiomatic Perl 133
10.1 More on closures . 133

10.1.1 Function references . 133
10.1.2 subs with a memory . 134

10.2 The default variables . 137
10.2.1 The topic variable as the default iterator . 138

10.3 Implicit loops . 140
10.3.1 grep . 140
10.3.2 map . 142

10.4 Bonus—Higher-Order Perl . 146

11 Dissecting our annotation app 151
11.1 More on automated tests . 151
11.2 Interesting bits in Forem::FastaFile . 152
11.3 A mighty modular script: annotate.pl . 154

11.3.1 Conciseness, readability and maintainability by code reuse 154
11.3.2 Building programs with programs . 156
11.3.3 Calling external programs . 158
11.3.4 Wrapping it up . 159

Homework 161

Index 163

Denis BAURAIN / ULiège vii Modern Perl for Biologists II | Deeper Concepts

CONTENTS

Denis BAURAIN / ULiège viii Modern Perl for Biologists II | Deeper Concepts

List of Boxes

1 Operator precedence in list definitions . 10
2 Array slices and the amount context . 14
3 Accessing individual values in lists . 15
4 Reference count and the garbage collector . 47
5 Sorting in natural order . 51
6 Short-circuiting and assignments . 54
7 Named arguments . 76
8 Closures and BEGIN code blocks . 79
9 Scalar references and alternate dereferencing syntax . 91
10 Multiple namespaces in source files . 112
11 The topic variable in one-liners . 139
12 local and the dynamic scope . 145
13 The tpage command-line tool . 157

Denis BAURAIN / ULiège ix Modern Perl for Biologists II | Deeper Concepts

LIST OF BOXES

Denis BAURAIN / ULiège x Modern Perl for Biologists II | Deeper Concepts

List of Tables

4.1 Return values of sort comparison operators . 49
4.2 Structure of the anonymous arrays . 53

6.1 Main POD commands . 72
6.2 Main POD formatting codes . 73
6.3 Examples of nested data structures . 84

8.1 Keys to specify module dependencies in Makefile.PL 108
8.2 Examples of namespaces and directory hierarchies . 111
8.3 Examples of namespace spelling conventions . 111

Denis BAURAIN / ULiège xi Modern Perl for Biologists II | Deeper Concepts

LIST OF TABLES

Denis BAURAIN / ULiège xii Modern Perl for Biologists II | Deeper Concepts

List of Figures

1.1 Lists are values, whereas arrays are containers. 12

3.1 The famous black box . 27

4.1 Using references to elemental arrays for sorting lines 45
4.2 Garbage collection with WALL-E [Disney/Pixar, 2008] 48

6.1 Flowchart of cutter.pl . 78
6.2 Lexical scopes and argument passing in cutter.pl 81

11.1 11th-grade activities [xkcd.com] . 161

Denis BAURAIN / ULiège xiii Modern Perl for Biologists II | Deeper Concepts

LIST OF FIGURES

Denis BAURAIN / ULiège xiv Modern Perl for Biologists II | Deeper Concepts

Part I

Lesson 6

Denis BAURAIN / ULiège 1 Modern Perl for Biologists II | Deeper Concepts

Chapter 1

Thinking in list context

1.1 Old-school plots in the terminal
In “Operator precedence and associativity” (see the first part of this course), I gave you three ap-
proaches to determine whether two DNA fragments overlap or not. Below is a solution for the corre-
sponding homework that is more advanced than what I asked you to do at that time.

1. Type in the program shown in the following pages and save it as check_overlap.pl.
2. Install the new required CPAN module.

$ cpanm Term::Size::Any

3. Build a test file such as the one displayed here.
inclusions
10 60 10 60
10 60 30 60
30 60 10 60
10 40 10 60
10 60 10 40
10 60 30 50
30 50 10 60

left overhangs
10 50 30 60
10 50 50 60

right overhangs
30 60 10 50
50 60 10 50

no overlap
10 30 31 60
31 60 10 30
10 30 40 60

Denis BAURAIN / ULiège 3 Modern Perl for Biologists II | Deeper Concepts

CHAPTER 1. THINKING IN LIST CONTEXT

40 60 10 30

invalid coordinates
30 10 31 60
10 30 60 31
0 30 31 60
30 0 31 60
10 30 0 60
10 30 31 0

4. Play with the program. Resize your terminal and run it again. Observe how it adapts. You can
also edit the use Smart::Comments '###' line to fine tune the verbosity of the debugging.

1 #!/usr/bin/env perl
2

3 use Modern::Perl '2011';
4 use autodie;
5

6 use Smart::Comments '###';
7

8 use List::AllUtils qw(min max uniq);
9 use POSIX;
10 use Term::Size::Any 'chars';
11

12

13 unless (@ARGV == 2) {
14 die <<"EOT";
15 Usage: $0 <coords.txt> <tic-width>
16 This tool plots two fragments and determines whether they overlap. It requires
17 an input file where each line contains four whitespace-delimited strictly
18 positive coordinates for the two fragments to check (x1, x2, y1, y2).
19 Example: $0 coords.txt 8
20 EOT
21 }
22

23 my $infile = shift;
24 my $tic_width = shift;
25

26 # setup plotting area
27 my ($cols, $rows) = chars();
28 my $tic_n = floor($cols / $tic_width);
29 #### area: $cols . 'x' . $rows
30 #### $tic_n
31

32 open my $in, '<', $infile;
33

34 LINE:
35 while (my $line = <$in>) {

Denis BAURAIN / ULiège 4 Modern Perl for Biologists II | Deeper Concepts

CHAPTER 1. THINKING IN LIST CONTEXT

36

37 next LINE if $line =~ m/^ \s* $/xms; # skip empty lines
38 next LINE if $line =~ m/^ \#/xms; # skip comment lines
39

40 # extract coordinates
41 chomp $line;
42 my @coords = split /\s+/xms, $line;
43 my ($x1, $x2, $y1, $y2) = @coords;
44 #### @coords
45

46 # setup plot scale
47 my $min = min @coords;
48 my $max = max @coords;
49 my $range = $max - $min;
50 my $step = ceil($range / ($tic_n-1));
51 #### $min
52 #### $max
53 #### $range
54 #### $step
55

56 # skip invalid coordinates
57 if ($min < 1) {
58 warn "WARNING! At least one non-natural bound: @coords";
59 next LINE;
60 }
61 if ($x2 < $x1 || $y2 < $y1) {
62 warn "WARNING! Incoherent coordinates: @coords";
63 next LINE;
64 }
65

66 # draw plot
67 plot_scale($min, $step);
68 plot_fragment($x1, $x2, 0, $min, $step);
69 plot_fragment($y1, $y2, 1, $min, $step);
70

71 # x1 x2 x1 x2
72 # |==============| |==============|
73 # |==============| |==============|
74 # y1 y2 y1 y2
75 #
76 # x1 x2 x1 x2
77 # |==============| |==========|
78 # |==========| |==============|
79 # y1 y2 y1 y2
80

81 # check overlap
82 my @overlaps = (

Denis BAURAIN / ULiège 5 Modern Perl for Biologists II | Deeper Concepts

CHAPTER 1. THINKING IN LIST CONTEXT

83 # using high-precedence logical operators
84 (($y1 >= $x1 && $y1 <= $x2) # left cases
85 || ($x1 >= $y1 && $x1 <= $y2)), # right cases
86

87 # mixing high- and low-precedence logical operators
88 ($y1 >= $x1 && $y1 <= $x2 # left cases
89 or $x1 >= $y1 && $x1 <= $y2), # right cases
90

91 # ... or more intelligently...
92 (not $y1 > $x2 || $y2 < $x1), # test disjunction
93);
94

95 # output overlap status
96 @overlaps = uniq(@overlaps);
97 ### assert: @overlaps == 1
98 say "---> $x1-$x2 and $y1-$y2 "
99 . (shift @overlaps ? 'DO' : 'DO NOT')
100 . ' overlap!'
101 . "\n"
102 ;
103 }
104

105

106 sub plot_scale {
107 say step_line(0, @_);
108 say step_line(1, @_);
109 say q{-} x $cols;
110 return;
111 }
112

113 sub plot_fragment {
114 my $x1 = shift;
115 my $x2 = shift;
116 my $second = shift;
117

118 my $pad_n = xloc($x1, @_);
119 my $chr_n = xloc($x2, @_) - $pad_n + 1;
120 my $fragm_str = q{ } x $pad_n . q{#} x $chr_n;
121

122 my $spc_n = $chr_n - length($x1) - length($x2);
123 $spc_n = 0 if $spc_n < 0;
124 my $coord_str = q{ } x $pad_n . $x1 . q{ } x $spc_n . $x2;
125 #### $x1
126 #### $x2
127 #### $pad_n
128 #### $chr_n
129 #### $spc_n

Denis BAURAIN / ULiège 6 Modern Perl for Biologists II | Deeper Concepts

CHAPTER 1. THINKING IN LIST CONTEXT

130 #### $fragm_str
131 #### $coord_str
132

133 say $coord_str unless $second;
134 say $fragm_str;
135 say $coord_str if $second;
136 return;
137 }
138

139 sub step_line {
140 my ($bars, $min, $step) = @_;
141

142 my $str;
143 for (my ($x, $tic) = ($min, 0); $tic < $tic_n; $x += $step, $tic++) {
144 $str .= sprintf("%-*d", $tic_width, $x) unless $bars;
145 $str .= '|' . q{ } x ($tic_width-1) if $bars;
146 }
147 return $str;
148 }
149

150 sub xloc {
151 my ($x, $min, $step) = @_;
152 return sprintf "%.0f", ($x-$min) / $step * $tic_width;
153 }

1.2 Perl values: Lists
List manipulation is at the heart of Modern Perl. We have already seen how to iterate over a list one
value at a time (using the “foreach-style for loop”, see the first part of this course), but experienced
programmers often use lists in amore direct way. In this section, wewill summarize a series of idioms
related to list-oriented programming. Let’s first remind you what a list is and how to define it.

A list is a group of one or more expressions separated by comma characters (,). Even if lists are often
surrounded by a pair of parenthesis characters ((and)), these are not required for creating a list,
whereas the infix comma operator is. Parentheses instead act on precedence (here, which expressions
have to be grouped in a given list). To see that, consider the examples in the box below.

When you need to define a list corresponding to a range of values, use the range operator (..), as
explained in the foreach-style for loop. For example, we could have defined the list above as follows.

my @numbers = 5..8;
@numbers

gives:
@numbers: [
5,
6,
7,

Denis BAURAIN / ULiège 7 Modern Perl for Biologists II | Deeper Concepts

CHAPTER 1. THINKING IN LIST CONTEXT

8
]

The range operator is very common in for loops with a numeric iterator, such as the genetic-code
building loop encountered in several of our programs (e.g., translate.pl).

my $codon_n = length $aa;
for my $i (0..$codon_n-1) {

loop body
}

This operator is not smart enough to count in descending order, but you can achieve the same result
by reversing the corresponding list in ascending order.

my @countdown = 3..0;
@countdown

my @countdown_2nd = reverse 0..3;
@countdown_2nd

gives:

@countdown: []

@countdown_2nd: [
3,
2,
1,
0
]

In contrast, the range operator can operate on non-numeric characters. This is occasionally useful and
reminiscent of the character ranges defined in regular expressions with the hyphen character (-).

my @letters = 'a'..'z';
@letters

gives:

@letters: [
'a',
'b',
'c',
...
'y',
'z'
]

Finally, remember that lists of literal words can be defined using the quoted word operator (qw(...)),
which splits the enclosed string on whitespace to produce a list of substrings. Observe how we can
even include single quotes (') in some words.

Denis BAURAIN / ULiège 8 Modern Perl for Biologists II | Deeper Concepts

CHAPTER 1. THINKING IN LIST CONTEXT

my @bases = qw(A C G T);
@bases

my @gene_parts = qw(promoter 5'-UTR exon intron 3'-UTR);
@gene_parts

gives:

@bases: [
'A',
'C',
'G',
'T'
]

@gene_parts: [
'promoter',
'5\'-UTR',
'exon',
'intron',
'3\'-UTR'
]

We have already seen qw(...) in codon_usage.pl and explained that it was convenient to produce
header lines for tables when combined with join (see “Writing files”, in the first part of this course).
say '# ' . join "\t", qw(codon count aa total usage);

gives:

codon count aa total usage

The qw(...) operator does not like comment characters and outputs a warning when it sees one.
say join "\t", qw(#codon count aa total usage);

gives:

Possible attempt to put comments in qw() list at qw.pl line 6.
#codon count aa total usage

Lists also occur as the results of expressions evaluated in so-called list context. Assigning to an array
or to a hash forces list context, as well as assigning to a list of one or more scalars surrounded by a
pair of parentheses. Below, I give you a few examples from our previous programs.
scalars
my ($id) = $code =~ m/ id \s* (\d+) /xms; # xxl_xlate.pl
my ($basename, $dir) = fileparse($infile, qr{\.[^.]*}xms); # xxl_xlate.pl
while (my ($id, $dna_string) = each %seq_for) { # xxl_xlate.pl

loop body
}

Denis BAURAIN / ULiège 9 Modern Perl for Biologists II | Deeper Concepts

CHAPTER 1. THINKING IN LIST CONTEXT

array
my @bases = split //, $dna_string; # rev_comp.pl
my @questions = shuffle keys %aa_for; # codon_quizz.pl
my @codes = $gc_content =~ m/ \{ ([^{}]+) \} /xmsg; # xxl_xlate.pl

hash
my %comp_for = (# rev_comp.pl

A => 'T', T => 'A', G => 'C', C => 'G',
a => 't', t => 'a', g => 'c', c => 'g',

);

List assignment is both predictable and greedy. If you want to discard the last value(s) of a list, simply
provide less variables than the number of values in the list. If you want to discard some values in the
middle of a list, assign these to undef.

my ($adenine, $cytosine, $guanine, $thymine) = qw(A C G T);
$adenine
$cytosine
$guanine
$thymine

my ($one) = qw(A C G T);
$one
my ($first, @others) = qw(A C G T);
$first
@others
my (undef, $second, undef, $fourth) = qw(A C G T);
$second
$fourth

gives:

$adenine: 'A'
$cytosine: 'C'
$guanine: 'G'
$thymine: 'T'

$one: 'A'

$first: 'A'
@others: [
'C',
'G',
'T'
]

$second: 'C'
$fourth: 'T'

Denis BAURAIN / ULiège 10 Modern Perl for Biologists II | Deeper Concepts

CHAPTER 1. THINKING IN LIST CONTEXT

BOX 1: Operator precedence in list definitions
my @numbers = (5, 6, 7, 8);
@numbers

my @number = 5, 6, 7, 8; # ouch! '=' has bigger precedence than ','
@number

my $answer = 42;
my $count = (my @more_numbers = (@numbers, $answer));
@numbers
@more_numbers
$count

gives:

@numbers: [
5,
6,
7,
8
]

Useless use of a constant (6) in void context at lists.pl line 15.
Useless use of a constant (7) in void context at lists.pl line 15.
Useless use of a constant (8) in void context at lists.pl line 15.

@number: [
5
]

@numbers: [
5,
6,
7,
8
]
@more_numbers: [
5,
6,
7,
8,
42
]
$count: 5

Denis BAURAIN / ULiège 11 Modern Perl for Biologists II | Deeper Concepts

CHAPTER 1. THINKING IN LIST CONTEXT

1.3 Storing lists in arrays
It might look subtle but you should not conflate lists and arrays. Lists are (collections of) values,
whereas arrays are containers. Think of it as follows: lists are book collections, whereas arrays are
bookcases. You may store a list in an array, just as you may store a collection of books in a bookcase.
Inversely, you may produce a list from an array, just as you may take a collection of books out of a
bookcase. However, book collections and bookcases are intrinsically separate entities.
Arrays store only scalar values. These are called array elements. You already know how to iterate over
the elements of an array using the foreach-style for loop. You also know how to add or remove elements
to or from an array using list-oriented builtin functions (push, unshift, pop and shift). Now, let’s
examine how to access some specific array elements.

Figure 1.1: Lists are values, whereas arrays are containers.

Array elements are referred to using numeric indices between square bracket characters ([and]).
The first element of the array has index zero (0), while the last element has index length-of-the-array-
minus-one. This last index value can always be given as $#array_name. Youmay also count backwards
from the end of the array using negative indices starting at minus one (-1) for the last element. Note
that this is different from, e.g., the R language, in which negative indices denote exclusion.
my @bases = qw(A C G T);

$bases[0]: $bases[0]
$bases[1]: $bases[1]

Denis BAURAIN / ULiège 12 Modern Perl for Biologists II | Deeper Concepts

CHAPTER 1. THINKING IN LIST CONTEXT

$bases[2]: $bases[2]
$bases[3]: $bases[3]

$bases[$#bases]: $bases[$#bases]

$bases[-1]: $bases[-1]
$bases[-2]: $bases[-2]
$bases[-3]: $bases[-3]
$bases[-4]: $bases[-4]

gives:

$bases[0]: 'A'
$bases[1]: 'C'
$bases[2]: 'G'
$bases[3]: 'T'

$bases[$#bases]: 'T'

$bases[-1]: 'T'
$bases[-2]: 'G'
$bases[-3]: 'C'
$bases[-4]: 'A'

Elements can be manipulated as individual entities (scalar context), as in the examples above, or as
collective, though sometimes disjoined, entities (list context). The latter are called array slices and are
particularly powerful. Consider the following examples.

my @bases = qw(A C G T);

@bases[0..1]: @bases[0..1]
@bases[0,1] : @bases[0,1]
@bases[1,0] : @bases[1,0]
@bases[1,3] : @bases[1,3]
@bases[-1,3]: @bases[-1,3]

gives:

@bases[0..1]: 'A',
'C'
@bases[0,1] : 'A',
'C'
@bases[1,0] : 'C',
'A'
@bases[1,3] : 'C',
'T'
@bases[-1,3]: 'T',
'T'

Denis BAURAIN / ULiège 13 Modern Perl for Biologists II | Deeper Concepts

CHAPTER 1. THINKING IN LIST CONTEXT

Since we retrieve more than one element in a single operation, we are in list context. That is why the
sigil of the @bases array switches from $ to @. As you can see, array slices can either be specified as
enumerated lists of indices or using the range operator. They can mix and match different indexing
schemes, select non-contiguous elements and even select the same element more than once (examine
the last example). Slices are especially useful when dynamically computed, i.e., stored in variables.

BOX 2: Array slices and the amount context
Observe how the perl interpreter warns you of the inadequate sigil when you should know that
you are in scalar context, but not when you cannot determine the amount context in advance.
my @bases = qw(A C G T);
my @gc_slice = 1..2;
@bases[@gc_slice]: @bases[@gc_slice]

my $lone_slice = 3;
@bases[$lone_slice]: @bases[$lone_slice]

my @dyn_slice = (0);
@bases[@dyn_slice]: @bases[@dyn_slice]

gives:

@bases[@gc_slice]: 'C',
'G'

Scalar value @bases[$lone_slice] better written as $bases[$lone_slice] \
at slice.pl line 11.

@bases[$lone_slice]: 'T'

@bases[@dyn_slice]: 'A'

Individual array elements and array slices can be the object of assignment operations. An existing
array can be reset to zero elements by assigning the empty list (()) to it. This is useful for persisting
arrays, but lexically-scoped arrays rarely need to be explicitly emptied.

my @bases = qw(A C G T);
@bases
$bases[-1] = 't';
@bases
$bases[1] = qw(c);
@bases
@bases[0,2] = qw(a g);
@bases
@bases = ();
@bases

Denis BAURAIN / ULiège 14 Modern Perl for Biologists II | Deeper Concepts

CHAPTER 1. THINKING IN LIST CONTEXT

gives:

@bases: [
'A',
'C',
'G',
'T'
]

@bases: [
'A',
'C',
'G',
't'
]

BOX 3: Accessing individual values in lists
Values in a list can also be accessed individually using indices between square brackets, just as
you would do with an array. For this to work, enforce the list context using a pair of parentheses.
my $dna_string = 'CATGAACTTCTTTGGCGTCTTGAT';
my $first = (split //, $dna_string)[0];
$first

gives:

$first: 'C'

Of course, this works with slices too.
my ($second, $fourth) = (split //, $dna_string)[1,3];
$second
$fourth

gives:

$second: 'A'
$fourth: 'G'

However, you can only read the values of a list, not assign them new values (because they are
already values and not storage slots like the elements of an array).
(split //, $dna_string)[0] = 'A'; # will cause a compilation error

gives:

Can't modify list slice in scalar assignment at list.pl line 8, near "'A';"
Execution of list.pl aborted due to compilation errors.

Denis BAURAIN / ULiège 15 Modern Perl for Biologists II | Deeper Concepts

CHAPTER 1. THINKING IN LIST CONTEXT

@bases: [
'A',
'c',
'G',
't'
]

@bases: [
'a',
'c',
'g',
't'
]

@bases: []

1.4 Storing lists in hashes
Lists can be stored in hashes provided that they have an even number of values. If you try to assign
an odd number of values to a hash, you will receive a warning. This is so because, in hash assignment,
list values have to be taken two at a time, the first one becoming the key and the second one becoming
the associated value.

my %comp_for = (
A => 'T', T => 'A', G => 'C', C => 'G',
a => 't', t => 'a', g => 'c', c => 'g',

);

In principle, you may use the regular comma operator (,) when defining a hash. However, the fat
comma operator (=>) makes the pairing more visible. It also automatically quotes the keys. Thus, the
previous hash definition is equivalent to the (less readable) following one.

my %comp_for = (
'A', 'T', 'T', 'A', 'G', 'C', 'C', 'G',
'a', 't', 't', 'a', 'g', 'c', 'c', 'g',

);

Finally, if you have key/value pairs in two different lists of the same size, you can build a hash from
them using the mesh function exported by List::MoreUtils. It is also known as the zip function.
Both are equally available in the more convenient List::AllUtilsmodule.

use List::AllUtils 'mesh';

my @genera = qw(human yeast arabidopsis amoeba);
my @groups = qw(Opisthokonta Opisthokonta Plantae Amoebozoa);

my %taxon_for = mesh @genera, @groups;
%taxon_for

Denis BAURAIN / ULiège 16 Modern Perl for Biologists II | Deeper Concepts

CHAPTER 1. THINKING IN LIST CONTEXT

gives:

%taxon_for: {
amoeba => 'Amoebozoa',
arabidopsis => 'Plantae',
human => 'Opisthokonta',
yeast => 'Opisthokonta'
}

Everything we have just explained about manipulating array elements also applies to hashes, except
that hash values are referred to using string keys between curly brace characters ({ and }) instead
of numeric indices between square brackets. So, there also exist hash slices, which are extremely
powerful when dynamically computed and/or used in hash assignment.

$taxon_for{human}: $taxon_for{human}
@taxon_for{ qw(human yeast) }: @taxon_for{ qw(human yeast) }

@taxon_for{ qw(human yeast) } = qw(Metazoa Fungi);
%taxon_for

gives:

$taxon_for{human}: 'Opisthokonta'
@taxon_for{ qw(human yeast) }: 'Opisthokonta',
'Opisthokonta'

%taxon_for: {
amoeba => 'Amoebozoa',
arabidopsis => 'Plantae',
human => 'Metazoa',
yeast => 'Fungi'
}

Single hash keys do not need to be quoted between curly braces and can be specified as barewords. In
hash slices, individual keys have to be single-quoted, e.g., @taxon_for{ 'human', 'yeast' }. When
composed of single words, use the qw(...) operator for better legibility (as in the example above).

1.5 Working with lists
Idiomatic Perl makes heavy use of lists. In subsequent lessons, we will discuss a few builtin functions
that are specially devoted to their manipulation (see for example grep and map in “Implicit loops”,
p.140). For now, let’s just review the list-oriented functions used in check_overlap.pl. All of them
are available in List::AllUtils. Since we want to import several functions at once, we need to
specify a list, hence the use of the qw(...) operator.

use List::AllUtils qw(min max uniq);

Consider the format of the input file below.

Denis BAURAIN / ULiège 17 Modern Perl for Biologists II | Deeper Concepts

CHAPTER 1. THINKING IN LIST CONTEXT

inclusions
10 60 10 60
10 60 30 60
30 60 10 60
10 40 10 60
10 60 10 40
10 60 30 50
30 50 10 60

left overhangs
10 50 30 60
10 50 50 60
...

Empty lines and comment lines are allowed. We thus need to skip them.

next LINE if $line =~ m/^ \s* $/xms; # skip empty lines
next LINE if $line =~ m/^ \#/xms; # skip comment lines

Each data line specifies two genomic intervals, each one corresponding to one fragment. We first split
the line on whitespace characters to extract the four individual coordinates. Because of the regular
expression, they may be separated by one or more space(s) or tab character(s). Then, we copy them
into four discrete variables using list assignment.

extract coordinates
chomp $line;
my @coords = split /\s+/xms, $line;
my ($x1, $x2, $y1, $y2) = @coords;

This allows us to refer to individual coordinates while still being able to work in list context if more
convenient. Hence, to determine the lower and higher bounds of our scale, list context is ideal.

setup plot scale
my $min = min @coords;
my $max = max @coords;

In contrast, fragment overlap tests are easier to spell out using individual coordinates.

my @overlaps = (
using high-precedence logical operators

(($y1 >= $x1 && $y1 <= $x2) # left cases
|| ($x1 >= $y1 && $x1 <= $y2)), # right cases

mixing high- and low-precedence logical operators
($y1 >= $x1 && $y1 <= $x2 # left cases
or $x1 >= $y1 && $x1 <= $y2), # right cases

... or more intelligently...
(not $y1 > $x2 || $y2 < $x1), # test disjunction

);

Denis BAURAIN / ULiège 18 Modern Perl for Biologists II | Deeper Concepts

CHAPTER 1. THINKING IN LIST CONTEXT

In the previous chunk of code, we actually perform three variants of the same test. The boolean results
of each test are stored in the @overlaps array, which is thus a three-element array containing boolean
values. To ensure that all tests return the same result, we ask for the unique values in the array.
output overlap status
@overlaps = uniq(@overlaps);
assert: @overlaps == 1

If all three tests succeed or fail, the uniq function returns a list containing a single value (equivalent
to true or false). Otherwise, it returns a list of two values (one true and one false). We will come back
to the assert smart comment in “More on Smart::Comments”, p.25.

Denis BAURAIN / ULiège 19 Modern Perl for Biologists II | Deeper Concepts

CHAPTER 1. THINKING IN LIST CONTEXT

Denis BAURAIN / ULiège 20 Modern Perl for Biologists II | Deeper Concepts

Chapter 2

Formatting output

2.1 check_overlap.pl output sample
This section is heavily based on check_overlap.pl. To help you to follow the upcoming explanations,
I show you below an excerpt of a typical run of the program.
$ check_overlap.pl coords.txt 8

10 16 22 28 34 40 46 52 58 64
| | | | | | | | | |
--
10 60
##
##
10 60
---> 10-60 and 10-60 DO overlap!

10 16 22 28 34 40 46 52 58 64
| | | | | | | | | |
--
10 60
##

###
30 60

---> 10-60 and 30-60 DO overlap!
...

2.2 How to round numbers?
In check_overlap.pl, we need to round numbers in different ways depending on our objectives:

1. drawing the plotting axis,
2. computing the drawing scale,
3. positioning the fragments.

Denis BAURAIN / ULiège 21 Modern Perl for Biologists II | Deeper Concepts

CHAPTER 2. FORMATTING OUTPUT

2.2.1 floor and ceil

First, given the width of the screen (in characters) and a user-specified tic width (also in characters),
we determine howmany tics we can plot on our axis. This requires rounding to the largest integer value
less than or equal to the ratio between terminal width and tic width, which is achieved with the floor
function provided by the POSIXmodule.

use POSIX;

and later...
my $tic_width = shift;

my ($cols, $rows) = chars();
my $tic_n = floor($cols / $tic_width);

Second, for a given input line, once we know the lower and upper bounds of our drawing scale based
on fragment coordinates, we compute the drawing scale. This corresponds to the ratio between the
coordinate range and the number of tic intervals (i.e., number of tics minus one). To avoid falling too
short for the last tic value, we round this ratio to the smallest integer value greater than or equal to this
number (ceil function).

my $range = $max - $min;
my $step = ceil($range / ($tic_n-1));

2.2.2 sprintf

Third, when computing the position of the beginning or the end of a fragment based on the current
drawing scale, we need to round our transformed fragment coordinate to the closest integer. We do
that using another Perl workhorse, the sprintf builtin function. Don’t worry about return: we will
cover it in the section about functions (see “return”, p.29).

return sprintf "%.0f", ($x-$min) / $step * $tic_width;

sprintf is incredibly powerful and complex. It also exists as printf. The only difference is that the
output of printf goes to the screen (or to a file), whereas sprintf returns a string that can be further
processed and/or stored in a variable. Both builtin functions expect at least two arguments: one format
string and a list of one or more values to format.

Here, I will not describe all the possibilities of sprintf. Instead, I will explain how we used it so far
and refer you to the documentation for the gory detail:
http://perldoc.perl.org/functions/sprintf.html

In the statement above, we format our screen coordinate as a floating-point number (%f) with zero
decimal digits (.0), which has the effect of rounding it in a mathematically-correct way. See:
http://en.wikipedia.org/wiki/Rounding#Round_half_to_even

In codon_usage.pl, we used something similar to limit the precision of our usage percentages to one
digit after the decimal point. We also asked for a total width of five characters (including the decimal
point) to align the resulting numbers to the right.

say {$out} join "\t", $codon, $count, $aa, $total,
sprintf "%5.1f", $usage;

Denis BAURAIN / ULiège 22 Modern Perl for Biologists II | Deeper Concepts

http://perldoc.perl.org/functions/sprintf.html
http://en.wikipedia.org/wiki/Rounding#Round_half_to_even

CHAPTER 2. FORMATTING OUTPUT

gives:

codon count aa total usage
AAA 46021 K 60126 76.5
AAC 29496 N 53737 54.9
...
ATA 5959 I 81870 7.3
ATC 34384 I 81870 42.0
ATG 37917 M 37917 100.0
...
GAC 26136 D 70121 37.3
GAG 24399 E 78482 31.1

Suchwidth specifications can be quite complex. For example, in check_overlap.pl, we print the actual
tic values using a constant width so that they nicely line up above the tics symbols. This is done by
formatting these values as integer numbers (%d), aligned to the left (-) but consuming a total of exactly
$tic_width characters (* followed by a number at the corresponding position in the value list).
$str .= sprintf("%-*d", $tic_width, $x) unless $bars;

This statement is part of a pretty hairy C-style for loop drawing the plotting scale, the decoding of
which is left as an exercise to the reader!
my $str;
for (my ($x, $tic) = ($min, 0); $tic < $tic_n; $x += $step, $tic++) {

$str .= sprintf("%-*d", $tic_width, $x) unless $bars;
$str .= '|' . q{ } x ($tic_width-1) if $bars;

}

2.3 The repetition operator
In check_overlap.pl, we position things using a padding strategy. This means that we print as many
whitespace characters as needed to reach the right place before printing what we want to print. This
is clearly old-school but useful to illustrate the use of the repetition operator (x).
The behavior of this infix operator is relatively complex to master. Thus, you’d better to limit yourself
to two use cases:

1. repeating a scalar in scalar context,
2. repeating a list in a list context.

This is the first case that we use for padding. Evaluating the following expressions results in strings
concatenating the first operand as many times as specified by the second operand.
my $fragm_str = q{ } x $pad_n . q{#} x $chr_n;
...
my $coord_str = q{ } x $pad_n . $x1 . q{ } x $spc_n . $x2;

Here’s a detailed execution for a better understanding.
my $pad_n = xloc($x1, @_);
my $chr_n = xloc($x2, @_) - $pad_n + 1;

Denis BAURAIN / ULiège 23 Modern Perl for Biologists II | Deeper Concepts

CHAPTER 2. FORMATTING OUTPUT

my $fragm_str = q{ } x $pad_n . q{#} x $chr_n;

my $spc_n = $chr_n - length($x1) - length($x2);
$spc_n = 0 if $spc_n < 0;

my $coord_str = q{ } x $pad_n . $x1 . q{ } x $spc_n . $x2;

gives:

$x1: 10
$x2: 25
$pad_n: 13
$chr_n: 41
$spc_n: 37
$fragm_str: ' ###'
$coord_str: ' 10 25'

Maybe easier, the statements to plot the axis line.

my ($cols, $rows) = chars();

and later...
say q{-} x $cols;

As an aside, the chars function returns a list of two values corresponding to the dimensions of the
terminal window (width x height). It was imported from the Term::Size::Anymodule.

use Term::Size::Any 'chars';

The second use case is very similar to the first one, except that there is no concatenation. Instead, the
expression below returns a large list composed of multiple identical sublists. The returned list is said
to be flattened because sublists are not nested: there is only a single level of values.

my @triplets = (1, 2, 3) x 5;
@triplets;

gives:

@triplets: [
1,
2,
3,
1,
2,
3,
1,
2,
3,
1,
2,
3,

Denis BAURAIN / ULiège 24 Modern Perl for Biologists II | Deeper Concepts

CHAPTER 2. FORMATTING OUTPUT

1,
2,
3
]

2.4 More on Smart::Comments

In our last programs, we have begun to use smart comments for more than just debugging our code.
For example, in codon_usage.pl, we use them to report progress to the user.
Reading input file: $infile

Building hash for standard code...

Processing: keys(%seq_for) . ' sequences...'

for my $dna_string (values %seq_for) { ### Elapsed time |===[%]
loop body

}

Computing codon usage statistics...

Writing output file: $outfile

Observe how we embed variables ($infile, $outfile) and Perl expressions (keys(%seq_for)) in
our comments for better reporting. We also include the special construct ### ... |===[%] to get an
animated progress bar during the loop.
In xxl_xlate.pl, we use the same approach with one difference, though: progress comments are pre-
ceded by three comment characters (###), whereas debugging comments are preceded by four of them
(####). Further, we load Smart::Comments with an explicit level of smartness, here three.
use Smart::Comments '###';

Reading input file: $infile

Building hash for code: $gc_id . '...'

$gc_content
@codes
%aa_for

Translating: keys(%seq_for) . ' sequences...'

while (my ($id, $dna_string) = each %seq_for) { ### Elapsed time |===[%]
loop body

}

Writing output file: $outfile->stringify

Denis BAURAIN / ULiège 25 Modern Perl for Biologists II | Deeper Concepts

CHAPTER 2. FORMATTING OUTPUT

As a result, normal execution of this program only prints progress comments. If we want to debug
our code (and see the content of @gc_content, @codes and %aa_for), we can invoke it with a finer
level of smartness, either by changing the use statement…
use Smart::Comments ('###', '####');

… or by directly specifying it on the command line!
$ perl -M"Smart::Comments ('###','####')" ./xxl_xlate.pl ...

Finally, in check_overlap.pl, we use smart comments assertions to ensure correct execution of error-
prone statements (defensive programming). Consider the following chunk of code.
output overlap status
@overlaps = uniq(@overlaps);
assert: @overlaps == 1
say "---> $x1-$x2 and $y1-$y2 "

. (shift @overlaps ? 'DO' : 'DO NOT')

. ' overlap!'

. "\n"
;

If the three tests do not agree, we get a list of two values. Thus, the conditional expression of the smart
comment evaluates to a false value, which causes the program to halt with an error message due to
the assert function. Beware that assertions are only evaluated at their smartness level.
assert: @overlaps == 1

@overlaps == 1 was not true at ./check_overlap.pl line 97, <$_[...]> line 19.
@overlaps was: [
'',
1
]

If the three tests agree, the say statement gets executed. It uses several idioms that make it very
compact but not so easy to understand.
say "---> $x1-$x2 and $y1-$y2 "

. (shift @overlaps ? 'DO' : 'DO NOT')

. ' overlap!'

. "\n"
;

The parenthesis characters enclose an expression involving the ternary conditional operator. Its pur-
pose is to select between two strings: 'DO' and 'DO NOT'. The expression evaluates as follows…

1. The first (actually unique) element of @overlaps is taken out of the array using shift.
2. If it is true, the conditional expression evaluates to true and the whole ternary conditional expres-

sion takes the string value 'DO'. Otherwise, the conditional expression evaluates to false and the
whole expression takes the string value 'DO NOT'.

3. The selected string is then concatenatedwith the preceding and following strings given in the say
statement before getting printed to the screen.

Denis BAURAIN / ULiège 26 Modern Perl for Biologists II | Deeper Concepts

Chapter 3

Functions

3.1 What are functions?
FromModern Perl by chromatic:
http://modernperlbooks.com/books/modern_perl_2014/

A function (or subroutine) in Perl is a discrete, encapsulated unit of behavior. A program is a col-
lection of little black boxes where the interaction of these functions governs the control flow of the
program. A function may have a name. It may consume incoming information. It may produce
outgoing information.

Functions are a prime mechanism for abstraction, encapsulation, and re-use in Perl 5.

Figure 3.1: The famous black box

3.2 Defining and using functions
check_overlap.pl uses several functions. Some of them are defined for abstraction and encapsulation
(plot_scale), whereas others are moreover defined for re-use (plot_fragment, step_line and xloc).
All are defined with the sub keyword, followed by the function name, and then by the function body
specified as a block surrounded by curly brace characters.

Denis BAURAIN / ULiège 27 Modern Perl for Biologists II | Deeper Concepts

http://modernperlbooks.com/books/modern_perl_2014/

CHAPTER 3. FUNCTIONS

sub plot_scale {
function body

}

sub plot_fragment {
function body

}

sub step_line {
function body

}

sub xloc {
function body

}

To call a function, simply use its name immediately followed by a pair of parenthesis characters. For
maximum robustness, it is safer not to put whitespace characters before the opening parenthesis.

plot_scale() # OK
plot_scale () # could fail

If the function expects parameters, put them between the trailing parentheses.

plot_scale($min, $step);
plot_fragment($x1, $x2, 0, $min, $step);
plot_fragment($y1, $y2, 1, $min, $step);

Otherwise, leave the parentheses empty, as in the example above. Empty parentheses can be omitted
completely if the function has been declared (or imported from a module) before the call.

plot_scale # will fail unless declared beforehand
chars # OK if imported from Term::Size::Any

From the point of view of the calling code, function parameters are called arguments. These can be any
Perl expression, including literal values and variables. The semantic distinction between parameters
and arguments is quite subtle and often overlooked but nevertheless important in computer theory.

Function names should be chosen after action verbs and be as explicit as possible to contribute to the
autodocumentation of your code (e.g., plot_scale, plot_fragment).

As a rule of thumb, place all your functions at the end of your program file and order them by decreasing
importance (from the most abstract to the most practical). This is known as the top-down approach.

Denis BAURAIN / ULiège 28 Modern Perl for Biologists II | Deeper Concepts

CHAPTER 3. FUNCTIONS

3.3 Function parameters and return values
3.3.1 The default array @_
A Perl function receives its parameters in the default array @_. You access them using numeric indices.

print_dna('CATGAACTTCTTTGGCGTCTTGAT');

sub print_dna {
say 'Your DNA sequence is: ' . $_[0];

}

gives:

Your DNA sequence is: CATGAACTTCTTTGGCGTCTTGAT

3.3.2 return

By default, a function call evaluates to the value of the last expression evaluated in the function. How-
ever, relying on that behavior is a bad idea. Instead, prefer the more explicit return keyword.

my $dna_string = 'CATGAACTTCTTTGGCGTCTTGAT';
my $def_string = def_rev_comp($dna_string);
my $ret_string = ret_rev_comp($dna_string);

$dna_string
$def_string
$ret_string

sub def_rev_comp {
scalar reverse $_[0] =~ tr/ACGTacgt/TGCAtgca/r; # avoid

}

sub ret_rev_comp {
return scalar reverse $_[0] =~ tr/ACGTacgt/TGCAtgca/r; # OK

}

gives:

$dna_string: 'CATGAACTTCTTTGGCGTCTTGAT'
$def_string: 'ATCAAGACGCCAAAGAAGTTCATG'
$ret_string: 'ATCAAGACGCCAAAGAAGTTCATG'

3.3.3 Argument aliasing
Be careful that the default array @_ is akin to iterators in foreach-style for loops. This means that it
actually aliases the arguments passed to the function, which may thus be damaged by accident.

my $dna_string = 'CATGAACTTCTTTGGCGTCTTGAT';
my $rev_string = sloppy_rev_comp($dna_string);

Denis BAURAIN / ULiège 29 Modern Perl for Biologists II | Deeper Concepts

CHAPTER 3. FUNCTIONS

$dna_string
$rev_string

sub sloppy_rev_comp {
$_[0] =~ tr/ACGTacgt/TGCAtgca/; # forgot /r
return scalar reverse $_[0];

}

gives:

$dna_string: 'GTACTTGAAGAAACCGCAGAACTA'
$rev_string: 'ATCAAGACGCCAAAGAAGTTCATG'

ouch! $dna_string has been complemented by accident...

To avoid such issues, the first thing to do is to copy the function arguments in lexically-scoped vari-
ables. This can be done in two ways:

1. through one or more shift statements,
2. through a single list assignment.

Here’s an example using the first approach.

my $dna_string = 'CATGAACTTCTTTGGCGTCTTGAT';
my $rev_string = robust_rev_comp($dna_string);

$dna_string
$rev_string

sub robust_rev_comp {
my $dna = shift; # lexical copy of $dna_string

$dna =~ tr/ACGTacgt/TGCAtgca/; # forgot /r
return scalar reverse $dna;

}

gives:

$dna_string: 'CATGAACTTCTTTGGCGTCTTGAT'
$rev_string: 'ATCAAGACGCCAAAGAAGTTCATG'

As you can see, it is not necessary tomention the default array @_when using shift. This is so because
it is automatically implied in shift calls fromwithin function definitions. Outside functions, however,
remember that it is the special array @ARGV that is implied, as explained in “unshift & shift” (see
the first part of this course). Many other list-oriented Perl builtin functions display the same behavior.

Denis BAURAIN / ULiège 30 Modern Perl for Biologists II | Deeper Concepts

CHAPTER 3. FUNCTIONS

3.3.4 Lexical and file variables
If a function defines variables with the my keyword, even unrelated to the arguments, these variables
are also lexically-scoped to the function body. This is very useful for encapsulating your code and is
thus an absolute must-do practice.

sub plot_fragment {
my $x1 = shift;

...

here's a lexical variable scoped to the sub
my $fragm_str = q{ } x $pad_n . q{#} x $chr_n;

...
}

Moreover, this does not prevent you from using file-scoped variables defined outside of any block
when it is more convenient instead of passing them as parameters (e.g., $tic_width in xloc).

my $tic_width = shift;

and later...
sub xloc {

my ($x, $min, $step) = @_;
return sprintf "%.0f", ($x-$min) / $step * $tic_width;

}

3.3.5 Argument slurping
The secondway of copying function arguments uses list assignment, as shown in functions step_line
and xloc. This style is useful when a function either needs all the elements of @_ or can discard those
that it does not require. This works because of the greediness of list assignment.

sub step_line {
my ($bars, $min, $step) = @_;

function body
}

sub xloc {
my ($x, $min, $step) = @_;

function body
}

3.3.6 Argument currying
In some cases, a function actually needs only some of its arguments, while the others are passed un-
modified to another function. For example, plot_fragment.pl could have been written like this.

Denis BAURAIN / ULiège 31 Modern Perl for Biologists II | Deeper Concepts

CHAPTER 3. FUNCTIONS

sub plot_fragment {
my ($x1, $x2, $second, $min, $step) = @_;

my $pad_n = xloc($x1, $min, $step);
my $chr_n = xloc($x2, $min, $step) - $pad_n + 1;

...
}

sub xloc {
my ($x, $min, $step) = @_;
return sprintf "%.0f", ($x-$min) / $step * $tic_width;

}

However, this is a bit silly to extract $min and $step just to pass them as-is to the xloc function. That
is why I used the alternative version shown below. Passing some of (or all) incoming arguments to
another function directly from @_ is known as argument currying. Even if it is a quite advanced
concept, it is not that difficult to implement in Perl. Of course, the order of parameters has to be well
thought out for it to work.

sub plot_fragment {
my $x1 = shift;
my $x2 = shift;
my $second = shift;

my $pad_n = xloc($x1, @_);
my $chr_n = xloc($x2, @_) - $pad_n + 1;

...
}

The plot_scale function also uses currying, but to an even greater extent since it does not use any of
its arguments and passes them all to the step_line function. Observe how plot_scale triggers two
different behaviors of the latter function by inserting a boolean flag before the arguments in @_.

sub plot_scale {
say step_line(0, @_);
say step_line(1, @_);
say q{-} x $cols;
return;

}

sub step_line {
my ($bars, $min, $step) = @_;

function body
$bars is a boolean flag selecting between the two behaviors

}

Denis BAURAIN / ULiège 32 Modern Perl for Biologists II | Deeper Concepts

CHAPTER 3. FUNCTIONS

3.3.7 Bare return statements
At the end of plot_scale, there is bare return statement. This will return the undef value to the caller.
Though it is not strictly required, I advise you to include at least one return in all your functions, even
those that do not return any value. This improves readability and avoids returning automatically the
value of the last expression, which could lead to undesired effects in some cases.

my ($cols, $rows) = chars();

my $def = plot_def();
my $ret = plot_ret();

$def
$ret

sub plot_def {
say q{-} x $cols;

}

sub plot_ret {
say q{-} x $cols;
return;

}

gives:

--
--

$def: 1
$ret: undef

3.3.8 Argument flattening
Perl flattens the function arguments in a single list before passing them to the function. This is often an
issue for novices, but one can work around that (see “Interesting bits in Forem::FastaFile”, p.152).

my $type = 'DNA';
my @bases = qw(A C G T);
my $strand = '+';

my $result = analyze_this($type, @bases, $strand);

sub analyze_this {
my ($type, @bases, $strand) = @_;
@_
$type
@bases
$strand

}

Denis BAURAIN / ULiège 33 Modern Perl for Biologists II | Deeper Concepts

CHAPTER 3. FUNCTIONS

gives:

@_: [
'DNA',
'A',
'C',
'G',
'T',
'+'
]
$type: 'DNA'
@bases: [
'A',
'C',
'G',
'T',
'+'
]
$strand: undef

In this particular case, one straightforward solution is simply to put the array in last position, but this
would not work had we to pass more than one container to the function.

my $type = 'DNA';
my @bases = qw(A C G T);
my $strand = '+';

my $result = analyze_this($type, $strand, @bases);

sub analyze_this {
my ($type, $strand, @bases) = @_;
@_
$type
$strand
@bases

}

gives:

@_: [
'DNA',
'+',
'A',
'C',
'G',
'T'
]

Denis BAURAIN / ULiège 34 Modern Perl for Biologists II | Deeper Concepts

CHAPTER 3. FUNCTIONS

$type: 'DNA'
$strand: '+'
@bases: [
'A',
'C',
'G',
'T'
]

3.4 Bonus—Computing anagrams using recursive function calls
Even though not enclosed in a blue box, this section deals with more advanced concepts. If you do
not want to dig into these right now, you can skip it and proceed directly to “Homework”, p.39.

Some problems are better solved using a programming approach known as recursion. In short, a
recursive algorithm uses a function that calls itself until the job is done. The textbook example is the
recursive computation of the factorial function (n!).

1 #!/usr/bin/env perl
2

3 use Modern::Perl '2011';
4

5 die "Usage: $0 <n>" unless @ARGV == 1;
6

7 my $n = shift;
8 say "$n! is " . fact($n);
9

10 sub fact {
11 my $n = shift;
12 return 1 if $n == 0; # termination condition
13 return fact($n-1) * $n ; # recursive call
14 }

$ perl fact.pl 5

5! is 120

This algorithm works because each call to sub fact has its own private version (i.e., lexically scoped)
of the variable $n. To convince yourself, just drop the my keyword from the function definition.

$ perl fact_no_my.pl 5

5! is 0

Albeit classic, I do not like the recursive algorithm for computing the factorial due to it being both
overkill and inefficient. Overkill because a mere while loop would be enough and conceptually much
simpler. Inefficient because such a simple loop requires less resources than the recursive version. In-
deed, proper recursion requires a private environment for each function call (reentrancy) and deeply
nested recursive function calls are generally considered suspicious by the perl interpreter.

Denis BAURAIN / ULiège 35 Modern Perl for Biologists II | Deeper Concepts

CHAPTER 3. FUNCTIONS

sub fact_for {
my $n = shift;
my $f = 1;
while ($n > 0) { $f *= $n-- }
return $f;

}

$ perl fact_for.pl 100

100! is 9.33262154439442e+157

$ perl fact.pl 100

Deep recursion on subroutine "main::fact" at fact.pl line 13.
100! is 9.33262154439441e+157

In combinatorics (an area of mathematics), the factorial function is used to compute the number of
permutations of the elements of a list. Therefore, a better example of a recursive algorithm would be
the one allowing us to enumerate all these permutations.

If we consider a word as a simple list of letters, then such an algorithm would allow us to enumerate
all the anagrams for this word (whether biological or linguistic).

$ perl anagrams.pl ATG

AGT
ATG
GAT
GTA
TAG
TGA

As expected by the value of 3! (for a list of size 3), there are 5 anagrams (i.e., a total of 3 x 2 x 1 = 6
permutations) for the word corresponding to the ATG codon.

However, when the word contains repeated letters, some permutations become redundant and there
are less anagrams than predicted by the factorial function. You can see this with the TATAword, where
24 (4!) permutations reduce to 6 due to both A and T being used twice.

$ perl anagrams.pl TATA

AATT
ATAT
ATTA
TAAT
TATA
TTAA

Our program properly deals with such cases because it loops on a list of unique letters and keeps track
of how many times each of these letters has been used so far in the word being assembled.

Here is the code for anagrams.pl. Most of its logic is explained in plain English in dumb comments.
To get a better idea of how it works, run in with Smart::Comments enabled.

Denis BAURAIN / ULiège 36 Modern Perl for Biologists II | Deeper Concepts

CHAPTER 3. FUNCTIONS

1 #!/usr/bin/env perl
2

3 use Modern::Perl '2011';
4 use Smart::Comments '###'; # remove '###' to enable all comments
5

6 die "Usage $0 <word>" unless @ARGV == 1;
7

8 ### Reading input...
9 # get input word and count occurrences of each of letter
10 my $word = shift;
11 my $len = length $word;
12 #### $len
13

14 my %is_available;
15 for my $letter (split //, $word) {
16 $is_available{$letter}++;
17 }
18 #### %is_available
19 my @letters = sort keys %is_available;
20 #### @letters
21

22 ### Computing anagrams...
23 # main call to recursive subroutine
24 # we start with an empty word at depth (= length) 0 and all letters available
25 my @anagrams;
26 add_letter(q{}, 0, %is_available);
27

28 ### Printing results...
29 # print all computed anagrams
30 say join "\n", @anagrams;
31

32 # recursive subroutine in charge of adding a letter to an anagram
33 sub add_letter {
34 my $anagram = shift;
35 my $depth = shift;
36 my %is_available = @_;
37 #### entering depth: $depth
38 #### $anagram
39

40 # if current anagram is complete store it and leave current extension
41 # we could also compare length $anagram to $len but understanding
42 # the depth concept is important in a recursive algorithm
43 if ($depth == $len) { # termination condition
44 push @anagrams, $anagram;
45 #### finished anagram at depth: $depth
46 return;
47 }

Denis BAURAIN / ULiège 37 Modern Perl for Biologists II | Deeper Concepts

CHAPTER 3. FUNCTIONS

48 #### %is_available
49

50 # otherwise try each letter in turn for current position in anagram
51 for my $letter (@letters) {
52

53 # use the letter only if it still is available
54 # removing this condition makes every letter available as many times
55 # as there are positions in the anagram; you can try with or without
56 # letters in multiple occurrences
57 if ($is_available{$letter}) {
58 #### adding: "$letter at depth $depth"
59

60 # extend current anagram with available letter
61 add_letter(# recursive call
62 $anagram . $letter,
63 $depth + 1,
64 (%is_available, $letter => $is_available{$letter} - 1)
65); # here we decrement the availability of the used letter
66 } # but in a private copy of the hash (not the global one)
67 }
68

69 #### finished looping at depth: $depth
70 return;
71 }

Denis BAURAIN / ULiège 38 Modern Perl for Biologists II | Deeper Concepts

Homework

Write a new version of our translation tool (hw6_xxl_xlate_subs.pl) that uses distinct functions for:
• the FASTA file reader,
• the genetic code builder,
• the conceptual translation of a single DNA sequence.

Here are the specifications of each function.
read_fasta Expects a file path to a FASTA file to read. Returns the hash %seq_for (see

xxl_xlate.pl). Be sure to recover the ordered hash into another ordered (tied) hash;
otherwise, you will loose the order of the sequences implied by the FASTA file.

get_genetic_code Expects a file path to theNCBI gc.prtfile (or the --remote option) and an integer
number giving the id of the requested code. Returns the hash %aa_for (see xxl_xlate.pl).

translate Expects a string containing a DNA sequence to translate, an integer giving the reading
frame (1, 2, 3, -1, -2, -3) and the hash of the code (%aa_for). Returns a string with the protein.

Denis BAURAIN / ULiège 39 Modern Perl for Biologists II | Deeper Concepts

CHAPTER 3. FUNCTIONS

Denis BAURAIN / ULiège 40 Modern Perl for Biologists II | Deeper Concepts

Part II

Lesson 7

Denis BAURAIN / ULiège 41 Modern Perl for Biologists II | Deeper Concepts

Chapter 4

Sorted codon usage

4.1 A gentle introduction to references
4.1.1 Motivation
In Homework of Lesson 3 (see “The code for our own codon_usage”, in the first part of this course),
I asked you to sort the table of codon_usage.pl on the amino acids rather than on the codons.

Below is an alternative ending (director’s cut?) for this program. Save a copy as codon_usage_sort.pl
and replace the last part by the following lines of code.

Computing codon usage statistics...

my @lines;
for my $codon (sort keys %count_for) {

my $aa = $aa_for{$codon};
my $count = $count_for{$codon};
my $total = $total_for{$aa};
my $usage = 100.0 * $count / $total; # usage in percents
my @fields = ($aa, $codon, $count, $total, sprintf "%5.1f", $usage);
push @lines, \@fields;

}

sort lines lexically by aa then numerically descending by usage
my @sorted_lines = sort {

$a->[0] cmp $b->[0] || $b->[4] <=> $a->[4]
} @lines;

Writing output file: $outfile

open my $out, '>', $outfile;

say {$out} '# ' . join "\t", qw(aa codon count total usage);

Denis BAURAIN / ULiège 43 Modern Perl for Biologists II | Deeper Concepts

CHAPTER 4. SORTED CODON USAGE

for my $line (@sorted_lines) {
say {$out} join "\t", @$line;

}

If you try this new program, you will see that the table is now sorted by amino acid (first column) and
then (within each amino acid group) by decreasing usage (fifth column). This is achieved by the sort
statement in the middle of the code.

my @sorted_lines = sort {
$a->[0] cmp $b->[0] || $b->[4] <=> $a->[4]

} @lines;

We will come back to this statement in a few moments because it is pretty hairy. For now, let’s just
have a look at the result and explain the general strategy.

aa codon count total usage
* TAA 2896 4653 62.2
* TGA 1378 4653 29.6
* TAG 379 4653 8.1
A GCG 46056 129593 35.5
A GCC 34946 129593 27.0
A GCA 27685 129593 21.4
A GCT 20906 129593 16.1
C TGC 8785 15846 55.4
C TGT 7061 15846 44.6
...
L CTG 72134 145490 49.6
L TTA 19016 145490 13.1
L TTG 18673 145490 12.8
L CTC 15208 145490 10.5
L CTT 15121 145490 10.4
L CTA 5338 145490 3.7
M ATG 37917 37917 100.0
N AAC 29496 53737 54.9
N AAT 24241 53737 45.1
...
V GTG 35812 96777 37.0
V GTT 25064 96777 25.9
V GTC 20966 96777 21.7
V GTA 14935 96777 15.4
W TGG 20885 20885 100.0
Y TAT 22058 38750 56.9
Y TAC 16692 38750 43.1

The idea is to first build an array called @lines, in which each of the 64 elements corresponds to a
usage line. The trick is that these usage elements are themselves (anonymous) arrays. Since an array
can only hold scalar values, we cannot store these 64 elemental arrays directly in @lines. Instead, we
store a reference to each of them. Perl can then follow these references to access the elemental arrays
at the corresponding memory locations. @lines is thus a nested data structure. It is shown in an
abridged version in the left part of the figure below.

Denis BAURAIN / ULiège 44 Modern Perl for Biologists II | Deeper Concepts

CHAPTER 4. SORTED CODON USAGE

ARRAY(0x7fc50a8424f0)

ARRAY(0x7fc50a844858)

ARRAY(0x7fc50a842640)

ARRAY(0x7fc50a841e60)

ARRAY(0x7fc50a841db8)

ARRAY(0x7fc50a841d10)

ARRAY(0x7fc50a841f08)

ARRAY(0x7fc50a844900)

ARRAY(0x7fc50a842250)

A GCG 46056 129593 35.5

A GCC 34946 129593 27.0

A GCA 27685 129593 21.4

A GCT 20906 129593 16.1

0x7fc50a841e60

0x7fc50a841db8

0x7fc50a841d10

0x7fc50a841f08

ARRAY(0x7fc50a8449a8)

ARRAY(0x7fc50a8426e8)

ARRAY(0x7fc50a842598)

W TGG 20885 20885 100.0

Y TAT 22058 38750 56.9

Y TAC 16692 38750 43.1

0x7fc50a8426e8

0x7fc50a842598

V GTA 14935 96777 15.4

0x7fc50a8449a8

0x7fc50a842250

0 1 2 3 4

@sorted_lines

0

1

2

3

4

5

6

60

61

62

63

...

ARRAY(0x7fc50a841d10)

ARRAY(0x7fc50a841db8)

ARRAY(0x7fc50a841e60)

ARRAY(0x7fc50a841f08)

...

ARRAY(0x7fc50a842250)

...

ARRAY(0x7fc50a842598)

...

ARRAY(0x7fc50a8426e8)

...

@lines

36

37

38

39

49

44

51

58 ARRAY(0x7fc50a8449a8)

...

...

ARRAY(0x7fc50a8422f8) 59

7

Figure 4.1: Using references to elemental arrays for sorting lines

The objective of this approach is to keep the five fields of each usage line separate, so thatwe can sort the
lines on the fields of interest considered individually. After the sort statement, we store the returned
sorted list in a new array aptly named @sorted_lines. As you can see in the right part of the figure,
we have not modified the elemental arrays themselves, but only the order in which their references
appear in our new array.

4.1.2 Defining references
A reference is a scalar variable that refers to another variable. To take a reference to something, use the
reference operator (\). For example, the last line of the loop below takes a reference to the elemental
array @fields and pushes it to the long-lasting array @lines.

original version
my @lines;
for my $codon (sort keys %count_for) {

compute field values

my @fields = ($aa, $codon, $count, $total, sprintf "%5.1f", $usage);
push @lines, \@fields;

}

As @fields is lexically-scoped to its enclosing loop, it is freshly created at each loop iteration. In
other words, whenever a new @fields spawns into existence, it is a completely distinct array from
the previous ones that does not overwrite any of them. This allows us to append each @fields array
in turn to @lines in order to progressively build our nested data structure.

Denis BAURAIN / ULiège 45 Modern Perl for Biologists II | Deeper Concepts

CHAPTER 4. SORTED CODON USAGE

4.1.3 Using references
To print the final table, we iterate over the references in @sorted_lines, follow them to access the
corresponding elemental arrays and join their five individual fields with a tab character. Following
a reference is termed dereferencing. The syntax for this operation can be quite noisy and is admittedly
one of the weaknesses of Perl, though it is not the case here.

for my $line (@sorted_lines) {
say {$out} join "\t", @$line;

}

Since a reference is a scalar, it always comes with its $ sigil. If you want to dereference it, you need
to prepend it with a second sigil, the nature of which depending on the reference type and on the
amount context. In our example, the entity referenced by $line is an array that we want to use in a
join statement. We are thus in list context, hence the use of the @ sigil.

If you forget to dereference a reference, for example before printing it, it will stringify into a string
providing the type of the variable referenced by the reference, followed by a long hexadecimal number
(between parentheses) associated to its location in computer memory.

for my $line (@sorted_lines) {
say {$out} join "\t", $line; # forgot to dereference

}

gives:

ARRAY(0x7fc50a8424f0)
ARRAY(0x7fc50a844858)
ARRAY(0x7fc50a842640)
...
ARRAY(0x7fc50a8449a8)
ARRAY(0x7fc50a8426e8)
ARRAY(0x7fc50a842598)

Stringified references are produced by concatenating the correspondingmemory location (in hexadec-
imal notation) to the return value of the ref function. This builtin function takes a scalar variable and
returns a description of the kind of reference it contains (e.g., SCALAR, ARRAY, HASH). When used on a
variable that is not a reference, ref returns the undef value.

4.1.4 Anonymous arrays
For our strategy to work, the most straightforward approach is to declare @fieldswithin the loop. To
see why, move the declaration of @fields outside the loop and run the program again.

alternative version 1 (buggy)
my @lines;
my @fields;
for my $codon (sort keys %count_for) {

@fields = ($aa, $codon, $count, $total, sprintf "%5.1f", $usage);
push @lines, \@fields;

}

Denis BAURAIN / ULiège 46 Modern Perl for Biologists II | Deeper Concepts

CHAPTER 4. SORTED CODON USAGE

Do you understand what is happening? Yes, since there is now a single @fields array, all our refer-
ences actually point to the same memory location, the content of which is last updated during the last
loop iteration. To fix the issue, we need to be sure that we take and store references to distinct arrays.

alternative version 2 (with unnecessary copying)
my @lines;
my @fields;
for my $codon (sort keys %count_for) {

@fields = ($aa, $codon, $count, $total, sprintf "%5.1f", $usage);
push @lines, [@fields];

}

The square bracket characters ([and]) create a new anonymous array and return its reference. Hence,
what we push onto @lines is a reference to a fresh array containing the list of values resulting from
the evaluation of the @fields array. This anonymous array is thus a copy of the @fields array. To
avoid unnecessary copying, get back to the original code or use the idiomatic version below.

alternative version 3 (idiomatic)
my @lines;
for my $codon (sort keys %count_for) {

push @lines, [$aa, $codon, $count, $total, sprintf "%5.1f", $usage];
}

BOX 4: Reference count and the garbage collector
A reference is akin to a pointer in languages such as C, except that you cannot use it directly to
manipulate the computer memory. It it thus more like an identifier than the address of a memory
location. This is so because Perl has a mechanism known as the garbage collector that period-
ically reclaims unused memory locations. Had we direct access to the computer memory, Perl
could not manage it for us.
Given that @fields is a lexical array, why is it not destroyed after the loop then?
Well, whenever one takes and stores a reference to a variable (here, the @fields array), Perl
increments an internal counter known as the reference count of the variable. After the loop, the
reference count of each @fields array is thus equal to one, while they all rise to two after the
creation of @sorted_lines. In the figure above, this value is reflected by the two arrows pointing
to each green array (the former @fields).
Before reclaiming the memory used by any variable, the garbage collector first checks that its
reference count is equal to zero. If not, it does not free the corresponding memory location, even
though the original variable identifier (here @fields) has been lost.
Conversely, whenever a reference is destroyed, Perl decrements the reference count of the refer-
enced variable. In our case, it happens when both @lines and @sorted_lines arrays get out of
scope. At that moment, the pushed array references are all destroyed at once and their reference
counts get back to zero. Think of it like deleting all the arrows in the figure. The next time the
garbage collector enters into action, the corresponding memory locations (green arrays) will be
freed and used for storing new variables.

Denis BAURAIN / ULiège 47 Modern Perl for Biologists II | Deeper Concepts

CHAPTER 4. SORTED CODON USAGE

Figure 4.2: Garbage collection with WALL-E [Disney/Pixar, 2008]

4.1.5 Peeking into nested data structures
Smart::Comments makes looking at complex nested data structures very easy. If you want to try it,
simply add the following line somewhere in your code.

@lines

gives:

@lines: [
[
'K',
'AAA',
46021,
60126,
' 76.5'
],
[
'N',
'AAC',
29496,
53737,
' 54.9'
],
...
[
'F',
'TTT',
30444,
53065,
' 57.4'
]
]

Denis BAURAIN / ULiège 48 Modern Perl for Biologists II | Deeper Concepts

CHAPTER 4. SORTED CODON USAGE

4.2 Sorting tables
Perl has very complete sorting facilities. It features several algorithms (quicksort, mergesort) and,
given one of these algorithms, you can decide whether the sort should be in lexical order (default) or
in numeric order, and whether it should be in ascending order or in descending order. Moreover,
you can specify the type and direction of the sort for an arbitrary large number of pieces of data.

4.2.1 sort

The workhorse behind sorting is the builtin function sort. In its most basic use, it takes a list and
sorts its values in ascending lexical order. For example, in the original codon_usage.pl, we sorted
the usage table on the codon (used as key in the hash %count_for).
for my $codon (sort keys %count_for) {

loop body
}

If this default sort direction and type is not what you need, you may specify a block describing how
a single comparison between two values of your list should be carried out. In this block, you will be
using two special variables ($a and $b), one or more sort comparison operators (cmp or <=>) and zero
or more logical or operators (||) taking advantage of short-circuiting for breaking ties.

4.2.2 Sort blocks and sort comparison operators
In codon_usage_sort.pl, a single sorting statement does all the work. As already explained, it ex-
tracts the elements of the array @lines, sorts them and returns a sorted list that is then stored in the
new array @sorted_lines. Let’s have a look at the sort block.
my @sorted_lines = sort {

$a->[0] cmp $b->[0] || $b->[4] <=> $a->[4]
} @lines;

Such a block is actually an anonymous function that is called whenever the sorting algorithm has to
compare two values of our list. Within this function, the values under comparison are aliased to the
special variables $a and $b (in their current order in the list). The output of the sort block should be a
number either less than or greater than zero or exactly equal to zero.
To generate this number given $a and $b, use the specially designed sort comparison operators cmp
and <=>. These infix operators evaluate their operands in string context or numeric context, respec-
tively, and return a number (-1, 0 or 1) describing the order in which they are currently arranged.

Table 4.1: Return values of sort comparison operators

value meaning
-1 left operand is less than right operand
0 left operand is equal to right operand
1 left operand is greater than right operand

Below is an example using numeric context.

Denis BAURAIN / ULiège 49 Modern Perl for Biologists II | Deeper Concepts

CHAPTER 4. SORTED CODON USAGE

$a: 5
$b: 10
$a <=> $b: -1
$b <=> $a: 1

$a: 12
$b: 6
$a <=> $b: 1
$b <=> $a: -1

$a: 8
$b: 8
$a <=> $b: 0
$b <=> $a: 0

When designing sort blocks, $a always represents the smallest of the two elements under comparison
and $b the largest. Technically, the sorting algorithmwill exchange the current positions of the values
aliased to $a and $bwhenever the sort block returns a positive number. Thus, if you want to sort your
list in ascending order, put $a on the left and $b on the right. Conversely, put $b on the left and $a on
the right if you want descending order. Here’s an example using string context.

my @bases = qw(A T C G);
my @asc_bases = sort { $a cmp $b } @bases;
my @desc_bases = sort { $b cmp $a } @bases;

@asc_bases
@desc_bases

gives:

@asc_bases: [
'A',
'C',
'G',
'T'
]
@desc_bases: [
'T',
'G',
'C',
'A'
]

4.2.3 Sorting contexts
In many scientific applications, one needs to sort numbers whereas, as mentioned above, Perl sort
defaults to ascending lexical order, i.e., string context. Forgetting to tell Perl to sort in numeric context
can lead to very nasty bugs that are easily overlooked. Consider the following example.

Denis BAURAIN / ULiège 50 Modern Perl for Biologists II | Deeper Concepts

CHAPTER 4. SORTED CODON USAGE

my @numbers = (7, 12, 2, 4, 11, 1);
default: sort @numbers
lexical: sort { $a cmp $b } @numbers
numeric: sort { $a <=> $b } @numbers

gives:

default: 1,
11,
12,
2,
4,
7
lexical: 1,
11,
12,
2,
4,
7
numeric: 1,
2,
4,
7,
11,
12

As you can see, only the third sort statement yields the expected order!

BOX 5: Sorting in natural order
If you need to sort strings with a numeric component, neither cmp nor <=> are suitable to the job.
my @ids = qw(seq7 seq12 seq2 seq4 seq11 seq1);
lexical: sort { $a cmp $b } @ids
numeric: sort { $a <=> $b } @ids

gives:

lexical: 'seq1',
'seq11',
'seq12',
'seq2',
'seq4',
'seq7'

Argument "seq7" isn't numeric in sort at sort_context.pl line 8.
Argument "seq12" isn't numeric in sort at sort_context.pl line 8.

Denis BAURAIN / ULiège 51 Modern Perl for Biologists II | Deeper Concepts

CHAPTER 4. SORTED CODON USAGE

Argument "seq2" isn't numeric in sort at sort_context.pl line 8.
Argument "seq4" isn't numeric in sort at sort_context.pl line 8.
Argument "seq11" isn't numeric in sort at sort_context.pl line 8.
Argument "seq1" isn't numeric in sort at sort_context.pl line 8.

numeric: 'seq7',
'seq12',
'seq2',
'seq4',
'seq11',
'seq1'

For these special cases, there exists the convenient natural order sorting function ncmp, which is
provided by the module Sort::Naturally (install it with cpanm). Strictly speaking, it is not a
sort comparison operator, so look at the example below to see how to invoke it.
use Sort::Naturally;

my @ids = qw(seq7 seq12 seq2 seq4 seq11 seq1);
natural: sort { ncmp($a, $b) } @ids

gives:

natural: 'seq1',
'seq2',
'seq4',
'seq7',
'seq11',
'seq12'

4.2.4 The dereferencing arrow
The actual sort block used in codon_usage_sort.pl is way more complex than the examples above
with respect to two things:

• it sorts a nested data structure,
• it uses two sorting criteria for breaking ties.

When sorting lines, we compare only some specific fields of the two elemental arrays under compar-
ison. This requires a special form of dereferencing using the dereferencing arrow (->), which allows
us to access the individual elements of an array for which we only have a reference.
{

$a->[0] cmp $b->[0] # sort in ascending lexical order on first field
|| $b->[4] <=> $a->[4] # then in descending numeric order on fifth field

}

Here, it means that $a and $b are two array references, in whichwewant to compare the elements first
at index zero (aa) and then at index four (usage). The first comparison should be done in ascending
string context and the second in descending numeric context.

Denis BAURAIN / ULiège 52 Modern Perl for Biologists II | Deeper Concepts

CHAPTER 4. SORTED CODON USAGE

Table 4.2: Structure of the anonymous arrays

0 1 2 3 4
aa codon count total usage

Consider the example below.

$a: [
'A',
'GCG',
'46056',
'129593',
'35.5'
]
$b: [
'A',
'GCC',
'34946',
'129593',
'27.0'
]

$a->[0]: 'A'
$b->[0]: 'A'
$a->[0] cmp $b->[0]: 0

$a->[4]: '35.5'
$b->[4]: '27.0'
$b->[4] <=> $a->[4]: -1

4.2.5 Short-circuiting and multiple sorting criteria
When Perl encounters complex conditional expressions linked by logical operators (||, &&, and and
or), it exhibits a short-circuiting behavior. This means that it stops evaluating an expression as soon
as it can determine whether the whole expression would succeed or fail (i.e., evaluate to a true value
or a false value, respectively).

$a->[0] cmp $b->[0]: 0
$b->[4] <=> $a->[4]: -1

$a->[0] cmp $b->[0] || $b->[4] <=> $a->[4]: -1

In the example above, the two comparisons are linked by a logical or (||) and thus potentially subject
to short-circuiting. Given the current values under comparison ('A' cmp 'A'), the first comparison
yields 0. Since perl cannot decide at this point whether the whole expression evaluates to true (-1
or 1) or false (0), it performs the second comparison (27.0 <=> 35.5), which yields -1. It therefore
leaves the two values at their current positions, as expected.

Denis BAURAIN / ULiège 53 Modern Perl for Biologists II | Deeper Concepts

CHAPTER 4. SORTED CODON USAGE

When designing a sort block, add the sorting criteria one by one and link them by logical or’s. The
perl interpreter will evaluate the comparisons from left to right as long as it cannot decide between
-1 and 1. There is thus a direct mapping between the position of a given criterion and its importance
in the hierarchy for breaking ties between the values under comparison.

BOX 6: Short-circuiting and assignments
Generally speaking, short-circuiting can have an effect if the non-evaluated expressions involve
assignments or in-place operators such as +- or ++. In most cases, such constructs will lead to
nasty bugs and thus have to be avoided.
my $x1 = 5;
my $x2 = 10;
my $x3 = 15;

if ($x1 < $x2 || $x2++ > $x3) {
say q{No need to evaluate the cryptic second part!};

}
$x1
$x2
$x3

gives:

No need to evaluate the cryptic second part!

$x1: 5
$x2: 10
$x3: 15

Within sort blocks, expressions should never try to modify $a and $b. However, thinking in
short-circuit mode can help understanding what is going on, as shown above.

Denis BAURAIN / ULiège 54 Modern Perl for Biologists II | Deeper Concepts

Chapter 5

In silico restriction mapping

5.1 Your very personal cutter
It is time for a new killer app. This one is serious stuff since it combines everything we have seen so
far, including regular expressions, functions and references. It also features a new batch of novelties,
amongwhich a production-grade autodocumenting command-line interface allowing for optional ar-
guments, argument type checking and default values. This marvel is accomplished through the use
of a powerful new module known as Getopt::Euclid. You will need to install it to try the program.
$ cpanm Getopt::Euclid

Every molecular biologist has at least once made a construction involving the restriction of a plasmid
and the subsequent ligation of some DNA fragment into the linearized vector. Now, most of them use
nifty graphical (commercial) tools, such as Vector NTI. In the old times, however, we had to resort to
cruder solutions. In this section, we will develop a program that does basic in-silico restriction mapping.
Our program is called cutter.pl and is quite sophisticated. Here are its main features:

• It can take a large database of restriction enzymes.
• It can then only consider a specified set of enzymes.
• It can process a FASTA file containing more than one DNA sequence.
• It can report the different cleavage sites.
• It can compute the expected restriction fragments and their lengths.
• It can plot them on a restriction map.

5.1.1 How to build an enzyme database?
Before testing our new tool, we need a database of restriction enzymes. To build it, borrow and reformat
the list of cleavage site expressions available at our usual source of bioinformatics web applications.

1. Go to http://www.bioinformatics.org/sms/rest_sum.html.
2. Copy the content of the second input field, paste it into a new file and save it as patterns.txt.
3. Using the terminal, go to the directory containing the file and type in the following Perl one-

liner. Be very careful when copying it! Remember that the trailing backslash \ (used as the line
continuation character) is unnecessary if you type in the whole one-liner on a single line.

Denis BAURAIN / ULiège 55 Modern Perl for Biologists II | Deeper Concepts

http://www.bioinformatics.org/sms/rest_sum.html

CHAPTER 5. IN SILICO RESTRICTIONMAPPING

$ perl -nle 'next if m/MboII/; m{/([^\/]+)/\s+\((\w+)\s+[^\)]+\)(\d+),?}; \
print join "\t", $2, $3, $1' patterns.txt > enzyme-db.txt

4. Check that your enzyme database (enzyme-db.txt) looks fine. Here’s an excerpt frommine for
comparison. If your file is different, double-check your one-liner and give it a second shot. Note
that we excludeMboII because its non-symmetrical cut is not supported by our program.
AatII 1 gacgtc
AccIII 5 tccgga
AluI 2 agct
ApaI 1 gggccc
AvaI 5 c[ct]cg[ag]g
...
VspI 4 attaat
XbaI 5 tctaga
XhoI 5 ctcgag
XmaI 5 cccggg

5.1.2 How to fetch sequences from the NCBI website?
Once we have an enzyme database, we need a few sequences to cut. A logical choice would be plas-
mid vectors with a multiple cloning site, such as the pBluescript II family of phagemids that allow for
blue/white screening of recombinant colonies. The sequences of four variants can be found in the
nucleotide section of GenBank under the accessions X52327 to X52330.
To download them as a single FASTA file, use theNCBI E-utilities. These tools are a vast topic that is
well worth exploring for yourself. You can find more about them here:
http://www.ncbi.nlm.nih.gov/books/NBK25500/

For our purposes, I simply give you the magical command that does the job on Linux. If you instead
use macOS, just replace the call to wget -O by curl -o (note the upper- vs. lowercase O).
$ wget -O phagemids.fasta \

"https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?\
db=nuccore&retmode=text&rettype=fasta&id=X52327,X52328,X52329,X52330"

5.1.3 How to try the program?
Since the command-line interface of cutter.pl is quite flexible, there are many ways of trying it. You
will find below a few suggestions, but feel free to play with it.
$ perldoc cutter.pl
$./cutter.pl
$./cutter.pl --man

$./cutter.pl phagemids.fasta --enzyme-db=enzyme-db.txt \
--enzymes=MspI

$./cutter.pl phagemids.fasta --enzyme-db=enzyme-db.txt \
--enzymes=EcoRI KpnI XhoI

Denis BAURAIN / ULiège 56 Modern Perl for Biologists II | Deeper Concepts

http://www.ncbi.nlm.nih.gov/books/NBK25500/

CHAPTER 5. IN SILICO RESTRICTIONMAPPING

$./cutter.pl phagemids.fasta --enzyme-db=enzyme-db.txt \
--enzymes=MspI --plot-map

$./cutter.pl phagemids.fasta --enzyme-db=enzyme-db.txt \
--enzymes=MspI --plot-map --tic-width=10

$./cutter.pl phagemids.fasta --enzyme-db=enzyme-db.txt \
--enzymes=MspI --plot-map --tic-width=10 --min-frag-len=100

5.2 The code for cutter.pl
1 #!/usr/bin/env perl
2

3 use Modern::Perl '2011';
4 use autodie;
5

6 use Getopt::Euclid;
7 use Smart::Comments '###';
8

9 use List::AllUtils qw(min max);
10 use POSIX;
11 use Term::Size::Any 'chars';
12 use Tie::IxHash;
13

14

15 #### %ARGV
16

17 warn 'WARNING! --circular option not yet implemented!'
18 if $ARGV{'--circular'};
19

20 tie my %seq_for, 'Tie::IxHash';
21 %seq_for = read_fasta($ARGV{'<infile>'});
22 #### %seq_for
23

24 my %pattern_for = read_enzymes($ARGV{'--enzyme-db'});
25 #### %pattern_for
26

27 SEQ:
28 while (my ($id, $dna_string) = each %seq_for) {
29

30 say "\n# $id";
31

32 my @cuts = compute_cuts($dna_string);
33 next SEQ unless @cuts;
34

35 #### @cuts
36

Denis BAURAIN / ULiège 57 Modern Perl for Biologists II | Deeper Concepts

CHAPTER 5. IN SILICO RESTRICTIONMAPPING

37 my %sites_for = collect_sites(@cuts);
38 #### %sites_for
39

40 my @fragments = infer_fragments($dna_string, @cuts);
41 #### @fragments
42

43 say "\n# \UList of cleavage sites";
44 say '# ' . join "\t", qw(enz sites);
45 for my $enzyme (sort keys %sites_for) {
46 say join "\t", $enzyme, join ', ', @{ $sites_for{$enzyme} };
47 }
48

49 say "\n# \UList of fragments\E (>= $ARGV{'--min-frag-len'} bp)";
50 say '# ' . join "\t", qw(len 5'-pos 3'-pos 5'-enz 3'-enz);
51

52 FRAGMENT:
53 for my $fragment (@fragments) {
54 last FRAGMENT if $fragment->[0] < $ARGV{'--min-frag-len'};
55 say join "\t", @$fragment;
56 }
57

58 plot_map($dna_string, @fragments) if $ARGV{'--plot-map'};
59 }
60

61

62 sub read_fasta { # recycled "as is" from xxl_xlate.pl
63 my $infile = shift;
64

65 open my $in, '<', $infile;
66

67 my $seq_id;
68 my $seq;
69 tie my %seq_for, 'Tie::IxHash'; # preserve original seq order
70

71 LINE:
72 while (my $line = <$in>) {
73 chomp $line;
74

75 # at each '>' char...
76 if (substr($line, 0, 1) eq '>') {
77

78 # add current seq to hash (if any)
79 if ($seq) {
80 $seq_for{$seq_id} = $seq;
81 $seq = q{};
82 }
83

Denis BAURAIN / ULiège 58 Modern Perl for Biologists II | Deeper Concepts

CHAPTER 5. IN SILICO RESTRICTIONMAPPING

84 # extract new seq_id
85 $seq_id = substr($line, 1);
86 next LINE;
87 }
88

89 # elongate current seq (seqs can be broken on several lines)
90 $seq .= $line;
91 }
92

93 # add last seq to hash (if any)
94 $seq_for{$seq_id} = $seq if $seq;
95

96 return %seq_for;
97 }
98

99

100 sub read_enzymes {
101 my $infile = shift;
102

103 open my $in, '<', $infile;
104

105 my %pattern_for;
106

107 LINE:
108 while (my $line = <$in>) {
109 chomp $line;
110

111 next LINE if $line =~ m/^ \s* $/xms; # skip empty lines
112 next LINE if $line =~ m/^ \#/xms; # skip comment lines
113

114 my ($enzyme, $dist3p, $pattern) = split /\t/xms, $line;
115 $pattern_for{ lc $enzyme } = { # case-insensitive name
116 enzyme => $enzyme,
117 dist3p => $dist3p,
118 regexp => qr{$pattern}xmsi, # case-insensitive pattern
119 };
120 }
121

122 return %pattern_for;
123 }
124

125

126 sub compute_cuts {
127 my $dna_string = shift;
128

129 my @cuts;
130

Denis BAURAIN / ULiège 59 Modern Perl for Biologists II | Deeper Concepts

CHAPTER 5. IN SILICO RESTRICTIONMAPPING

131 ENZYME:
132 for my $name (@{ $ARGV{'--enzymes'} }) { # only specified enzymes
133

134 my $key = lc $name;
135 my $enzyme = $pattern_for{$key}{enzyme};
136 my $dist3p = $pattern_for{$key}{dist3p};
137 my $regexp = $pattern_for{$key}{regexp};
138

139 unless ($enzyme) {
140 warn "WARNING! Unknown enzyme: $name; skipping it.";
141 next ENZYME;
142 }
143

144 while ($dna_string =~ m/$regexp/g) {
145 my $site = pos($dna_string) - $dist3p; # $site is 1-based!
146 push @cuts, {
147 enzyme => $enzyme,
148 site => $site,
149 };
150 }
151 }
152

153 @cuts = sort { $a->{site} <=> $b->{site} } @cuts;
154

155 return @cuts;
156 }
157

158

159 sub collect_sites {
160 my @cuts = @_;
161

162 my %sites_for;
163 for my $cut (@cuts) {
164 my ($site, $enzyme) = @{ $cut }{ qw(site enzyme) };
165 push @{ $sites_for{ $enzyme } }, $site;
166 }
167

168 return %sites_for;
169 }
170

171

172 sub infer_fragments {
173 my ($dna_string, @cuts) = @_;
174

175 unshift @cuts, { enzyme => q{5'-end}, site => 1 };
176 push @cuts, { enzyme => q{3'-end}, site => length $dna_string };
177

Denis BAURAIN / ULiège 60 Modern Perl for Biologists II | Deeper Concepts

CHAPTER 5. IN SILICO RESTRICTIONMAPPING

178 my @fragments;
179 my ($enz1, $x1) = @{ shift @cuts }{ qw(enzyme site) };
180 while (@cuts) {
181

182 my ($enz2, $x2) = @{ shift @cuts }{ qw(enzyme site) };
183 my $len = $x2 - $x1 + 1;
184 warn 'WARNING! Some cleavage sites overlap; inaccurate results!'
185 if $len < 1;
186

187 push @fragments, [$len, $x1, $x2, $enz1, $enz2];
188 ($x1, $enz1) = ($x2+1, $enz2);
189 }
190

191 @fragments = sort { $b->[0] <=> $a->[0] } @fragments;
192

193 return @fragments;
194 }
195

196

197 BEGIN{ # this block will be executed just after compilation
198 # its lexical variables will be available for the included subs
199

200 #### Processing BEGIN block...
201

202 # setup plotting area
203 my $tic_width = $ARGV{'--tic-width'};
204 my ($cols, $rows) = chars();
205 my $tic_n = floor($cols / $tic_width);
206

207

208 sub plot_map {
209 my ($dna_string, @fragments) = @_;
210

211 # setup scale
212 my $min = 1;
213 my $max = length $dna_string;
214 my $range = $max - $min;
215 my $step = ceil($range / ($tic_n-1));
216

217 # plot scale
218 say "\n# \URestriction map";
219 say step_line(0, $min, $step);
220 say step_line(1, $min, $step);
221 say q{-} x $cols;
222

223 FRAGMENT:
224 for my $fragment (@fragments) {

Denis BAURAIN / ULiège 61 Modern Perl for Biologists II | Deeper Concepts

CHAPTER 5. IN SILICO RESTRICTIONMAPPING

225 my ($len, $x1, $x2, $enz1, $enz2) = @$fragment;
226

227 last FRAGMENT if $len < $ARGV{'--min-frag-len'};
228

229 my $pad_n = xloc($x1, $min, $step);
230 my $chr_n = xloc($x2, $min, $step) - $pad_n + 1;
231

232 say pair_line($pad_n, $chr_n, $x1, $x2); # positions
233 say q{ } x $pad_n . q{#} x $chr_n; # fragment
234 say pair_line($pad_n, $chr_n, $enz1, $enz2); # enzymes
235 }
236

237 return;
238 }
239

240

241 sub pair_line {
242 my ($pad_n, $chr_n, $id1, $id2) = @_;
243

244 my $spc_n = $chr_n - length($id1) - length($id2);
245 $spc_n = 0 if $spc_n < 0; # avoid warning when $spc_n < 0
246 return q{ } x $pad_n . $id1 . q{ } x $spc_n . $id2;
247 }
248

249

250 sub step_line { # recycled "as is" from check_overlap.pl
251 my ($bars, $min, $step) = @_;
252

253 my $str;
254 for (my ($x, $tic) = ($min, 0); $tic < $tic_n; $x += $step, $tic++) {
255 $str .= sprintf("%-*d", $tic_width, $x) unless $bars;
256 $str .= '|' . q{ } x ($tic_width-1) if $bars;
257 }
258 return $str;
259 }
260

261

262 sub xloc { # recycled "as is" from check_overlap.pl
263 my ($x, $min, $step) = @_;
264 return sprintf "%.0f", ($x-$min) / $step * $tic_width;
265 }
266

267 }
268

269

270 =head1 NAME
271

Denis BAURAIN / ULiège 62 Modern Perl for Biologists II | Deeper Concepts

CHAPTER 5. IN SILICO RESTRICTIONMAPPING

272 cutter - Compute a restriction map for one or more DNA sequences
273

274 =head1 VERSION
275

276 This documentation refers to cutter version 0.0.1
277

278 =head1 USAGE
279

280 cutter.pl <infile> --enzymes <name>... --enzyme-db <infile> [options]
281

282 =head1 REQUIRED ARGUMENTS
283

284 =over
285

286 =item <infile>
287

288 Path to input FASTA file.
289

290 =for Euclid:
291 infile.type: readable
292

293 =item --enzyme-db [=] <infile>
294

295 Path to restriction enzyme database.
296

297 =for Euclid:
298 infile.type: readable
299

300 The database is a tab-delimited 3-column flat file structured as follows:
301

302 1. enzyme name
303 2. distance of the cleavage site from the 3'-end of the pattern
304 3. recognition pattern (regular expression)
305

306 Empty lines and comment lines beginning with '#' are allowed.
307

308 Example:
309

310 # EcoRI generates sticky ends: G|AATTC
311 EcoRI 5 gaattc
312 HinfI 4 ga[gatc]tc
313

314 =item --enzymes [=] <name>...
315

316 List of whitespace-separated enzyme names to consider in the analysis.
317 For convenience, enzyme names are case insensitive.
318

Denis BAURAIN / ULiège 63 Modern Perl for Biologists II | Deeper Concepts

CHAPTER 5. IN SILICO RESTRICTIONMAPPING

319 =back
320

321 =head1 OPTIONS
322

323 =over
324

325 =item --circular
326

327 Treat DNA sequences as circular molecules [default: no].
328

329 =item --min-frag-len [=] <length>
330

331 Minimum length of fragments to be reported (in bp) [default: length.default].
332

333 =for Euclid:
334 length.type: +integer
335 length.default: 20
336

337 =item --plot-map
338

339 Plot a graphical restriction map of each sequence [default: no].
340

341 =item --tic-width [=] <length>
342

343 Distance between two tics on the fragment map (in char)
344 [default: length.default].
345

346 =for Euclid:
347 length.type: +integer
348 length.default: 8
349

350 =item --version
351

352 =item --usage
353

354 =item --help
355

356 =item --man
357

358 Print the usual program information
359

360 =back
361

362 =head1 AUTHOR
363

364 Your Name (your.email@host.com)
365

Denis BAURAIN / ULiège 64 Modern Perl for Biologists II | Deeper Concepts

CHAPTER 5. IN SILICO RESTRICTIONMAPPING

366 =head1 BUGS
367

368 There are undoubtedly serious bugs lurking somewhere in this code.
369 Bug reports and other feedback are most welcome.
370

371 =head1 COPYRIGHT
372

373 Copyright (c) 2013, Your Name. All Rights Reserved.
374 This program is free software. It may be used, redistributed
375 and/or modified under the terms of the Perl Artistic License
376 (see http://www.perl.com/perl/misc/Artistic.html)

Denis BAURAIN / ULiège 65 Modern Perl for Biologists II | Deeper Concepts

CHAPTER 5. IN SILICO RESTRICTIONMAPPING

Denis BAURAIN / ULiège 66 Modern Perl for Biologists II | Deeper Concepts

Homework

Even though check_overlap.pl computes the best possible scale for the plot, it falls short when it
comes to choosing a scale that would always appear natural to a human. Hence, some combinations
of fragment coordinates, terminal width and tic width yield scales that are very unwieldy, such as 104,
6910, 13720, 20530…
As your next assignment (hw7_check_overlap_scale.pl), try to tweak the computation of the scale,
so as to obtain tic values that look rounded independently of the order(s) of magnitude of the scale
(e.g., 50, 125, 500, 2000). Tip: One way to achieve that would be to use log-based rounding.

Denis BAURAIN / ULiège 67 Modern Perl for Biologists II | Deeper Concepts

CHAPTER 5. IN SILICO RESTRICTIONMAPPING

Denis BAURAIN / ULiège 68 Modern Perl for Biologists II | Deeper Concepts

Part III

Lesson 8

Denis BAURAIN / ULiège 69 Modern Perl for Biologists II | Deeper Concepts

Chapter 6

The innards of cutter.pl

6.1 Plain Old Documentation
Many Perl developers have an excellent programming culture. This means that the Perl community
produces software of high-quality. In the remaining lessons, I will try to demonstrate this thesis by
presenting you some robust and powerful Perl modules that can really help you on a daily basis.
High-quality software implies at least two things: comprehensive testing and good documentation.
This lesson explores both aspects.
Perl’s documentation system is called POD (for Plain Old Documentation). It is a simplemarkup lan-
guage used for writing documentation for perl itself, Perl programs and Perl modules. Translators
are available for converting POD to various formats like plain text, HTML, man pages, and more.
POD blocks can be interspersed in Perl code. This makes documenting programs very handy because
you can include user-oriented explanations physically close to the corresponding code. Hence, a func-
tion can be documented by a POD block directly preceding or following its definition in Perl.
POD markup consists of three basic kinds of paragraphs:

• Ordinary paragraphs are simple blocks of text that must be preceded and followed by a blank
line. They will be rewrapped to screen width by the formatters. Different formatting codes are
allowed in these paragraphs.

• Verbatim paragraphs are used to display blocks of code or any other text that should not be
rewrapped. Such paragraphs must be indented (with spaces or tab characters) to be recognized
by POD parsers. No formatting codes are allowed within verbatim paragraphs. Everything
appears as is.

• Command paragraphs indicate that the following chunk of text has to get a special treatment.
For example, it has to be formatted as a title or as a list. These paragraphs typically consist in a
single line beginning with an equal character (=) followed by an identifier then arbitrary text.

The next page features a table summarizing the most common POD commands.

Denis BAURAIN / ULiège 71 Modern Perl for Biologists II | Deeper Concepts

CHAPTER 6. THE INNARDS OF CUTTER.PL

Table 6.1: Main POD commands

command meaning
=head1 level-1 header
=head2 level-2 header
=head3 level-3 header
=head4 level-4 header
=over list opening or beginning of one or more indented paragraphs
=back list closing or end of one or more indented paragraphs
=item list item (maybe be made of multiple paragraphs)
=pod explicit opening of a POD block (often unnecessary)
=cut end of a POD block (needed for following it by regular code)
=for command for a specific POD parser

Below is an excerpt from my module Bio::MUST::Core::Ali, in which the POD block is just above
the definition of the corresponding function (here, the function is called a method because it is an
object-oriented module). The POD block uses all three kinds of paragraphs. Regarding the method
load itself, you should recognize our good old FASTA file reader.
=head1 I/O METHODS

=head2 load

Class method (constructor) returning a new Ali read from disk. This method
will transparently import plain FASTA files in addition to the MUST
pseudo-FASTA format (ALI files).

use Test::Deeply;
use aliased 'Bio::MUST::Core::Ali';
my $ali1 = Ali->load('example.ali');
my $ali2 = Ali->load('example.fasta');
my @seqs1 = $ali1->all_seqs;
my @seqs2 = $ali2->all_seqs;
is_deeply, \@seqs1, \@seqs2, 'should be true';

This method requires one argument.

=cut

sub load {
my $class = shift;
my $infile = shift;

open my $in, '<', $infile;

my $ali = $class->new();
my $seq_id;

Denis BAURAIN / ULiège 72 Modern Perl for Biologists II | Deeper Concepts

CHAPTER 6. THE INNARDS OF CUTTER.PL

my $seq;

LINE:
while (my $line = <$in>) {

chomp $line;

skip empty lines and process comments
next LINE if $line =~ $EMPTY_LINE

|| $ali->is_comment($line);

at each '>' char...
my ($defline) = $line =~ $DEF_LINE;
if ($defline) {

add current seq to ali (if any)
if ($seq) {

my $new_seq = Seq->new(seq_id => $seq_id, seq => $seq);
$ali->add_seq($new_seq);
$seq = q{};

}

$seq_id = $defline;
next LINE;

}

elongate current seq (seqs can be broken on several lines)
$seq .= $line;

}

add last seq to ali (if any)
if ($seq) {

my $new_seq = Seq->new(seq_id => $seq_id, seq => $seq);
$ali->add_seq($new_seq);

}

return $ali;
}

There exist a dozen formatting codes. The following table lists the common ones.

Table 6.2: Main POD formatting codes

code meaning
I<text> typeset text in italics
B<text> typeset text in boldface
C<text> typeset text using a typewriter font
L<text> define a hyperlink for text

Denis BAURAIN / ULiège 73 Modern Perl for Biologists II | Deeper Concepts

CHAPTER 6. THE INNARDS OF CUTTER.PL

Here’s another POD example that demonstrates the use of some formatting codes. Observe how the
documentation is designed. It first explains the purpose of the method then gives some details, fol-
lowed by illustrative use cases. Finally, it lists the parameters expected by the method (here termed
arguments) and specify their meaning. If the method returns something, it should be mentioned in
its purpose, as with the loadmethod above.

=head2 store_fasta

Writes the Ali to disk in the plain FASTA format.

For compatibility purposes, this method automatically fetches sequence ids
using the C<foreign_id> method instead of the native C<full_id> method, both
described in L<Bio::MUST::Core::SeqId>.

$ali->store_fasta('output.fasta');
$ali->store_fasta('output.fasta', {chunk => -1, degap => 1});

This method requires one argument and accepts a second optional argument
controlling the output format. It is a hash reference that may contain one
or more of the following keys:

- clean: replace '?' by 'X' for compatibility
- chunk: line width (default is 60 chars; negative values means no wrap)
- degap: boolean value controlling degapping (default: false)

We will stop our description here. To read more about POD, see:
http://perldoc.perl.org/perlpod.html

… or use your terminal. A sizable part of this section comes from there.

$ perldoc perlpod

6.2 Getopt::Euclid

cutter.pl uses only one newmodule, but this module changes a lot! It belongs to the Getopt names-
pace, which hints at the fact that it is designed to parse command-line arguments.

Getopt::Euclid is pretty unique in the way that it analyzes your program’s POD blocks to create a
powerful command-line argument parser. Beyond a terrific economy of effort, this approach has two
additional benefits:

• it forces you to document your program in the Perl’s standard way;
• it ensures that your documentation always matches your actual user interface.

The created parser includes many features, such as argument type checking, required arguments, ex-
clusive arguments, optional arguments with default values, automatic usage message, etc.

To take advantage of this module, it is enough to use it at the beginning of your program.

use Getopt::Euclid;

Denis BAURAIN / ULiège 74 Modern Perl for Biologists II | Deeper Concepts

http://perldoc.perl.org/perlpod.html

CHAPTER 6. THE INNARDS OF CUTTER.PL

This line causes the following things to happen upon program launch:

1. The POD blocks are analyzed and the user interface of your program is deduced from its de-
scription in the =head1 REQUIRED ARGUMENTS and =head1 OPTIONS sections.

2. A customized parser is built that parses the command-line arguments and options specified by
your POD. If a required argument is missing or if any argument does not match its expected
type, it automatically stops the program with an informative error message.

3. If all arguments pass the validation step, the parser removes them from the default array @ARGV
and puts them in the global hash %ARGV.

Argument type checking is controlled by command paragraphs of the form =for Euclid:. For ex-
ample, the POD block below documents the optional argument --min-frag-len and specifies that it
should be a strictly positive integer number with a default value of 20.

=head1 OPTIONS

...

=item --min-frag-len [=] <length>

Minimum length of fragments to be reported (in bp) [default: length.default].

=for Euclid:
length.type: +integer
length.default: 20

...

Getopt::Euclid is a powerful module that you should investigate seriously if you plan to develop
production-grade Perl software. For now, simply use the POD block in cutter.pl as a template.

$ perldoc Getopt::Euclid

6.3 Overview of cutter.pl
cutter.pl is our most complex program so far. Before diving into its technical novelties, it might be
useful to describe its general organization and functioning.

6.3.1 Command-line interface
First, let’s have a look at the %ARGV hash because it will drive the behavior of the whole program.

$./cutter.pl data/phagemids.fasta --enzyme-db=data/enzyme-db.txt \
--enzymes=EcoRI KpnI XhoI --plot-map

Assuming that Smart::Comments’ fourth level of smartness is enabled, launching cutter.pl with this
command will yield the following hash.

%ARGV: {
'--enzyme-db' => 'data/enzyme-db.txt',
'--enzymes' => [

Denis BAURAIN / ULiège 75 Modern Perl for Biologists II | Deeper Concepts

CHAPTER 6. THE INNARDS OF CUTTER.PL

'EcoRI',
'KpnI',
'XhoI'
],
'--min-frag-len' => 20,
'--plot-map' => '1',
'--tic-width' => 8,
'<infile>' => 'data/phagemids.fasta'
}

BOX 7: Named arguments
The idea of the %ARGV hash with its keys corresponding to argument names can be recycled to
autodocument function arguments and simplify function calls. This only requires pretending
that the function takes a hash as a single argument.
sub check_overlap {

my %args = @_;

test disjunction
return not ($args{y1} > $args{x2} || $args{y2} < $args{x1});

}

say 'Fragments DO overlap!'
if check_overlap(x1 => 10, x2 => 20, y1 => 15, y2 => 25);

Beyond autodocumentation, this approach has two more advantages: (1) arguments can be pro-
vided in any order and (2) some arguments can be missing (and assigned default values).
sub format_seq {

my %args = @_;

my $seq = $args{seq};
return unless $seq; # nothing to do if empty

my $seq_id = $args{seq_id} // 'seq'; # default id
my $width = $args{line_width} // 60; # default line width

...
}

all these calls are equivalent
format_seq(seq => 'GAATTC...', seq_id => 'seq', width => 60);
format_seq(seq_id => 'seq', seq => 'GAATTC...');
format_seq(seq => 'GAATTC...');

As a rule of thumb, you should consider using named arguments as soon as a function requires
more than two or three parameters.

Denis BAURAIN / ULiège 76 Modern Perl for Biologists II | Deeper Concepts

CHAPTER 6. THE INNARDS OF CUTTER.PL

There is a perfect match between the keys of %ARGV and the names of the arguments in the documen-
tation. This hash is a nested data structure since the value corresponding to the key --enzymes is a
reference to an anonymous array of three strings. Moreover, the parser has inserted key/value pairs
for the optional arguments with default values (here --min-frag-len and --tic-width).

6.3.2 Architecture
cutter.pl is made of a main block of code that is defined at the file scope and of a series of functions.
In Figure 6.1 below, the three columns correspond to the three levels of indentation of the main block
(shown here in abridged form). Functions are represented by boxes with a green background.

tie my %seq_for, 'Tie::IxHash'; # level 1
%seq_for = read_fasta($ARGV{'<infile>'}); # level 1
my %pattern_for = read_enzymes($ARGV{'--enzyme-db'}); # level 1

...

SEQ:
while (my ($id, $dna_string) = each %seq_for) { # level 1

...

for my $enzyme (sort keys %sites_for) { # level 2
inner loop body # level 3

}

...

FRAGMENT:
for my $fragment (@fragments) { # level 2

inner loop body # level 3
}

...
}

Most functions here are defined for abstraction. Those pertaining to the plotting of the restriction map
are also there for re-use and are thus called from more than one point in the program.

say "\n# \URestriction map";
say step_line(0, $min, $step); # call to step_line
say step_line(1, $min, $step); # call to step_line
say q{-} x $cols;

...

my $pad_n = xloc($x1, $min, $step); # call to xloc
my $chr_n = xloc($x2, $min, $step) - $pad_n + 1; # call to xloc

Denis BAURAIN / ULiège 77 Modern Perl for Biologists II | Deeper Concepts

CHAPTER 6. THE INNARDS OF CUTTER.PL

within
cutter.pl

compute_cuts

collect_sites

infer_fragments

read_fasta

read_enzymes

plot_map

end of
seqs?

end of
frags?

print details
for fragment

N

N

--plot-map?

Y

begin

end

Y

Y

N

within
while loop

within
for loops

end of
enzymes?

print sites
for enzyme

N

Y

Figure 6.1: Flowchart of cutter.pl

Denis BAURAIN / ULiège 78 Modern Perl for Biologists II | Deeper Concepts

CHAPTER 6. THE INNARDS OF CUTTER.PL

say pair_line($pad_n, $chr_n, $x1, $x2); # call to pair_line
say q{ } x $pad_n . q{#} x $chr_n;
say pair_line($pad_n, $chr_n, $enz1, $enz2); # call to pair_line

However, some functions are not completely encapsulated, which means that they use global variables
in addition to function parameters. This is acceptable in the context of a standalone program like
cutter.pl. If we were to develop a Perl module, this would be an issue because module interfaces
based on global variables are not fashionable anymore.
For example, the function compute_cuts receives the DNA sequence to cut as a string argument. This
is required because it works on a single sequence at a time, whereas our sequences are stored in a
container, the ordered hash %seq_for. The loop that iterates on the key/value pairs of this hash
repeatedly calls this function for each sequence in the hash.
In contrast, the hash %pattern_for, which contains the details for each restriction enzyme in our
database, is directly used as a global variable. And so is $ARGV{'--enzymes'}, which is a reference
to the anonymous array storing the specific enzymes to consider.
sub compute_cuts {

my $dna_string = shift; # function parameter

my @cuts;

ENZYME:
for my $name (@{ $ARGV{'--enzymes'} }) { # global variable

my $key = lc $name;
my $enzyme = $pattern_for{$key}{enzyme}; # global variable
my $dist3p = $pattern_for{$key}{dist3p}; # global variable
my $regexp = $pattern_for{$key}{regexp}; # global variable

...
}

...
}

BOX 8: Closures and BEGIN code blocks
The function plot_map has three utility functions of a lower hierarchical level. Several of these
functions have to share some variables that can be safely ignored by the other functions in cut-
ter.pl, for example $tic_width and $tic_n.
To satisfy these requirements, we could do two things:

• pass them along as additional function parameters, which would increase the complexity
of our function calls;

• define them in a lexical scope that is visible by all functions that need them, but not by the
others. A function using lexical variables declared in an outer lexical scope is a closure.

Denis BAURAIN / ULiège 79 Modern Perl for Biologists II | Deeper Concepts

CHAPTER 6. THE INNARDS OF CUTTER.PL

Here, we choose the second solution and put the four utility functions in a private block includ-
ing the definition of the two shared variables $tic_width and $tic_n. However, since this
block physically comes below the main while loop, from which the plot_map function is called,
$tic_width and $tic_nwill not be defined in time. This is because in Perl code execution flows
from the first to the last statement (see “Control flow in Perl”, in the first part of this course).
Thus, to be sure that $tic_width and $tic_n are properly initialized at the moment plot_map
tries to use them, we setup the block as a BEGIN code block. Such a block is executed as soon
as it is completely defined, even before the rest of the containing file is parsed and compiled.
Multiple BEGIN blocks are allowed; they will execute in order of definition. Because a BEGIN
code block executes immediately, it can pull in definitions of functions and variables from other
files in time to be visible to the rest of the compile and run time.
Amazingly, Perl is so dynamic thatwe could evendecide to setup these shared variables and subs
only when really required. All we need is to put the corresponding declarations and definitions
in a conditional block as demonstrated below.
BEGIN{ # this block will be executed just after compilation

its lexical variables will be available for the included subs

Processing BEGIN block...

if ($ARGV{'--plot-map'}) {

Declaring and defining plotting variables and subs...

setup plotting area
my $tic_width = $ARGV{'--tic-width'};
my ($cols, $rows) = chars();
my $tic_n = floor($cols / $tic_width);

sub plot_map { ... }

sub pair_line { ... }

sub step_line { ... }

sub xloc { ... }
}

}

To finish with the architecture of cutter.pl, Figure 6.2 below shows the main lexical scopes existing
in our program and summarizes the information flow between our functions.

6.4 More on references
cutter.pl rests on several nested data structures, the elements of which need dereferencing. Let’s
examine how these are built and the syntax for using them.

Denis BAURAIN / ULiège 80 Modern Perl for Biologists II | Deeper Concepts

CHAPTER 6. THE INNARDS OF CUTTER.PL

compute_cuts

collect_sites

infer_fragments

read_fasta

read_enzymes

plot_map

%seq_for

%pattern_for

@cuts

%sites_for

@fragments

$dna_string

$ARGV{'--enzymes'}

$infile

$infile

FASTA
infile

enz.
db

$ARGV{'--min-frag-len'}

$ARGV{'--tic-width'}

pair_line

step_line

xloc

$tic_width

$tic_n

$ARGV{'--enzyme-db'}

$ARGV{'<infile>'}

$ARGV{'--plot-map'}

BEGIN{}

SEQ

cutter.pl

Figure 6.2: Lexical scopes and argument passing in cutter.pl

Denis BAURAIN / ULiège 81 Modern Perl for Biologists II | Deeper Concepts

CHAPTER 6. THE INNARDS OF CUTTER.PL

6.4.1 Tabular file parsing
Reading and storing a multi-column text file in a data structure, possibly transforming its content in
the process, is a common task in bioinformatics, yet easily tackled with Perl. The function definition
below is thus very useful because it can serve as a template for futures ones you would have to write.

6.4.1.1 read_enzymes

Our restriction enzyme database is stored in a tab-separated (TSV) tabular file. Here’s the reading
function for processing this file. Note that the function automatically skips empty and comment lines.
You should always handle these to allow maximum flexibility when writing input files.

sub read_enzymes {
my $infile = shift;

open my $in, '<', $infile;

my %pattern_for;

LINE:
while (my $line = <$in>) {

chomp $line;

next LINE if $line =~ m/\A \s* \z/xms; # skip empty lines
next LINE if $line =~ m/\A \#/xms; # skip comment lines

my ($enzyme, $dist3p, $pattern) = split /\t/xms, $line;
$pattern_for{ lc $enzyme } = { # case-insensitive name

enzyme => $enzyme,
dist3p => $dist3p,
regexp => qr{$pattern}xmsi, # case-insensitive pattern

};
}

return %pattern_for;
}

The execution scheme can be described as follows:

1. The input file passed as an argument is opened.
2. An empty main hash is declared.
3. The input file is read line by line until its end…

• to split each line on the separator (here, the tab character),
• to store the resulting list of values in an anonymous hash in which the various fields are
each referred to by a specific key,

• to store in the main hash a reference to this smaller (elemental) hash as the value for a key
derived from one of the columns.

4. The main hash, which is now a hash of hashes, is returned to the caller.

Denis BAURAIN / ULiège 82 Modern Perl for Biologists II | Deeper Concepts

CHAPTER 6. THE INNARDS OF CUTTER.PL

AatII 1 gacgtc
AccIII 5 tccgga
...
XhoI 5 ctcgag
XmaI 5 cccggg

Given the input file shown above, the hash returned by this function would look like this:
%pattern_for: {
aatii => {
dist3p => '1',
enzyme => 'AatII',
regexp => qr/(?umsix:gacgtc)/
},
acciii => {
dist3p => '5',
enzyme => 'AccIII',
regexp => qr/(?umsix:tccgga)/
},
...

xhoi => {
dist3p => '5',
enzyme => 'XhoI',
regexp => qr/(?umsix:ctcgag)/
},
xmai => {
dist3p => '5',
enzyme => 'XmaI',
regexp => qr/(?umsix:cccggg)/
}
}

Since the return value evaluates to a list (remember that a hash is a container for a list of key/value
pairs), we store it in another hash (of the same name, for clarity).
my %pattern_for = read_enzymes($ARGV{'--enzyme-db'});

The only other syntactic novelty in the function read_enzymes is the in-place definition of an anony-
mous hash, to which a reference is directly taken. This is achieved with the curly brace characters.
$pattern_for{ lc $enzyme } = {

enzyme => $enzyme,
dist3p => $dist3p,
regexp => qr{$pattern}xmsi,

};

This code is a shorthand for the following longer equivalent chunk. Beside its brevity, it also avoids
us to make up a temporary name for the elemental hash.
my %data_for = (

enzyme => $enzyme,

Denis BAURAIN / ULiège 83 Modern Perl for Biologists II | Deeper Concepts

CHAPTER 6. THE INNARDS OF CUTTER.PL

dist3p => $dist3p,
regexp => qr{$pattern}xmsi,

);
$pattern_for{ lc $enzyme } = \%data_for;

6.4.2 Defining and using nested data structures
Within the main while loop, three functions each produce a different nested data structure. They will
help us to illustrate the multiple syntaxes available for dereferencing such structures. The table below
summarizes them, including the function reading the enzyme database for comparison.

Table 6.3: Examples of nested data structures

function name structure name structure type
compute_cuts @cuts array of hashes
collect_sites %sites_for hash of arrays

infer_fragments @fragments array of arrays
read_enzymes %pattern_for hash of hashes

6.4.2.1 compute_cuts

This is the function that cuts a given DNA sequence with the specified restriction enzymes. Basically,
it tries each enzyme in turn and adds the identified cuts to an array in which each element is a smaller
hash giving the name of the cutting enzyme and the location of the cleavage site.

sub compute_cuts {
my $dna_string = shift;

my @cuts;

ENZYME:
for my $name (@{ $ARGV{'--enzymes'} }) { # only specified enzymes

my $key = lc $name;
my $enzyme = $pattern_for{$key}{enzyme};
my $dist3p = $pattern_for{$key}{dist3p};
my $regexp = $pattern_for{$key}{regexp};

unless ($enzyme) {
warn "WARNING! Unknown enzyme: $name; skipping it.";
next ENZYME;

}

while ($dna_string =~ m/$regexp/g) {
my $site = pos($dna_string) - $dist3p; # $site is 1-based!
push @cuts, {

enzyme => $enzyme,

Denis BAURAIN / ULiège 84 Modern Perl for Biologists II | Deeper Concepts

CHAPTER 6. THE INNARDS OF CUTTER.PL

site => $site,
};

}
}

@cuts = sort { $a->{site} <=> $b->{site} } @cuts;

return @cuts;
}

To loop over the list of specified enzymes, the function uses the following construct, which allows it
to dereference the array nested in %ARGV. Note the simultaneous use of two different sigils, one ($) for
the reference itself and the other (@) for enabling list context on the array referenced by the reference.
for my $name (@{ $ARGV{'--enzymes'} }) {

loop body
}

Had we used the hash value directly, we would have got the (useless) stringified version of the array
reference, as explained in “Using references”, p.46. Overlooking the second sigil is a common source
of bugs when working with nested data structures. Pay attention to that!
say "$ARGV{'--enzymes'}";
say "@{ $ARGV{'--enzymes'} }";

gives:

ARRAY(0x7f98229c6b40)
EcoRI KpnI XhoI

Within the enzyme for loop, each piece of data for the enzyme under consideration is copied from
the hash %pattern_for using a simple syntax, which consists in listing the keys for traversing the
different levels of nesting in their hierarchical order. We do not need any dereferencing arrow (->)
because we start with a plain hash and not with a hash reference. Moreover, each arrow between a
closing square bracket (or curly brace) and an opening square bracket (or curly brace) is optional.
my $enzyme = $pattern_for{$key}{enzyme};
my $dist3p = $pattern_for{$key}{dist3p};
my $regexp = $pattern_for{$key}{regexp};

Before proceeding, we check that the specified enzyme is indeed found in our database file. If not,
$enzyme is undef and the unless block gets executed. In this block, we warn the user of the issue
(using a milder form of the die builtin function that does not halt our program but still write to the
standard error stream). Then we leave the current loop iteration to process the next enzyme. Such
checks may appear tedious to write but are part of what makes good-quality software.
unless ($enzyme) {

warn "WARNING! Unknown enzyme: $name; skipping it.";
next ENZYME;

}

Denis BAURAIN / ULiège 85 Modern Perl for Biologists II | Deeper Concepts

CHAPTER 6. THE INNARDS OF CUTTER.PL

There is a caveat here, due to the fact that %pattern_for is a nested data structure. When we try to access
the value for the enzyme key in the elemental hash corresponding to $key, the perl interpreter automati-
cally creates this elemental hash for us. This behavior is termed autovivification. Our test works anyway
because the freshly created hash is empty and thus accessing the key enzyme returns undef. However,
after that, an entry $key => {} is present in %pattern_for, which is now in a somewhat dirty state. If you
want to keep the nested data structure pristine, you may either test for the existence of $key beforehand or
forbid autovivification using the pragma no autovivification.

Then comes a while loop that uses the regular expression built from the restriction site pattern to
compute cuts. It uses the global-search mode enabled with the corresponding regex modifier (/g) in
a stepwise fashion to identify cleavage sites one at a time.

while ($dna_string =~ m/$regexp/g) {
my $site = pos($dna_string) - $dist3p; # $site is 1-based!
...

}

This is needed because we want to capture the position of each match and not the matches themselves.
To do that, we use the builtin function pos, which returns the position in the analyzed string where
the regex engine last left off. Therefore, this is the character immediately following the match. Since
we want to report 1-based cleavage sites, we do not need to subtract one from this 0-based value.
However, we subtract the number of bases needed to generate the expected sticky (or blunt) ends.

Cuts are stored as nested anonymous hashes in a way very similar to what we have described in
read_enzymes, except that elemental hashes are pushed onto the main array @cuts instead of being
each associated to a specific key. It thus results in an array of hashes.

push @cuts, {
enzyme => $enzyme,
site => $site,

};

Once cuts are computed, a sort statement orders the array by cleavage site. The sorting function is
simple but still requires the dereferencing arrow because $a and $b are references to the two anony-
mous hashes under comparison.

@cuts = sort { $a->{site} <=> $b->{site} } @cuts;

Finally, the function returns the main array @cuts as a list to the caller, which stores the returned list
in a lexical array of the same name.

@cuts: [
{
enzyme => 'EcoRI',
site => 707
},
{
enzyme => 'XhoI',
site => 740
},

Denis BAURAIN / ULiège 86 Modern Perl for Biologists II | Deeper Concepts

CHAPTER 6. THE INNARDS OF CUTTER.PL

{
enzyme => 'KpnI',
site => 759
}
]

6.4.2.2 collect_sites

The two remaining functions use @cuts for performing their duties. The first one collects the list of
cleavage sites for each restriction enzyme.
sub collect_sites {

my @cuts = @_;

my %sites_for;
for my $cut (@cuts) {

my ($site, $enzyme) = @{ $cut }{ qw(site enzyme) };
push @{ $sites_for{ $enzyme } }, $site;

}

return %sites_for;
}

Within the for loop, the first line uses a heavy dereferencing syntax that allows us to fetch and store
the two values at once (hash slice). It is not pretty but not particularly complicated either: $cut is the
hash reference that is dereferenced in a list context using @{...}, so that we can pass it several keys.
my ($site, $enzyme) = @{ $cut }{ qw(site enzyme) };

The second line pushes the site position onto the anonymous array corresponding to this enzymewith
the dereferencing syntax aimed at using an array reference as the referenced array (list context).
push @{ $sites_for{ $enzyme } }, $site;

This idiom works because the perl interpreter creates a fresh anonymous array the first time you try
to push a value for a key that is not yet in the hash. This behavior is similar to the one we exploited for
using hashes as counters (see codon_usage.pl and “Hash uses”, in the first part of this course). The
effect of this single statement is to progressively build a hash of arrays, such as the one shown below.
%sites_for: {
EcoRI => [
707
],
KpnI => [
759
],
XhoI => [
740
]
}

Here, each nested array has only one element, but using 4-cutter enzymes yields a different picture.

Denis BAURAIN / ULiège 87 Modern Perl for Biologists II | Deeper Concepts

CHAPTER 6. THE INNARDS OF CUTTER.PL

%sites_for: {
AluI => [
57,
314,
529,
...
2398
],
MspI => [
329,
696,
753,
...
2580
]
}

The collected sites are printed in the main while loop using two interesting constructs. First, the title
of the output is set to capital letters using an uppercasing escape sequence beginning with \U.

say "\n# \UList of cleavage sites";

Second, each line of the table is assembled using a pretty hairy double join involving two different
lists, each one joined by its own separator:

• the tab character between the enzyme name and its list of cleavage sites,
• the comma character (,) between each site of the list.

say '# ' . join "\t", qw(enz sites);
for my $enzyme (sort keys %sites_for) {

say join "\t", $enzyme, join ', ', @{ $sites_for{$enzyme} };
}

The dereferencing syntax for %sites_for is the same as used in the push explained a few lines above
(elemental array used in list context).

6.4.2.3 infer_fragments

The second remaining function also uses @cuts to build another nested data structure holding the
restriction fragments. Its logic is slightly more complicated.

sub infer_fragments {
my ($dna_string, @cuts) = @_;

unshift @cuts, { enzyme => q{5'-end}, site => 1 };
push @cuts, { enzyme => q{3'-end}, site => length $dna_string };

my @fragments;
my ($enz1, $x1) = @{ shift @cuts }{ qw(enzyme site) };
while (@cuts) {

Denis BAURAIN / ULiège 88 Modern Perl for Biologists II | Deeper Concepts

CHAPTER 6. THE INNARDS OF CUTTER.PL

my ($enz2, $x2) = @{ shift @cuts }{ qw(enzyme site) };
my $len = $x2 - $x1 + 1;
warn 'WARNING! Some cleavage sites overlap; inaccurate results!'

if $len < 1;

push @fragments, [$len, $x1, $x2, $enz1, $enz2];
($x1, $enz1) = ($x2+1, $enz2);

}

@fragments = sort { $b->[0] <=> $a->[0] } @fragments;

return @fragments;
}

First, we add two new elemental hashes to @cuts, corresponding to the 5’-end and 3’-end of the DNA
sequence viewed as linear (we do not handle circular sequences here). These hashes are added before
the first cut and after the last cut, respectively, using unshift and push.

unshift @cuts, { enzyme => q{5'-end}, site => 1 };
push @cuts, { enzyme => q{3'-end}, site => length $dna_string };

Then, we setup a while loop for the purpose of iterating over @cuts using a sliding window of one (1)
cut. This is needed since each cleavage site defines the boundary of its two flanking fragments.

my ($enz1, $x1) = @{ shift @cuts }{ qw(enzyme site) };
while (@cuts) {

my ($enz2, $x2) = @{ shift @cuts }{ qw(enzyme site) };
...

}

The enzyme name and site position for the current cut are copied from the nested hash reference as in
the function collect_sites, except that we do not store the hash reference in a variable. Instead, we
directly use the value shifted from a lexical copy of @cuts.

my ($enz1, $x1) = @{ shift @cuts }{ qw(enzyme site) };

Whenever a 3’-cut is recycled as the 5’-cut of the next fragment, its site position is incremented by one.

($x1, $enz1) = ($x2+1, $enz2);

This could fail if two enzymes cut at the same site, hence the warning.

my $len = $x2 - $x1 + 1;
warn 'WARNING! Some cleavage sites overlap; inaccurate results!'

if $len < 1;

The details for each fragment are stored in an anonymous array itself nested in the larger array @frag-
ments using push. Remember that such arrays are created using square bracket characters.

push @fragments, [$len, $x1, $x2, $enz1, $enz2];

I insist on this idiom (already covered in “Anonymous arrays”, p.46) because it is very common. Yet,
the line above could have been written more verbosely as follows.

Denis BAURAIN / ULiège 89 Modern Perl for Biologists II | Deeper Concepts

CHAPTER 6. THE INNARDS OF CUTTER.PL

my @data = ($len, $x1, $x2, $enz1, $enz2);
push @fragments, \@data;

Finally, the array of arrays @fragments is sorted numerically by fragment length in descending order
(first element at index 0) using the now familiar sort statement…

@fragments = sort { $b->[0] <=> $a->[0] } @fragments;

… and then returned as a list to the caller, which again stores it in a lexical array of the same name.

@fragments: [
[
2202,
760,
2961,
'KpnI',
'3\'-end'
],
[
707,
1,
707,
'5\'-end',
'EcoRI'
],
[
33,
708,
740,
'EcoRI',
'XhoI'
],
[
19,
741,
759,
'XhoI',
'KpnI'
]
]

The fragments for each input sequence are printed in the main while loop using a simple construct.
There are two subtleties, though. First, we stop the uppercasing before the end using the \E sequence.

say "\n# \UList of fragments\E (>= $ARGV{'--min-frag-len'} bp)";

Second, we halt the printing of the fragments as soon as their length falls below the command-line
threshold (--min-frag-len). This works because @fragments is sorted on descending length.

say '# ' . join "\t", qw(len 5'-pos 3'-pos 5'-enz 3'-enz);

Denis BAURAIN / ULiège 90 Modern Perl for Biologists II | Deeper Concepts

CHAPTER 6. THE INNARDS OF CUTTER.PL

FRAGMENT:
for my $fragment (@fragments) {

last FRAGMENT if $fragment->[0] < $ARGV{'--min-frag-len'};
say join "\t", @$fragment;

}

Note that the dereferencing syntax for accessing the anonymous array in list context (@$fragment) is
lighter than above because the array reference is stored in a scalar variable ($fragment). However, it
would have been perfectly valid to use the noisier syntax @{$fragment} instead.
Finally, in function plot_map, the construct for looping over @fragments and for fetching the details
of each fragment in a list of scalar variables is a useful idiom for arrays (or hashes) of arrays.
FRAGMENT:
for my $fragment (@fragments) {

my ($len, $x1, $x2, $enz1, $enz2) = @$fragment;

last FRAGMENT if $len < $ARGV{'--min-frag-len'};

...
}

BOX 9: Scalar references and alternate dereferencing syntax
As aforementioned, Perl often offers several ways to achieve the same meaning (TIMTOWTDI;
see “if & unless”, in the first part of this course), which is not always a good thing. This is
especially true with the dereferencing syntax for nested data structures, for which there exist
alternative ways of accessing element(s) that you may stumble on when perusing Perl scripts.
The general idea of this alternate syntax is to double the sigil. It comes from the way of derefer-
encing a scalar reference, a kind of beast that we have not encountered yet. References to scalar
variables are useful for dealing with very large pieces of data because they are much cheaper (in
terms of both speed and memory) to handle than the referenced data itself.
my $large_string = file('infile.txt')->slurp;
my $string_ref = \$large_string; # take scalar ref on string

and later (e.g., in a sub)...
say {$out} $$string_ref; # dereference scalar ref for printing

For nested data structures, one has to distinguish between accessing a single element (scalar
context) and several elements at once (list context). Below are specific examples that illustrate
the syntactic differences betweenModern Perl (MP) and shorter-but-uglier (SU) approaches. Note
that failing to use @ for fetching more than one element is always a bug (BG). This makes sense
as the first sigil dictates the amount context (either scalar or list).
my $sites = $sites_for{'AluI'}; # $sites is an array ref
$sites
[MP] third site: $sites->[2]
[SU] third site: $$sites[2]

Denis BAURAIN / ULiège 91 Modern Perl for Biologists II | Deeper Concepts

CHAPTER 6. THE INNARDS OF CUTTER.PL

[MP] two first sites: @{ $sites }[0..1]
[SU] two first sites: @$sites[0..1]
[BG] two first sites: $$sites[0..1]
[BG] two first sites: $sites->[0..1]

gives:

$sites: [
57,
314,
529,
...
2398
]
[MP] third site: 529
[SU] third site: 529
[MP] two first sites: 57,
314
[SU] two first sites: 57,
314
[BG] two first sites: 314
[BG] two first sites: 314

my $cut = shift @cuts; # $cut is a hash ref
$cut
[MP] enzyme: $cut->{enzyme}
[SU] enzyme: $$cut{enzyme}
[MP] enzyme and site: @{ $cut }{ qw(enzyme site) }
[SU] enzyme and site: @$cut{ qw(enzyme site) }
[BG] enzyme and site: $$cut{ qw(enzyme site) }
[BG] enzyme and site: $cut->{ qw(enzyme site) }

gives:

$cut: {
enzyme => 'AluI',
site => 57
}
[MP] enzyme: 'AluI'
[SU] enzyme: 'AluI'
[MP] enzyme and site: 'AluI',
57
[SU] enzyme and site: 'AluI',
57
[BG] enzyme and site: undef
[BG] enzyme and site: undef

Denis BAURAIN / ULiège 92 Modern Perl for Biologists II | Deeper Concepts

Chapter 7

Parsing BLAST reports

7.1 BLAST tabular format
To introduce Perl modules, we will write a reader for BLAST reports. BLAST reports come in many
different flavors, but in most cases, the tabular file (TSV) format is the way to go because it is both
compact and easy to read by a computer.

This format can be generated using the command-line BLAST executables by specifying the optional
argument -outfmt 6 (or 7). The difference between 6 and 7 is that the latter format inserts a few
comment lines before each result set (one set per query). This can be useful when processing BLAST
reports directly at the command line.

Default BLAST tables have 12 columns that each contain one specific piece of data:

1. query id
2. subject (also known as hit) id
3. percent identity
4. alignment length
5. # mismatches
6. # gap opens
7. query start
8. query end
9. subject (or hit) start
10. subject (or hit) end
11. E-value
12. bit score

As already mentioned on several occasions, reading a structured text format, such as tabular BLAST
reports, is called parsing. Thus, this section presents a BLAST parser. We will first generate a tabular
report for the purpose of testing our future parser. To this end, follow the instructions below.

1. Download two sequences from GenBank (use curl -o on macOS).

$ wget -O queries.fasta \
"https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi\
?db=protein&retmode=text&rettype=fasta&id=BAE95412,AAG33633"

Denis BAURAIN / ULiège 93 Modern Perl for Biologists II | Deeper Concepts

CHAPTER 7. PARSING BLAST REPORTS

2. Perform a remote BLASTP search against GenBank. (If you get one or more odd warnings, do not
be afraid as long as the program continues to run and yields a report.)
$ blastp -query queries.fasta -db nr -remote -evalue 1e-75 \

-outfmt 7 -out report.blastp.fmt7

3. Have a look at the report. Do you understand its content?
$ less report.blastp.fmt7

4. Produce a reduced version of the report for testing purposes. The new file should contain hit
(subject) id (column 2), alignment length (column 4) and E-value (column 11) for the ten top
results. Since the report begins with six comment lines (-outfmt 7), we ask for the 16 first lines
(head -n16), of which we keep only the ten last ones (tail -n10), before selecting the three
columns of interest (cut -f2,4,11).
$ head -n16 report.blastp.fmt7 | tail -n10 | cut -f2,4,11 > expected.txt
$ cat expected.txt

XP_822944.1 329 0.0
BAE16576.1 305 0.0
BAE16577.1 323 0.0
CCC93836.1 305 0.0
BAE16575.1 305 0.0
...

7.2 How to write a Perl module?
The Perl community has settled on a series of guidelines forwritingmodules. These are quite demand-
ing. We will not cover them in detail in this introductory course. However, some other modules exist
to help us to write our own modules. Let’s use one of them: Module::Starter! (In the following, I
am assuming that you work in the mod_perl directory.)
$ cpanm Module::Starter
$ cd mod_perl/
$ module-starter
$ module-starter --module=Forem::BlastTable --author='Your Name' \

--email='your.email@host.com' --minperl=5.12 --verbose

The helper module has built an empty module distribution that we only have to fill in. Using an
incredible technology known as templating, it has written all the boilerplate code for us! When fol-
lowing the instructions below, be sure to stick to the specified file paths or the program will not run.

1. Enter the module directory. It already contains a number of files and directories, among which
sub-directories lib, t and xt. Create two additional sub-directories bin and test.
$ cd Forem-BlastTable/
$ mkdir bin
$ mkdir test

2. Move your data files for testing in the test sub-directory.
$ mv ../queries.fasta ../report.blastp.fmt7 ../expected.txt test/

Denis BAURAIN / ULiège 94 Modern Perl for Biologists II | Deeper Concepts

CHAPTER 7. PARSING BLAST REPORTS

3. Create an additional automated test file for our Perl module in the t sub-directory. Its content
is shown at the next section (see “The code for blast_table.t”, p.95). You might want to add
the .t suffix to geany configuration, so that it can highlight your Perl code even if the .t suffix
is unknown to it. This can be done using the menu option Tools > Configuration files >
filetype_extensions.conf.

$ geany t/blast_table.t &

4. Similarly, create a standalone program making use of our module in the bin sub-directory.
Again, its content is given below (see “The code for parser.pl”, p.96).

$ geany bin/parser.pl &

5. Edit the autogenerated lib/Forem/BlastTable.pm and replace its beginning with the content
of the real BlastTable.pm shown below (see “The code for BlastTable.pm”, p.97).

$ geany lib/Forem/BlastTable.pm &

6. When you are done, install the missing modules and launch the automated tests.

$ cpanm Test::Most
$ cpanm Exporter::Easy
$ prove -lv t/blast_table.t

7. Finally, test your program with the following command.

$ perl -Ilib bin/parser.pl test/report.blastp.fmt7

7.2.1 The code for blast_table.t
1 #!/usr/bin/env perl
2

3 use Modern::Perl '2011';
4 use autodie;
5

6 use Path::Class 'file';
7 use Test::Most;
8

9 use Forem::BlastTable 'get_parser';
10

11 my $report = file('test', 'report.blastp.fmt7');
12 my $parser = get_parser($report);
13

14 my $exp_file = file('test', 'expected.txt');
15 my $exp_ref = read_exp_file($exp_file);
16

17 my @got;
18

19 HSP:
20 while (my $hsp_ref = $parser->()) {
21

22 explain $hsp_ref;

Denis BAURAIN / ULiège 95 Modern Perl for Biologists II | Deeper Concepts

CHAPTER 7. PARSING BLAST REPORTS

23

24 push @got, [@{ $hsp_ref }{ qw(hit_id length evalue) }];
25 last HSP if @got == 10;
26 }
27

28 is_deeply \@got, $exp_ref,
29 'correctly parsed the 10 first lines of the report';
30

31 done_testing;
32

33

34 sub read_exp_file {
35 my $infile = shift;
36

37 open my $in, '<', $infile;
38

39 my @expected;
40 while (my $line = <$in>) {
41 chomp $line;
42 push @expected, [split /\t/xms, $line];
43 }
44

45 return \@expected;
46 }

7.2.2 The code for parser.pl
1 #!/usr/bin/env perl
2

3 use Modern::Perl '2011';
4 use Forem::BlastTable 'get_parser';
5

6 die "Usage: $0 <report.blast.fmt7>" unless @ARGV == 1;
7

8 my $report = shift;
9 my $parser = get_parser($report);
10

11 my $query_id = q{};
12 while (my $hsp_ref = $parser->()) {
13

14 if ($query_id ne $hsp_ref->{query_id}) {
15 $query_id = $hsp_ref->{query_id};
16 say "=== $query_id";
17 }
18

19 say join "\t", @{ $hsp_ref }{ qw(evalue length hit_id) };
20 }

Denis BAURAIN / ULiège 96 Modern Perl for Biologists II | Deeper Concepts

CHAPTER 7. PARSING BLAST REPORTS

7.2.3 The code for BlastTable.pm
1 package Forem::BlastTable;
2

3 use Modern::Perl '2011';
4 use autodie;
5

6 use Exporter::Easy (
7 OK => [qw(get_parser)],
8);
9

10 use List::AllUtils 'mesh';
11

12 =head1 NAME
13

14 Forem::BlastTable - A parser for NCBI BLAST tabular output
15

16 =head1 VERSION
17

18 Version 0.01
19

20 =cut
21

22 our $VERSION = '0.01';
23

24

25 =head1 SYNOPSIS
26

27 use Forem::BlastTable 'get_parser';
28

29 my $report = 'report.blast.fmt7';
30 my $parser = get_parser($report);
31

32 while (my $hsp_ref = $parser->()) {
33 say join "\t", @{ $hsp_ref }{ qw(query_id hit_id length evalue) };
34 }
35

36 =head1 EXPORT
37

38 This module exports nothing by default. Only one function is available for
39 import, C<get_parser>, which returns an HSP iterator over the BLAST report.
40

41 =head1 SUBROUTINES/METHODS
42

43 =head2 get_parser
44

45 =cut
46

Denis BAURAIN / ULiège 97 Modern Perl for Biologists II | Deeper Concepts

CHAPTER 7. PARSING BLAST REPORTS

47 sub get_parser {
48 my $infile = shift;
49

50 open my $fh, '<', $infile;
51

52 # define HSP hash keys
53 # slightly different from column names
54 my @attrs = qw(
55 query_id hit_id
56 identity length mismatches gaps
57 query_start query_end
58 hit_start hit_end
59 evalue bits
60);
61

62 # setup parser
63 my $closure = sub {
64

65 LINE:
66 while (my $line = <$fh>) {
67 chomp $line;
68

69 next LINE if $line =~ m/\A \s* \z/xms; # skip empty lines
70 next LINE if $line =~ m/\A \#/xms; # skip comment lines
71

72 # process HSP line
73 my @fields = split /\t/xms, $line;
74

75 # Fields for BLAST -outfmt 6 or 7
76 # 0. query id
77 # 1. subject id
78 # 2. % identity
79 # 3. alignment length
80 # 4. mismatches
81 # 5. gap opens
82 # 6. q. start
83 # 7. q. end
84 # 8. s. start
85 # 9. s. end
86 # 10. evalue
87 # 11. bit score
88

89 # here, we may add or modify some fields if needed
90

91 # build and return anonymous HSP hash ref
92 return { mesh @attrs, @fields };
93 }

Denis BAURAIN / ULiège 98 Modern Perl for Biologists II | Deeper Concepts

CHAPTER 7. PARSING BLAST REPORTS

94

95 return; # no more line to read
96 };
97

98 return $closure;
99 }
100

101 =head1 AUTHOR
102

103 ...

Denis BAURAIN / ULiège 99 Modern Perl for Biologists II | Deeper Concepts

CHAPTER 7. PARSING BLAST REPORTS

Denis BAURAIN / ULiège 100 Modern Perl for Biologists II | Deeper Concepts

Homework

For our next lesson, I propose you towrite an improvedversion of parser.pl (hw8_parser_euclid.pl).
It should have the following features (do your best):

• a command-line interface based on Getopt::Euclid,
• an optional argument --evalue (similar to --min-frag-len in cutter.pl) allowing the user to
limit the display of the BLAST results to the specified threshold,

• an optional argument --fields (similar to --enzymes in cutter.pl) allowing the user to specify
the list of fields to be displayed by their names. (It might be useful to list the available fields in
the documentation.) The argument --fields should have a default value that emulates the
behavior of the current version of parser.pl.

Denis BAURAIN / ULiège 101 Modern Perl for Biologists II | Deeper Concepts

CHAPTER 7. PARSING BLAST REPORTS

Denis BAURAIN / ULiège 102 Modern Perl for Biologists II | Deeper Concepts

Part IV

Lesson 9

Denis BAURAIN / ULiège 103 Modern Perl for Biologists II | Deeper Concepts

Chapter 8

More on Perl modules

8.1 Structure of a Perl distribution
When we used module-starter for creating the distribution directory for Forem::BlastTable, the
command automatically created a series of files and sub-directories for us. Let’s briefly describe them.
Changes The file giving the list of bug fixes and new features of each release of the distribution.
MANIFEST The list of files included in the distribution.
Makefile.PL The file governing the building of the distribution. In principle, it should contain the

dependencies (other Perl modules) required by the distribution.
README The classic starting point for the documentation of the distribution. It also provides a guide

for installing the distribution.
ignore.txt The list of (temporary) files to be excluded from the packaged distribution.
lib/ The sub-directory containing the actual code hierarchy for the modules included in the distri-

bution. Each word in a module name begins with an uppercase letter, the remaining appearing
in lowercase letters (a practice called CamelCase), and filenames further end with the .pm suffix
(for Perl Modules), e.g., BlastTable.pm. Modules are written in standard Perl.

t/ The sub-directory containing the code for the automated testing of the modules of the distribution.
Test filenames use underscore characters betweenwords and endwith the .t suffix (forTest), e.g.,
blast_table.t. Again, they are written in standard Perl. Ideally, there should be at least one .t
file per .pm file. There is also an xt/ sub-directory supposed to contain so-called “author tests”.
You should not worry about them. Such tests are meant for Perl developers who care very much
about the quality of their code— even more than you do!

With Module::Starter, we only need to edit (or add) files in lib and t sub-directories, the rest being
handled for us. However, we created two other sub-directories in the Forem-BlastTable directory.
test The sub-directory containing the data files for testing the modules of the distribution.
bin (or scripts) The sub-directory containing the really useful programs taking advantage of the

module(s) and distributed as an integral part of the module distribution. Once installed as ex-
ecutable files in the user’s $PATH, they will be available from any directory (even after deleting
the distribution files).

Denis BAURAIN / ULiège 105 Modern Perl for Biologists II | Deeper Concepts

CHAPTER 8. MORE ON PERL MODULES

8.2 Installing Perl modules
So far, we have encountered two kinds of modules:

• modules included in the standard distribution of Perl, which do not need any installation,
• optional CPAN modules that we install using the cpanm command.

Except if we polish them for uploading to the CPAN website, our own modules belong to a third
species. They also need to be installed, but manually. If we glance at the README file created for us,
we see the following section.

INSTALLATION

To install this module, run the following commands:

perl Makefile.PL
make
make test
make install

This is the standard manual procedure for installing Perl modules. It is not that hard. Try to install
our module Forem::BlastTable using the few commands above. Note that they should always be
issued from the main directory of the distribution.

$ cd Forem-BlastTable/
$ perl Makefile.PL
...

However, we get an error message after the first installation command.

Perl v5.120.0 required (did you mean v5.12.0?)--this is only v5.32.0, \
stopped at Makefile.PL line 1.

BEGIN failed--compilation aborted at Makefile.PL line 1.

Somethingwentwrong…Apparently, we ask for a futuristic version of the perl interpreter (5.120.0),
whichwill not be available before half a century, since there are two releases a year! How is it possible?

Well, we made a typo in the module-starter command. We specified --minperl=5.12 instead of
--minperl=5.012. How to fix that without restarting from scratch? This is a job for another one-liner
(see “Perl one-liners”, in the first part of this course).

First, look for the files that have to be corrected.

$ grep -r "\b5\.12\b" *

This recursive grep follows your directory structure and gives the following output.

Makefile.PL:use 5.12;
Makefile.PL: MIN_PERL_VERSION => 5.12,
t/00-load.t:use 5.12;
t/manifest.t:use 5.12;
t/pod-coverage.t:use 5.12;
t/pod.t:use 5.12;
xt/boilerplate.t:use 5.12;

Denis BAURAIN / ULiège 106 Modern Perl for Biologists II | Deeper Concepts

CHAPTER 8. MORE ON PERL MODULES

We do not see lib/Forem/BlastTable.pm nor t/blast_table.t because we replaced use 5.12 by
use Modern::Perl '2011' when we edited these files. To fix the remaining files, use the one-liner
below. Then retry to install the module.
$ perl -i.bak -nle 's/5\.12/5.012/g; print' Makefile.PL t/*.t xt/*.t
$ perl Makefile.PL
$ make
$ make test
$ make install

If you are lucky, installation should complete successfully. Otherwise, you probably messed up the
one-liner: replace each modified file found with the grep command by its original version (ending
with the .bak suffix, as in “The -i switch”, see the first part of this course), double-check the one-liner
and retry the commands above.
In some rare cases, make doesn’t work because the building process was left in a somewhat unstable
state. If that happens, try make clean before perl Makefile.PL etc.

8.2.1 Fine-tuning the installation process
After some fiddling, Forem::BlastTable should be (hopefully) installed. The net result of the instal-
lation process is that our module is now available for use without having to explicitly specify the
location of our libraries, which is another word for modules. Remember: the last time we tried our
program, we launched it like this.
$ perl -Ilib bin/parser.pl test/report.blastp.fmt7

Now, we can drop the perl -Ilib part and simply use the following command.
$ parser.pl test/report.blastp.fmt7

-bash: parser.pl: command not found

WTF? Well, we forgot to tell make to install our parser.pl script. Therefore, it installed all our files
except that one! To fix this issue, edit Makefile.PL and add the following configuration snippet as an
additional key/value pair.
EXE_FILES => [

'bin/parser.pl',
],

Then reinstall our module (from perl Makefile.PL) and retry our parser. It should work now…
In any case, installing a module is copying it to a specific location of your hard drive. This means that
if you later modify something in the .pm library files in the lib sub-directory or in the .pl program
files in the bin sub-directory, e.g., parser.pl, you will need to reinstall the module for the changes to
be effective in a system-wide fashion.

8.2.2 Specifying module dependencies
While we are at editing Makefile.PL, we should also specify our dependencies, i.e., Perl modules
on which our own module depends. These will help future users (and cpanm) to determine which
modules are missing from the system and have to be installed prior to installing Forem::BlastTable
itself. To find all our dependencies, use the funny command below.

Denis BAURAIN / ULiège 107 Modern Perl for Biologists II | Deeper Concepts

CHAPTER 8. MORE ON PERL MODULES

$ grep -r '^use' * | cut -d' ' -f2 | cut -d';' -f1 | sort | uniq

It will recursively search for use lines in our files and extract the names of the used modules in a
non-redundant way. The returned list should be something like this.
5.012
Exporter::Easy
ExtUtils::MakeMaker
Forem::BlastTable
List::AllUtils
Modern::Perl
Path::Class
Test::More
Test::Most
autodie
strict
warnings

Some of these modules (or pragmas) are part of the standard Perl distribution (e.g., strict and warn-
ings); these will not need to be specified as dependencies in our Makefile.PL. In contrast, we have
manually installed most of the other modules. We should thus list them in one (or more) of the hash
keys shown in the table below (depending on the installation step requiring a given module).

Table 8.1: Keys to specify module dependencies in Makefile.PL

key meaning
CONFIGURE_REQUIRES needed to run Makefile.PL but not to run our module
BUILD_REQUIRES needed to build our module but not to run it
TEST_REQUIRES needed to test our module but not to run or build it
PREREQ_PM needed to run our module

In our case, I dispatched the requiredmodules in the keys below. It does not harm to list somemodules
that are actually part of the standard Perl distribution (e.g., ExtUtils::MakeMaker, Test::More).

CONFIGURE_REQUIRES => {
'ExtUtils::MakeMaker' => 0,

},
TEST_REQUIRES => {

'Test::More' => 0,
'Test::Most' => 0,

},
PREREQ_PM => {

'Exporter::Easy' => 0,
'List::AllUtils' => 0,
'Modern::Perl' => 0,
'Path::Class' => 0,
'autodie' => 0,

},

Denis BAURAIN / ULiège 108 Modern Perl for Biologists II | Deeper Concepts

CHAPTER 8. MORE ON PERL MODULES

The values 0 mean that we do not ask for a minimum version of each module. Our Makefile.PL
will be happy as long as these modules are installed on the system, even if their versions are old and
buggy. Therefore, we should ideally specify the minimum version number of each module that our
own module requires to run flawlessly. Given that modules are often updated by CPAN authors, this
can reveal tricky: ask for a too old version and some bugs may crop up when running your code; ask
for a too recent version and the user will need to update many of its modules before installing your
own… Feel free to experiment with PREREQ_PM key/value pairs to understand how they work (see
my Makefile.PL below for some ideas).
For more information about Makefile.PL, peruse the documentation of ExtUtils::MakeMaker.

If you want to learn about an almighty (yet intimidating) module designed to help programmers to write,
package, manage and release their Perl module distributions, have a look at Dist::Zilla. Among many
other things, it can automate the tedious process of gathering and updating module dependencies.

Finally, asweuse Perlbrew,we can list all themoduleswehave installed in our sandbox (either directly
or indirectly as a dependency of another module) with a simple command.
$ perlbrew list-modules

For reference, here’s a listing of my (nearly) complete Makefile.PL.
1 use 5.012;
2 use strict;
3 use warnings;
4 use ExtUtils::MakeMaker;
5

6 my %WriteMakefileArgs = (
7 NAME => 'Forem::BlastTable',
8 AUTHOR => q{Denis BAURAIN <denis.baurain@ulg.ac.be>},
9 VERSION_FROM => 'lib/Forem/BlastTable.pm',
10 ABSTRACT_FROM => 'lib/Forem/BlastTable.pm',
11 LICENSE => 'artistic_2',
12 MIN_PERL_VERSION => 5.012,
13 CONFIGURE_REQUIRES => {
14 'ExtUtils::MakeMaker' => 0,
15 },
16 TEST_REQUIRES => {
17 'Test::More' => 0,
18 'Test::Most' => 0,
19 },
20 PREREQ_PM => {
21 'Exporter::Easy' => 0,
22 'List::AllUtils' => 0,
23 'Modern::Perl' => 0,
24 'Path::Class' => 0,
25 'autodie' => 0,
26 # uncomment the following lines to see the effect of missing
27 # or outdated modules on the command: perl Makefile.PL

Denis BAURAIN / ULiège 109 Modern Perl for Biologists II | Deeper Concepts

CHAPTER 8. MORE ON PERL MODULES

28 # 'Missing::Module' => 0,
29 # 'Modern::Perl' => 3.4,
30 },
31 dist => { COMPRESS => 'gzip -9f', SUFFIX => 'gz', },
32 clean => { FILES => 'Forem-BlastTable-*' },
33 EXE_FILES => [
34 'bin/parser.pl',
35],
36);
37 ...

8.3 Anatomy of a Perl module
The actual code for our module is in the file BlastTable.pm. The beginning and end of this file are
what makes it a Perl module, whereas the remaining that lies in between is mostly standard Perl code.
package Forem::BlastTable;

use Modern::Perl '2011';
use autodie;

use Exporter::Easy (
OK => [qw(get_parser)],

);

...

1; # End of Forem::BlastTable

Let’s begin by the last statement: 1;. All Perl modules must return a true value and the convention is
to use this expression to this end. Helpers such as Module::Starter ensure that you do not forget it.

8.3.1 packages and namespaces
The very first line of the file simultaneously declares the package Forem::BlastTable and its associ-
ated namespace. The package corresponds to the source code, while the namespace is the entity that
encapsulates this code once analyzed by the perl interpreter.
A namespace is a named collection of symbols, i.e., global variables and functions. Namespaces can
be multi-level; in this case, each level is separated from the next one using a double colon sequence
(::). Here are some namespaces that we have seen so far: Smart::Comments, List::AllUtils,
Getopt::Euclid, Term::Size::Any and of course Forem::BlastTable.
Perl does not enforce any relationship between namespaces sharing one or more level names. These
are only semantic conventions that hint the user at what the package might do. However, both in
the lib sub-directory of the distribution and once installed in the right place on your hard drive,
Perl modules are stored in a hierarchy of sub-directories perfectly mapping the nesting levels of the
namespace (see table below).

Denis BAURAIN / ULiège 110 Modern Perl for Biologists II | Deeper Concepts

CHAPTER 8. MORE ON PERL MODULES

Table 8.2: Examples of namespaces and directory hierarchies

namespace directory hierarchy
Forem::BlastTable lib/Forem/BlastTable.pm
Forem::FastaFile lib/Forem/FastaFile.pm
Term::Size::Any lib/.../Term/Size/Any.pm

User-defined namespaces should always beginwith an uppercase letter. If a single naming level needs
several words, these are concatenated using CamelCase, as already mentioned. Perl reserves lower-
case package names for pragmas (e.g., strict, warnings, autodie). As often in Perl, these are only
conventions… but stick to them!

Table 8.3: Examples of namespace spelling conventions

spelling correctness
BlastTable OK
blastTable not OK: namespace should begin with an uppercase letter
Blasttable not OK: each word should begin with an uppercase letter
blasttable obviously not OK
blast_table not OK for a namespace but perfect for a .t file
Blast_Table good try but not OK!

After a package directive, we are in the specified namespace. The consequence is that all the symbols
defined in this namespace can be referred to by their short name. In contrast, to access symbols from
another namespace, you can either import them or use their fully-qualified names.

using importing
use Term::Size::Any 'chars';
my ($cols, $rows) = chars();

using fully-qualified names
use Term::Size::Any;
my ($cols, $rows) = Term::Size::Any::chars();

The scope of the package continues until the next package directive. In the absence of any package
directive, the package defaults to main.

Each package has a version number, which is a series of integer numbers separated by dots, as in
1.23 or 1.1.10. The package version is stored in the global variable $VERSION and can be obtained
with the VERSION()method.

say Forem::BlastTable->VERSION;

Until Perl 5.10 included, $VERSIONwas defined as follows (using the our scope, a subtle variant of the
lexical scope controlled by the our keyword). This is the way Module::Starter still works.

package Forem::BlastTable;

Denis BAURAIN / ULiège 111 Modern Perl for Biologists II | Deeper Concepts

CHAPTER 8. MORE ON PERL MODULES

our $VERSION = '0.01';

Starting with Perl 5.12, you may use the more direct syntax below. Version numbers specified in this
way must begin with a v and contain at least three series of integer numbers separated by dots.

package Forem::BlastTable v0.0.1;

If a use statement includes a version number, the VERSION() method of the corresponding module
is called so as to check that its $VERSION indeed is recent enough. Otherwise, the script dies with an
appropriate error message.

use Forem::BlastTable 1.2;

gives:

Forem::BlastTable version 1.2 required--this is only version 0.01 at blast.pl line 6.
BEGIN failed--compilation aborted at blast.pl line 6.

BOX 10: Multiple namespaces in source files
It is perfectly legal to declare several packages in a single source file, but don’t do that. You can
even add a symbol to another package than the current one by fully-qualifying the symbol.
package Forem::FastaFile;

sub read_fasta {
function body

}

package Forem::BlastTable;

sub get_parser {
function body

}

sub Forem::FastaFile::write_fasta { # please avoid!
function body

}

8.3.2 Exporting symbols
Some packages export some (or all) of their symbols by default. Hence, simply using the module
POSIX gives you access to the functions floor and ceil without needing to explicitly import them.
Newer modules often do not export anything by default to avoid polluting your namespace.

The details about how symbol importing exactly works are beyond the scope of this course. However,
we can easily mark symbols for importation in our own modules using the module Exporter::Easy
and its simple configuration hash. Below is the relevant statement for Forem::BlastTable.

Denis BAURAIN / ULiège 112 Modern Perl for Biologists II | Deeper Concepts

CHAPTER 8. MORE ON PERL MODULES

use Exporter::Easy (
OK => [qw(get_parser)],

);

It means that the symbols listed in the nested anonymous array corresponding to the hash key OK can
be imported by the file using our module. To import them, the latter file should do the following.

use Forem::BlastTable 'get_parser';

Symbols corresponding to the hash key EXPORT are exported by default, but again, this is now considered
bad practice. Thus, I do not provide an example!

If we want to let the user import several symbols at once, we can group them using tags beginning
with a single colon character (:). Here’s an example from our next module, Forem::FastaFile.

use Exporter::Easy (
OK => [qw(:io prefix_ids)],
TAGS => [

io => [qw(read_fasta write_fasta write_tmp_fasta)],
],

);

The purpose of this is explained in the documentation of the module:

=head1 EXPORT

This module exports nothing by default. If you want to import all readers and
writers at once, use the tag C<:io> with the C<use> directive. Other functions
are available on an individual basis.

8.4 Automated tests
The Perl community has a very strong tradition for automatic testing. The consequence of this incli-
nation is that Perl modules deposited on CPAN are generally of a high quality.

When developing a new module, you should always at least include so-called unit tests. These
tests check that individual functions (or methods) of your Perl modules work as expected (and docu-
mented), but not the behavior of whole programs.

Unit tests are stored in the t sub-directory and are run when installing the modules of the distribution
(with make test). They are also runwhen installing amodule with cpanm. In principle, if any of these
automated test fails, the distribution cannot be installed. This is why Perl modules are so robust in
comparison to libraries from sloppier languages.

There are many ways of writing unit tests in Perl. Our approach is a classic one. We have one .t file
for each .pm file, and within these .t files, we test each function marked as exportable at least once
(in testing the more the better).

The next page starts with a template for our test files.

Denis BAURAIN / ULiège 113 Modern Perl for Biologists II | Deeper Concepts

CHAPTER 8. MORE ON PERL MODULES

#!/usr/bin/env perl

use Modern::Perl '2011';
use autodie;

use Path::Class 'file';
use Test::Most;

...

done_testing;

The module Test::Most exports a number of specialized functions to help you write automated tests.
Wewill cover them in “More on automated tests”, p.151. The basic idea is to compare the return value
of the tested function (what we got) with a prediction of the return value (what we expected). If both
values match, the test passes; otherwise, the test fails with an informative error message.
To run our tests, we can simply enter the following command.
$ prove -lv t/*.t

The option -l is a shorthand for the -Ilib option of perl, while the option -vmeans verbose. Trywith-
out the latter option to see the difference. If everything works as expected, we get the heartwarming
message below.
All tests successful.

When developing a module, you can also run only some specific test files.
$ prove -lv t/blast_table.t

Denis BAURAIN / ULiège 114 Modern Perl for Biologists II | Deeper Concepts

Chapter 9

Our ultimate killer app

9.1 Annotating sequences with reference sequences
A common bioinformatics application is to annotate a set of poorly characterized DNA or protein
sequences with a set of reference sequences. Generally, the annotation process is based on sequence
similarity between the former and the latter.

If a sequence for which the function is unknown is very (or modestly) similar to another sequence
for which the function is known, evolutionary genomics predicts that the first one might fullfil a func-
tion highly (or more distantly) related to the second one. This is the main strategy by which newly
sequenced genomes are analyzed. Since annotation requires a lot of pairwise sequence comparisons,
one often uses heuristic search tools, such as BLAST (for Basic Local Alignment Search Tool).

Here, we will develop an application for annotating a FASTA input file based on another FASTA file
containing the reference sequences. This application is based on a real program used in a paper I
published with my pal Marc Hanikenne (http://hdl.handle.net/2268/160735).

9.2 Packaging read_fasta and friends
First, we need amodule formanipulating FASTAfiles. It will feature a slightlymodified version of our
function read_fasta that returns a reference to the hash %seq_for (instead of its content). Alongwith
the reader, we will include functions for writing FASTA files and for modifying sequence identifiers.

The procedure to program the module Forem::FastaFile is detailed below.

1. Create the directory for the distribution. Watch the --minperl option!

$ cd mod_perl/
$ module-starter --module=Forem::FastaFile --author='Your Name' \

--email='your.email@host.com' --minperl=5.012 --verbose

2. Enter the module directory and create a sub-directory test. We have no need for a bin sub-
directory in this module.

$ cd Forem-FastaFile/
$ mkdir test

Denis BAURAIN / ULiège 115 Modern Perl for Biologists II | Deeper Concepts

http://hdl.handle.net/2268/160735

CHAPTER 9. OUR ULTIMATE KILLER APP

3. Copy your phagemids.fasta file in the test sub-directory under a new name: infile.fasta.
Here’s a possible command but your mileage may vary depending on your directory structure.
$ cp ../phagemids.fasta test/infile.fasta

4. Make a copy of this file under the name expfile.fasta and replace the four lengthy sequence
identifiers by the following shorter identifiers: seq1, seq2, seq3, seq4. Do it with the one-liner
explained above (see “The /e regex modifier”, in the first part of this course).
$ cp test/infile.fasta test/expfile.fasta
shorten sequence ids
$ perl -i.bak -nle 's/>.*/">seq" . ++$i /ge; print' test/expfile.fasta
check that sequence ids are now indeed shorter
$ grep -A1 \> test/expfile.fasta

>seq1
CTAAATTGTAAGCGTTAATATTTTGTTAAAATTCGCGTTAAATTTTTGTTAAATCAGCTCATTTTTTAAC
--
>seq2
CTAAATTGTAAGCGTTAATATTTTGTTAAAATTCGCGTTAAATTTTTGTTAAATCAGCTCATTTTTTAAC
--
>seq3
CTGACGCGCCCTGTAGCGGCGCATTAAGCGCGGCGGGTGTGGTGGTTACGCGCAGCGTGACCGCTACACT
--
>seq4
CTGACGCGCCCTGTAGCGGCGCATTAAGCGCGGCGGGTGTGGTGGTTACGCGCAGCGTGACCGCTACACT

5. Create an automated test file for our Perl module in the t sub-directory (see “The code for
fasta_file.t”, p.117, for content).
$ geany t/fasta_file.t &

6. Edit the default lib/Forem/FastaFile.pm and alter its beginning to match my version (shown
in “The code for FastaFile.pm”, p.118).
$ geany lib/Forem/FastaFile.pm &

7. When you are done, install missing modules and launch the automated tests.
$ cpanm Const::Fast
$ cpanm Test::Files
$ prove -lv t/fasta_file.t

8. If everything runs smoothly, edit Makefile.PL to add our dependencies. These are exactly
the same as Forem::BlastTable, supplemented by four new modules: Test::Files (under
TEST_REQUIRES), Const::Fast, File::Temp and Tie::IxHash (under PREREQ_PM).
$ geany Makefile.PL &

9. Finally, proceed with installing the distribution.
$ perl Makefile.PL
$ make
$ make test
$ make install

Denis BAURAIN / ULiège 116 Modern Perl for Biologists II | Deeper Concepts

CHAPTER 9. OUR ULTIMATE KILLER APP

9.2.1 The code for fasta_file.t
1 #!/usr/bin/env perl
2

3 use Modern::Perl '2011';
4 use autodie;
5

6 use List::AllUtils 'shuffle';
7 use Path::Class 'file';
8 use Test::Most;
9 use Test::Files;
10

11 use Forem::FastaFile qw(:io prefix_ids);
12

13 my $infile = file('test', 'infile.fasta');
14 my $seq_for = read_fasta($infile);
15 explain $seq_for;
16 my $exp_seq_n = 4;
17

18 # test 1
19 cmp_ok keys %$seq_for, '==', $exp_seq_n,
20 "correctly read $exp_seq_n seqs from $infile";
21

22 # test 2
23 my $exp_ids = qx{grep \\> test/infile.fasta | cut -c2-};
24 explain $exp_ids;
25 my $got_ids = join("\n", keys %$seq_for) . "\n";
26 cmp_ok $got_ids, 'eq', $exp_ids,
27 "correctly parsed the ids in $infile";
28

29 # test 3
30 my @exp_lens = (2961) x 4;
31 my @got_lens = map { length } values %$seq_for;
32 explain \@got_lens;
33 is_deeply \@got_lens, \@exp_lens,
34 "correctly read the seqs in $infile";
35

36 # test 4
37 my $outfile = file('test', 'outfile.fasta');
38 $outfile->remove if -e $outfile;
39 write_fasta($outfile, $seq_for);
40 compare_ok $outfile, $infile,
41 "correctly written $outfile";
42

43 # test 5
44 my $expfile = file('test', 'expfile.fasta');
45 my ($tmpfile, $id_for) = write_tmp_fasta($seq_for);
46 compare_ok $tmpfile, $expfile,

Denis BAURAIN / ULiège 117 Modern Perl for Biologists II | Deeper Concepts

CHAPTER 9. OUR ULTIMATE KILLER APP

47 "correctly written temporary $tmpfile";
48 explain $id_for;
49

50 # test 6
51 my @exp_ids = map { "seq$_" } 1..$exp_seq_n;
52 explain \@exp_ids;
53 my @got_ids = keys %$id_for;
54 cmp_bag \@got_ids, \@exp_ids,
55 "correctly remapped ids in temporary $tmpfile";
56

57 # test 7
58 my $tmp_seq_for = read_fasta($tmpfile);
59 my @tags = map { 'type' . chr(64 + $_) } shuffle 1..$exp_seq_n;
60 explain \@tags;
61 my $i = 0;
62 my $ann_for = { map { $_ => $tags[$i++] } keys %$tmp_seq_for };
63 explain $ann_for;
64 my $ann_seq_for = prefix_ids($tmp_seq_for, $ann_for);
65 explain $ann_seq_for;
66 my @exp_ann_ids = map { $ann_for->{$_} . '-' . $_ } keys %$tmp_seq_for;
67 explain \@exp_ann_ids;
68 my @got_ann_ids = keys %$ann_seq_for;
69 is_deeply \@got_ann_ids, \@exp_ann_ids,
70 "correctly prefixed ids using annotation hash";
71

72 done_testing;

9.2.2 The code for FastaFile.pm
1 package Forem::FastaFile;
2

3 use Modern::Perl '2011';
4 use autodie;
5

6 use Exporter::Easy (
7 OK => [qw(:io prefix_ids)],
8 TAGS => [
9 io => [qw(read_fasta write_fasta write_tmp_fasta)],
10],
11);
12

13 use Const::Fast;
14 use File::Temp;
15 use Tie::IxHash;
16

17 const my $CHUNK_LEN => 70;
18

Denis BAURAIN / ULiège 118 Modern Perl for Biologists II | Deeper Concepts

CHAPTER 9. OUR ULTIMATE KILLER APP

19

20 =head1 NAME
21

22 Forem::FastaFile - Reader and Writers for FASTA files
23

24 =head1 VERSION
25

26 Version 0.01
27

28 =cut
29

30 our $VERSION = '0.01';
31

32

33 =head1 SYNOPSIS
34

35 use Forem::FastaFile ':io';
36

37 my $infile = 'infile.fasta';
38 my $seq_for = read_fasta($infile);
39

40 while (my ($seq_id, $seq) = each %$seq_for) {
41 say "id: $seq_id";
42 say "seq: $seq";
43 }
44

45 my $outfile = 'outfile.fasta';
46 write_fasta($outfile, $seq_for);
47

48 my ($tmp_file, $id_for) = write_tmp_fasta($seq_for);
49

50 # given an annotation hash %ann_for
51 my $annfile = 'annotated.fasta';
52 write_fasta($annfile, prefix_ids($seq_for, \%ann_for));
53

54 =head1 EXPORT
55

56 This module exports nothing by default. If you want to import all readers and
57 writers at once, use the tag C<:io> with the C<use> directive. Other functions
58 are only available on an individual basis.
59

60 =head1 SUBROUTINES/METHODS
61

62 =head2 INPUT/OUTPUT
63

64 =head3 read_fasta
65

Denis BAURAIN / ULiège 119 Modern Perl for Biologists II | Deeper Concepts

CHAPTER 9. OUR ULTIMATE KILLER APP

66 Reads a FASTA file and returns a reference to an ordered hash containing the
67 id/seq pairs. This function takes only one argument: the FASTA filename.
68

69 =cut
70

71 sub read_fasta {
72 my $infile = shift;
73

74 open my $in, '<', $infile;
75

76 my $seq_id;
77 my $seq;
78 tie my %seq_for, 'Tie::IxHash'; # preserve original seq order
79

80 LINE:
81 while (my $line = <$in>) {
82 chomp $line;
83

84 # at each '>' char...
85 if (substr($line, 0, 1) eq '>') {
86

87 # add current seq to hash (if any)
88 if ($seq) {
89 $seq_for{$seq_id} = $seq;
90 $seq = q{};
91 }
92

93 # extract new seq_id
94 $seq_id = substr($line, 1);
95 next LINE;
96 }
97

98 # elongate current seq (seqs can be broken on several lines)
99 $seq .= $line;
100 }
101

102 # add last seq to hash (if any)
103 $seq_for{$seq_id} = $seq if $seq;
104

105 return \%seq_for;
106 }
107

108 =head3 write_fasta
109

110 Writes a FASTA file. Sequences are wrapped at 70 chars. This function takes two
111 arguments: the FASTA filename and a reference to an ordered hash containing the
112 id/seq pairs

Denis BAURAIN / ULiège 120 Modern Perl for Biologists II | Deeper Concepts

CHAPTER 9. OUR ULTIMATE KILLER APP

113

114 =cut
115

116 sub write_fasta {
117 my $outfile = shift;
118 my $seq_for = shift;
119

120 open my $out, '>', $outfile;
121

122 while (my ($seq_id, $seq) = each %$seq_for) {
123 say {$out} ">$seq_id\n" . _wrap_seq($seq);
124 }
125

126 return;
127 }
128

129 =head3 write_tmp_fasta
130

131 Writes a temporary FASTA file for helper programs. Ids are abbreviated and
132 sequences are wrapped at 70 chars. This function takes only one argument: a
133 reference to an ordered hash containing the id/seq pairs. It returns a list of
134 two values: the temporary FASTA filename and a reference to an unordered hash
135 containing the abbr-id/full-id pairs.
136

137 =cut
138

139 sub write_tmp_fasta {
140 my $seq_for = shift;
141

142 # open temporary file
143 my $out = File::Temp->new(UNLINK => 0, EXLOCK => 0, SUFFIX => '.fasta');
144

145 # remap ids on the fly when writing temporary FASTA file
146 # seq ids in temp file are seq1, seq2 etc.
147 my %id_for;
148 for (my $i = 1; my ($seq_id, $seq) = each %$seq_for; $i++) {
149 my $tmp_id = "seq$i";
150 say {$out} ">$tmp_id\n" . _wrap_seq($seq);
151 $id_for{$tmp_id} = $seq_id;
152 }
153

154 # return temp file name and id mapping hash ref
155 return ($out->filename, \%id_for);
156 }
157

158 # private sub ; undocumented and unexportable
159

Denis BAURAIN / ULiège 121 Modern Perl for Biologists II | Deeper Concepts

CHAPTER 9. OUR ULTIMATE KILLER APP

160 sub _wrap_seq {
161 my $seq = shift;
162

163 my $seq_len = length $seq;
164

165 # wrap seq in chunks of length $CHUNK_LEN
166 my $wrapped_seq;
167 for (my $i = 0; $i < $seq_len; $i += $CHUNK_LEN) {
168 $wrapped_seq .= substr($seq, $i, $CHUNK_LEN) . "\n";
169 }
170

171 return $wrapped_seq;
172 }
173

174 =head2 ANNOTATION
175

176 =head3 prefix_ids
177

178 Prefix each seq id with a tag giving its annotation and returns the new hash
179 in the same order as the original hash. This function takes two arguments: a
180 reference to an ordered hash containing the id/seq pairs and a reference to a
181 (unordered) hash containing the id/tag pairs.
182

183 =cut
184

185 sub prefix_ids {
186 my $seq_for = shift;
187 my $ann_for = shift;
188

189 tie my %new_hash, 'Tie::IxHash';
190

191 while (my ($seq_id, $seq) = each %$seq_for) {
192 my $prefix = $ann_for->{$seq_id};
193 $new_hash{ $prefix ? $prefix . '-' . $seq_id : $seq_id } = $seq;
194 }
195

196 return \%new_hash;
197 }
198

199

200 =head1 AUTHOR
201

202 ...

Denis BAURAIN / ULiège 122 Modern Perl for Biologists II | Deeper Concepts

CHAPTER 9. OUR ULTIMATE KILLER APP

9.3 Building our application
It is now time to reap the benefits of all our efforts…

1. In the directory above Forem (e.g., directly in mod_perl), create a new program file and save it
as annotate.pl. Its content is shown in “The code for annotate.pl”, p.123.
$ geany annotate.pl &
$ chmod a+x annotate.pl

2. Whenyou are done, installmissingmodules. (Yes, each newkiller app comeswith a newbatch of
greatmodules: these two oneswill be briefly introduced in “Building programswith programs”,
p.156, and in “Calling external programs”, p.158.)
$ cpanm Template;
$ cpanm IPC::System::Simple

3. Finally, try the program with the following commands (you may need to edit the file paths).
$ perldoc annotate.pl
$./annotate.pl --help

$./annotate.pl phagemids.fasta --ref-file Ecoli_cds.fasta \
--ref-regex '^(\w+)'

$./annotate.pl phagemids.fasta --ref-file Ecoli_cds_pep.fasta \
--ref-regex '^(\w+)'

$./annotate.pl phagemids.fasta --ref-file Ecoli_cds_pep.fasta \
--ref-regex '^(\w+)' --evalue=1e-20

$./annotate.pl phagemids.fasta --ref-file Ecoli_cds_pep.fasta \
--ref-regex '^(\w+)' --evalue=1e-30

$./annotate.pl phagemids.fasta --ref-file Ecoli_cds_pep.fasta \
--ref-regex '^(\w+)' --evalue=1e-20 --write-ann-file

9.3.1 The code for annotate.pl
1 #!/usr/bin/env perl
2

3 use Modern::Perl '2011';
4 use autodie;
5

6 use Getopt::Euclid;
7 use Smart::Comments '###';
8 use Template;
9

10 use File::Basename;
11 use Path::Class 'file';
12

Denis BAURAIN / ULiège 123 Modern Perl for Biologists II | Deeper Concepts

CHAPTER 9. OUR ULTIMATE KILLER APP

13 use IPC::System::Simple qw(system);
14 use List::AllUtils 'any';
15

16 use Forem::FastaFile qw(:io prefix_ids);
17 use Forem::BlastTable 'get_parser';
18

19 #### Arguments: %ARGV
20

21 ### Reading infile: $ARGV{'<infile>'}
22 my ($seq_for, $intype, $infile, $inid_for) = process_file($ARGV{'<infile>'});
23

24 ### Reading infile: $ARGV{'--ref-file'}
25 my (undef, $reftype, $refile, $refid_for) = process_file($ARGV{'--ref-file'});
26

27 # determine blast program based on type combination
28 my %pgm_for = (
29 'prot:prot' => 'blastp',
30 'nucl:prot' => 'blastx',
31 'prot:nucl' => 'tblastn',
32 'nucl:nucl' => 'tblastx',
33);
34 my $pgm = $pgm_for{ "$intype:$reftype" };
35 ### assert: $pgm
36

37 # define command template
38 my $report = "$infile.blast.fmt7";
39 my $template = <<'EOT';
40 makeblastdb -in [% refile %] -dbtype [% reftype %]
41 [% pgm %] -query [% infile %] -db [% refile %] -evalue [% E %] -outfmt 7 -out [% report %]
42 EOT
43

44 # build command
45 my %vars = (
46 refile => $refile,
47 reftype => $reftype,
48 pgm => $pgm,
49 infile => $infile,
50 E => $ARGV{'--evalue'},
51 report => $report,
52);
53 my $command;
54 my $tt = Template->new;
55 $tt->process(\$template, \%vars, \$command);
56 #### $command
57

58 ### Performing BLAST...
59 system($command);

Denis BAURAIN / ULiège 124 Modern Perl for Biologists II | Deeper Concepts

CHAPTER 9. OUR ULTIMATE KILLER APP

60

61 ### Parsing BLAST report...
62 my $parser = get_parser($report);
63 my %ann_for;
64 my $curr_id = q{};
65

66 HSP:
67 while (my $hsp_ref = $parser->()) {
68 my ($qid, $hid, $evalue) = @{ $hsp_ref }{ qw(query_id hit_id evalue) };
69

70 next HSP if $evalue > $ARGV{'--evalue'}; # skip weak hits
71 next HSP if $qid eq $curr_id; # skip non-first hits
72 $curr_id = $qid;
73

74 # capture annotation bit in ref seq id using regex
75 my ($annotation) = $refid_for->{$hid} =~ $ARGV{'--ref-regex'};
76 $ann_for{ $inid_for->{$qid} } = $annotation;
77 }
78 #### Annotations: %ann_for
79

80 say '# ' . join "\t", qw(tag id);
81 for my $id (sort keys %ann_for) {
82 say join "\t", $ann_for{$id}, $id;
83 }
84

85 if ($ARGV{'--write-ann-file'}) {
86 my ($basename, $dir, $ext) = fileparse($ARGV{'<infile>'}, qr{\.[^.]*}xms);
87 my $outfile = file($dir, $basename . '_ann' . $ext);
88 ### Writing annotated file: $outfile->stringify
89 write_fasta($outfile, prefix_ids($seq_for, \%ann_for));
90 }
91

92 sub process_file {
93 my $infile = shift;
94

95 my $seq_for = read_fasta($infile);
96 my $type = (any { m/[EFILPQ]/i } values %$seq_for) ? 'prot' : 'nucl';
97 my ($tmpfile, $id_for) = write_tmp_fasta({
98 map { $_ => $seq_for->{$_} =~ tr/-//dr } keys %$seq_for
99 }); # degap seqs on the fly
100

101 return ($seq_for, $type, $tmpfile, $id_for);
102 }
103

104 =head1 NAME
105

106 annotate - Annotate a sequence file by similarity to reference sequences

Denis BAURAIN / ULiège 125 Modern Perl for Biologists II | Deeper Concepts

CHAPTER 9. OUR ULTIMATE KILLER APP

107

108 =head1 VERSION
109

110 This documentation refers to annotate version 0.0.1
111

112 =head1 USAGE
113

114 annotate.pl <infile> --ref-file <infile> --ref-regex <regex> [options]
115

116 =head1 REQUIRED ARGUMENTS
117

118 =over
119

120 =item <infile>
121

122 Path to input FASTA file.
123

124 =for Euclid:
125 infile.type: readable
126

127 =item --ref-file [=] <infile>
128

129 Path to reference FASTA file.
130

131 =for Euclid:
132 infile.type: readable
133

134 =item --ref-regex [=] <regex>
135

136 Regular expression for capturing the reference seq id part that has to be used
137 for annotating infile seq ids [default: none].
138

139 =for Euclid:
140 regex.type: string
141

142 =back
143

144 =head1 OPTIONS
145

146 =over
147

148 =item --evalue [=] <float>
149

150 E-value threshold for annotating a sequence [default: float.default].
151

152 =for Euclid:
153 float.type: number

Denis BAURAIN / ULiège 126 Modern Perl for Biologists II | Deeper Concepts

CHAPTER 9. OUR ULTIMATE KILLER APP

154 float.default: 1e-10
155

156 =item --write-ann-file
157

158 Write an annotated version (with prefixed ids) of the infile [default: no];
159

160 =item --version
161

162 =item --usage
163

164 =item --help
165

166 =item --man
167

168 Print the usual program information
169

170 =back
171

172 =head1 AUTHOR
173

174 Your Name (your.email@host.com)
175

176 =head1 BUGS
177

178 There are undoubtedly serious bugs lurking somewhere in this code.
179 Bug reports and other feedback are most welcome.
180

181 =head1 COPYRIGHT
182

183 Copyright (c) 2013, Your Name. All Rights Reserved.
184 This program is free software. It may be used, redistributed
185 and/or modified under the terms of the Perl Artistic License
186 (see http://www.perl.com/perl/misc/Artistic.html)

Denis BAURAIN / ULiège 127 Modern Perl for Biologists II | Deeper Concepts

CHAPTER 9. OUR ULTIMATE KILLER APP

Denis BAURAIN / ULiège 128 Modern Perl for Biologists II | Deeper Concepts

Homework

For the next lesson, I will ask you something slightly different: search CPAN for suitable modules
in order to add a few bells and whistles to your BLAST parser. The exercise lies both in the quest
for the best modules (i.e., functionality, programming interface, documentation) and in your efforts
to understand how they work and make proper use of them (by perusing the synopsis, reading the
examples and possibly studying the test files).
Your improved parser (hw9_parser_euclid_pro.pl) should have the additional functionalities de-
scribed just below with respect to hw8_parser_euclid.pl.

1. The optional argument --excel replaces the screen output of the BLAST report by the genera-
tion of aMicrosoft Excel (.xlsx) output file. This file should be named after the input file (i.e.,
report.blastp.fmt7 would transform into report.xlsx). Each query should lead to a differ-
ent spreadsheet in the Excel workbook (i.e., two queries would yield two sheets). Finally, the
header of each sheet (i.e., the first line providing the field/column names) should be formatted
differently from the regular rows (e.g., in boldface or on background color, as you wish).

2. The optional argument --tsv stores the current screen output (tab-separated) into a TSV output
file named according to the same scheme (i.e., report.tsv). This point does not require a specific
module (since it already works with join "\t"). However, your program should be able to
accept both the options --excel and --tsv if provided simultaneously by the user.

3. In any case, the parser should generate a screen output that is pretty to look at (i.e., the content of
the different columns has to be vertically aligned). Optionally, youmightwant to add a specially-
formatted header, as well as horizontal and/or vertical rules.

Denis BAURAIN / ULiège 129 Modern Perl for Biologists II | Deeper Concepts

CHAPTER 9. OUR ULTIMATE KILLER APP

Denis BAURAIN / ULiège 130 Modern Perl for Biologists II | Deeper Concepts

Part V

Lesson 10

Denis BAURAIN / ULiège 131 Modern Perl for Biologists II | Deeper Concepts

Chapter 10

Idiomatic Perl

10.1 More on closures
In “Closures and BEGIN code blocks”, p.79, we introduced the concept of closure while discussing the
BEGIN code block. The function get_parser in our module Forem::BlastTable also uses a closure,
but in a more complex setting.

Since this whole section is conceptually more difficult than anything else in this course, it should
probably be enclosed in a big blue box. If you are not afraid, please proceed and learn more about
closures! Otherwise, skip this part and go directly to “The default variables”, p.137.

10.1.1 Function references
The goal of Forem::BlastTable is to encapsulate the parsing of a tabular BLAST report. From the
user’s point-of-view, one call to get_parser opens the report and returns an iterator function on it.
Then, each call to the iterator returns a line of the report until its end, where it returns undef instead.

my $parser = get_parser($report);
while (my $hsp_ref = $parser->()) {

process HSP
}

In the code above, $parser is a function reference, i.e., a reference to a sub. If we try to print this
variable, it stringifies as any reference, even though Smart::Comments prints it in a generic way.

say "$parser";
$parser

gives:

CODE(0x7ffe688299b8)
$parser: sub { "DUMMY" }

The interest of a function reference is that we can invoke it nearly as if it was a regular function. It only
requires the dereferencing arrow (->) followed by a pair of parenthesis characters. Our BLAST report

Denis BAURAIN / ULiège 133 Modern Perl for Biologists II | Deeper Concepts

CHAPTER 10. IDIOMATIC PERL

iterator does not use parameters, but were it the case, the corresponding arguments would have been
placed between these parentheses.

my $hsp_ref = $parser->();

Note that the parentheses are mandatory, even here, so that perl understands that we want to call the
referenced function and not just to deal with its reference. Compare the following examples.

my $hsp_ref = $parser->();
$hsp_ref

my $error = $parser->;
does not compile: syntax error at bin/parser.pl line 20, near "->;"

my $oups = $parser;
$oups

gives:

$hsp_ref: {
bits => ' 543',
evalue => '0.0',
gaps => '0',
hit_end => '305',
hit_id => 'gi|71609884|dbj|BAE16576.1|',
hit_start => '1',
identity => '84.26',
length => '305',
mismatches => '48',
query_end => '305',
query_id => 'gi|108743276|dbj|BAE95412.1|',
query_start => '1'
}

$oups: sub { "DUMMY" }

As you can see, the first example actually calls the referenced function, which answers by returning
a hash reference to the next HSP (for High-Scoring Pair) in BLAST parlance. In contrast, the second
example does not compile, whereas the third one only copies the reference itself to a new variable.

10.1.2 subs with a memory
Such a straightforward user interface implies that the iterator function somehow remembers its cur-
rent position in the report. In other words, the iterator has a state. To implement this approach, we
combine two different tricks: a closure and a function reference to an anonymous function. Since
these concepts are quite complex, let’s first consider the program below.

1 #!/usr/bin/env perl
2

3 use Modern::Perl '2011';

Denis BAURAIN / ULiège 134 Modern Perl for Biologists II | Deeper Concepts

CHAPTER 10. IDIOMATIC PERL

4

5 die "Usage: $0 <start> <times>" unless @ARGV == 2;
6

7 my $start = shift;
8 my $times = shift;
9

10 my $next = get_next($start);
11 say $next->() for 1..$times;
12

13 sub get_next {
14 my $i = shift;
15

16 my $closure = sub {
17 return ++$i;
18 };
19

20 return $closure;
21 }

get_next declares a lexically scoped counter variable $i and defines it to its argument $start (pro-
vided by the user). In principle, this variable should be destroyed when the function quits, but it will
not because of the returned reference to the closure that makes use of it.
The closure itself is created as an anonymous sub to which we directly take a reference. This syntax
can be compared to the one used for creating anonymous arrays and hashes. It is also possible to take
a reference to a named sub using the reference operator (\), but we do not do that here.
Every time the function reference stored in $next is invoked, it increments the counter $i and returns
its new value. In this toy example, we call it $times times (again user-defined). The closure is thus a
sub with a memory. Here is a typical execution of get_next.pl.
$./get_next.pl 7 5
8
9
10
11
12
$

Note that Perl provides another way to implement lexical variables that persist across function calls. Such
variables have to be declared with the state keyword (instead of my). However the initialization behavior
of state variables is rather tricky, and implementing multiple custom counters (as it would be possible
with get_next) still requires references to anonymous functions. That is why I would advise you to avoid
them and use closures instead.

Now, let’s turn to get_parser!
sub get_parser {

my $infile = shift;

Denis BAURAIN / ULiège 135 Modern Perl for Biologists II | Deeper Concepts

CHAPTER 10. IDIOMATIC PERL

open my $fh, '<', $infile;

define HSP hash keys
slightly different from column names
my @attrs = qw(

query_id hit_id
identity length mismatches gaps
query_start query_end

hit_start hit_end
evalue bits

);

setup parser
my $closure = sub {

anonymous function body
};

return $closure;
}

get_parser opens the BLAST report passed as $infile and defines an array of keys for the HSP
hashes. This creates two additional lexically scoped variables: $fh and @attrs. As with get_next,
these variables are not destroyed when the function quits because of the returned reference to the
closure making use of them.

my $closure = sub {

LINE:
while (my $line = <$fh>) {

chomp $line;

next LINE if $line =~ m/\A \s* \z/xms; # skip empty lines
next LINE if $line =~ m/\A \#/xms; # skip comment lines

process HSP line
my @fields = split /\t/xms, $line;

build and return anonymous HSP hash ref
return { mesh @attrs, @fields };

}

return; # no more line to read
};

Within the closure, we find a regular-looking input file reading loop quite similar to what we wrote
in cutter.pl for reading the restriction enzyme database. There are a number of oddities, though.

• The file is read through $fh, the filehandle reference created in the enclosing get_parser func-
tion. Due to the long-lasting nature of the closure, and therefore of the grip it has on the variable

Denis BAURAIN / ULiège 136 Modern Perl for Biologists II | Deeper Concepts

CHAPTER 10. IDIOMATIC PERL

$fh, the latter cannot be closed and destroyed at the end of get_parser. This distinctive feature
also defines how the iterator remembers its state.

• The hash holding the details of the current HSP is built by the handy mesh function using the
elements of @attrs as keys. For this approach to work, the keys must be in the exact same order
as the columns of the BLAST report. Similar to $fh, the array @attrs is declared in the outer
lexical scope and survives because of its usage in the closure.

• The current HSP hash is built as an anonymous hash, to which we take a reference that we
return to the caller of the iterator. Since this interrupts the loop after each HSP, we could have
replaced the while by a single if. However, using a loop allows us to handle empty lines and
comments in the BLAST report and helps the reader to understand that it is an iterator.

• The last return is executed as soon as the whole report has been read. That is how the iterator
returns undef on completion. Everything will eventually be closed and/or destroyed when the
function reference to the iterator gets out of scope on the caller side.

10.2 The default variables
The linguistic roots of Perl design have led to the incorporation of another important concept into the
language: pronouns. These materialize as three main default variables:

• the default arrays @_ and @ARGV (they/them),
• the default scalar variable (or topic variable) $_ (it).

We have already explained that, in the absence of an explicit array to work on, list-oriented builtin
functions (such as shift) default to operating on @_ (within subs; see “Argument aliasing”, p.29) or
on @ARGV (outside subs; see “unshift & shift”, in the first part of this course).

from xxl_xlate.pl: outside subs
my $infile = shift; # shift @ARGV
my $gcfile = shift;
my $gc_id = shift;

from cutter.pl: inside sub
sub compute_cuts {

my $dna_string = shift; # shift @_
remaining of function body

}

Similarly, many Perl builtin functions (e.g., chomp, print) and regular expressionswork on the default
topic variable $_ when no variable is specified. For example, look at this idiomatic rewrite of the
reading loop in the function read_enzymes of cutter.pl.

LINE:
while (<$in>) {

chomp;

next LINE if m/\A \s* \z/xms; # skip empty lines
next LINE if m/\A \#/xms; # skip comment lines

Denis BAURAIN / ULiège 137 Modern Perl for Biologists II | Deeper Concepts

CHAPTER 10. IDIOMATIC PERL

my ($enzyme, $dist3p, $pattern) = split /\t/xms;
...

}

Relying on this behavior is useful in some situations, such as in one-liners and implicit loop constructs,
which we will describe in “Implicit loops”, p.140. Bear in mind, however, that the resulting code can
become very hard to follow. As an illustration, compare the rewrite above with the original version
of the same chunk of code (shown below). Don’t you think that the latter one reads better?

LINE:
while (my $line = <$in>) {

chomp $line;

next LINE if $line =~ m/\A \s* \z/xms; # skip empty lines
next LINE if $line =~ m/\A \#/xms; # skip comment lines

my ($enzyme, $dist3p, $pattern) = split /\t/xms, $line;
...

}

10.2.1 The topic variable as the default iterator
Consider the two examples below. In the second one, the topic variable $_ is used as the default
iterator variable of the foreach-style for loop.

for my $i (1..3) {
say $i;
$i

}
for (1..3) {

say;
$_

}

gives:

1
$i: 1
2
$i: 2
3
$i: 3

1
$_: 1
2
$_: 2
3
$_: 3

Denis BAURAIN / ULiège 138 Modern Perl for Biologists II | Deeper Concepts

CHAPTER 10. IDIOMATIC PERL

Granted, as is, this construct does not look very compelling. However, combined to a postfix for loop,
it becomes much more natural (see next page after this box).

BOX 11: The topic variable in one-liners
As a worked example of using $_ in Perl one-liners, let’s explain how we built the restriction
enzyme database for cutter.pl (see “How to build an enzyme database?”, p.55).
$ perl -nle 'next if m/MboII/; m{/([^\/]+)/\s+\((\w+)\s+[^\)]+\)(\d+),?}; \

print join "\t", $2, $3, $1' patterns.txt > enzyme-db.txt

To understand it, let’s examine its expanded version.
while (my $infile = shift) { # patterns.txt

open $in, '<', $infile;
while (<$in>) {

chomp; # remove newline
next if m/MboII/; # skip line matching MboII
m{/([^\/]+)/\s+\((\w+)\s+[^\)]+\)(\d+),?}; # analyze line using regex
say join "\t", $2, $3, $1'; # output numbered captures

}
}

The regex parses lines in patterns.txt and captures three interesting bits using parentheses:
1. the recognized DNA pattern,
2. the enzyme name,
3. the distance of the cleavage site from the 3’-end of the pattern.

/gacgtc/ (AatII gacgt|c)1,
/tccgga/ (AccIII t|ccgga)5,
/agct/ (AluI ag|ct)2,
/gggccc/ (ApaI gggcc|c)1,
...
/tctaga/ (XbaI t|ctaga)5,
/ctcgag/ (XhoI c|tcgag)5,
/cccggg/ (XmaI c|ccggg)5

The captured elements are then reordered, joined with a tab character (\t) and printed to the
standard output. On the command line, we redirect the standard output stream to a new file
enzyme-db.txt using > to permanently store the reformatted enzyme database.
AatII 1 gacgtc
AccIII 5 tccgga
AluI 2 agct
ApaI 1 gggccc
...
XbaI 5 tctaga
XhoI 5 ctcgag
XmaI 5 cccggg

Denis BAURAIN / ULiège 139 Modern Perl for Biologists II | Deeper Concepts

CHAPTER 10. IDIOMATIC PERL

say 'human genome size is:';
my $size = 3.08e9;
say '- ' . 1000 * ($size /= 1000) . ' ' . $_ for qw(bp kb Mb Gb);

gives:

human genome size is:
- 3080000000 bp
- 3080000 kb
- 3080 Mb
- 3.08 Gb

I readily admit that the preceding example remains convoluted. Here’s another one that makes use
of object-oriented programming. Imagine that we have an object Seq that can degap itself (using a
tr/-//dr construct) and an object Ali that holds a collection of Seqs. Then, to degap all Seqs at once,
we use a postfix for loop and the topic variable.
in Seq.pm
sub degap {

my $self = shift;
$self->_set_seq($self->seq =~ tr/-//dr); # degap one seq
return;

}

in Ali.pm
sub degap_seqs {

my $self = shift;
$_->degap for $self->all_seqs; # degap all seqs
return;

}

10.3 Implicit loops
During all this course, I refrained from using the powerful grep and map implicit loop constructs.
Now, it is time to introduce them to you.
Both setup a loop over a list of values (or an array evaluated in a list context) and executes the cor-
responding block for each value of the list aliased in turn to the topic variable $_. Then, grep only
returns the values for which the expression in the block evaluates to a true value, whereas map passes
all the values, albeit often transformed through the evaluation of the expression.

10.3.1 grep

Here’s an example of grep. Take a moment to ponder the power packed in this concise statement.
my %taxon_for = (

amoeba => 'Amoebozoa',
arabidopsis => 'Plantae',
chlamydomonas => 'Plantae',
human => 'Opisthokonta',

Denis BAURAIN / ULiège 140 Modern Perl for Biologists II | Deeper Concepts

CHAPTER 10. IDIOMATIC PERL

yeast => 'Opisthokonta',
choanoflagellate => 'Opisthokonta',
diatom => 'Stramenopiles',
trypanosome => 'Euglenozoa',

);

my @genera = qw(arabidopsis diatom human trypanosome yeast);

my @opisthokonts = grep { $taxon_for{$_} eq 'Opisthokonta' } @genera;
@opisthokonts

gives:

@opisthokonts: [
'human',
'yeast'
]

Yes, grep is a list filtering tool. The values that successfully pass through the filter remain in their
original order. It is the exact equivalent of the following code snippets. I present them from the
longest to the shortest, so as to show you where the final terseness comes from.

explicit prefix if version
my @opisthokonts;
for my $genus (@genera) {

if ($taxon_for{$genus} eq 'Opisthokonta') {
push @opisthokonts, $genus;

}
}

explicit postfix if version
my @opisthokonts;
for my $genus (@genera) {

push @opisthokonts, $genus
if $taxon_for{$genus} eq 'Opisthokonta';

}

implicit postfix if version (using the topic variable $_)
my @opisthokonts;
for (@genera) {

push @opisthokonts, $_
if $taxon_for{$_} eq 'Opisthokonta';

}

grep version (also using the topic variable $_)
my @opisthokonts = grep { $taxon_for{$_} eq 'Opisthokonta' } @genera;

The next time you need to scan an array looking for some specific values, think grep (or even better,
first transform the array into a Boolean filter hash, as in “Hash uses”, in the first part of this course).

Denis BAURAIN / ULiège 141 Modern Perl for Biologists II | Deeper Concepts

CHAPTER 10. IDIOMATIC PERL

Here’s another example modified from cutter.pl. Note that the filtered values are array references
but that the filtering criterion only applies to one element of each of these arrays. This allows us to
keep only the fragments reaching our length threshold in a very straightforward way.
sub infer_fragments {

...

while (@cuts) {
...
push @fragments, [$len, $x1, $x2, $enz1, $enz2];
...

}

filter out short fragments and order remaining ones by desc len
@fragments = sort { $b->[0] <=> $a->[0] }

grep { $_->[0] >= $ARGV{'--min-frag-len'} } @fragments
;

return @fragments;
}

10.3.2 map

map is even more powerful than grep and its applications are very wide. Let’s start with a simple
example elaborating on our taxonomic experiments (using the same hash %taxon_for as in p.140).
my @genera = qw(arabidopsis diatom human trypanosome yeast);

my @taxa = map { $taxon_for{$_} } @genera;
@taxa

gives:

@taxa: [
'Plantae',
'Stramenopiles',
'Opisthokonta',
'Euglenozoa',
'Opisthokonta'
]

Here, the map construct was meant to replace one of these code snippets.
explicit version
my @taxa;
for my $genus (@genera) {

push @taxa, $taxon_for{$genus};
}

Denis BAURAIN / ULiège 142 Modern Perl for Biologists II | Deeper Concepts

CHAPTER 10. IDIOMATIC PERL

implicit version (using the topic variable $_)
my @taxa;
for (@genera) {

push @taxa, $taxon_for{$_};
}

map version (also using the topic variable $_)
my @taxa = map { $taxon_for{$_} } @genera;

Below, I give a few more map examples from fasta_file.t. If you are like me and fall in love with such
constructs, do not forget to have a look at the section “Bonus–Higher-Order Perl”, p.146!

In the beginning, we read a FASTA input file containing the four sequences of the pBluescript II plasmid
family. Then, we setup a series of tests to check the behavior of the function read_fasta.
my $seq_for = read_fasta($infile);
my $exp_seq_n = 4;

Hence, in the third test, we check whether the sequences indeed each have the correct length. This
requires comparing the four obtained lengths (@got_lens) with four expected lengths (@exp_lens).
To generate the former array, we use a map construct returning the length of every sequence. Within
the block, length operates on the topic variable, which automatically iterates over sequences.
test 3
my @exp_lens = (2961) x 4;
my @got_lens = map { length } values %$seq_for;
explain \@got_lens;
is_deeply \@got_lens, \@exp_lens,

"correctly read the seqs in $infile";

gives:

[
2961,
2961,
2961,
2961
]

The four plasmids all have the same length; this is not a bug!

Don’t worry about the weird is_deeply and cmp_bag testing constructs; they are both explained just
below (see “More on automated tests”, p.151).
In the example above, the topic variable is only implied with length, whereas in the sixth test, it is
explicitly used in an interpolated double-quoted string. The map block there serves the purpose of
building the expected array of shortened sequence ids: seq1, seq2, seq3, seq4.
test 6
my @exp_ids = map { "seq$_" } 1..$exp_seq_n;

Denis BAURAIN / ULiège 143 Modern Perl for Biologists II | Deeper Concepts

CHAPTER 10. IDIOMATIC PERL

explain \@exp_ids;
my @got_ids = keys %$id_for;

cmp_bag \@got_ids, \@exp_ids,
"correctly remapped ids in temporary $tmpfile";

gives:

[
'seq1',
'seq2',
'seq3',
'seq4'
]

The seventh test is more comprehensive and uses three different map constructs. Its objective is to test
the annotating functions of Forem::FastaFile, which require an annotation hash. To this end, it first
makes a list of dummy annotations by converting each of the numbers 4 to 1 to the letters D to A using
the function chr that returns the character represented by the number (ASCII or Unicode).

test 7
my $tmp_seq_for = read_fasta($tmpfile);
my @tags = map { 'type' . chr(64 + $_) } reverse 1..$exp_seq_n;
explain \@tags;

gives:

[
'typeD',
'typeC',
'typeB',
'typeA'
]

Then, it builds the annotation hash itself by using a map block that returns a key/value pair for each
incoming sequence id. Building a hash from a list of values is a very common use of map.

my $i = 0;
my $ann_for = { map { $_ => $tags[$i++] } keys %$tmp_seq_for };
explain $ann_for;

gives:

{
'seq1' => 'typeD',
'seq2' => 'typeC',
'seq3' => 'typeB',
'seq4' => 'typeA'
}

Denis BAURAIN / ULiège 144 Modern Perl for Biologists II | Deeper Concepts

CHAPTER 10. IDIOMATIC PERL

Note also the use of a double sigil (%$) to dereference the hash references $seq_for and $tmp_seq_for
in several of the code chunks shown in this section.
Finally, to check the function prefix_ids, it makes a list of the expected annotated ids using the
annotation hash and compares them to the ones returned by the function.
my $ann_seq_for = prefix_ids($tmp_seq_for, $ann_for);

my @exp_ann_ids = map { $ann_for->{$_} . '-' . $_ } keys %$tmp_seq_for;
explain \@exp_ann_ids;
my @got_ann_ids = keys %$ann_seq_for;

is_deeply \@got_ann_ids, \@exp_ann_ids,
"correctly prefixed ids using annotation hash";

gives:

[
'typeD-seq1',
'typeC-seq2',
'typeB-seq3',
'typeA-seq4'
]

BOX 12: local and the dynamic scope
The usage of @_ in subs is pretty secure because Perl automatically localizes it for us when we
call a function. This means that even if the default array looks like a global variable that is in
principle visible from everywhere, it acts in practice as a lexically-scoped variable that can hold
different values in different scopes.
This dynamic scope is more difficult to understand. Instead of looking outward in compile-time
scopes, lookup traverses backwards through the calling context. While a global variable may be
visible within all scopes, its actual value changes depending on localization and assignment.
You should generally not worry about it. Just remember that it is enabled with the local key-
word (instead of my) and that it allows you to temporarily modify a global variable in a certain
scope (i.e., code block) without propagating your changes outside (except to the subs called from
that scope). This is especially useful with special (or magic) variables that govern Perl behav-
ior, such as the list separator ($") (see “Defining and concatenating strings”) or the input record
separator ($/) (see “Line endings”), both covered in the first part of this course.
Hence, before the introduction of the slurp method in Path::Class, Perl programmers used
a weird idiom for slurping files. The idea was to undefine the input record separator, so that a
single call to the readline operator (<>) would read the whole file in one shot. However, to avoid
side-effects, it was necessary to localize the magic variable to the corresponding scope.
adapted from xxl_xlate.pl
my $gc_content = file($gcfile)->slurp;

Denis BAURAIN / ULiège 145 Modern Perl for Biologists II | Deeper Concepts

CHAPTER 10. IDIOMATIC PERL

the same using the old idiom
open my $gc_in, '<', $gcfile;
my $gc_content = do { local $/; <$gc_in> };

even older idiom using global filehandles (please avoid)
open IN, "<$gcfile";
my $gc_content = do { local $/; <IN> };

And here’s an example of fiddling with the list separator.
my @codons = qw(CAT GAA CTT CTT);
say '1. <' . join('> <', @codons) . '>';

{
local $" = '> <';
say "2. <@codons>";

}

gives:

1. <CAT> <GAA> <CTT> <CTT>
2. <CAT> <GAA> <CTT> <CTT>

As @_ in subs, the topic variable $_ is automatically localized in foreach-style for loops without
explicit iterator variables and in grep/map blocks. Even if it is possible to explicitly localize it
using local $_, you should probably think twice if you really need it beyond these cases.

10.4 Bonus—Higher-Order Perl
In spite of its intimidating name, Higher-Order Perl is not the neo-fascist version of Modern Perl but
the title of a famous book by Mark Jason Dominus. This classic work is a goldmine of (functional)
programming wisdom. And the good news is that you can legally get it for free here:
https://hop.perl.plover.com/book/

Briefly said, “a higher-order function is a function that operates on other functions instead of on data
values.” We have already seen the builtin functions map and grep, whereas annotate.pl makes use
of a funny any { ... } construct from List::AllUtils (see below).

All these three use functions as arguments (specified in the block delimited by the curly brace charac-
ters). Similarly, sort blocks are also arguments to a higher-order sort function. In contrast, some
higher-order functions take data values as arguments and return custom built functions, such as
get_parser from Forem::BlastTable, which creates an iterator function for a given BLAST report.

In this bonus section, I would like to scratch the surface of what it is possible to achieve using higher-
order constructs. Take this as an appetizer for the true expressiveness of the Perl language. To this
end, we will illustrate the purpose of three additional functions (of the _by category) taken from
List::AllUtils: count_by, partition_by and zip_by.

Let’s start with our favorite taxonomic example (again using the hash %taxon_for from p.140).

Denis BAURAIN / ULiège 146 Modern Perl for Biologists II | Deeper Concepts

https://hop.perl.plover.com/book/

CHAPTER 10. IDIOMATIC PERL

my @genera = qw(arabidopsis diatom human trypanosome yeast);

count number of genera for each taxon
my %count_for = count_by { $taxon_for{$_} } @genera;
%count_for

collect all genera for each taxon
my %genera_for = partition_by { $taxon_for{$_} } @genera;
%genera_for

gives:

%count_for: {
Euglenozoa => 1,
Opisthokonta => 2,
Plantae => 1,
Stramenopiles => 1
}

%genera_for: {
Euglenozoa => [
'trypanosome'
],
Opisthokonta => [
'human',
'yeast'
],
Plantae => [
'arabidopsis'
],
Stramenopiles => [
'diatom'
]
}

For the record, here are the explicit versions of the equivalent code.

count number of genera for each taxon
my %count_for;
for my $genus (@genera) {

$count_for{ $taxon_for{$genus} }++;
}

collect all genera for each taxon
my %genera_for;
for my $genus (@genera) {

push @{ $genera_for{ $taxon_for{$genus} } }, $genus;
}

Denis BAURAIN / ULiège 147 Modern Perl for Biologists II | Deeper Concepts

CHAPTER 10. IDIOMATIC PERL

Now, getting back to our own Holy Grail (see the first part of this course), here is a statement to get a
reverse hash of the genetic code (see next page for a concise way of building the hash %aa_for itself).

my %rev_aa_for = partition_by { $aa_for{$_} } keys %aa_for;
%rev_aa_for

gives:

%rev_aa_for: {
'*' => [
'TGA',
'TAA',
'TAG'
],
A => [
'GCC',
'GCG',
'GCT',
'GCA'
],
C => [
'TGT',
'TGC'
],
D => [
'GAC',
'GAT'
],
...
V => [
'GTC',
'GTG',
'GTA',
'GTT'
],
W => [
'TGG'
],
Y => [
'TAC',
'TAT'
]
}

This is equivalent to the following implicit code snippet.

my %rev_aa_for;
push @{ $rev_aa_for{ $aa_for{$_} } }, $_ for keys %aa_for;

Denis BAURAIN / ULiège 148 Modern Perl for Biologists II | Deeper Concepts

CHAPTER 10. IDIOMATIC PERL

Finally, I give you below a very terse version of the original translate.pl script. I do not pretend
that it is more legible, though! Note how the combination of the split and zip_by functions is used
to emulate the original foreach-style for loop with its explicit substr calls.

1 #!/usr/bin/env perl
2

3 use Modern::Perl '2011';
4 use List::AllUtils qw(zip_by);
5

6 # build hash for standard code (definition taken from NCBI gc.prt file)
7 local $" = q{}; # ensure no whitespace when joining lists
8 my %aa_for =
9 zip_by { "@_[1..3]" => $_[0] } # codon => aminoacid
10 map { [split //] } qw(
11 FFLLSSSSYY**CC*WLLLLPPPPHHQQRRRRIIIMTTTTNNKKSSRRVVVVAAAADDEEGGGG
12 TTTTTTTTTTTTTTTTCCCCCCCCCCCCCCCCAAAAAAAAAAAAAAAAGGGGGGGGGGGGGGGG
13 TTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGG
14 TCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAG
15); # split these lines into anon arrays of letters and mesh them together
16

17 # read a DNA string from STDIN (using shift)
18 # split it into codons (3-letter words) with a regex
19 # translate uppercased codons into aminoacids (with uc() meaning uc $_)
20 # output protein sequence (scalar context enforcing implicit join)
21 say map { $aa_for{uc()} // 'X' } shift =~ m/(\w{3})/xmsg;

Did you enjoy the single last statement performing all the work?

Denis BAURAIN / ULiège 149 Modern Perl for Biologists II | Deeper Concepts

CHAPTER 10. IDIOMATIC PERL

Denis BAURAIN / ULiège 150 Modern Perl for Biologists II | Deeper Concepts

Chapter 11

Dissecting our annotation app

11.1 More on automated tests
The files blast_table.t and fasta_file.t illustrate a number of testing functions offered by the
modules Test::Most and Test::Files.

The basic structure of a testing statement is (nearly) always the same.

testing_function <got>, <expected>, 'testing message';

In the code above, got and expected are placeholders, as indicated by the angle bracket characters
surrounding them. This structure is for testing containers (also known as aggregates), such as arrays,
hashes and output files.

The is_deeply function expects two references to two different (possibly nested) data structures, the
first one corresponding to the output of the tested function and the second one to the expected result.
It can be applied to arbitrarily complex data structures, from the simple array (or hash) to deeply
nested (multi-level) data structures. If the two structures differ, it marks the test as failed and prints
the first difference found.

is_deeply \@got, $exp_ref,
'correctly parsed the 10 first lines of the report';

is_deeply \@got_lens, \@exp_lens,
"correctly read the seqs in $infile";

is_deeply \@got_ann_ids, \@exp_ann_ids,
"correctly prefixed ids using annotation hash";

The cmp_bag function compares two arrays where the elements are supposedly identical, but not nec-
essarily in the same order. This allows for a bit of sloppiness when building arrays of expected values.

cmp_bag \@got_ids, \@exp_ids,
"correctly remapped ids in temporary $tmpfile";

Denis BAURAIN / ULiège 151 Modern Perl for Biologists II | Deeper Concepts

CHAPTER 11. DISSECTING OUR ANNOTATION APP

The compare_ok function fully automatizes the verification of output files. Simply pass it the names
of the file produced by the test and of a file containing the expected output and it will do the rest. If
the files differ, it shows you their differences in a very legible way.

compare_ok $outfile, $infile,
"correctly written $outfile";

compare_ok $tmpfile, $expfile,
"correctly written temporary $tmpfile";

Finally, we also sometimes compare scalar values using the cmp_ok function. Its structure is slightly
longer than the previous testing functions in that it further requires a string specifying the exact com-
parison operator to use for the test.

cmp_ok keys %$seq_for, '==', $exp_seq_n,
"correctly read $exp_seq_n seqs from $infile";

my $exp_ids = qx{grep \\> test/infile.fasta | cut -c2-};
...
cmp_ok $got_ids, 'eq', $exp_ids,

"correctly parsed the ids in $infile";

In this last example, $exp_ids is derived from a system call using the executing quoting operator
(qx{}) introduced in “Writing portable code” (see the first part of this course). Such an approach
ensures that the content of $exp_ids is always in sync with the actual sequence ids in infile.fasta,
independently of the changes operated by the NCBI.

There exist many other testing functions. As usual, you can read about them using perldoc.

$ perldoc Test::Most

11.2 Interesting bits in Forem::FastaFile

Themodule Forem::FastaFile.pm includes a few novelties that are worth brieflymentioning. These
pertain to constants, temporary files, for loops, subs and references.

First, the module Const::Fast allows us to define constants. Constants are variables that cannot be
modified. By convention, they are written in uppercase letters. They are especially useful to show
the reader that some variable has a fixed value that will persist through the whole file, such as magic
numbers (see “length”, in the first part of this course).

use Const::Fast;

and later...
const my $CHUNK_LEN => 70;

The constant $CHUNK_LEN governs the width of the lines in our output FASTA files. The function
writing the temporary FASTA files is interesting for two reasons:

1. It uses the module File::Temp to open output files. Using this module spares you the need to
devise unique names for your temporary files, which can be very tricky when running multiple

Denis BAURAIN / ULiège 152 Modern Perl for Biologists II | Deeper Concepts

CHAPTER 11. DISSECTING OUR ANNOTATION APP

instances of a program concurrently. The name can be obtained using the filename method.
Temporary files can be automatically deleted if asked to do so (UNLINK => 1).
my $out = File::Temp->new(UNLINK => 0, EXLOCK => 0, SUFFIX => '.fasta');

and later...
return ($out->filename, \%id_for);

2. It uses a funnyC-style for loop to both abbreviate the sequence ids and to build the hash contain-
ing the abbr-id/full-id pairs. This loop has an iterator variable that is initialized and incremented
as usual, but the conditional comparison does not use it.
my %id_for;
for (my $i = 1; my ($seq_id, $seq) = each %$seq_for; $i++) {

my $tmp_id = "seq$i";
say {$out} ">$tmp_id\n" . _wrap_seq($seq);
$id_for{$tmp_id} = $seq_id;

}

The code of ourmodule further defines a functionwith a namebeginningwith anunderscore character
(_). This is the naming convention for private functions that are not meant to be exported. They are
also devoid of POD, which totally makes sense.
sub _wrap_seq {

my $seq = shift;

my $seq_len = length $seq;

wrap seq in chunks of length $CHUNK_LEN
my $wrapped_seq;
for (my $i = 0; $i < $seq_len; $i += $CHUNK_LEN) {

$wrapped_seq .= substr($seq, $i, $CHUNK_LEN) . "\n";
}

return $wrapped_seq;
}

Finally, all the functions provided by our module expect and return hash references instead of regular
hashes. This has three advantages:

1. It encapsulates the use of Tie::IxHash within our module. For example, read_fasta now re-
turns a reference to the ordered hash %seq_for. As long as the caller dereferences it to use the
hash without copying the hash into a new one, the order of the sequences is preserved.
sub read_fasta {

my $infile = shift;

...

tie my %seq_for, 'Tie::IxHash'; # preserve original seq order

...

Denis BAURAIN / ULiège 153 Modern Perl for Biologists II | Deeper Concepts

CHAPTER 11. DISSECTING OUR ANNOTATION APP

return \%seq_for;
}

In contrast, in cutter.pl, we had to explicitly copy the tied hash to a new tied hash to avoid
destroying sequence order. This kind of subtle code dependencies between parts of a program
is known as coupling, an undesirable property. Functions and modules help reducing coupling.

from cutter.pl
tie my %seq_for, 'Tie::IxHash'; # preserve original seq order
%seq_for = read_fasta($ARGV{'<infile>'}); # but at the expense of coupling

from a buggy cutter.pl
my %seq_for = read_fasta($ARGV{'<infile>'}); # loose original seq order

2. It is much faster to pass and return references to container variables than the container variables
themselves. This is obvious because a reference is only a scalar (number), whereas the corre-
sponding data structure (first level) can be composed of thousands (or millions) of elements.

3. It allows us to invoke functions that require multiple containers without flattening them in a
single list. This is the case of the function prefix_ids that expects the sequence hash and the
annotation hash. Observe how we copy the original hash to an ordered hash to preserve se-
quence order. This encapsulating strategy could be pushed farther by using objects.

sub prefix_ids {
my $seq_for = shift;
my $ann_for = shift;

tie my %new_hash, 'Tie::IxHash';

while (my ($seq_id, $seq) = each %$seq_for) {
my $prefix = $ann_for->{$seq_id};
$new_hash{ $prefix ? $prefix . '-' . $seq_id : $seq_id } = $seq;

}

return \%new_hash;
}

11.3 A mighty modular script: annotate.pl
The main annotation script packs a high amount of functionality while staying relatively short thanks
to its use of our modules Blast::Table and Fasta::File and of some other advanced techniques.
Let’s review them here by examining our listing in detail.

11.3.1 Conciseness, readability and maintainability by code reuse
annotate.pl begins with a bunch of use statements. This is not uncommon for a script written in
Modern Perl and is evidence for good programming practice.

Denis BAURAIN / ULiège 154 Modern Perl for Biologists II | Deeper Concepts

CHAPTER 11. DISSECTING OUR ANNOTATION APP

#!/usr/bin/env perl

use Modern::Perl '2011';
use autodie;

use Getopt::Euclid;
use Smart::Comments '###';
use Template;

use File::Basename;
use Path::Class 'file';

use IPC::System::Simple qw(system);
use List::AllUtils 'any';

use Forem::FastaFile qw(:io prefix_ids);
use Forem::BlastTable 'get_parser';

Although you already know most of these modules, two new ones are worth of interest: Template
and IPC::System::Simple. We will cover them in a few moments.

Meanwhile, take a look at the two function calls below. Their role is to process the two FASTAfiles, i.e.,
the file with the sequences to be annotated and the file with the reference sequences that will provide
the annotation. Using the single same function for the two files requires a bit of thought ahead of time,
but eventually results in a more concise, more readable and more maintainable program.

Arguments: %ARGV

Reading infile: $ARGV{'<infile>'}
my ($seq_for, $intype, $infile, $inid_for) = process_file($ARGV{'<infile>'});

Reading infile: $ARGV{'--ref-file'}
my (undef, $reftype, $refile, $refid_for) = process_file($ARGV{'--ref-file'});

Both function calls invokes the same function process_file, defined at the end of our script. This
sub is a wrapper function. This means that it does its job by calling another function (or a few other
functions) while adding little new functionality on its own.

sub process_file {
my $infile = shift;

my $seq_for = read_fasta($infile);
my $type = (any { m/[EFILPQ]/i } values %$seq_for) ? 'prot' : 'nucl';
my ($tmpfile, $id_for) = write_tmp_fasta(

map { $_ => $seq_for->{$_} =~ tr/-//dr } keys %$seq_for
); # degap seqs on the fly

return ($seq_for, $type, $tmpfile, $id_for);
}

Denis BAURAIN / ULiège 155 Modern Perl for Biologists II | Deeper Concepts

CHAPTER 11. DISSECTING OUR ANNOTATION APP

Here, the purpose of process_file is:

1. to read a FASTA file,
2. to determine whether it contains DNA sequences or protein sequences,
3. to rewrite the sequences without gaps and with shorter ids suitable for BLAST use.

Gap removal is performed on the fly through a map block building degapped copies of the sequences
through transliteration. As this dynamically built anonymous hash has the same structure as the
original hash referenced by $seq_for, it fits the expectations of the write_tmp_fasta function.

The returned list packs the following information:

• $seq_for— the ordered hash reference containing the sequences read from the file,
• $type— a string giving the type of the sequence, either 'nucl' or 'prot',
• $tmpfile— the name of the temporary file (FASTA) to be passed to BLAST,
• $id_for— the unordered hash reference associating short and long ids.

Sequence type is needed both to build the BLAST database and to invoke the correct flavor of the
BLAST algorithm. The type is determined based on the occurrence of at least one letter that can only
be interpreted as an amino acid (EFILPQ) in any of the sequences (see “Character classes”, in the first
part of this course). Remember, other non-ACGT letters design valid degenerated nucleotides (e.g., W
is A or T). Let’s now have a look at how to select the right BLAST flavor.

determine blast program based on type combination
my %pgm_for = (

'prot:prot' => 'blastp',
'nucl:prot' => 'blastx',
'prot:nucl' => 'tblastn',
'nucl:nucl' => 'tblastx',

);
my $pgm = $pgm_for{ "$intype:$reftype" };

The trick is to setup a hash as a switch table (see “Hash uses”, in the first part of this course). The
two sequence types (one from the input file and one from the reference file) are concatenated and the
resulting string used as a key to look for the corresponding BLAST flavor. This is extremely concise
and less error-prone than a cascade of elsif blocks.

11.3.2 Building programs with programs
We now have all the information we need to invoke BLAST, which requires devising a shell command
with the required arguments and submitting it to the system. To this end, we use a very famous piece
of Perl code, the Template Toolkit (TT2).

Loaded with the statement use Template, the Template Toolkit is a (not so) mini-language oriented
towards the programmatic completion of generic text files. It is so powerful that a complete book is
needed to cover all its features. You can find more about it here:

• http://www.template-toolkit.org/
• http://www.oreilly.com/catalog/perltt/

In this course, we only scratch the surface… The idea is to first define a string ($template) contain-
ing placeholders in lieu of the variable command-line arguments. Here, placeholders are barewords

Denis BAURAIN / ULiège 156 Modern Perl for Biologists II | Deeper Concepts

http://www.template-toolkit.org/
http://www.oreilly.com/catalog/perltt/

CHAPTER 11. DISSECTING OUR ANNOTATION APP

between a pair of special delimiters [% and %]. You will recognize the use of the heredoc syntax (see
“Interlude…”, in the first part of this course).

define command template
my $report = "$infile.blast.fmt7";
my $template = <<'EOT';
makeblastdb -in [% refile %] -dbtype [% reftype %]
[% pgm %] -query [% infile %] -db [% refile %] -evalue [% E %] \

-outfmt 7 -out [% report %]
EOT

BOX 13: The tpage command-line tool
It is even possible to take advantage of templating outside any Perl program thanks to the tpage
command-line tool. Here’s a real-word example allowing me to easily submit jobs to my grid
computer for the assembly of next-generation sequencing data.
First, I need a template file (ending in .tt by convention).
#$ -S /bin/bash
#$ -V
#$ -cwd
#$ -q [% queue %]
#$ -m beas
#$ -M denis.baurain@uliege.be
Trinity.pl --seqType fq --left [% left %] --right [% right %] \

--JM [% memory %] --CPU [% threads %]

Then, to build the actual script file, I call the tpage tool and use its --define option to specify
the text chunks corresponding to each placeholder.
$ tpage --define queue=bignode.q --define memory=200G --define threads=24 \

--define left="SRR941229_1.fastq SRR941232_1.fastq" \
--define right="SRR941229_2.fastq SRR941232_2.fastq" \
../trinity_pr.tt > trinity.job

Here’s the content of trinity.job after the call to tpage. Just imagine how this becomes handy
within one or more shell loops to generate a series of related jobs.
#$ -S /bin/bash
#$ -V
#$ -cwd
#$ -q bignode.q
#$ -m beas
#$ -M denis.baurain@uliege.be
Trinity.pl --seqType fq --left SRR941229_1.fastq SRR941232_1.fastq \

--right SRR941229_2.fastq SRR941232_2.fastq --JM 200G --CPU 24

Finally, I submit the job using the standard qsub command.
$ qsub -pe snode 24 trinity.job

Denis BAURAIN / ULiège 157 Modern Perl for Biologists II | Deeper Concepts

CHAPTER 11. DISSECTING OUR ANNOTATION APP

Then, one has to setup a hash (%vars) where each keymatches a placeholder while its associated value
gives the text chunk to be substituted for the placeholder.

build command
my %vars = (

refile => $refile,
reftype => $reftype,
pgm => $pgm,
infile => $infile,
E => $ARGV{'--evalue'},
report => $report,

);

Finally, the string containing the completed command line ($command) is built by invoking the process
method on a fresh object of the Template class. Again, this is object-oriented programming.

my $command;
my $tt = Template->new;
$tt->process(\$template, \%vars, \$command);
$command

Templating is a very efficient strategy, especially because templates can be stored in external files that
users may edit to suit their needs. Therefore, as soon as you find yourself concatenating more than a
few variables intermingled with fixed strings, you should consider templating instead.

11.3.3 Calling external programs
Once the command built, we submit it to the system. We have already discussed the executing quoting
operator (qx{}), which is exactly equivalent to the famous backtick delimiters (` and `) that you
encounter on websites devoted to Perl. Here, however, we use the system builtin function instead.

Performing BLAST...
system($command);

system is always available in Perl, but the version we use here is actually provided by the CPAN
module IPC::System::Simple. This module simplifies the process of capturing the standard output
and error streams and helps us to deal with potential errors occurringwhen calling external programs.

These issues are quite advanced topics, so I do not cover them in detail here (use perldoc for more
information). As an example, here’s a system call dealing with a missing external program (CAP3).

create CAP3 command
my $cmd = "cap3 $infile > $outfile 2> /dev/null";

try to robustly execute CAP3
my $ret_code = system([0, 127], $cmd);
if ($ret_code == 127) {

carp 'Cannot execute cap3 command; returning without contigs!';
return;

}

Denis BAURAIN / ULiège 158 Modern Perl for Biologists II | Deeper Concepts

CHAPTER 11. DISSECTING OUR ANNOTATION APP

11.3.4 Wrapping it up
At this stage in our course, the remaining of annotate.pl should be quite easy to understand. So, I
only give you a few indications on what is going on.
First, we setup a parser for our BLAST report.
Parsing BLAST report...
my $parser = get_parser($report);
my %ann_for;
my $curr_id = q{};

Then, we loop through the HSPs and extract the annotation bit from each first hit above the user-
specified E-value threshold. This allows us to build an annotation hash where our input sequences
are associated to reference annotations. Observe howwe convert on the fly short ids to long ids using
the $refid_for and $inid_for hash references returned by the process_file function.
HSP:
while (my $hsp_ref = $parser->()) {

my ($qid, $hid, $evalue) = @{ $hsp_ref }{ qw(query_id hit_id evalue) };

next HSP if $evalue > $ARGV{'--evalue'}; # skip weak hits
next HSP if $qid eq $curr_id; # skip non-first hits
$curr_id = $qid;

capture annotation bit in ref seq id using regex
my ($annotation) = $refid_for->{$hid} =~ $ARGV{'--ref-regex'};
$ann_for{ $inid_for->{$qid} } = $annotation;

}
Annotations: %ann_for

Finally, we print to the screen a table with the annotations. We also optionally write a new version of
the input file in which sequence ids are each prefixed by the annotation bit extracted from the id of
the reference sequence matching them the best. This is achieved by calling our prefix_ids function.
say '# ' . join "\t", qw(tag id);
for my $id (sort keys %ann_for) {

say join "\t", $ann_for{$id}, $id;
}

if ($ARGV{'--write-ann-file'}) {
my ($basename, $dir, $ext) = fileparse($ARGV{'<infile>'}, qr{\.[^.]*}xms);
my $outfile = file($dir, $basename . '_ann' . $ext);
Writing annotated file: $outfile->stringify
write_fasta($outfile, prefix_ids($seq_for, \%ann_for));

}

Denis BAURAIN / ULiège 159 Modern Perl for Biologists II | Deeper Concepts

CHAPTER 11. DISSECTING OUR ANNOTATION APP

Denis BAURAIN / ULiège 160 Modern Perl for Biologists II | Deeper Concepts

Homework

To finish this course, here’s a last assignment. It consists in developing a new module that exports
two functions (Forem::Translate). Do not forget to program some tests!
get_genetic_code Expects a file path to the NCBI gc.prt file and an integer number giving the id

of the requested genetic code. Returns a reference to the hash %aa_for (see xxl_xlate.pl).
translate Expects a string containing a DNA sequence to translate, an integer giving the reading

frame (1, 2, 3, -1, -2, -3) and a reference to the genetic code (%aa_for) to use. Returns a string
with the protein.

Then, re-write xxl_xlate_subs.pl (hw10_xxl_xlate_mod.pl) to use themodules Forem::FastaFile
and Forem::Translate. Within it, always call the translate function with the reading frame 1.
Add a Getopt::Euclid interface providing default values for a --remote location of the gc.prt file
and a genetic code id of 1.
I wish you a lot of fun with Perl!

Figure 11.1: 11th-grade activities [xkcd.com]

Denis BAURAIN / ULiège 161 Modern Perl for Biologists II | Deeper Concepts

CHAPTER 11. DISSECTING OUR ANNOTATION APP

Denis BAURAIN / ULiège 162 Modern Perl for Biologists II | Deeper Concepts

Index
abstraction, 27, 77
accession, 56
aggregate, 151
aliasing, 29, 49, 140
amount context, 46, 91
anagram, 36
angle bracket character, 151
annotation, 115
anonymous array, 44, 47, 77, 79, 87, 89, 113, 135
anonymous function, 49, 134
anonymous hash, 83, 86, 135, 137, 156
any, 146, 156
argument currying, 32
argument type checking, 55, 74
array, 9, 12, 19, 34, 44, 47, 49, 86, 89, 136, 137, 140,

142, 151
array of arrays, 84, 90
array of hashes, 84, 86
array reference, 44–47, 52, 77, 79, 85, 87, 91, 142
array slice, 13
ascending order, 8, 49, 50, 52
assert, 26
assertion, 26
assignment, 14, 54
autodocumentation, 28, 55, 76
autovivification, 86

backtick delimiters, 158
bareword, 17, 156
begin, 80
blast, 93, 101, 115, 156
blast database, 156
blast parser, 93
blast report, 93, 133, 137, 159
block, 27, 31, 49, 71, 77, 80, 140, 145, 156
boolean, 19
boolean filter, 141
boolean flag, 32
builtin function, 12, 17, 22, 30, 46, 49, 85, 137, 146,

158

c, 47
c-style, 23, 153
camelcase, 105, 111
ceil, 22, 112
character range, 8
chars, 24
chomp, 137
chr, 144
chromatic, 27
class, 158
cleavage site, 55, 84, 87–89
closure, 79, 133, 134
cmp_bag, 143, 151
cmp_ok, 152
code indentation, 71, 77
colon character, 113
comma character, 7, 88
comma operator, 7, 16
command line, 26, 93
command paragraph, 71, 75
command-line argument, 74, 156
comment character, 9
compare_ok, 152
comparison operator, 152
conceptual translation, 39, 161
conditional comparison, 153
conditional expression, 26, 53
const::fast, 152
constant, 152
container, 12, 34, 79, 83, 151, 154
control flow, 27
count_by, 146
counter, 47
coupling, 154
cpan, 3, 106, 109, 113, 129, 158
cpanm, 106, 107, 113
curly brace characters, 17, 27, 83, 146

debug, 4, 26
decimal point, 22

Denis BAURAIN / ULiège 163 Modern Perl for Biologists II | Deeper Concepts

INDEX

default array, 29, 75, 137, 145
default scalar variable, 137
default value, 55, 74, 77
defensive programming, 26
delimiter, 157
dependencies, 105, 107, 116
dereferencing, 46, 52, 80, 84, 85, 87, 91, 145, 153
dereferencing arrow, 52, 85, 133
descending order, 8, 49, 50, 52, 90
dist::zilla, 109
distribution, 94, 105, 106, 108, 110, 113, 115
dna sequence, 39, 55, 79, 84, 89, 115, 156, 161
documentation, 71, 74, 77, 105, 109, 113
double colon sequence, 110
double-quoted, 143
dynamic scope, 145

element, 12, 31, 44, 87, 137, 142, 154
elemental array, 44–46, 52, 88
elemental hash, 83, 86, 89
elsif, 156
empty list, 14
encapsulation, 27, 31, 79, 133, 153
equal character, 71
error message, 26, 75, 114
escape sequence, 88
evaluation, 9, 23, 29, 47, 53, 140
executable, 93, 105
executing quoting operator, 152, 158
exporter::easy, 112
exporting, 112, 113, 153, 161
expression, 7, 23, 25, 28, 29, 53, 110, 140

factorial, 35
false value, 19, 26, 53
fasta, 39, 56, 72, 115, 152, 155
fat comma operator, 16
field, 45, 82
file scope, 31, 77
file::temp, 152
filehandle reference, 136
filename, 153
floating-point number, 22
floor, 22, 112
for, 8, 12, 23, 85, 87, 138, 153
foreach-style, 12, 138, 149
format, 22
formatting code, 71

fully-qualified name, 111
function, 16, 17, 19, 22, 24, 26, 27, 29, 31, 33, 35, 39,

55, 71, 76, 77, 79, 82, 84, 91, 110, 112, 113,
115, 135–137, 143, 151, 155, 159, 161

function argument, 22, 28, 30, 31, 33, 74, 76, 79, 134
function body, 27, 31
function call, 28, 29, 35, 49, 76, 77, 79, 133, 135, 145,

155
function name, 27
function parameter, 28, 29, 31, 74, 76, 79, 134
function reference, 133, 134
functional programming, 146

garbage collector, 47
geany, 95
genetic code, 39, 161
genomic interval, 18
getopt::euclid, 55, 74, 101, 161
global variable, 75, 79, 110, 145
global-search mode, 86
grep, 106, 140, 146

hash, 9, 16, 39, 49, 75, 79, 82, 85, 108, 112, 136, 144,
151, 153, 158, 159

hash assignment, 16
hash of arrays, 84, 87
hash of hashes, 82, 84
hash reference, 82, 83, 85, 87, 89, 115, 134, 145, 153,

156, 159, 161
hash slice, 17, 87
header line, 9
heredoc, 157
hexadecimal system, 46
high-scoring pair, 134
higher-order perl, 146
html, 71
hyphen character, 8

identifier, 47, 71, 115
idiom, 7, 17, 26, 47, 89, 137, 145
implicit loop, 140
importing, 17, 24, 111, 113
in-place operator, 54
index, 12, 29
infix operator, 23, 49
input file, 17, 82, 115, 136, 156, 159
input record separator, 145
integer number, 23, 39, 75, 111, 161

Denis BAURAIN / ULiège 164 Modern Perl for Biologists II | Deeper Concepts

INDEX

interpolation, 143
interpreter, 14, 35, 110
ipc::system::simple, 158
is_deeply, 143, 151
iterator function, 133, 134, 146
iterator variable, 8, 29, 138, 146, 153

join, 46, 88

key, 16, 49, 77, 82, 85, 87, 108, 113, 136, 156, 158
key/value pair, 16, 77, 79, 83, 109, 144
keyword, 27, 29, 31, 111, 135, 145

length, 143
level of smartness, 25, 75
lexical order, 49, 50
lexical scope, 14, 30, 31, 35, 45, 47, 79, 80, 89, 90,

111, 135, 136, 145
line continuation character, 55
list, 7, 12, 16, 17, 23, 33, 47, 49, 86, 90, 140, 154, 156
list assignment, 10, 18, 30, 31
list context, 9, 13, 23, 46, 85, 87, 91, 140
list flattening, 24, 33, 154
list separator, 145
list-oriented programming, 7, 12, 17, 30, 137
list::allutils, 16, 17, 146
list::moreutils, 16
literal, 8, 28
local, 145
localization, 145
logical operator, 49, 53
loop, 8, 12, 23, 25, 46, 47, 79, 85, 87, 89, 136–138,

140, 146, 153, 157, 159
loop iteration, 12, 45–47, 79, 85, 89

magic number, 152
make, 107
map, 140, 146, 156
mark jason dominus, 146
markup language, 71
memory location, 44, 46, 47
mergesort, 49
mesh, 16, 137
method, 72, 111, 113, 145, 153, 158
modern perl, 27, 146, 154
module, 16, 22, 24, 52, 55, 71, 74, 79, 93, 94, 107,

110, 112, 113, 129, 133, 151, 152, 154, 158,
161

module::starter, 94, 105, 110, 111
my, 31, 35, 135, 145

namespace, 74, 110
natural order, 52
ncbi e-utilities, 56
ncmp, 52
nested data structure, 24, 44, 45, 48, 52, 77, 80, 84,

85, 88, 151
numeric, 8
numeric context, 49, 50, 52
numeric order, 49, 90

object-oriented programming, 72, 140, 154, 158
operand, 23
optional argument, 55, 74, 77, 101
or, 49, 53
ordinary paragraph, 71
our, 111
our scope, 111
outer lexical scope, 79, 137
output file, 151, 152

package, 110, 112
parenthesis characters, 7, 26, 28, 133
parsing, 93, 133
partition_by, 146
path, 39, 94, 123, 161
path::class, 145
perlbrew, 109
permutation, 36
placeholder, 151, 156
plain old documentation, 71
pod, 71, 74, 153
pod parser, 71
pointer, 47
pos, 86
posix, 22, 112
postfix, 140
pragma, 86, 108, 111
precedence, 7
print, 137
printf, 22
private function, 153
process, 158
progress bar, 25
pronouns, 137
protein sequence, 115, 156

Denis BAURAIN / ULiège 165 Modern Perl for Biologists II | Deeper Concepts

INDEX

push, 47, 86, 89

query, 93
quicksort, 49
quoted word operator, 8, 17
quoting characters, 16

r, 12
range operator, 7, 14
re-use, 27, 77
readline operator, 145
recursion, 35
reentrancy, 35
ref, 46
reference, 44–47, 52, 55, 77, 79, 83, 85, 115, 133, 135,

151, 153, 161
reference count, 47
reference operator, 45, 135
regex modifier, 86
regular expression, 8, 18, 55, 86, 137
repetition operator, 23
restriction enzyme, 55, 79, 82, 84, 87, 136, 139
restriction fragment, 55, 88
restriction map, 55, 77
return, 137
return value, 29, 33, 74, 83, 114, 133
reverse, 8
rounding, 22

say, 26
scalar, 9, 12, 23, 44–46, 91, 152, 154
scalar context, 13, 23, 91
scalar reference, 91
scope, 111, 137, 145
separator, 82, 88
sequence similarity, 115
shell, 156, 157
shift, 26, 30, 89
short-circuiting, 49, 53, 54
sigil, 14, 46, 85, 145
single quotes, 8
single-quoted, 17
slurp, 145
smart::comments, 25, 36, 48, 75, 133
sort, 44, 49, 86, 90
sort block, 49, 52, 54, 146
sort comparison operator, 49, 52
sort::naturally, 52

special variable, 49
split, 18
sprintf, 22
square bracket characters, 12, 47, 89
standard error stream, 85, 158
standard output srteam, 158
state, 134, 135
string, 22, 23, 39, 46, 77, 143, 152, 156, 161
string context, 49, 50, 52
stringification, 46, 85, 133
sub, 27, 35, 133, 135
substr, 149
switch table, 156
symbol, 110, 112
system, 158

tab character, 18, 46, 71, 82, 88, 139
tabular file, 82, 93, 133
tag, 113
template, 158
template file, 157
template toolkit, 156
templating, 75, 94, 157, 158
temporary file, 152, 156
term::size::any, 24
ternary conditional operator, 26
test::files, 151
test::most, 114, 151
testing, 71, 105, 113, 143, 151
tie::ixhash, 153
timtowtdi, 91
topic variable, 137, 138, 140, 146
tpage, 157
transliteration, 156
true value, 19, 53, 110, 140
tsv, 82, 93, 129

undef, 10, 33, 46, 85, 133, 137
underscore character, 105, 153
uniq, 19
unit test, 113
unshift, 89
usage message, 74
use, 26, 74, 107, 108, 154

value, 7, 12, 16, 19, 22, 28, 44, 47, 49, 53, 82, 140,
152, 158

variable, 10, 22, 25, 28, 45, 47, 91, 133, 152

Denis BAURAIN / ULiège 166 Modern Perl for Biologists II | Deeper Concepts

INDEX

variable declaration, 79, 137
variable definition, 7, 16, 80
verbatim paragraph, 71
verbosity, 4
version number, 106, 109, 111

warn, 85
while, 35, 86, 89, 137
whitespace character, 18, 23, 28
width specification, 23
wrapper function, 155

zip, 16
zip_by, 146

Denis BAURAIN / ULiège 167 Modern Perl for Biologists II | Deeper Concepts

	Acknowledgment
	How to read this course?
	I Lesson 6
	Thinking in list context
	Old-school plots in the terminal
	Perl values: Lists
	Storing lists in arrays
	Storing lists in hashes
	Working with lists

	Formatting output
	check_overlap.pl output sample
	How to round numbers?
	floor and ceil
	sprintf

	The repetition operator
	More on Smart::Comments

	Functions
	What are functions?
	Defining and using functions
	Function parameters and return values
	The default array @_
	return
	Argument aliasing
	Lexical and file variables
	Argument slurping
	Argument currying
	Bare return statements
	Argument flattening

	Bonus—Computing anagrams using recursive function calls

	Homework

	II Lesson 7
	Sorted codon usage
	A gentle introduction to references
	Motivation
	Defining references
	Using references
	Anonymous arrays
	Peeking into nested data structures

	Sorting tables
	sort
	Sort blocks and sort comparison operators
	Sorting contexts
	The dereferencing arrow
	Short-circuiting and multiple sorting criteria

	In silico restriction mapping
	Your very personal cutter
	How to build an enzyme database?
	How to fetch sequences from the NCBI website?
	How to try the program?

	The code for cutter.pl

	Homework

	III Lesson 8
	The innards of cutter.pl
	Plain Old Documentation
	Getopt::Euclid
	Overview of cutter.pl
	Command-line interface
	Architecture

	More on references
	Tabular file parsing
	read_enzymes

	Defining and using nested data structures
	compute_cuts
	collect_sites
	infer_fragments

	Parsing BLAST reports
	BLAST tabular format
	How to write a Perl module?
	The code for blast_table.t
	The code for parser.pl
	The code for BlastTable.pm

	Homework

	IV Lesson 9
	More on Perl modules
	Structure of a Perl distribution
	Installing Perl modules
	Fine-tuning the installation process
	Specifying module dependencies

	Anatomy of a Perl module
	packages and namespaces
	Exporting symbols

	Automated tests

	Our ultimate killer app
	Annotating sequences with reference sequences
	Packaging read_fasta and friends
	The code for fasta_file.t
	The code for FastaFile.pm

	Building our application
	The code for annotate.pl

	Homework

	V Lesson 10
	Idiomatic Perl
	More on closures
	Function references
	subs with a memory

	The default variables
	The topic variable as the default iterator

	Implicit loops
	grep
	map

	Bonus—Higher-Order Perl

	Dissecting our annotation app
	More on automated tests
	Interesting bits in Forem::FastaFile
	A mighty modular script: annotate.pl
	Conciseness, readability and maintainability by code reuse
	Building programs with programs
	Calling external programs
	Wrapping it up

	Homework

	Index

