
Modern Perl for Biologists I | The Basics
M-BIM / INBTBI

Denis BAURAIN / ULiège

Edition 2020–2021

Denis BAURAIN / ULiège ii Modern Perl for Biologists I | The Basics

Acknowledgment
This course has been developed over eight years (2013–2020) primarily as teaching materials for the
Modern Perlmodule of the (INBTBI) Bioinformatics Training organized by the Biotechnology Training
Centre in theGIGATower of theUniversity of Liège (Belgium). Until 2016, the Biotechnology Training
Centre was directed by Laurent Corbesier, who is warmly thanked for his support.
The training itself was funded through the Bioinformatics Training Program, 6th call 2010–2014, BioWin
(the Health Cluster of Wallonia), Le Forem (the Walloon Office for Employment and Training), and
the Biotechnology Training Centre (Forem-GIGA).
This two-part document benefitted from the feed-back of about 150 students, trainees and colleagues,
among which Arnaud Di Franco, Agnieszka Misztak, Loïc Meunier and Sinaeda Anderssen are espe-
cially acknowledged.
If you spot typos, grammatical or technical errors, or have any suggestion on how to improve the next
edition of this course, let me know (denis.baurain@uliege.be). I will answer all messages.
Finally, I thank Pierre (Pit) Tocquin for his help with the mighty triad Markdown / Pandoc / LATEX.

How to read this course?
This document is written in American English.
The first time they are introduced, programming terms and biological terms are typeset in bold and
italic, respectively, whereas computer keywords are always typeset in a monospaced font (Consolas).
All these terms are indexed at most once per section in which they appear (see Index).
While the main text is typeset in Palatino, user statements (either at the shell or as small code excerpts)
and computer answers are typeset in the same monospaced font as computer keywords.
$ echo "Hello world!" # user statement (note the shell prompt)
Hello world! # computer answer

Example BOX
Advanced material that can be skipped on first reading is enclosed in boxes with a light blue
background. A List of Boxes is available for convenience.

General programming advices and good practices that apply beyond the Perl language are typeset in a
smaller size and introduced by a yellow bar surmounted by an icon.

1 say <<'EOT';
2 Complete program listings are typeset
3 in the same monospaced font as keywords.
4 Their lines are numbered.
5 EOT

Denis BAURAIN / ULiège iii Modern Perl for Biologists I | The Basics

mailto:denis.baurain@uliege.be

Denis BAURAIN / ULiège iv Modern Perl for Biologists I | The Basics

Contents

Acknowledgment . iii
How to read this course? . iii

I Lesson 1 1

1 Introduction 3
1.1 What is Perl? . 3
1.2 What is Modern Perl? . 3
1.3 Why for biologists? . 4
1.4 Covered topics . 4
1.5 Homework guidelines . 5
1.6 Perl Cheat Sheet . 6

2 Before beginning 9
2.1 The need for a sandbox . 9
2.2 How to install our sandbox? . 9

3 First steps in Perl 11
3.1 Motivation . 11
3.2 Our first killer app . 11
3.3 How to make our own rev_comp? . 12
3.4 How to document our program? . 14
3.5 Perl variables . 15
3.6 How to see what’s going on? . 17
3.7 A closer look to our killer app . 18
3.8 Basic Perl syntax . 19

3.8.1 Names . 19
3.8.2 Sigils . 20
3.8.3 Context . 20
3.8.4 Scope . 21
3.8.5 strict and warnings pragmas . 23

3.9 List builtin functions . 23
3.9.1 push & pop . 23
3.9.2 unshift & shift . 24
3.9.3 split & join . 25

4 Digging deeper into Perl 29
4.1 Another killer app . 29
4.2 The code for our own translate . 30

Homework 33

Denis BAURAIN / ULiège v Modern Perl for Biologists I | The Basics

CONTENTS

II Lesson 2 35

5 Looking at the novelties in translate.pl 37
5.1 Shebang line . 37
5.2 Modern::Perl . 37
5.3 Perl values: Strings . 38

5.3.1 Defining and concatenating strings . 38
5.3.2 Alternate quoting operators . 40

5.4 String builtin functions . 40
5.4.1 length . 41
5.4.2 substr . 41
5.4.3 uc & lc . 42

5.5 The for loop . 43
5.5.1 foreach-style for loop . 43
5.5.2 C-style for loop . 45

5.6 Boolean expressions . 47
5.6.1 Perl’s vision of truth . 47
5.6.2 The undef value . 48
5.6.3 Logical defined-or operator . 48

5.7 The say builtin function . 49

6 Batch vs. interactive programs 51
6.1 Acquiring user input . 51
6.2 How to improve our killer app? . 51
6.3 Let’s make our first game! . 53

Homework 57

III Lesson 3 59

7 Becoming a control freak 61
7.1 Control flow in Perl . 61
7.2 Branching directives . 61

7.2.1 if & unless . 62
7.2.2 else & elsif . 63
7.2.3 die and the postfix form . 66
7.2.4 Interlude—defining multiline strings with the heredoc syntax 66

7.3 Looping directives . 67
7.3.1 The while loop and its variants . 68
7.3.2 Loop control directives . 71

8 Other novelties in codon_quizz.pl 79
8.1 keys & shuffle . 79
8.2 Reading from the standard input stream . 80

8.2.1 The readline operator . 80
8.2.2 Line endings . 81

9 A first look at operators 83
9.1 What are operators? . 83
9.2 Comparison operators . 84
9.3 Logical operators . 85
9.4 Operator precedence and associativity . 86

Denis BAURAIN / ULiège vi Modern Perl for Biologists I | The Basics

CONTENTS

10 Using Perl to compute some stats 87
10.1 A killer app with a fast bite . 87
10.2 The code for our own codon_usage . 88

Homework 91

IV Lesson 4 93

11 Input/output in Perl 95
11.1 Reading files . 95

11.1.1 FASTA format . 95
11.1.2 open & close . 95
11.1.3 autodie and $! . 96

11.2 Writing files . 98

12 A first look at mathematics in Perl 101
12.1 Perl values: Numbers . 101
12.2 Numeric and in-place operators . 102

13 More on hashes 105
13.1 Hash uses . 105
13.2 values & sort and reuse of variable names . 110

14 Towards more complex programs 113
14.1 A production-grade translation tool . 113

Homework 117

V Lesson 5 119

15 Looking at the novelties in xxl_xlate.pl 121
15.1 Would you like some syntactic sugar? . 121

15.1.1 Ordered hashes: Tie::IxHash . 121
15.1.2 each and list assignment . 121
15.1.3 The ternary conditional operator . 122

15.2 Writing portable code . 122
15.2.1 LWP::Simple . 122
15.2.2 Path::Class . 123
15.2.3 File::Basename . 123

16 Regular expressions 125
16.1 What are regular expressions? . 125
16.2 Defining regular expressions . 125
16.3 Using regexes . 126
16.4 When not to use regexes? . 127

16.4.1 Literal searches: index . 128
16.4.2 Transliteration: tr/// . 129

16.5 Anchors . 132
16.6 Character classes . 135
16.7 Metacharacters . 136
16.8 Quantifiers . 137
16.9 Capturing groups . 139
16.10 Non-capturing groups . 142
16.11 Modifiers . 143

Denis BAURAIN / ULiège vii Modern Perl for Biologists I | The Basics

CONTENTS

17 Perl one-liners 145
17.1 Forget sed and awk . 145
17.2 -n and -l switches . 145
17.3 The /e regex modifier . 146
17.4 The -i switch . 147
17.5 The -a and -F switches . 147
17.6 The END code block . 148
17.7 Envoi . 148

Homework 151

Index 153

Denis BAURAIN / ULiège viii Modern Perl for Biologists I | The Basics

List of Boxes

1 What if it does not work? . 13
2 Perl as an interactive shell . 27
3 Avoiding unwanted interpolation . 39
4 Unicode strings . 40
5 The fourth argument of substr and splice . 42
6 Iterator variables as aliases . 43
7 Iterators and scope . 46
8 Calling external programs with the qx(...) operator . 64
9 Hashes instead of cascades of elsif . 65
10 Arrays and while/shift vs. foreach-style for loops . 68
11 A personal account on programming styles . 69
12 redo (for those who insist on using it) . 77
13 The hash random order in gory detail . 80
14 How to fix incorrect line endings? . 81
15 Soft vs. hard-wrapping . 82
16 Integer and floating-point arithmetics . 102
17 Prefix vs. postfix forms of the auto-... operators . 104
18 When speed matters . 128
19 scalar reverse . 131
20 Line anchors vs. string anchors . 134
21 Greedy vs. non-greedy quantifiers . 140
22 How to install cutting-edge or specialized software? . 149

Denis BAURAIN / ULiège ix Modern Perl for Biologists I | The Basics

LIST OF BOXES

Denis BAURAIN / ULiège x Modern Perl for Biologists I | The Basics

List of Tables

3.1 Elements of the array @bases and their indices . 15
3.2 Key/value pairs of the hash %comp_for . 16
3.3 The fresh array @bases . 23
3.4 @bases after push . 23
3.5 @bases after pop . 24
3.6 @bases after unshift . 24
3.7 @bases after shift . 24
3.8 The array @bases resulting from the split . 26
3.9 The array @words resulting from the split . 26
3.10 The array @codons resulting from the split . 27

5.1 The list resulting from the expression 0..63 . 45

9.1 Comparison operators for numeric and string contexts 85
9.2 Logical operators of high and low precedence . 85

12.1 Regular and in-place numeric operators . 103

13.1 Contents of hash %seq_for (reading Ecoli_cds.fasta) 105
13.2 Contents of hash %comp_for . 105
13.3 Contents of hash %aa_for . 106
13.4 Final content of hash %count_for . 107
13.5 Final content of hash %total_for . 107
13.6 Exemplative content of hash %wanted . 109
13.7 Contents of hash %div_for . 110

16.1 Operators for regular expressions . 127
16.2 Options for the transliteration operator . 131
16.3 Common anchors in regular expressions . 134
16.4 Common character classes in regular expressions . 137
16.5 Quantifiers in regular expressions . 138
16.6 Common regular expression modifiers . 143

Denis BAURAIN / ULiège xi Modern Perl for Biologists I | The Basics

LIST OF TABLES

Denis BAURAIN / ULiège xii Modern Perl for Biologists I | The Basics

List of Figures

1.1 Perl 5 vs. Modern Perl . 4

3.1 The Killer App [Rosa Gago, 2016] . 11
3.2 Mr. Fussy [Roger Hangreaves, 1976] . 13
3.3 A variable is a named storage location. 15

5.1 The two styles of the for loop . 43

6.1 The standard genetic code . 55

7.1 The three uses of branching directives . 63
7.2 The four variants of the while loop . 69
7.3 How to write good code? [xkcd.com] . 71
7.4 Loop control directives . 73

11.1 Flowchart of our FASTA file reader . 97

Denis BAURAIN / ULiège xiii Modern Perl for Biologists I | The Basics

LIST OF FIGURES

Denis BAURAIN / ULiège xiv Modern Perl for Biologists I | The Basics

Part I

Lesson 1

Denis BAURAIN / ULiège 1 Modern Perl for Biologists I | The Basics

Chapter 1

Introduction

1.1 What is Perl?
From the Perl documentation:
http://perldoc.perl.org/

Perl is a high-level programming language with an eclectic heritage written by Larry Wall and a cast
of thousands. It derives from the ubiquitous C programming language and to a lesser extent from
sed, awk, the Unix shell, and at least a dozen other tools and languages. Perl’s process, file, and text
manipulation facilities make it particularly well-suited for tasks involving quick prototyping, system
utilities, software tools, systemmanagement tasks, database access, graphical programming, network-
ing, and web programming. These strengths make it especially popular with system administrators
and web developers, but mathematicians, geneticists, journalists, and even managers also use Perl.
Maybe you should, too.

Interestingly, geneticists are mentioned in this very small excerpt. This looks promising.

1.2 What is Modern Perl?
From the Preface ofModern Perl (2014) by chromatic:
http://modernperlbooks.com/books/modern_perl_2014/

Modern Perl is one way to describe the way the world’s most effective Perl 5 programmers work. They
use language idioms. They take advantage of the CPAN. They show good taste and craft to write
powerful, maintainable, scalable, concise, and effective code. You can learn these skills too!

Perl first appeared in 1987 as a simple tool for system administration. Though it began by declaring
and occupying a comfortable niche between shell scripting and C programming, it has become a pow-
erful, general-purpose language family. Perl 5 has a solid history of pragmatism and a bright future
of polish and enhancement.

Over Perl’s long history—especially the 19 years of Perl 5 [now 26 years]—our understanding of what
makes great Perl programs has changed. While you can write productive programs which never
take advantage of all the language has to offer, the global Perl community has invented, borrowed,
enhanced, and polished ideas and made them available to anyone willing to learn them.

Denis BAURAIN / ULiège 3 Modern Perl for Biologists I | The Basics

http://perldoc.perl.org/
http://modernperlbooks.com/books/modern_perl_2014/

CHAPTER 1. INTRODUCTION

1.3 Why for biologists?
A number of bioinformaticians are Perl programmers, especially older ones. Even if Perl is less popu-
lar than it was a decade ago, I argue that it is still very relevant for biologists. My goal here is to teach
you how to get the most of its modern incarnation using examples from the biological field.

In that respect, this course can be seen as a hybrid between Learning Perl by Randal L. Schwartz et
al. (O’ReillyMedia), Beginning… andMastering Perl for Bioinformatics by James D. Tisdall (O’ReillyMe-
dia), andModern Perl by chromatic (OnyxNeon Inc). However, all its content is original and peppered
with words of wisdom and good programming practices taken frommy own 30-year long experience
in computer programming.

Figure 1.1: Perl 5 vs. Modern Perl

1.4 Covered topics
This course was originally meant to be introductory but ended up being quite advanced. The only
important area ofModern Perl thatwill not be discussed here isObject-Oriented Programming. Below
is a rough and incomplete overview (see “Contents”, p.viii, for details).

1. The Basics
1. Variables (Scalars, Arrays, Hashes)
2. Operators, Boolean expressions and Control flow
3. Input/output
4. Regular expressions
5. One-liners

2. Deeper Concepts
6. Functions
7. References and Nested data structures
8. Modules and Unit tests
9. Best of CPAN
10. Idiomatic Perl – TIMTOWTDI

Denis BAURAIN / ULiège 4 Modern Perl for Biologists I | The Basics

CHAPTER 1. INTRODUCTION

1.5 Homework guidelines
The aim of homework assignments in this course is to get you started in Perl as fast as possible. Instead
of small code snippets (as in other textbooks), we study complete programs that you have to improve
more or less radically.
You’d better see these assignments as oral expression exercises in a foreign language. You cannot learn
English just by attending classes about vocabulary and grammar. To make any progress, you must
try to speak in a real setting, e.g., to ask your way in New York. Therefore, I don’t expect you to use
words and constructs not yet introduced in class.
Of course, you are free to use new concepts if you want to, but this is not strictly required. If you
need help, look at the websites below. Most are excellent resources for learning Perl, and especially
its modern incarnation.

• http://perldoc.perl.org/
• http://www.cpan.org/
• http://perlmonks.org/
• http://stackoverflow.com/questions/tagged/perl
• http://perl.com/
• http://blogs.perl.org/

Don’t forget the Modern Perl website by chromatic, which, written as a reference book, is the perfect
complement to the present tutorial. The last (fourth) edition can be found here:

• http://modernperlbooks.com/books/modern_perl_2016/

Denis BAURAIN / ULiège 5 Modern Perl for Biologists I | The Basics

http://perldoc.perl.org/
http://www.cpan.org/
http://perlmonks.org/
http://stackoverflow.com/questions/tagged/perl
http://perl.com/
http://blogs.perl.org/
http://modernperlbooks.com/books/modern_perl_2016/

CHAPTER 1. INTRODUCTION

1.6 Perl Cheat Sheet
If you feel you need a very compact overview of Perl’s syntax, keep a copy of the following cheat
sheet. This is the official one but other sheets, some much more detailed, are freely available on the
web. You can generate this one at will using the command below:

$ perldoc perlcheat > perlcheat.txt

CONTEXTS SIGILS ref ARRAYS HASHES
void $scalar SCALAR @array %hash
scalar @array ARRAY @array[0, 2] @hash{'a', 'b'}
list %hash HASH $array[0] $hash{'a'}

&sub CODE
*glob GLOB SCALAR VALUES

FORMAT number, string, ref, glob, undef
REFERENCES
\ reference $$foo[1] aka $foo->[1]
$@%&* dereference $$foo{bar} aka $foo->{bar}
[] anon. arrayref ${$$foo[1]}[2] aka $foo->[1]->[2]
{} anon. hashref ${$$foo[1]}[2] aka $foo->[1][2]
\() list of refs

SYNTAX
OPERATOR PRECEDENCE foreach (LIST) { } for (a;b;c) { }
-> while (e) { } until (e) { }
++ -- if (e) { } elsif (e) { } else { }
** unless (e) { } elsif (e) { } else { }
! ~ \ u+ u- given (e) { when (e) {} default {} }
=~ !~
* / % x NUMBERS vs STRINGS FALSE vs TRUE
+ - . = = undef, "", 0, "0"
<< >> + . anything else
named uops == != eq ne
< > <= >= lt gt le ge < > <= >= lt gt le ge
== != <=> eq ne cmp ~~ <=> cmp
&
| ^ REGEX MODIFIERS REGEX METACHARS
&& /i case insensitive ^ string begin
|| // /m line based ^$ $ str end (bfr \n)
.. ... /s . includes \n + one or more
?: /x /xx ign. wh.space * zero or more
= += last goto /p preserve ? zero or one
, => /a ASCII /aa safe {3,7} repeat in range
list ops /l locale /d dual | alternation
not /u Unicode [] character class
and /e evaluate /ee rpts \b boundary
or xor /g global \z string end

/o compile pat once () capture

Denis BAURAIN / ULiège 6 Modern Perl for Biologists I | The Basics

CHAPTER 1. INTRODUCTION

DEBUG (?:p) no capture
-MO=Deparse REGEX CHARCLASSES (?#t) comment
-MO=Terse . [^\n] (?=p) ZW pos ahead
-D## \s whitespace (?!p) ZW neg ahead
-d:Trace \w word chars (?<=p) ZW pos behind \K

\d digits (?<!p) ZW neg behind
CONFIGURATION \pP named property (?>p) no backtrack
perl -V:ivsize \h horiz.wh.space (?|p|p)branch reset

\R linebreak (?<n>p)named capture
\S \W \D \H negate \g{n} ref to named cap

\K keep left part
FUNCTION RETURN LISTS
stat localtime caller SPECIAL VARIABLES
0 dev 0 second 0 package $_ default variable
1 ino 1 minute 1 filename $0 program name
2 mode 2 hour 2 line $/ input separator
3 nlink 3 day 3 subroutine $\ output separator
4 uid 4 month-1 4 hasargs $| autoflush
5 gid 5 year-1900 5 wantarray $! sys/libcall error
6 rdev 6 weekday 6 evaltext $@ eval error
7 size 7 yearday 7 is_require $$ process ID
8 atime 8 is_dst 8 hints $. line number
9 mtime 9 bitmask @ARGV command line args

10 ctime 10 hinthash @INC include paths
11 blksz 3..10 only @_ subroutine args
12 blcks with EXPR %ENV environment

Denis BAURAIN / ULiège 7 Modern Perl for Biologists I | The Basics

CHAPTER 1. INTRODUCTION

Denis BAURAIN / ULiège 8 Modern Perl for Biologists I | The Basics

Chapter 2

Before beginning

2.1 The need for a sandbox
Perl is part of all UNIX-like operating systems (including Linux and macOS), in which it fulfills im-
portant functions. This has two consequences:

1. The installed version of Perl is often out of date.
2. The number of directly available Perl modules is modest.

This can be changed (using sudo), but it is better not to mess with the system’s Perl.

To exploreModern Perl at no risk, we setup a specialized infrastructure allowing us to install multiple
versions of Perl without ever touching the system’s Perl.

This infrastructure is known as Perlbrew and is available at: http://perlbrew.pl/

2.2 How to install our sandbox?
Open a fresh terminal and type in the following commands. Note that the lines to enter always begin
with the command prompt character ($). However, you must not type in $ itself; it symbolizes the
shell waiting for user commands. Moreover, the lines beginning with the comment character (#) are
only there for your information. Thus, you don’t need to (but you can) enter them at the shell.

install developer tools (if needed)
$ sudo apt install build-essential # Linux
$ xcode-select --install # macOS

download the Perlbrew installer
$ wget -O - http://install.perlbrew.pl | bash # Linux
$ curl -L http://install.perlbrew.pl | bash # macOS

initialize Perlbrew
$ source ~/perl5/perlbrew/etc/bashrc
$ perlbrew init

Denis BAURAIN / ULiège 9 Modern Perl for Biologists I | The Basics

http://perlbrew.pl/

CHAPTER 2. BEFORE BEGINNING

install a recent stable version of the perl interpreter
this will take a while...
$ perlbrew available
$ perlbrew install perl-5.32.0 --thread
$ perlbrew install-cpanm

enable the installed version
$ perlbrew list
$ perlbrew switch perl-5.32.0

To make the perlbrew command (and your new perl interpreter) always accessible, you need to
amend your shell configuration file. First, check the name of your current shell. Enter your password
then simultaneously press the keys Ctrl and C (abbreviated as ^C and known as Break) to abort.
$ chsh

Using a text editor (e.g., gedit on Linux), add the following line either to your ~/.bashrc file (if using
the /bin/bash shell) or to your ~/.zshrc file (if using the /bin/zsh shell). On macOS, add it instead
to your ~/.profile file. The line itself is the same in all three cases.
source ~/perl5/perlbrew/etc/bashrc

To check that everything is working as expected, close your terminal, open a fresh one and ask for the
current perl version.
$ perl -v

You should get a version numbermatching the perl install to which you have switched above. If so,
you are ready! Otherwise, log out from your session, reopen a terminal and retry only this very last
step. If it still does not work, something has gone wrong and you need to reinstall Perlbrew.

Denis BAURAIN / ULiège 10 Modern Perl for Biologists I | The Basics

Chapter 3

First steps in Perl

3.1 Motivation
• Learning a new technology (here, Perl) can be tedious.
• We learn better when we are motivated.
• One way to get motivated is to be shown a killer app.

Figure 3.1: The Killer App [Rosa Gago, 2016]

3.2 Our first killer app
Molecular biologists often manipulate DNA sequences. How many times did you try to reverse com-
plement a DNA sequence in your head? For example, when designing PCR primers or analyzing
sequence chromatograms… Of course, computers can help.

Let’s pretend we want to reverse-complement the following DNA sequence:
CATGAACTTCTTTGGCGTCTTGAT.

We can submit it to a web application:
http://www.bioinformatics.org/sms/rev_comp.html

Yes, it works, but it is tedious.

Denis BAURAIN / ULiège 11 Modern Perl for Biologists I | The Basics

http://www.bioinformatics.org/sms/rev_comp.html

CHAPTER 3. FIRST STEPS IN PERL

3.3 How to make our own rev_comp?
To write programs, we need a developer-oriented text editor. By this, I mean a graphical application
allowing us to easily type in and modify computer code. If you use Linux, gedit is available by
default. However, I advise you to install geany, which is much more powerful while not too bloated.

$ sudo apt install geany

If you are on macOS, a convenient solution is BBEdit, which is not free software but can still be down-
loaded at no cost from the website of the Bare Bones company:
http://www.barebones.com/products/bbedit/

Once you are done with installing a suitable text editor, follow the steps below.

1. Open the text editor and type in the short Perl program shown below. Do your best to respect
the code indentation (i.e., the vertical alignment of the code). Line numbers are only there to
help you. Consequently, they must not be entered.

1 use strict;
2 use warnings;
3

4 my %comp_for = (
5 A => 'T', T => 'A', G => 'C', C => 'G',
6 a => 't', t => 'a', g => 'c', c => 'g',
7);
8

9 my $dna_string = shift;
10 my @bases = split //, $dna_string;
11 my $len = @bases;
12

13 my @comp_bases;
14 for my $base (@bases) {
15 my $comp_base = $comp_for{$base};
16 unshift @comp_bases, $comp_base;
17 }
18 my $rev_comp_dna_string = join q{}, @comp_bases;
19

20 print 'fwd: ' . $dna_string . "\n";
21 print 'rev: ' . $rev_comp_dna_string . "\n";

2. Save it as rev_comp.pl (in a new mod_perl subdirectory). You should do this right after begin-
ning typing in order to enable your editor’s syntax highlighting feature (based on the file suffix,
here .pl).

3. Open a fresh terminal.

4. Go to the mod_perl subdirectory containing your program.

$ cd mod_perl

5. Try it with the following command.

$ perl rev_comp.pl CATGAACTTCTTTGGCGTCTTGAT

Denis BAURAIN / ULiège 12 Modern Perl for Biologists I | The Basics

http://www.barebones.com/products/bbedit/

CHAPTER 3. FIRST STEPS IN PERL

(Drum roll…) Tada!
fwd: CATGAACTTCTTTGGCGTCTTGAT
rev: ATCAAGACGCCAAAGAAGTTCATG

BOX 1: What if it does not work?
If rev_comp.pl is your very first program, chances are that it will fail to run on the first attempt.
Don’t become discouraged and keep the following check-list in mind to debug your code.

1. Always look for the very first syntax error. If there is one, all subsequent errors are likely
to be mere consequences of this original sin. To determine where the first syntax error is,
consider the line numbers given in the error messages produced by the Perl interpreter.

2. If there is no syntax error, look for other kinds of errors and fix them each one in turn, start-
ing from the first one. Frequently retry to run your program as later errors may disappear
due to the debugging of earlier ones.

3. If you really don’t see where the error comes from, look at the line preceding the first error.
Did you forget the semicolon character (;)? Perl statements must always end with such a
character. Other weird errors can come from a missing use directive. This is unlikely in
rev_compl.pl but will become relevant once we deal with Perl modules.

4. Finally, pay attention to spelling (e.g., $dna_string is not $dan_string nor $dnastring)
and punctuation characters (e.g., ; is not ,). In that respect, the autocompletion feature
of your text editor can be helpful (i.e., Ctrl-Space in geany). Moreover, don’t forget that
most computer languages (including Perl) are case-sensitive, which means that lower and
upper case letters are not interchangeable (e.g., use is not USE). In short, the Perl interpreter
is very fussy and you will quickly learn to become as persnickety as it!

Figure 3.2: Mr. Fussy [Roger Hangreaves, 1976]

Denis BAURAIN / ULiège 13 Modern Perl for Biologists I | The Basics

CHAPTER 3. FIRST STEPS IN PERL

3.4 How to document our program?
Let’s add a few comments to explain our code…Aswith the shell, comments begin with the comment
character (#). You should not paraphrase your code, but instead explain the purpose of each logical
group of statements. A statement is like a sentence for the computer. It does not begin with a capital
letter, but it must end with a semicolon character (;).

1 # enforce good programming practices
2 use strict;
3 use warnings;
4

5 # define a hash mapping the base complements
6 my %comp_for = (
7 A => 'T', T => 'A', G => 'C', C => 'G',
8 a => 't', t => 'a', g => 'c', c => 'g',
9);
10

11 # read a DNA string, split it into bases and compute its length
12 my $dna_string = shift;
13 my @bases = split //, $dna_string;
14 my $len = @bases;
15

16 # take the complement of each base in turn
17 # elongate reverse string by inserting complemented bases at its beginning
18 my @comp_bases;
19 for my $base (@bases) {
20 my $comp_base = $comp_for{$base};
21 unshift @comp_bases, $comp_base;
22 }
23 my $rev_comp_dna_string = join q{}, @comp_bases;
24

25 # print forward and reverse complemented DNA strings
26 print 'fwd: ' . $dna_string . "\n";
27 print 'rev: ' . $rev_comp_dna_string . "\n";

Within a statement, carefully choosing variable names and other identifiers can also help other people
to understand your code. This practice is called autodocumentation. Observe how I used descriptive
identifiers in our first program (e.g., $dna_string, @bases, $len).

This program is pretty straightforward. Here’s a basic transcript:
1. It reads a DNA sequence from the command line.
2. It defines a data structure for determining base complements.
3. It splits the DNA sequence into its constituting bases.
4. It then loops over bases (from 5’ to 3’-end)…

1. to take the complement of each base using the data structure and…
2. to insert the complemented base at the beginning of the complemented DNA sequence,

which has the effect of simultaneously reversing it.

Denis BAURAIN / ULiège 14 Modern Perl for Biologists I | The Basics

CHAPTER 3. FIRST STEPS IN PERL

5. It concatenates the reverse complemented bases into a DNA sequence.
6. Finally, it prints both the original and the reverse-complemented DNA sequences.

3.5 Perl variables
A variable is a storage location in computer memory that can generally be referred to by a specific
name, the identifier of the variable.

Figure 3.3: A variable is a named storage location.

One can reserve such a location without putting any value into it. This is called declaring a variable.
In contrast, storing a value into a variable (already declared or not) is called defining the variable.
variable declaration
my $box;

variable definition
$box = 'some stuff';

variable declaration followed by its definition
my $trunk = 'secret stash';

Perl has three main types of variables: scalars, arrays and hashes.
• Scalars hold a single value, whether a number, a string or something else.

my $dna_string = 'CATGAACTTCTTTGGCGTCTTGAT';

• Arrays hold a collection of ordered elements, which are scalars. The elements can be manip-
ulated as a list or individually. The specific elements to be manipulated are selected by using
indices (singular: index) between square bracket characters ([and]). In Perl, indices go from
0 to the number of elements minus one.
my @bases = ('A', 'C', 'G', 'T');

Table 3.1: Elements of the array @bases and their indices

0 1 2 3
A C G T

Denis BAURAIN / ULiège 15 Modern Perl for Biologists I | The Basics

CHAPTER 3. FIRST STEPS IN PERL

• Hashes hold a collection of unordered values, which again are scalars and can be accessed by
a collection of unique keys. They are useful for associating pairs of information, hence their
formal names of associative arrays or dictionaries. Specific values are selected by using keys
between curly brace characters ({ and }).
my %comp_for = (

A => 'T',
T => 'A',
G => 'C',
C => 'G',

);

Table 3.2: Key/value pairs of the hash %comp_for

key value
A T
T A
G C
C G

Even if keys have to be unique, values can be repeated. Consider the following hash associating
a cellular process to each gene of the cluster dcw (for division and cell wall) in Escherichia coli.

my %process_for = (
mraZ => 'other',
mraW => 'other',
ftsL => 'FtsI/FtsW recruitment on Z ring',
ftsI => 'peptidoglycan subunit translocation and assembly',
murE => 'peptidoglycan biosynthesis',
murF => 'peptidoglycan biosynthesis',
mraY => 'peptidoglycan biosynthesis',
murD => 'peptidoglycan biosynthesis',
ftsW => 'peptidoglycan subunit translocation and assembly',
murG => 'peptidoglycan biosynthesis',
murC => 'peptidoglycan biosynthesis',
ddlB => 'peptidoglycan biosynthesis',
ftsQ => 'FtsI/FtsW recruitment on Z ring',
ftsA => 'cellular division',
ftsZ => 'cellular division',

);

Be careful that smart comments always display hashes as if their keys were sorted in alphabetical
order (also known as lexical order). This is certainly prettier than the default randomized order (see
“The hash randomorder in gory detail”, p.79). However, this can alsomask potential bugs (or simply
make them more difficult to find).

Denis BAURAIN / ULiège 16 Modern Perl for Biologists I | The Basics

CHAPTER 3. FIRST STEPS IN PERL

3.6 How to see what’s going on?
Let’s add a debugging facility to our program. Insert the following statement after the two first lines.

use Smart::Comments;

The use keyword (or directive but technically a builtin function) has the effect of loading themodule
Smart::Comments. A Perlmodule is basically a collection of high-level features already programmed
for you. Perl modules cover a vast array of application domains, including bioinformatics, and the
most famous of them are very fine pieces of software. Powerful and robust modules are one of the top
reasons why Perl is still widely used today in spite of fierce competition (e.g., Python).

The standard Perl distribution comes with many coremodules that you don’t need to install before
loading them. Much more modules are available on CPAN repositories (196,000 as of September
2020) and these can be installed in a breeze using the cpanm command-line tool. This is the case of
Smart::Comments.

$ cpanm Smart::Comments

So-called smart comments beginwith three comment characters (###). They can do a lot of useful things.
To learn more about this module, try using perldoc in your terminal.

$ perldoc Smart::Comments

All installed Perl modules come with a similar documentation. This habit is one the strongest assets
of the Perl ecosystem. For uninstalled modules, go to the main CPAN website instead:
http://search.cpan.org/

In their simplest use, smart comments simply display the content of the specified variable to the stan-
dard error stream (STDERR).

$dna_string

gives:

$dna_string: 'CATGAACTTCTTTGGCGTCTTGAT'

In the remaining of this course, I will always show you the expected output of the computer (i.e., its
answer) after a comment similar to the # gives: above. Thus, in this case, the program is:

$dna_string

…while the computer’s output is:

$dna_string: 'CATGAACTTCTTTGGCGTCTTGAT'

When the variable contains multiple elements (e.g., it is an array or a hash), smart comments print
its content in a very readable way. This is achieved by formatting the output with the Data::Dumper
module, which is part of the standard Perl distribution.

my @bases = ('A', 'C', 'G', 'T');
@bases

%comp_for

Denis BAURAIN / ULiège 17 Modern Perl for Biologists I | The Basics

http://search.cpan.org/

CHAPTER 3. FIRST STEPS IN PERL

gives:

@bases: [
'A',
'C',
'G',
'T'
]

%comp_for: {
A => 'T',
C => 'G',
G => 'C',
T => 'A',
a => 't',
c => 'g',
g => 'c',
t => 'a'
}

If we want to look at a specific array or hash element using its index, the very simple syntax presented
above does not work anymore. Instead, we must use a slightly more sophisticated form.

base: $bases[2]

gives:

base: 'G'

The expression after the colon character (:) can be arbitrarily complex, but both the colon and the text
before it (any text but some text) are required.

By definition, an expression is any combination of literals, constants, variables, operators, and func-
tions that gets evaluated and returns a value. In Perl, nearly everything is an expression. This is what
allows Perl programmers to write very concise and natural code.

3.7 A closer look to our killer app
Let’s riddle our code with smart comments…

1 # enforce good programming practices
2 use strict;
3 use warnings;
4

5 use Smart::Comments;
6

7 # define a hash mapping the base complements
8 my %comp_for = (
9 A => 'T', T => 'A', G => 'C', C => 'G',

Denis BAURAIN / ULiège 18 Modern Perl for Biologists I | The Basics

CHAPTER 3. FIRST STEPS IN PERL

10 a => 't', t => 'a', g => 'c', c => 'g',
11);
12 ### %comp_for
13

14 # read a DNA string, split it into bases and compute its length
15 my $dna_string = shift;
16 ### $dna_string
17 my @bases = split //, $dna_string;
18 ### @bases
19 my $len = @bases;
20 ### $len
21

22 # take the complement of each base in turn
23 # elongate reverse string by inserting complemented bases at its beginning
24 my @comp_bases;
25 ### @comp_bases
26 for my $base (@bases) {
27 my $comp_base = $comp_for{$base};
28 ### base / comp_base : $base . '/' . $comp_base
29 unshift @comp_bases, $comp_base;
30 ### @comp_bases
31 }
32 my $rev_comp_dna_string = join q{}, @comp_bases;
33 ### $rev_comp_dna_string
34

35 # print forward and reverse complemented DNA strings
36 print 'fwd: ' . $dna_string . "\n";
37 print 'rev: ' . $rev_comp_dna_string . "\n";

To capture the output sent to STDERR, use the following shell redirection in bash. This will send all
smart comments to the file rev_comp.log.

$ perl rev_comp.pl CATGAACTTCTTTGGCGTCTTGAT 2> rev_comp.log

Then, look at the file and try to understand what is going on.

$ less rev_comp.log

As you can see, the output sent to STDOUT, the standard output stream, still gets printed to the screen.
This is why separating the two standard streams in your code can be very useful.

3.8 Basic Perl syntax
3.8.1 Names
Perl names (or identifiers) all begin with a letter or an underscore character (_) and may include any
combination of letters, numbers and underscores.

Denis BAURAIN / ULiège 19 Modern Perl for Biologists I | The Basics

CHAPTER 3. FIRST STEPS IN PERL

examples from our program

only letters
@bases
$len
$base

letters and underscores
%comp_for
$dna_string
@comp_bases
$rev_comp_dna_string

additional examples with numbers
$seq1
package MyApp2
%id4seq
@blast2_results

3.8.2 Sigils
Variable names always have a leading sigil (or symbol) that indicates the type of the variable’s value.

• Scalars use the dollar sign character ($).
• Arrays use the at sign character (@).
• Hashes use the percent sign character (%).

examples from our program

scalars
my $dna_string;
my $len;
my $base;

arrays
my @bases;
my @comp_bases;

hashes
my %comp_for;

3.8.3 Context
Perl context sometimes causes issues to beginners. It directly comes from the fact that Larry Wall
(born in 1954), the creator of Perl, studied linguistics and human languages.

Basically, it boils down to the idea that the perl interpreter always analyzes your code in the light of
two different contexts, which can be compared to the number (singular/plural) and the gender (mas-
culine/feminine) in spoken languages.

Denis BAURAIN / ULiège 20 Modern Perl for Biologists I | The Basics

CHAPTER 3. FIRST STEPS IN PERL

In Perl, these two kinds of contexts are the amount context (void/scalar/list) and the value context
(numeric/string/boolean). These are complex and pervasive concepts in Perl and we will come back to
them on several occasions. For now, two things are important to remember:

• Variable assignment imposes a specific amount context depending on the type of variable re-
ceiving the value. Scalars impose scalar context, while arrays and hashes impose list context.
Such impositions are called coercions. We will see them again in “Transliteration: tr//”, p.129.

• Sigils can help us to determine the amount context.

examples from our program

the hash %comp_for imposes list context
my %comp_for = (

A => 'T', T => 'A', G => 'C', C => 'G',
a => 't', t => 'a', g => 'c', c => 'g',

);

the array @bases imposes list context as well
my @bases = split //, $dna_string;

the scalar $len imposes scalar context
in scalar context, an array evaluates to its number of elements
my $len = @bases;

the scalar $comp_base imposes scalar context
we get a single value from the hash %comp_for
thus, the % sigil changes to $ to reflect this fact
my $comp_base = $comp_for{$base};

3.8.4 Scope
Perl variables only exist (and are visible) within a certain scope, corresponding towhere and how they
were declared (e.g., with my). There exist different scopes (e.g., our scope or dynamic scope), but the
most important to understand for now is the lexical scope.

Lexical scope is governed by our (and perl’s) reading of a given program. A new lexical scope is
created when we enter in a new block. A block is defined by a pair of curly brace characters ({ and })
and should be indented (i.e., shifted to the right) with respect to the surrounding code for clarity.

for my $base (@bases) { # block start
my $comp_base = $comp_for{$base}; # these two lines
unshift @comp_bases, $comp_base; # are indented with 4 spaces

} # block end

Blocks can be put within others like Russian dolls (nested blocks). Variables declared inside an outer
lexical scope exist and are visible from inner lexical scopes (delimited by inner blocks). When we
exit from a given lexical scope (by crossing over a closing }), variables declared inside that scope are
destroyed (and the corresponding memory location is freed).

The for loop itself will be explained in “The for loop”, p.43.

Denis BAURAIN / ULiège 21 Modern Perl for Biologists I | The Basics

CHAPTER 3. FIRST STEPS IN PERL

my $len = @bases;

$comp_base only exists within the for loop
for my $base (@bases) {

my $comp_base = $comp_for{$base};
base / comp_base : $base . '/' . $comp_base
unshift @comp_bases, $comp_base;
@comp_bases

}
$len # will work because declared in the same lexical scope
$comp_base # will cause a compilation error

due to the loop construction, $base also only exists within it
$base # will cause a compilation error

If a variable exists in an outer lexical scope, declaring a new variable of the same name in an inner
scope does not overwrite the first one. It only masks it (or shadows it) until the end of the inner scope.

toy example
my $i = 'Hello world!';

for my $i (1, 2, 3, 4, 5, 6, 7, 8, 9, 10) {
$i

}

$i

gives:

$i: 1
$i: 2
$i: 3
...
$i: 9
$i: 10

$i: 'Hello world!'

For this reason (and others), a good practice is to declare a variable as late as possible, which in Perl often
translates to the innermost scope possible. This will also reduce the total lifetime of the variable since it
will get disposed of sooner, i.e., at the end of the narrower scope. However, in the interest of clarity, it is
better not to reuse the same identifier for different variables, except if they are obviously designed to hold
conceptually related values. We will come back to that when covering functions.

Finally, there is also a lexical scope for the current program file. This file scope begins at the first
statement. All variables declared outside any block thus exist at the file scope and are available from
anywhere in the file. They are sometimes called global variables.

Denis BAURAIN / ULiège 22 Modern Perl for Biologists I | The Basics

CHAPTER 3. FIRST STEPS IN PERL

3.8.5 strict and warnings pragmas
At the very beginning of our script are the two following lines.
use strict;
use warnings;

strict and warnings are two pragmas introduced by the use builtin function. While most Perl mod-
ules provide new functionality (such as Smart::Comments), pragmas influence the behavior of the
language itself. By convention, they have lowercase names to differentiate them from other modules.
The strict pragma enables compiler checking of symbolic references, bareword use, and variable
declaration, whereas the warnings pragma enables optional warnings for deprecated, unintended,
and awkward behaviors.
For us, this means that undeclared variables (e.g., misspelled variables) will cause a compilation error
and abort execution (strict), whereas manipulating uninitialized variables will cause awarning dur-
ing execution (warnings). Since, enabling these behaviors is incredibly helpful to write better code
(i.e., with less bugs), every single Perl script should begin with these two lines.

3.9 List builtin functions
Perl programs often deal with lists of values stored in arrays. Values can be added or removed from
arrays using a series of dedicated keywords corresponding to builtin functions.
let's define an array...
my @bases = ('A', 'C', 'G', 'T');

Table 3.3: The fresh array @bases

0 1 2 3
A C G T

3.9.1 push & pop

push and pop handle the array as a stack, a classical computer data structure governed by the last-in-
first-out (LIFO) motto, in which elements are added and removed from the end.
append a new element at the end of the array
push @bases, 'U';

The array is automatically resized to accomodate the new element (or elements because push can add
several elements at once). The indices of the new elements start counting at the number following the
index of the last element.

Table 3.4: @bases after push

0 1 2 3 4
A C G T U

Denis BAURAIN / ULiège 23 Modern Perl for Biologists I | The Basics

CHAPTER 3. FIRST STEPS IN PERL

now, remove and return the last element of the array
my $base = pop @bases;
$base

gives:

$base: 'U'

Contrarily to push, pop can only deal with one element at a time.

Table 3.5: @bases after pop

0 1 2 3
A C G T

3.9.2 unshift & shift

unshift and shift are similar to push and pop except that they add and remove values from the
beginning of the array (instead of the end).
insert a new element at the beginning of the array
unshift @bases, 'N';

Since the new element (or elements) is inserted at the beginning of the array, all pre-existing indices
are shifted upwards, i.e., towards higher values.

Table 3.6: @bases after unshift

0 1 2 3 4
N A C G T

now, remove and return the first element of the array
my $base = shift @bases;
$base

gives:

$base: 'N'

Of course, shift has the opposite effect and, like pop, can only deal with one element at a time.

Table 3.7: @bases after shift

0 1 2 3
A C G T

Denis BAURAIN / ULiège 24 Modern Perl for Biologists I | The Basics

CHAPTER 3. FIRST STEPS IN PERL

If the array is omitted, shift acts on the default array @ARGV, which always contains the command-
line arguments.
my $dna_string = shift;
$dna_string

$dna_string: 'CATGAACTTCTTTGGCGTCTTGAT'

Here is a toy example to help you to understand how to read arguments from the command line in
Perl with shift. You can save it as shift.pl and try it for yourself using various sets of arguments.
$ perl shift.pl ape bear cow dolphin

1 use strict;
2 use warnings;
3

4 use Smart::Comments;
5

6 ### @ARGV
7 my $one = shift;
8 ### $one
9 ### @ARGV
10 my $two = shift;
11 ### $two
12 ### @ARGV
13 my $three = shift;
14 ### $three
15 ### @ARGV
16 my $four = shift;
17 ### $four
18 ### @ARGV

3.9.3 split & join

split and join build a list of substrings from a string and vice versa.
These builtin functions require a separator (also known as adelimiter) to separate the substrings to split
or to join. While separators are often single characters (e.g., , or -), one can also use multi-character
separators (e.g., ::) and even empty separators, both when splitting and when joining. Consider the
examples below to learn of split and join work.
split a string on each character (using an empty separator)
my $dna_string = 'CATGAACTTCTT';
my @bases = split //, $dna_string;
base: $bases[3]

gives:

base: 'G'

Denis BAURAIN / ULiège 25 Modern Perl for Biologists I | The Basics

CHAPTER 3. FIRST STEPS IN PERL

Table 3.8: The array @bases resulting from the split

0 1 2 3 4 5 6 7 8 9 10 11
C A T G A A C T T C T T

split a string on a given character (here, the space)
my $sentence = 'Crick proposed the central dogma.';
my @words = split ' ', $sentence;
the ' ' pattern is actually a special case; for details see
<http://perldoc.perl.org/functions/split.html>
word: $words[4]

gives:

word: 'dogma.'

Table 3.9: The array @words resulting from the split

0 1 2 3 4
Crick proposed the central dogma.

join the elements of an array using a given separator
my @bases = ('A', 'C', 'G', 'T');
my $gapped_seq = join '-', @bases;
$gapped_seq

gives:

$gapped_seq: 'A-C-G-T'

one can use an empty separator
my $plain_seq = join q{}, @bases;
q{} is equal to '' but easier to read
$plain_seq

gives:

$plain_seq: 'ACGT'

split and join can use multi-character separators
my $cds = 'CAT::GAA::CTT::CTT';
my @codons = split /::/, $cds;
my $box_cds = '<' . join('> <', @codons) . '>';
$box_cds

$box_cds: '<CAT> <GAA> <CTT> <CTT>'

Denis BAURAIN / ULiège 26 Modern Perl for Biologists I | The Basics

CHAPTER 3. FIRST STEPS IN PERL

Table 3.10: The array @codons resulting from the split

0 1 2 3
CAT GAA CTT CTT

BOX 2: Perl as an interactive shell
Contrary to Python, which is often used in an interactive way, the Perl language is primarily
designed for writing scripts and one-liners (see “Perl one-liners”, p.145 to learn more). Yet, if
you want to experiment with Perl in an interactive mode, install one of the so-called REPL (for
Read, Evaluate, Print, Loop) modules. The two most complete ones are Devel::REPL and Reply.
$ cpanm Reply
ensure that Perl shell supports command history etc
$ cpanm Term::ReadLine::Gnu

The transcript below was produced with Reply. Note how the Perl shell automatically prints
the result of each expression and stores it in the global array @res. To quit the Perl shell and get
back to the real shell, press the keys Ctrl and D (abbreviated as ^D).
$ reply

0> my @nums = 1..4
$res[0] = [

1,
2,
3,
4

]

1> use List::AllUtils qw(sum)
2> sum(@nums)
$res[1] = 10

3> say 'Hello world!'
Hello world!
$res[2] = 1

4> ^D

Denis BAURAIN / ULiège 27 Modern Perl for Biologists I | The Basics

CHAPTER 3. FIRST STEPS IN PERL

Denis BAURAIN / ULiège 28 Modern Perl for Biologists I | The Basics

Chapter 4

Digging deeper into Perl

4.1 Another killer app
Reverse-complement is only one of the usual manipulations that molecular biologists impose to their
DNA sequences. Another important one is conceptual translation, i.e., computer-assisted generation of
a protein sequence from a DNA sequence.
Again, there exist web applications for that, such as:
http://www.bioinformatics.org/sms/translate.html

However, since we are bioinformatician wannabes, we leave these unsatisfactory solutions to little league
players! Instead, let’s try to make our own translate program…

1. Download the NCBI file describing all the genetic codes (using the shell).
$ wget ftp://ftp.ncbi.nih.gov/entrez/misc/data/gc.prt # Linux
$ curl -O ftp://ftp.ncbi.nih.gov/entrez/misc/data/gc.prt # macOS

2. Open it in a text editor.
3. Locate the definition of the standard genetic code.

{
name "Standard" ,
name "SGC0" ,
id 1 ,
ncbieaa "FFLLSSSSYY**CC*WLLLLPPPPHHQQRRRRIIIMTTTTNNKKSSRRVVVVAAAADDEEGGGG",
sncbieaa "---M---------------M---------------M----------------------------"
-- Base1 TTTTTTTTTTTTTTTTCCCCCCCCCCCCCCCCAAAAAAAAAAAAAAAAGGGGGGGGGGGGGGGG
-- Base2 TTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGG
-- Base3 TCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAG

},

4. Copy-paste it into a new blank text file.
5. Edit the pasted snippet as follows.

my $aa = 'FFLLSSSSYY**CC*WLLLLPPPPHHQQRRRRIIIMTTTTNNKKSSRRVVVVAAAADDEEGGGG';
my $b1 = 'TTTTTTTTTTTTTTTTCCCCCCCCCCCCCCCCAAAAAAAAAAAAAAAAGGGGGGGGGGGGGGGG';

Denis BAURAIN / ULiège 29 Modern Perl for Biologists I | The Basics

http://www.bioinformatics.org/sms/translate.html

CHAPTER 4. DIGGING DEEPER INTO PERL

my $b2 = 'TTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGG';
my $b3 = 'TCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAG';

6. Save it as translate.pl (in the mod_perl subdirectory).

4.2 The code for our own translate

Complete this code snippet with the following lines.
1 #!/usr/bin/env perl
2

3 # avoid boilerplate
4 use Modern::Perl '2011';
5 use Smart::Comments;
6

7 # standard genetic code definition from NCBI gc.prt file
8 my $aa = 'FFLLSSSSYY**CC*WLLLLPPPPHHQQRRRRIIIMTTTTNNKKSSRRVVVVAAAADDEEGGGG';
9 my $b1 = 'TTTTTTTTTTTTTTTTCCCCCCCCCCCCCCCCAAAAAAAAAAAAAAAAGGGGGGGGGGGGGGGG';
10 my $b2 = 'TTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGG';
11 my $b3 = 'TCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAG';
12

13 # build hash for standard code
14 my %aa_for;
15 my $codon_n = length $aa;
16 for my $i (0..$codon_n-1) {
17 my $codon = substr($b1, $i, 1) . substr($b2, $i, 1) . substr($b3, $i, 1);
18 $aa_for{$codon} = substr($aa, $i, 1);
19 }
20 ### %aa_for
21

22 # read a DNA string and compute its length
23 my $dna_string = shift;
24 my $len = length $dna_string;
25

26 # split it into uppercased codons
27 my @codons;
28 for (my $i = 0; $i < $len; $i += 3) {
29 my $codon = substr($dna_string, $i, 3);
30 push @codons, uc($codon);
31 }
32 ### @codons
33

34 # translate codons into amino acids
35 my @aminoacids;
36 for my $codon (@codons) {
37 my $aa = $aa_for{$codon} // 'X';
38 push @aminoacids, $aa;
39 }

Denis BAURAIN / ULiège 30 Modern Perl for Biologists I | The Basics

CHAPTER 4. DIGGING DEEPER INTO PERL

40 ### @aminoacids
41

42 # output protein sequence
43 my $protein = join q{}, @aminoacids;
44 say $protein;

Running this program requires installing a new CPAN module. Do it using the shell in the terminal.
$ cpanm Modern::Perl

Then, make your program executable and try it with the following commands.
$ chmod a+x translate.pl
$./translate.pl CATGAACTTCTTTGGCGTCTTGAT 2> translate.log

(More drum roll…)
HELLWRLD

Wow, this looks familiar, doesn’t it?

Denis BAURAIN / ULiège 31 Modern Perl for Biologists I | The Basics

CHAPTER 4. DIGGING DEEPER INTO PERL

Denis BAURAIN / ULiège 32 Modern Perl for Biologists I | The Basics

Homework

1. Try to understand the Perl novelties appearing in this program.
2. Modify it to accept a second argument that will give the frame to translate (1, 2 or 3).

$./hw1_translate_rf.pl CATGAACTTCTTTGGCGTCTTGAT 1
$./hw1_translate_rf.pl CATGAACTTCTTTGGCGTCTTGAT 2
$./hw1_translate_rf.pl CATGAACTTCTTTGGCGTCTTGAT 3

…which should give the output below.
HELLWRLD
MNFFGVLX
*TSLAS*X

Denis BAURAIN / ULiège 33 Modern Perl for Biologists I | The Basics

CHAPTER 4. DIGGING DEEPER INTO PERL

Denis BAURAIN / ULiège 34 Modern Perl for Biologists I | The Basics

Part II

Lesson 2

Denis BAURAIN / ULiège 35 Modern Perl for Biologists I | The Basics

Chapter 5

Looking at the novelties in
translate.pl

5.1 Shebang line
#!/usr/bin/env perl

The first line of our script begins by the shebang character sequence (#!). It is recognized by the
shell as an interpreter directive, which launches the specified interpreter and passes it the path of our
script. This allows us to run the script without invoking the perl interpreter on the command line.
As explained in “Another killer app”, p.29, the script must be first made executable with chmod.
$ chmod a+x translate.pl

Older (non-Modern) Perl scripts often begin with an alternative line.
#!/usr/bin/perl

You should not use this form because it forces the invokation of the system’s Perl, thus bypassing
Perlbrew and your own Perl install(s). In contrast, system utilities programmed in Perl always run on
the system’s Perl due to this very line.

5.2 Modern::Perl

use Modern::Perl '2011';

This line loads the Modern::Perlmodule, which is a shortcut for enabling a series of modern features
of Perl. This helps reducing boilerplate code (lines of standard code you would have to put in every
program). In our case, it replaces the two following lines.
use strict;
use warnings;

Among the features enabled by Modern::Perl, another useful one is say (see “The say builtin func-
tion”, p.49). Otherwise, we should have added yet another line.
use feature 'say';

Denis BAURAIN / ULiège 37 Modern Perl for Biologists I | The Basics

CHAPTER 5. LOOKING AT THE NOVELTIES IN TRANSLATE.PL

The '2011'means that we want the version of Perl that was available that year, i.e., perl 5.12. Each
year increments the version number by twounits. Oddnumbers correspond todevelopment versions,
whereas even numbers are indicative of stable versions.

• 2010—perl 5.10
• 2011—perl 5.12
• 2012—perl 5.14
• 2013—perl 5.16
• 2014—perl 5.18
• 2015—perl 5.20
• 2016—perl 5.22
• 2017—perl 5.24
• 2018—perl 5.26

This module is not part of the standard Perl distribution. It has to be installed, thus. For more infor-
mation, see the module’s documentation.
$ cpanm Modern::Perl
$ perldoc Modern::Perl

5.3 Perl values: Strings
Perl was invented to process textual information. It is very efficient at this task. That is why Perl is
often expanded as Practical Extraction and Reporting Language (even if this is only a backronym). Later
on, we will cover the almighty “Regular expressions”, p.125, which were first really developed in Perl.
For now, let’s just have a look at some more basic ways of handling strings.

5.3.1 Defining and concatenating strings
To represent a literal string in a program, surround it with a pair of quoting characters. The most
common string delimiters are single quotes (' and ') and double quotes (" and "). Obviously, strings
are printed with the (aptly named) print builtin function.
my $aa = 'FFLLSSSSYY**CC*WLLLLPPPPHHQQRRRRIIIMTTTTNNKKSSRRVVVVAAAADDEEGGGG';
print 'fwd: ' . $dna_string . "\n";

When using single quotes, all characters are treated literally, except the single quote itself, which must
be escaped by preceding it with a backslash character (\).
my $sentence = 'Watson didn\'t propose the central dogma. Crick did.';

In contrast, double-quoted strings are pre-processed by Perl in at least two ways:
• Special characters are translated into their invisible counterparts. The most common special
characters are the newline character (\n) and the tab character (for tabulation) (\t), which re-
spectively separate lines and columns of data in UNIX-like text files.

• Embedded scalar and array variables are interpolated, i.e., their content is substituted for their
name. Variable interpolation for an array is like performing a join on its elements using the
special variable $" as the list separator. By default, the value of $" is the single space (' ').
my @bases = ('A', 'C', 'G', 'T');
say "@bases";

Denis BAURAIN / ULiège 38 Modern Perl for Biologists I | The Basics

CHAPTER 5. LOOKING AT THE NOVELTIES IN TRANSLATE.PL

gives

A C G T

In rev_comp.pl, we used something like the following.

my $dna_string = 'CATGAACTTCTTTGGCGTCTTGAT';
print 'fwd: ' . $dna_string . "\n";

This gives the output below (including the newline).

fwd: CATGAACTTCTTTGGCGTCTTGAT

Wecombinedmultiple strings (here 3) into a larger stringwith twodots standing for the concatenation
operator (.). If instead we had wanted to print 5'-CATGAACTTCTTTGGCGTCTTGAT-3', we could have
used either one of the two following lines.

print '1. 5\'-' . $dna_string . '-3\'' . "\n";
print "2. 5'-$dna_string-3'\n";

However, using double quotes in the second line dispenses us from (1) escaping single quotes appear-
ing within the string and (2) using dots for concatenation.

1. 5'-CATGAACTTCTTTGGCGTCTTGAT-3'
2. 5'-CATGAACTTCTTTGGCGTCTTGAT-3'

BOX 3: Avoiding unwanted interpolation
InModern Perl, we often prefer explicitly concatenating single-quoted strings with the dot oper-
ator rather than putting all of them within a single double-quoted string. This helps avoiding
undesired variable interpolation.
my $device = 'Illumina HiSeq 2000';
my $cost = '500,000';

print "1. The $device is worth at least $cost $!\n";
print '2. The ' . $device . ' is worth at least ' . $cost . '$!' . "\n";

The issue here is that $! is a special variable (ERRNO) containing a description of the last error
related to the C library (e.g., failed file opening). Since it is empty at this moment, it gets interpo-
lated to nothing by the double quotes, hence the lack of literal $! at the end of our string in the
first case.
1. The Illumina HiSeq 2000 is worth at least 500,000
2. The Illumina HiSeq 2000 is worth at least 500,000$!

Alternatively, we could have escaped $! in the double-quoted string.
print "3. The $device is worth at least $cost\$!\n";

This would have resulted in the same output as in the second case.
3. The Illumina HiSeq 2000 is worth at least 500,000$!

Denis BAURAIN / ULiège 39 Modern Perl for Biologists I | The Basics

CHAPTER 5. LOOKING AT THE NOVELTIES IN TRANSLATE.PL

5.3.2 Alternate quoting operators
If we have a string with too many quoting characters to escape, we can switch to alternate quoting
operators (q{} and qq{}), which respectively emulate single quotes and double quotes.

print '1. Watson didn\'t propose the central dogma. Crick did.';
print q{2. Watson didn't propose the central dogma. Crick did.};

Both give the same output (without a newline).

1. Watson didn't propose the central dogma. Crick did.
2. Watson didn't propose the central dogma. Crick did.

Actually, you can use any balanced pair of characters (or even a single character) in place of the curly
brace characters, e.g., q|| or q<>.

print qq|The q{} and qq{} operators can be used in place of '' and "".\n|;

This greatly helps defining complicated strings (including a newline here).

The q{} and qq{} operators can be used in place of '' and "".

BOX 4: Unicode strings
If you read any good recent text about Perl (e.g., the reference book used here), you will find an
in-depth discussion ofUnicode strings. Unicode and the associatedutf8 encoding are important
topics when processing international text (containing non-English characters, such as accented
or even non-roman letters).
However, it is quite complex and clearly dispensable in a Perl course that is oriented to bioin-
formatics. Just remember to consult the adequate documentation if you ever want to process
French text. Otherwise, you will rapidly run into trouble!

5.4 String builtin functions
Our translate.pl begins by the following unwieldy piece of code. Let’s analyze it!

standard genetic code definition from NCBI gc.prt file
my $aa = 'FFLLSSSSYY**CC*WLLLLPPPPHHQQRRRRIIIMTTTTNNKKSSRRVVVVAAAADDEEGGGG';
my $b1 = 'TTTTTTTTTTTTTTTTCCCCCCCCCCCCCCCCAAAAAAAAAAAAAAAAGGGGGGGGGGGGGGGG';
my $b2 = 'TTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGG';
my $b3 = 'TCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAG';

build hash for standard code
my %aa_for;
my $codon_n = length $aa;
for my $i (0..$codon_n-1) {

my $codon = substr($b1, $i, 1) . substr($b2, $i, 1) . substr($b3, $i, 1);
$aa_for{$codon} = substr($aa, $i, 1);

}

Denis BAURAIN / ULiège 40 Modern Perl for Biologists I | The Basics

CHAPTER 5. LOOKING AT THE NOVELTIES IN TRANSLATE.PL

5.4.1 length

The first four lines simply declare and immediately define four string variables. Then, we declare en
empty hash, %aa_for. Its name suggests that it will hold values corresponding to amino acids. Since it
is a hash, each value will be associated to some specific key, presumably a codon. The remaining of
the code serves the purpose of building this hash.

my $codon_n = length $aa;

First, we infer the number of codons from the length of the $aa string using the string builtin function
length. Note that length also counts special characters, such as newline characters. However, there
are no special characters here.

Youmight be surprised that we don’t directly assign 64 to $codon_n. The reasonwe do this is tomake our
code themost generalpossible. (Granted, in this case, wewouldprobably need to visit another planet to deal
with anything other than 64 codons!) An additional advantage of this approach is that if our programming
logic is buggy or if our input get corrupted, we notice it right away because $codon_n will not hold 64.

Moreover, you should avoid using any magic number when programming, because such naked values
hinder the autodocumentation of your code. Hence, in the code snippet below, we use the expression
$codon_n-1 rather than a mere 63. This makes our code much clearer.

5.4.2 substr

for my $i (0..$codon_n-1) {
loop body

}

Then, we setup a loop, in which the iterator variable $i will go from the value 0 to the number of
codons minus one, i.e., 63. This loop will help processing each codon in turn. We will come back to
the for loop and to the .. construct in the “foreach-style for loop”, p.43.

my $codon = substr($b1, $i, 1) . substr($b2, $i, 1) . substr($b3, $i, 1);

Within the loop, we build each codon by concatenating three individual bases (hence the 1), each
taken from the specific position $i in the strings $b1, $b2 and $b3. To this end, we use the string
builtin function substr, which extracts a substring out of larger string, as its name suggests. This is a
powerful function, but we use it here in one of its most basic forms.

my $string = 'ABCDEFGHIJ';
$string

my $start_position = 4;
my $number_of_chars = 3;
my $substr = substr($string, $start_position, $number_of_chars);
$substr

gives (back to using Smart::Comments):

Denis BAURAIN / ULiège 41 Modern Perl for Biologists I | The Basics

CHAPTER 5. LOOKING AT THE NOVELTIES IN TRANSLATE.PL

$string: 'ABCDEFGHIJ'

$substr: 'EFG'

Beware, as for arrays, character indexing begins at 0, not 1, hence 'EFG' and not 'DEF'when starting
at position 4. For more information and examples, see:
http://perldoc.perl.org/functions/substr.html

BOX 5: The fourth argument of substr and splice

If you look up for substr documentation, youwill come across its optional fourth argument, the
replacement string. Even if rarely used, this mode is intriguing for the biologist because it literally
splices a string to surgically replace a substring by another substring.
1 2 3 4 5
012345678901234567890123456789012345678901234567890
my $sentence = 'Introns are meant to be removed by the spliceosome.';
my $substr = substr $sentence, 24, 7, 'spliced out';
$substr
say $sentence;

gives:

$substr: 'removed'
Introns are meant to be spliced out by the spliceosome.

Similarly, most list builtin functions (push, pop, shift and unshift) are special cases of a more
general function called splice, which changes the elements of an array. As you can see, substr
and splice behave consistently and return what was spliced out from the string or the array.
my @words = split q{ }, $sentence;
my @array = splice @words, 5, 2, ('discarded');
@array
say "@words";

gives:

@array: [
'spliced',
'out'
]
Introns are meant to be discarded by the spliceosome.

5.4.3 uc & lc

When splitting the user’s string into codons in translate.pl, we use the following statement.

push @codons, uc($codon);

Denis BAURAIN / ULiège 42 Modern Perl for Biologists I | The Basics

http://perldoc.perl.org/functions/substr.html

CHAPTER 5. LOOKING AT THE NOVELTIES IN TRANSLATE.PL

The builtin function uc (for uppercase) transforms each codon to capital letters, which ensures that both
lowercase and uppercase versions of the codons are recognized during conceptual translation. There
is also a lc (for lowercase) function that performs the opposite transformation.

5.5 The for loop
The versatility of the for loop is what makes it one of the workhorses of Perl. It comes in two main
flavors: the foreach-style and the C-style. Those are illustrated below.

end of
list?

proceed with
normal flow

alias element
& execute
loop body

begin

end

foreach

Y

true
expression

?

execute
loop body

initialize
iterator

begin

C-style for

N

update
iterator

proceed with
normal flow

end

Y

N

Figure 5.1: The two styles of the for loop

In principle, the equivalent keyword foreach can be used anywhere the for keyword is acceptable. For
the sake of clarity, however, foreach should be reserved for the first style, i.e., going through a list, as we
will see right now.

5.5.1 foreach-style for loop
In rev_comp.pl, we used a foreach-style for loop to iterate over the elements of an array.
for my $base (@bases) { # equal to: foreach my $base (@bases) {

my $comp_base = $comp_for{$base};
unshift @comp_bases, $comp_base;

}

Denis BAURAIN / ULiège 43 Modern Perl for Biologists I | The Basics

CHAPTER 5. LOOKING AT THE NOVELTIES IN TRANSLATE.PL

BOX 6: Iterator variables as aliases
The iterator variable is actually some kind of alias for the current element of the array @bases.
This means that if you modify $base within the loop, your changes will be reflected in @bases.
This is incredibly powerful but this can be extremely surprising too!
my @bases = ('A', 'C', 'G', 'T');
@bases

for my $base (@bases) {
$base
$base = '?';

}
@bases

gives:

@bases: [
'A',
'C',
'G',
'T'
]

$base: 'A'
$base: 'C'
$base: 'G'
$base: 'T'

@bases: [
'?',
'?',
'?',
'?'
]

In translate.pl, the first for loop is similar, except that we don’t iterate over the elements of an
array, but over the values of a list. This list is a collection of numbers generated on the fly with the
useful range operator (..).

for my $i (0..$codon_n-1) {
loop body

}

0..63

gives:

Denis BAURAIN / ULiège 44 Modern Perl for Biologists I | The Basics

CHAPTER 5. LOOKING AT THE NOVELTIES IN TRANSLATE.PL

0..63: 0,
1,
...
62,
63

Table 5.1: The list resulting from the expression 0..63

0 1 2 3 4 5 6 7 … 58 59 60 61 62 63

If you have ever programmed in another language than Perl, you might wonder whether building a list
of 1,000,000,000 elements just to count from one to one billion is the way to go. Even if it looks counter-
intuitive, the perl interpreter is so optimized that a foreach-style for loop will actually be faster for this
specific task than the (apparently less wasteful) C-style for loop described just below. Therefore, never
sacrifice code clarity for execution speed, except when you really need it and are sure that the awkward
version is indeed faster (thanks to code profiling).

5.5.2 C-style for loop
The second for loop is slightly more complicated to understand. It is a C-style for loop, the purpose
of which is to split our input DNA sequence into codons.
my @codons;
for (my $i = 0; $i < $len; $i += 3) {

my $codon = substr($dna_string, $i, 3);
push @codons, uc($codon);

}

Splitting a string into chunks of size greater than 1 cannot be easily achieved with split, contrary to
what we did for reverse-complementing DNA. Instead, we must use substr, but the difficulty is to
move our sliding window by steps of 3. That is where the C-style for loop becomes useful.
The canonical looping construct has three subexpressions:

• The first subexpression (initialization) executes only once, before the loop body (enclosed in a
block delimited by { and }) executes. This is often where the iterator variable is both declared
and defined, which will limit its lexical scope to the loop body.

• Perl evaluates the second subexpression (conditional comparison) before each iteration of the
loop body. When this yields a Boolean true value (see “Boolean expressions”, p.47), iteration
proceeds, whereas iteration stops as soon as the conditional comparison returns a false value.

• The final subexpression executes after each iteration of the loop body. This is generally where
to put the instructions for modifying the iterator variable.

To better understand how it works, isolate a minimal (yet functional) chunk of code containing the
C-style for loop and riddle it with smart comments.

1 #!/usr/bin/env perl
2

3 use Modern::Perl '2011';

Denis BAURAIN / ULiège 45 Modern Perl for Biologists I | The Basics

CHAPTER 5. LOOKING AT THE NOVELTIES IN TRANSLATE.PL

4 use Smart::Comments;
5

6 my $dna_string = 'CATGAACTTCTTTGGCGTCTTGAT';
7 my $len = length $dna_string;
8

9 my @codons;
10 ### @codons
11 for (my $i = 0; $i < $len; $i += 3) {
12 ### $len
13 ### $i
14 ### $i < $len: $i < $len
15 my $codon = substr($dna_string, $i, 3);
16 ### $codon
17 push @codons, uc($codon);
18 ### @codons
19 }

Save this piece of code as c_for_test.pl, make it executable and try it with the following commands.
Look at the log file. Can you explain the C-style for loop behavior now?
$ chmod a+x c_for_test.pl
$./c_for_test.pl 2> c_for_test.log
$ less c_for_test.log

BOX 7: Iterators and scope
Unfortunately, we don’t see the conditional comparison evaluating to false. Can you see why?
How could we modify the code for the purpose of illustrating that?
...

$len: 24
$i: 21
$i < $len: 1

$codon: 'GAT'

@codons: [
'CAT',
'GAA',
'CTT',
'CTT',
'TGG',
'CGT',
'CTT',
'GAT'
]

Denis BAURAIN / ULiège 46 Modern Perl for Biologists I | The Basics

CHAPTER 5. LOOKING AT THE NOVELTIES IN TRANSLATE.PL

Yes, we simply have to print the conditional comparison once again after the loop. However,
this requires the iterator variable $i to have survived past the loop, which is not the case since
its lexical scope is limited to the loop body. This can be changed by declaring (and optionally
defining) it outside the loop.
my $i = 0;
for (; $i < $len; $i += 3) {

$len
$i
$i < $len: $i < $len
...

}
$i
$i < $len: $i < $len

Here, we leave out the first subexpression of theC-style for loop becausewe initialize the iterator
variable $i to 0 when we declare it. Actually, all three subexpressions are optional, yet omitting
more than one is either high-level or badly-written Perl, depending on the circumstances!
infinite C-style for loop
for (; ;) {

please let me outta here!
}

5.6 Boolean expressions
We have just seen that the C-style for loop uses a conditional comparison to control its iterating be-
havior. Conditional comparisons and conditional statements enable a specific value context known
as the boolean context.

5.6.1 Perl’s vision of truth
In boolean context, any Perl expression evaluates to either true or false. If you know some other
programming language, the way Perl handles truth can be disorienting. Indeed, it has no single true
value, nor a single false value. Instead, scalars (e.g., numbers and strings), arrays and hashes evaluate
to true or false depending on their content.

The main rules are as follows:

• Evaluate to false…
– the value undef and any undefined (uninitialized) variable,
– any number that means zero: 0, 0.0, 0e0,
– the empty string ('', better written as q{}) and the string '0',
– the empty list (()), the empty array and the empty hash.

• Evaluate to true…
– any number that does not mean zero,
– all non-empty and non-zero strings, including the surprising '0.0', '0e0',
– an array that contains at least one element, even if undefined,
– a hash that contains at least one key/value pair, even if undefined.

Denis BAURAIN / ULiège 47 Modern Perl for Biologists I | The Basics

CHAPTER 5. LOOKING AT THE NOVELTIES IN TRANSLATE.PL

5.6.2 The undef value
Perl undef value represents an unassigned, undefined and unknown value. Declared but undefined
scalar variables contain undef. In Modern Perl, there is no such thing as an undefined array or an
undefined hash, only empty arrays and hashes (with zero element or key/value pair).

my $dna_string;
$dna_string

beware, empty and zero are not undefined!
my $empty = q{};
my $zero = 0;
$empty
$zero

gives:

$dna_string: undef

$empty: ''
$zero: 0

Whenever you try to print or manipulate a variable containing undef, the perl interpreter warns you.
This is due to the use warnings or use Modern::Perl directives at the beginning of your programs
(see “strict and warnings pragmas”, p.23).

use warnings;

my $dna_string;
print $dna_string;
my @bases = split //, $dna_string;

gives:

Use of uninitialized value $dna_string in print at undef.pl line 4.
Use of uninitialized value $dna_string in split at undef.pl line 5.

Pay attention to warnings because they often indicate a bug in your code!

5.6.3 Logical defined-or operator
In the last loop of translate.pl, in which the conceptual translation actually takes place, there is a
Modern Perl construct taking advantage of the logical defined-or operator (//).

my @aminoacids;
for my $codon (@codons) {

my $aa = $aa_for{$codon} // 'X';
push @aminoacids, $aa;

}

Denis BAURAIN / ULiège 48 Modern Perl for Biologists I | The Basics

CHAPTER 5. LOOKING AT THE NOVELTIES IN TRANSLATE.PL

This reads as follows: “Put into variable $aa the amino acid for the codon used as the hash key. If there is no
amino acid for that codon, put 'X' instead.” The purpose of this construct is thus to provide a default
value for non-existing (i.e., misspelled or ambiguous) codons.

To further elaborate on this, providing a non-existing key when accessing a hash always returns the
undef value. Carelessly using an undef value in subsequent code then leads to the uninitialized value
warning. To avoid this issue, one has to test for the undef value with the defined builtin function.

define non-existing hash key
my $codon = 'CTN';

use returned value carelessly
my $aa = $aa_for{$codon};
say qq{aa for codon "$codon" is "$aa".};

fix 1a: check for undef value
say qq{There is no defined AA for codon "$codon".}

unless defined $aa;

fix 1b: check for false value
say qq{There is no true AA for codon "$codon".}

unless $aa;

fix 2: explictly check for non-existing key
say qq{There exists no codon "$codon" in the genetic code.}

unless exists $aa_for{$codon};

gives:

Use of uninitialized value $aa in concatenation (.) or string at exists.pl line 28.
aa for codon "CTN" is "".
There is no defined AA for codon "CTN".
There is no true AA for codon "CTN".
There exists no codon "CTN" in the genetic code.

Alternatively, one can explicitly test for the existence of a given key in the hash using the exists builtin
function. This approach is more verbose but useful to avoid triggering autovivification, an advanced topic
covered in “Defining and using nested data structures”, in the second part of this course.

5.7 The say builtin function
The very last line of translate.pl uses the say builtin function to print the protein sequence. This
useful extension ofModern Perl acts exactly like a regular print, except that it automatically appends
a newline character (\n) to the end of the string, thus dispensing us from explicitly adding it.

my $protein = join q{}, @aminoacids;
say $protein;

Denis BAURAIN / ULiège 49 Modern Perl for Biologists I | The Basics

CHAPTER 5. LOOKING AT THE NOVELTIES IN TRANSLATE.PL

We will see in “Writing files”, p.98, that say helps lightening the syntax of code chunks that have to
display complex data structures to the user. Just remember to enable it with the required use directive.
use Modern::Perl '2011'; # allows us to use 'say'

my $device = 'Illumina HiSeq 2000';
my $cost = '500,000';

print '1. The ' . $device . ' is worth at least ' . $cost . '$!' . "\n";
say '2. The ' . $device . ' is worth at least ' . $cost . '$!';

Both lines output the same text (including a newline).
1. The Illumina HiSeq 2000 is worth at least 500,000$!
2. The Illumina HiSeq 2000 is worth at least 500,000$!

Denis BAURAIN / ULiège 50 Modern Perl for Biologists I | The Basics

Chapter 6

Batch vs. interactive programs

6.1 Acquiring user input
In contrast to GUI-based applications, software designed for console use often requires command-line
arguments to control its behavior. However, this is not mandatory. Instead, some programs directly
ask the user for input in an interactive fashion, such as text-based games.
In this section, we will present two programs (translate_rf.pl and codon_quizz.pl), each one
following a different approach with respect to user input.

6.2 How to improve our killer app?
1. Make a copy of translate.pl and save it as translate_rf.pl.
2. Edit the new document to match the revised version below. Can you spot the differences?
3. Look at your new code. What do you think it will do?
4. Execute translate_rf.pl and try to trigger all its behaviors.

1 #!/usr/bin/env perl
2

3 # avoid boilerplate
4 use Modern::Perl '2011';
5

6 # use Smart::Comments; # disabled by default; when debugging use
7 # perl -MSmart::Comments <script.pl>
8

9 unless (@ARGV == 2) {
10 die <<"EOT";
11 Usage: $0 <dna-string> <reading-frame>
12 This tool translates DNA sequences to proteins using the standard genetic code.
13 It requires a DNA string and a reading frame (1, 2, 3, -1, -2, -3).
14 Example: $0 CATGAACTTCTTTGGCGTCTTGAT 1
15 EOT
16 }
17

Denis BAURAIN / ULiège 51 Modern Perl for Biologists I | The Basics

CHAPTER 6. BATCH VS. INTERACTIVE PROGRAMS

18 # standard genetic code definition from NCBI gc.prt file
19 my $aa = 'FFLLSSSSYY**CC*WLLLLPPPPHHQQRRRRIIIMTTTTNNKKSSRRVVVVAAAADDEEGGGG';
20 my $b1 = 'TTTTTTTTTTTTTTTTCCCCCCCCCCCCCCCCAAAAAAAAAAAAAAAAGGGGGGGGGGGGGGGG';
21 my $b2 = 'TTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGG';
22 my $b3 = 'TCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAG';
23

24 # build hash for standard code
25 my %aa_for;
26 my $codon_n = length $aa;
27 for my $i (0..$codon_n-1) {
28 my $codon = substr($b1, $i, 1) . substr($b2, $i, 1) . substr($b3, $i, 1);
29 $aa_for{$codon} = substr($aa, $i, 1);
30 }
31 ### %aa_for
32

33 # read a DNA string and reading frame from command line
34 my $dna_string = shift;
35 my $reading_frame = shift;
36

37 die 'ABORT! Negative reading frames not yet implemented!'
38 if $reading_frame < 0;
39

40 die 'ABORT! Reading frame must be one of (1, 2, 3)!'
41 unless $reading_frame >= 1 && $reading_frame <= 3;
42

43 # compute length of DNA string and split it into uppercased codons
44 my @codons;
45 my $len = length $dna_string;
46 my $offset = $reading_frame - 1;
47 for (my $i = $offset; $i < $len; $i += 3) {
48 my $codon = substr($dna_string, $i, 3);
49 push @codons, uc($codon);
50 }
51 ### @codons
52

53 # translate codons into amino acids
54 my @aminoacids;
55 for my $codon (@codons) {
56 my $aa = $aa_for{$codon} // 'X';
57 push @aminoacids, $aa;
58 }
59 ### @aminoacids
60

61 # output protein sequence
62 my $protein = join q{}, @aminoacids;
63 say $protein;

Denis BAURAIN / ULiège 52 Modern Perl for Biologists I | The Basics

CHAPTER 6. BATCH VS. INTERACTIVE PROGRAMS

6.3 Let’s make our first game!
When you are done with our translation tool, open a blank document, type in the program below and
save it as codon_quizz.pl. Note that the beginning is very similar to our last work (think copy-paste).

If you want to try it, you’d better having a look at the cheat sheet at the end of this chapter!

1 #!/usr/bin/env perl
2

3 # avoid boilerplate
4 use Modern::Perl '2011';
5 use List::Util 'shuffle';
6

7 # use Smart::Comments; # disabled by default; when debugging use
8 # perl -MSmart::Comments <script.pl>
9

10 # standard genetic code definition from NCBI gc.prt file
11 my $aa = 'FFLLSSSSYY**CC*WLLLLPPPPHHQQRRRRIIIMTTTTNNKKSSRRVVVVAAAADDEEGGGG';
12 my $b1 = 'TTTTTTTTTTTTTTTTCCCCCCCCCCCCCCCCAAAAAAAAAAAAAAAAGGGGGGGGGGGGGGGG';
13 my $b2 = 'TTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGG';
14 my $b3 = 'TCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAG';
15

16 # build hash for standard code
17 my %aa_for;
18 my $codon_n = length $aa;
19 for my $i (0..$codon_n-1) {
20 my $codon = substr($b1, $i, 1) . substr($b2, $i, 1) . substr($b3, $i, 1);
21 $aa_for{$codon} = substr($aa, $i, 1);
22 }
23 ### %aa_for
24

25 print <<'EOT';
26 Try to guess the correct amino acid for each codon.
27 STOPs are symbolized by an asterisk (*).
28 Type EXIT for leaving the quizz.
29 Good luck!
30 EOT
31

32 # assemble pool of questions from hash keys
33 my @questions = shuffle keys %aa_for;
34 my $score = 0;
35 my $total = 0;
36

37 # loop through questions asking for correct answer
38

39 QUESTION:
40 while (my $codon = shift @questions) {
41

Denis BAURAIN / ULiège 53 Modern Perl for Biologists I | The Basics

CHAPTER 6. BATCH VS. INTERACTIVE PROGRAMS

42 # ask question and wait for answer
43 print $total+1 . '. ' . $codon . ': ';
44 my $answer = <>;
45 chomp $answer;
46 $answer = uc $answer; # make our quizz robust
47

48 # leave early if asked to do so
49 last QUESTION if $answer eq 'EXIT';
50

51 # check answer
52 my $aa = $aa_for{$codon};
53 if ($answer eq $aa) {
54 say 'Correct!';
55 $score++; # increment score
56 }
57 else {
58 say "Wrong! Answer was $aa!";
59 }
60

61 # track number of questions
62 $total++;
63 }
64

65 say "Your final score is $score on $total";

Denis BAURAIN / ULiège 54 Modern Perl for Biologists I | The Basics

CHAPTER 6. BATCH VS. INTERACTIVE PROGRAMS

Figure 6.1: The standard genetic code

Denis BAURAIN / ULiège 55 Modern Perl for Biologists I | The Basics

CHAPTER 6. BATCH VS. INTERACTIVE PROGRAMS

Denis BAURAIN / ULiège 56 Modern Perl for Biologists I | The Basics

Homework

1. Try to understand the Perl novelties appearing in our two new programs.
2. As you have probably noticed by now, our conceptual translation tool (translate_rf.pl) is not

yet complete. Recycle the reverse-complementing code in rev_comp.pl to implement the nega-
tive reading frames. Youmight be inspired by thebranchingdirectivesused in codon_quizz.pl.
Don’t worry, we will cover them in detail in “Branching directives”, p.61.
$./hw2_translate_rf_minus.pl CATGAACTTCTTTGGCGTCTTGAT 1
$./hw2_translate_rf_minus.pl CATGAACTTCTTTGGCGTCTTGAT -1
$./hw2_translate_rf_minus.pl CATGAACTTCTTTGGCGTCTTGAT -2

…which should give the output below.
HELLWRLD
IKTPKKFM
SRRQRSSX

Denis BAURAIN / ULiège 57 Modern Perl for Biologists I | The Basics

CHAPTER 6. BATCH VS. INTERACTIVE PROGRAMS

Denis BAURAIN / ULiège 58 Modern Perl for Biologists I | The Basics

Part III

Lesson 3

Denis BAURAIN / ULiège 59 Modern Perl for Biologists I | The Basics

Chapter 7

Becoming a control freak

7.1 Control flow in Perl
Perl’s basic control flow is straightforward. Program execution starts at the beginning (the first line of
the file executed) and continues to the end. Our last two programs used several branching directives
and looping directives beyond the for loop. Together, such Perl constructions allow us to alter the
flow of execution of our code.

This means that instead of executing our statements each one in turn, from the first one to the last one,
these directives can force the perl interpreter to skip (branching) or repeat (looping) one or more state-
ments based on the results of conditional comparisons. Let’s recapitulate the control flow directives
we encountered in translate_rf.pl and codon_quizz.pl.

7.2 Branching directives
The new version of our conceptual translation tool is definitely more user-friendly than our first at-
tempt. It can achieve that by adapting its behavior depending on the user’s actions. Hence, when the
user invokes translate_rf.plwithout specifying any command-line arguments, the program reacts
by printing a brief set of instructions (known as the usage message) to the standard error stream.

$./translate_rf.pl

Usage: ./translate_rf.pl <dna-string> <reading-frame>
This tool translates DNA sequences to proteins using the standard genetic code.
It requires a DNA string and a reading frame (1, 2, 3, -1, -2, -3).
Example: ./translate_rf.pl CATGAACTTCTTTGGCGTCTTGAT 1

Every program you will ever write should act like this. Trust me, even youwill eventually forget how
your own programs work after a few months of non-use!

• A minimal usage message should print the name of the program and the mandatory command-
line arguments it expects. The words between angle bracket characters (< and >) are called
placeholders and stand for the actual arguments. The angle brackets themselves must not be
typed on the command line.

Denis BAURAIN / ULiège 61 Modern Perl for Biologists I | The Basics

CHAPTER 7. BECOMING A CONTROL FREAK

• A better usage message will further include a sentence about the purpose of the program, pos-
sibly supplemented by examples of use that the user can copy-paste to her terminal.

Moreover, if the user specifies a reading frame that translate_rf.pl cannot handle, the program
reacts by printing an error message to the standard error stream and then stopping its execution.

$./translate_rf.pl CATGAACTTCTTTGGCGTCTTGAT -1

ABORT! Negative reading frames not yet implemented! at ./translate_rf.pl line 37.

$./translate_rf.pl CATGAACTTCTTTGGCGTCTTGAT 4

ABORT! Reading frame must be one of (1, 2, 3)! at ./translate_rf.pl line 40.

7.2.1 if & unless

The display of the usage message is controlled by the following block of code. It makes use of several
Perl idioms to reach an excellent functionality/verbosity ratio without sacrificing legibility.

unless (@ARGV == 2) {
die <<"EOT";

Usage: $0 <dna-string> <reading-frame>
This tool translates DNA sequences to proteins using the standard genetic code.
It requires a DNA string and a reading frame (1, 2, 3, -1, -2, -3).
Example: $0 CATGAACTTCTTTGGCGTCTTGAT 1
EOT
}

unless is the keyword for introducing a branching directive that exactly means what it is supposed
to mean: “Execute the following block of code unless the associated conditional expression evaluates to a true
value.” In such a block form, the conditional expression has to be enclosed between a pair of regular
parenthesis characters ((and)) and followed by the code block to be executed, hence delimited by
curly brace characters ({ and }).

The numeric equality (==) is a comparison operator that means is numerically equal to and imposes
scalar context to the evaluation. In scalar context, remember that an array evaluates to its number of
elements. Since @ARGV is the default array that contains the command-line arguments (and given the
content of the code block that follows), this line thus reads: “Print the usage message and stop execution
unless the number of command-line arguments is equal to two.”

Note that the exact same result could have been achieved with the code below. It is based on the
if branching directive, of which unless is the negated form, and on the numeric inequality (!=)
comparison operator. It reads: “Print the usage message and stop execution if the number of command-line
arguments is not equal to two.”

if (@ARGV != 2) {
print usage message and stop execution

}

if and unless can be used interchangeably, provided that the associated conditional expression is
properly negated. You can use the one you find the most appropriate for each particular situation.
This is an illustration of the famous Perl motto: “TIMTOWTDI—There is more than one way to do it.”

Denis BAURAIN / ULiège 62 Modern Perl for Biologists I | The Basics

CHAPTER 7. BECOMING A CONTROL FREAK

7.2.2 else & elsif

Overall, branching directives are needed in three cases (illustrated below):
1. when we need to fix something before proceedingwith the normal flow;
2. when we face an alternativewith two or more options that each entails a different set of actions;
3. when we encounter an error and have to abort the execution of the program.

something
wrong?

proceed with
normal flow

fix it!

begin

end

Y

N

fix and
proceed

option 1?

action set 1

proceed with
normal flow

begin

end

NY

action set 2face
alternative

serious
error?

proceed with
normal flow

display
error message

begin

end

Y

N

abort

Figure 7.1: The three uses of branching directives

In my experience, cases 1 (fix-and-proceed) and 3 (abort) are more common than case 2 (face-alternative).
For example, we have just discussed three error handling situations that correspond to case 3, whereas
the last homework assignment can be solved with a case 1 (partial listing only).
... beginning of the program

read a DNA string and reading frame from command line
my $dna_string = shift;
my $reading_frame = shift;

die 'ABORT! Reading frame must be one of (1, 2, 3, -1, -2, -3)!'
unless $reading_frame >= -3 && $reading_frame <= 3 && $reading_frame != 0;

takes reverse complement if negative frame
if ($reading_frame < 0) {

my %comp_for = (
A => 'T', T => 'A', G => 'C', C => 'G',
a => 't', t => 'a', g => 'c', c => 'g',

);

my @bases = split //, $dna_string;
my @comp_bases;
for my $base (@bases) {

my $comp_base = $comp_for{$base};

Denis BAURAIN / ULiège 63 Modern Perl for Biologists I | The Basics

CHAPTER 7. BECOMING A CONTROL FREAK

unshift @comp_bases, $comp_base;
}
$dna_string = join q{}, @comp_bases;

$reading_frame = -$reading_frame; # negate frame
}

compute length of DNA string and split it into uppercased codons
my @codons;
my $len = length $dna_string;
my $offset = $reading_frame - 1;
for (my $i = $offset; $i < $len; $i += 3) {

my $codon = substr($dna_string, $i, 3);
push @codons, uc($codon);

}

... remaining of the program

BOX 8: Calling external programs with the qx(...) operator
As an alternative to cutting-and-pasting the guts of rev_comp.pl into translate_rf.pl, one
could run the former directly from the latter. This is very easy to do using the executing quoting
operator (qx(...)), especially designed to execute system calls from a Perl program.
in translate_rf.pl
if ($reading_frame < 0) {

$dna_string = qx(perl rev_comp.pl $dna_string);
$reading_frame = -$reading_frame;

}

The output sent to STDOUT by rev_comp.pl is captured by qx(...) to overwrite the content of
the variable $dna_string. For this to work, however, one must also tweak the original script, so
as to only print the reverse-complemented DNA string.
in rev_comp.pl
print 'fwd: ' . $dna_string . "\n";
print 'rev: ' . $rev_comp_dna_string . "\n";
print $rev_comp_dna_string;

With case 2, additional keywords are necessary for introducing the sets of actions beyond the first
one. When the alternative has only two options, a single else directive is enough. For example, in
codon_quizz.pl, we need to do only two different things depending on the user’s answer to our
question, hence the straightforward if/else construct.

check answer
my $aa = $aa_for{$codon};
if ($answer eq $aa) {

say 'Correct!';

Denis BAURAIN / ULiège 64 Modern Perl for Biologists I | The Basics

CHAPTER 7. BECOMING A CONTROL FREAK

$score++; # increment score
}
else {

say "Wrong! Answer was $aa!";
}

Alternatives with three options or more are even less common, but can nevertheless be handled with
one or more elsif keywords before the final else.
if ($unit eq 'bp') {

do nothing
}
elsif ($unit eq 'kb') {

$size /= 1000; # divide $size by 1000
}
elsif ($unit eq 'Mb') {

$size /= 1e6; # ... by one million
}
elsif ($unit eq 'Gb') {

$size /= 1e9; # ... by one billion
}
else {

die 'Unknown unit for reporting sequence size!';
}

BOX 9: Hashes instead of cascades of elsif
However, most of these situations can be elegantly solved using a switch table strategy.
my %div_for = (

bp => 1,
kb => 1000,
Mb => 1e6, # one million
Gb => 1e9, # one billion

);
my $div = $div_for{$unit};
die 'Unknown unit for reporting sequence size!' unless $div;
$size /= $div; # divide $size by suitable divisor

If there is no key for the unit in the hash %div_for, the associated value is undef, which evaluates
to a false value in a boolean context and triggers the error message. Otherwise, the returned
value is used as the divisor. Consider how it is easy to expand our code to handle more units.
my %div_for = (

...
Gb => 1e9, # one billion
Tb => 1e12, # one trillion
Pb => 1e15, # one quadrillion

);

Denis BAURAIN / ULiège 65 Modern Perl for Biologists I | The Basics

CHAPTER 7. BECOMING A CONTROL FREAK

When the multiple sets of actions are very similar, yet another possibility is to write a parameterized
version of the code. We used this approach in translate_rf.pl to handle the three different frames.
Instead of always extracting codons from position 0, we extract them from an $offset variable that
itself directly depends on the user-defined $reading_frame.

my $reading_frame = shift;

...

my $offset = $reading_frame - 1;
for (my $i = $offset; $i < $len; $i += 3) {

my $codon = substr($dna_string, $i, 3);
push @codons, uc($codon);

}

7.2.3 die and the postfix form
As its name implies, the die builtin function stops the execution of the program. If it is passed a string
as an argument, it first prints the string to the standard error stream before stopping execution. It is
very useful for aborting a program whenever user input does not satisfy the expectations (case 3).

die 'ABORT! Negative reading frames not yet implemented!'
if $reading_frame < 0;

die 'ABORT! Reading frame must be one of (1, 2, 3)!'
unless $reading_frame >= 1 && $reading_frame <= 3;

Here, both if and unless are placed after the statement they control and the conditional expression is
not surrounded by parentheses. This postfix form reduces visual clutter and sounds more natural when
reading the code aloud. However, it should be reserved for situations where the conditional code is brief.

By the way, if you carefully study the last chunk of code, you will notice that the two tests are partially
overlapping. For example, a value of -1 for $reading_frame would trigger the two die statements. The
order in which they appear is thus important to provide an informative feedback to the user.

7.2.4 Interlude—defining multiline strings with the heredoc syntax
If the message to be printed includes multiple lines, you can use the heredoc syntax (<<'EOT'). More
generally, this approach is handy whenever you need to define a multiline string in your code.

die <<"EOT";
Usage: $0 <dna-string> <reading-frame>
This tool translates DNA sequences to proteins using the standard genetic code.
It requires a DNA string and a reading frame (1, 2, 3, -1, -2, -3).
Example: $0 CATGAACTTCTTTGGCGTCTTGAT 1
EOT

Denis BAURAIN / ULiège 66 Modern Perl for Biologists I | The Basics

CHAPTER 7. BECOMING A CONTROL FREAK

The heredoc syntax is introduced by double angle bracket characters (<<). The quotes determine
whether the heredoc has to be considered as a single-quoted (<<'EOT') or double-quoted (<<"EOT")
multiline string, the latter being the default when omitting the quotes (<<EOT). Beware that recent
versions of the perl interpreter (starting with v5.28.0) raise a compilation error when encountering a
bare <<EOT (without quotes).

EOT is an arbitrary identifier (chosen by you) that perl interprets as the ending delimiter of the string.
Here, we use EOT for end-of-text. Everything from the line following the <<'EOT' to the one before the
line starting with EOT is part of the defined string (including the last newline character). Be careful,
the ending delimiter must absolutely lie at the very beginning of the line to be taken into account.

Finally, the special variable $0 (also known as program name) contains the path (directories and file
name) to the current script, in our case ./translate_rf.pl. Our heredoc has double quotes around
EOT, so that the $0 variable is correctly interpolated.

single-quoted heredoc, no interpolation
print <<'EOT';
Usage: $0
EOT

double-quoted heredoc, $0 is interpolated
print <<"EOT";
Usage: $0
EOT

unquoted heredoc (defaults to double-quoted), $0 is interpolated
print <<EOT;
Usage: $0
EOT

gives:

Usage: $0
Usage: ./translate_rf.pl
Usage: ./translate_rf.pl

It is good practice to print the special variable $0 in usage messages to ensure that the computer uses the
exact name by which the user has launched the program.

7.3 Looping directives
Looping directives allow us to repeat the execution of any chunk of code. They come in different
flavors for maximum expressivity and legibility, but for most applications, using one or another form
is often a matter of personal taste. We have already discussed the for loop before, p.43, so we will not
come back to it now.

Denis BAURAIN / ULiège 67 Modern Perl for Biologists I | The Basics

CHAPTER 7. BECOMING A CONTROL FREAK

7.3.1 The while loop and its variants
The while loop is very simple. As long as the conditional expression evaluates to a true value, it re-
peats the block of code that follows. As in the for loop, the conditional expressionmust be surrounded
by parenthesis characters and the code block delimited by curly brace characters. In codon_quizz.pl,
we used a while loop to progressively consume the array @questions.

my @questions = shuffle keys %aa_for;
while (my $codon = shift @questions) {

loop body
}

This structure is a very common Perl idiom. The way it works is subtle:

• As long as the array @questions contains at least one element, shift puts a string into $codon.
Since $codon evaluates to a true value in a boolean context, the loop keeps iterating.

• Eventually, @questions gets exhausted. At the next iteration, shift then returns undef, which
evaluates to a false value and stops the loop. (Can you imagine a situation where this idiom
would fail? Here’s a hint: an array of natural numbers or of strings where some can be empty.)

BOX 10: Arrays and while/shift vs. foreach-style for loops
This use of the while loop is close to a foreach-style for… but with a twist. At the end of the
while loop, the array is empty due to the repeated calls to shift, whereas in the for loop, it is
left untouched, except if you alter the iterator variable (see “Iterator variables as aliases”, p.43).
my @questions = shuffle keys %aa_for;
array size: scalar @questions

for my $codon (@questions) {
loop body

}
array size: scalar @questions

while (my $codon = shift @questions) {
loop body

}
array size: scalar @questions

gives:

array size: 64

array size: 64

array size: 0

Note that here the scalar builtin function has the purpose of imposing scalar context to the
smart comment lines, which leads to the display of the array size instead of its content.

Denis BAURAIN / ULiège 68 Modern Perl for Biologists I | The Basics

CHAPTER 7. BECOMING A CONTROL FREAK

Similar to the for loop, the conditional expression is evaluated before each iteration. This means that
if the condition is false from the very beginning, the loop body never gets executed. In most cases, this
behavior is perfectly reasonable.

imagine we have built @questions from an empty file...

while (my $codon = shift @questions) {
this will never gets executed...
... and that's perfect!

}

However, there exist situations where we would like to execute the loop body at least once. For these,
the do {...} while loop is the way to go. Note that in this postfix form, the conditional expression
does not need to be bracketed by parenthesis characters anymore.

imagine a program for extracting hits from a BLAST report
it lets us choose an E-value threshold and then displays the hit ids

my $answer;
do {

select E-value threshold
say q{Here's your current selection...};
print the corresponding hit ids

say 'Are you satisfied with your selection? (Y/N)';
$answer = <>;
chomp $answer;
$answer = uc $answer;

} while $answer eq 'N';

true
expression

?

proceed with
normal flow

execute
loop body

begin

end

Y

N

true
expression

?

proceed with
normal flow

execute
loop body

begin

end

N

Y

while {…} do {…} while

true
expression

?

proceed with
normal flow

execute
loop body

begin

end

N

Y

true
expression

?

proceed with
normal flow

execute
loop body

begin

end

Y

N

until {…} do {…} until

Figure 7.2: The four variants of the while loop

Denis BAURAIN / ULiège 69 Modern Perl for Biologists I | The Basics

CHAPTER 7. BECOMING A CONTROL FREAK

BOX 11: A personal account on programming styles
At the beginning of computing (in the sixties), there was the goto statement that allowed BASIC
programmers to jump from places to places in their programs. This rapidly led to the so-called
spaghetti programming style, in which control flow is impossible to follow by anyone but the
programmer who writes the code (at least in the best cases; otherwise nobody can).
In 1968, EdsgerW. Dijkstra (1930–2002), a famous Dutch computer scientist teaching at the Eind-
hoven University of Technology, published a landmark paper entitledGo To Statement Considered
Harmful. Instead, Dijkstra and Niklaus Wirth (born in 1934), the Swiss computer scientist who
invented the PASCAL language in 1970 at the ETHZürich, advocated structured programming. In
the most extreme forms of this ascetic style of programming, control flow directives are limited
to if/else and while.
In the mid-eighties, I learnt to program in BASIC (using goto). During my studies in software
engineering in the early nineties, I was trained to design programs in PASCAL, COBOL and C
(among others) using only if/else and while for control flow. Even my for loops had to be
written using the while directive!
In parallel, I learnt x86 assembly programming, which was a barely readable translation of bi-
nary code. For example, assembly language had no while, no else and made heavy use of
JMP-like statements (the low-level equivalents of goto). You can imagine that I nearly became
schizophrenic at that time…
Here’s an excerpt of my good ol’ VGA-MAC (https://orbi.uliege.be/handle/2268/80586).
Observe the two jump statements (JNC and JMP, the second one implementing an abort pattern).
ParmsOk : ADD SI, 2 ;|

DEC CX ;|
MOV DI, OFFSET FileName ;+ Préparer le transfert
MOV NameLength, CX ;+ NameLength <- Longueur du nom
REP MOVSB ;+ Copier le nom de fichier
MOV BYTE PTR [DI], 0 ;+ Ajouter un 0 à la fin du nom
MOV AX, 3D00h ;|
MOV DX, OFFSET FileName ;|
INT 21h ;+ Ouvrir le fichier
JNC FileOk ;+ Fichier ouvert -> On continue
MOV Msg, OFFSET NoFileMsg ;+ Fixer Msg sur NoFileMsg
JMP EndVGAMAC ;+ Terminer prématurément

Then, Imet (Modern) Perl and it all fell into place. My ownprogramming style still evolves at the
margin, but its main characteristics do not. It could be described as an object-oriented structured
programming style that funnels the execution flow through the default path using just-in-time adaptation
and handles exceptions via multiple exit points. This might look pedantic, but it is not. Instead, it
is a powerful and scalable yet legible and maintainable programming style, and this the one I
teach you in this course.

Just like unless is the negated form of the if branching directive, until is the negated form of the
while looping directive. Consequently, an until loop keeps iterating as long as its conditional ex-
pression evaluates to false and stops when it becomes true. Using it or not is a matter of taste.

Denis BAURAIN / ULiège 70 Modern Perl for Biologists I | The Basics

https://orbi.uliege.be/handle/2268/80586

CHAPTER 7. BECOMING A CONTROL FREAK

do {
...
say 'Are you satisfied with your selection? (Y/N)';
...

} until $answer eq 'Y';

As you can see, the do {...} until form also exists. To sum up, there are thus four variants of the
basic while loop. For easy comparison, they are all illustrated above.

7.3.2 Loop control directives
We don’t have enough time to cover the object-oriented aspect of my programming style. However, I
have already begun to present you the structured part and the concept of a default path enforced by
just-in-time adaptation. Hence, when discussing the three uses for branching directives, p.61, the fix-
and-proceed strategy (case 1) was an application of this philosophy, whereas the abort pattern (case 3,
using the die builtin function) was an illustration of exception handling via multiple exit points.

Figure 7.3: How to write good code? [xkcd.com]

An example of the latter is found in the while loop of codon_quizz.pl.
QUESTION:
while (my $codon = shift @questions) {

ask question and wait for answer
...

leave early if asked to do so
last QUESTION if $answer eq 'EXIT';

Denis BAURAIN / ULiège 71 Modern Perl for Biologists I | The Basics

CHAPTER 7. BECOMING A CONTROL FREAK

check answer
my $aa = $aa_for{$codon};
if ($answer eq $aa) {

say 'Correct!';
$score++; # increment score

}
else {

say "Wrong! Answer was $aa!";
}

track number of questions
$total++;

}

As you can see, there are two exit points in this loop:
1. Iteration stops normally when the array @questions is exhausted.
2. Iteration stops early when $answer is equal to EXIT.

The second exit point is enabled by the last keyword. It has the effect of immediately leaving the loop
labelled by its argument (here, QUESTION). The loop labelmust be an identifier in uppercase, followed
by a single colon character (:).

Though the loop label is optional, I highly recommend using it to make your intention as clear as possible.
Moreover, leaving a blank line above the label improves legibility.

Without last, the code above should have been written using an $exit boolean flag. I don’t know
for you, but I find this ugly… Look especially at the conditional expression governing the while loop
and at the indentation depth of the code checking the answer.
my $exit;
while ((my $codon = shift @questions) && !$exit) {

ask question and wait for answer
...

if ($answer ne 'EXIT') {
check answer
my $aa = $aa_for{$codon};
if ($answer eq $aa) {

say 'Correct!';
$score++; # increment score

}
else {

say "Wrong! Answer was $aa!";
}
track number of questions
$total++;

}

Denis BAURAIN / ULiège 72 Modern Perl for Biologists I | The Basics

CHAPTER 7. BECOMING A CONTROL FREAK

else {
leave early if asked to do so
$exit = 1;

}
}

Basically, with this older programming style, whenever we have an additional exception to handle,
we need to add one boolean flag and to increase the depth of our interesting code by burying it under
a pile of nested if/else branching directives.

A very Perlesque way to avoid the use of a boolean flag here would be to empty the array @questions in
the outer else block using @questions = ();. Hence, no need to change the loop condition.

last is only one of the three loop control keywords (technically builtin functions). The two other ones
are next and redo. While next is extremely useful to immediately begin the next loop iteration, you
should not use redo because it goes back to the beginning of the current iteration without re-evaluating
the conditional expression (which is potentially as harmful as a regular goto).

Finally, while and for loops can be completed by a continue block that is executed after each iteration
(akin to the third subexpression of the C-style for loop).

true
expression

?

execute
loop body

begin

loop control

N

execute
continue block

proceed with
normal flow

end

Y
redo

last

(next)

Figure 7.4: Loop control directives

To see working examples of next and continue, consider codon_quizz_jokers.pl, an improved
program in which the player is offered three jokers that allow her to skip the codons she doesn’t know
without losing points! If you want to try it, you only need to add (or edit) a few lines of code in the
current version of the program. (For the laziest among you, the required changes are highlighted and
discussed just after the listing.)

Denis BAURAIN / ULiège 73 Modern Perl for Biologists I | The Basics

CHAPTER 7. BECOMING A CONTROL FREAK

1 #!/usr/bin/env perl
2

3 # avoid boilerplate
4 use Modern::Perl '2011';
5 use List::Util 'shuffle';
6

7 # use Smart::Comments; # disabled by default; when debugging use
8 # perl -MSmart::Comments <script.pl>
9

10 # standard genetic code definition from NCBI gc.prt file
11 my $aa = 'FFLLSSSSYY**CC*WLLLLPPPPHHQQRRRRIIIMTTTTNNKKSSRRVVVVAAAADDEEGGGG';
12 my $b1 = 'TTTTTTTTTTTTTTTTCCCCCCCCCCCCCCCCAAAAAAAAAAAAAAAAGGGGGGGGGGGGGGGG';
13 my $b2 = 'TTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGG';
14 my $b3 = 'TCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAG';
15

16 # build hash for standard code
17 my %aa_for;
18 my $codon_n = length $aa;
19 for my $i (0..$codon_n-1) {
20 my $codon = substr($b1, $i, 1) . substr($b2, $i, 1) . substr($b3, $i, 1);
21 $aa_for{$codon} = substr($aa, $i, 1);
22 }
23 ### %aa_for
24

25 print <<'EOT';
26 Try to guess the correct amino acid for each codon.
27 STOPs are symbolized by an asterisk (*).
28 You start with 3 jokers [***] that you can use to skip questions.
29 Type SKIP for skipping a question and EXIT for leaving the quizz.
30 Good luck!
31 EOT
32

33 # assemble pool of questions from hash keys
34 my @questions = shuffle keys %aa_for;
35 my $score = 0;
36 my $total = 0;
37 my $quest_n = 1;
38 my $joker_n = 3;
39

40 # loop through questions asking for correct answer
41

42 QUESTION:
43 while (my $codon = shift @questions) {
44

45 # ask question and wait for answer
46 print "$quest_n. $codon [" . ('*' x $joker_n) . '] : ';
47 my $answer = <>;

Denis BAURAIN / ULiège 74 Modern Perl for Biologists I | The Basics

CHAPTER 7. BECOMING A CONTROL FREAK

48 chomp $answer;
49 $answer = uc $answer; # make our quizz robust
50

51 # skip current question if asked to use a joker
52 if ($answer eq 'SKIP') {
53 if ($joker_n > 0) {
54 $joker_n--;
55 next QUESTION;
56 }
57 say q{You don't have any joker left!};
58 $answer = 'EXIT';
59 }
60

61 # leave early if asked to do so
62 last QUESTION if $answer eq 'EXIT';
63

64 # check answer
65 my $aa = $aa_for{$codon};
66 if ($answer eq $aa) {
67 say 'Correct!';
68 $score++; # increment score
69 }
70 else {
71 say "Wrong! Answer was $aa!";
72 }
73

74 # track number of (answered) questions
75 $total++;
76 }
77

78 # track (total) number of questions
79 continue {
80 $quest_n++;
81 }
82

83 say "Your final score is $score on $total";

First, we need to update the rules of the game.

print <<'EOT';
...
You start with 3 jokers [***] that you can use to skip questions.
Type SKIP for skipping a question and EXIT for leaving the quizz.
...

Second, we need two new counters in addition to $total: $quest_n will store the number of the
current question and $joker_n will store the number of jokers not yet used.

my $total = 0;

Denis BAURAIN / ULiège 75 Modern Perl for Biologists I | The Basics

CHAPTER 7. BECOMING A CONTROL FREAK

my $quest_n = 1;
my $joker_n = 3;

Third, we need a new block in the while loop to implement the jokers.
ask question and wait for answer
print "$quest_n. $codon [" . ('*' x $joker_n) . '] : ';
...

skip current question if asked to use a joker
if ($answer eq 'SKIP') {

if ($joker_n > 0) {
$joker_n--;
next QUESTION;

}
say q{You don't have any joker left!};
$answer = 'EXIT';

}

leave early if asked to do so
last QUESTION if $answer eq 'EXIT';

If the user types in SKIP, she can leave the current question unanswered, but at the expense of one
joker. If she tries to skip a question after having exhausted all her jokers, the game ends as if she had
typed in EXIT. Observe how we implement this complex behavior in a very clean and concise way
using a fix-and-proceed approach based on the update of the $answer variable.

If you wonder how we print the number of jokers remaining, examine the first statement above, which
takes advantage of the repetition operator (x). This handy trick is fully explained in “The repetition oper-
ator”, in the second part of this course.

Fourth, we need a continue block to keep track of the number of questions asked so far, whether
answered or skipped by the user. This allows us to decouple this value ($quest_n) from the potential
maximal score ($total).
track (total) number of questions
continue {

$quest_n++;
}

This works because the continue block is executed even when the iteration is interrupted by the next
keyword, but not by last or redo. For this reason, I advise you to avoid continue blocks, as they make
your code more difficult to understand.

Denis BAURAIN / ULiège 76 Modern Perl for Biologists I | The Basics

CHAPTER 7. BECOMING A CONTROL FREAK

BOX 12: redo (for those who insist on using it)
Above, we said that trying to skip a question without any joker left was equivalent to typing
in EXIT. An alternative possibility is to simply refuse the user request and go back to the current
question. Such a behavior is a typical use case for the redo keyword.
skip current question if asked to use a joker
if ($answer eq 'SKIP') {

if ($joker_n > 0) {
$joker_n--;
next QUESTION;

}
say q{You don't have any joker left!};
$answer = 'EXIT'; # old behavior
redo QUESTION; # new behavior

}

Interestingly, one can achieve the same behavior without using redo: simply wrap this chunk
in a do {...} until loop that enforces the user to answer. The code is a bit heavier because it
requires to declare $answer before the loop.
ask question and wait for answer
my $answer;
do {

print "$quest_n. $codon [" . ('*' x $joker_n) . '] : ';
$answer = <>;
chomp $answer;
$answer = uc $answer; # make our quizz robust

skip current question if asked to use a joker
if ($answer eq 'SKIP') {

if ($joker_n > 0) {
$joker_n--;
next QUESTION;

}
say q{You don't have any joker left!};

}
} until $answer ne 'SKIP';

Denis BAURAIN / ULiège 77 Modern Perl for Biologists I | The Basics

CHAPTER 7. BECOMING A CONTROL FREAK

Denis BAURAIN / ULiège 78 Modern Perl for Biologists I | The Basics

Chapter 8

Other novelties in codon_quizz.pl

8.1 keys & shuffle

my @questions = shuffle keys %aa_for;

Perl can be a very concise language. For example, a rough English translation of the line above would
be: “Build a list with the keys (i.e., codons) of the hash %aa_for, randomize their order and put the shuffled
codon list into a new array named @questions.”

As it names suggests, keys is a builtin function that returns a list consisting of the keys of the specified
hash. In a scalar context, keys returns the number of key/value pairs in the hash.

my $codon_n = keys %aa_for;
$codon_n

gives:

$codon_n: 64

Concerning shuffle, it is a function that we imported from themodule List::Util.

use List::Util 'shuffle';

While thismodule is part of the standard Perl distribution, its evil twin, List::MoreUtils, is not. Both
modules are replete with functions for working with lists that are really worth exploring (e.g., max,
all, mesh, uniq). However, remembering which function is in which module can be quite difficult.
That is why a Perl guru decided to merge these two modules into an unified module aptly named
List::AllUtils, which, sigh, is not part of the standard Perl distribution. Let’s remedy it!

$ cpanm List::AllUtils

And if you get bored during the week, have a look at the corresponding documentation…

$ perldoc List::AllUtils

Denis BAURAIN / ULiège 79 Modern Perl for Biologists I | The Basics

CHAPTER 8. OTHER NOVELTIES IN CODON_QUIZZ.PL

BOX 13: The hash random order in gory detail
In list context, hash keys are returned in an apparently random order. The actual random order
is specific to a given hash and (since perl 5.18.0) to a given a run of your script. This is so to
prevent an ill-intended hacker to devise a way to bring Perl scripts to their knees using so-called
algorithmic complexity attacks. For more information about this, see the corresponding topic in:
http://perldoc.perl.org/perlsec.html

The exact same series of operations on two hashes may result in a different order for each hash.
However, any insertion into the hash may change the order (as will any deletion, with the excep-
tion that the most recent key returned by each or keys may be deleted without changing the
order). So long as a given hash is unmodified you may rely on keys, values (see “values &
sort and reuse of variable names”, p.110) and each (see “each and list assignment”, p.121) to
repeatedly return the same order as each other.
Therefore, this means that we don’t actually need shuffle to get a differently ordered list of
codons each time we launch codon_quizz.pl. However, this behavior is quite new (with perl
5.16, one always gets the same list of codons). Further, explicitly using shuffle makes our in-
tention clear to anyone reading our code. That is why we used it in the first place.
Finally, if you want to sample codons with replacement, you can use the aptly named rand
builtin function, which is meant to return random numbers.
ask 10 random questions (possibly twice the same)
for my $i (1..10) {

my $codon = $questions[int(rand(@questions))];
...

}

For more information and examples, see: http://perldoc.perl.org/functions/rand.html

8.2 Reading from the standard input stream

8.2.1 The readline operator

my $answer = <>;
chomp $answer;
$answer = uc $answer; # make our quizz robust

This code chunk uses the readline operator (<>), which reads an input file (infile for short) line by
line. If you prefer, you can use the readline builtin function instead of <>. Personally, I don’t.

my $answer = readline;

When used alone as here, the readline operator reads from the standard input stream, which is the
keyboard, except if a shell redirection is enabled (with <). Thus, our program expects user input from
the keyboard, but could also work had the user pre-recorded all its answers in an input file.

Denis BAURAIN / ULiège 80 Modern Perl for Biologists I | The Basics

http://perldoc.perl.org/perlsec.html
http://perldoc.perl.org/functions/rand.html

CHAPTER 8. OTHER NOVELTIES IN CODON_QUIZZ.PL

8.2.2 Line endings
Lines are delimited by the character contained in the special variable $/, also known as the input
record separator. By default, $/ is set to the newline character (\n), which traditionally separates
consecutive lines on UNIX systems, such as Linux and macOS. In contrast, Classic Mac OS uses the
carriage return character (\r), whereas Windows uses the sequence of these two characters (\r\n).

BOX 14: How to fix incorrect line endings?
Though in principle the perl interpreter should transparently take care of the various platform-
dependent line endings,Windows-formattedfiles processed onLinux are a very common source
of deeply perplexing bugs.
Therefore, if you find yourself scratching your head because a Perl script behaves weirdly on
an input file having transited by a Windows computer, try fixing its line endings. This can be
done with the following Perl one-liner, which generates a new file using the original name and
appends the .bak suffix to the original file (see “Perl one-liners”, p.145 to learn how they work).
convert Windows line endings to Linux line endings
$ perl -i.bak -ne 's/\r\n/\n/g; print;' infile.txt

If the file was indeed badly (i.e., Windows) formatted, the size of the new file should be slightly
smaller than the size of the original file.
$ ll infile.txt*

-rw-r--r-- 1 denis admin 42504 Oct 11 22:40 infile.txt
-rw-r--r-- 1 denis admin 43326 Oct 10 11:25 infile.txt.bak

Below are similar one-liners for performing the other possible line-ending conversions. Keep
them handy as they might prove useful one day.
Linux to Windows
$ perl -i.bak -ne 's/\n/\r\n/g; print;' infile.txt

Classic Mac OS to Linux
$ perl -i.bak -ne 's/\r/\n/g; print;' infile.txt

Linux to Classic Mac OS
$ perl -i.bak -ne 's/\n/\r/g; print;' infile.txt

The next line calls the chomp builtin function. Its purpose is to remove any trailing string that corre-
sponds to the current value of $/. Removing the newline character is the first thing to do on any user
input, even when reading from the keyboard. Failing to do so is bound to misery. Here, our $answer
would end by a newline character and, for that, would never be considered as a valid amino acid.

Note that older Perl programs often use the chop builtin function instead of chomp. That not a good idea™.
Reason is that chop always removes the last character of the string, even if it is not equal to the $/ variable.
The risk thus exists to remove something that should not be removed.

Denis BAURAIN / ULiège 81 Modern Perl for Biologists I | The Basics

CHAPTER 8. OTHER NOVELTIES IN CODON_QUIZZ.PL

BOX 15: Soft vs. hard-wrapping
It seems that is a good place to explain the difference between hard wrapping and soft wrap-
pingwhen formatting text. A paragraph is said to be hard wrapped if it contains hard line breaks
(encoded by newline characters) at the end of each line. In contrast, it is soft wrapped when it
contains no line break other than the one introduced by the newline character occurring at the
very end of the paragraph.
Soft-wrapped text adapts to the current width of the window. One says that it dynamically re-
flows. By default, some text editors introduce hard line breaks upon editing, which can unexpect-
edly breaks otherwise perfectly valid code. This is the case of nano. To avoid this undesirable
behavior, you should always invoke this editor with the -w option that disables hard wrapping.
$ nano -w script.sh

Denis BAURAIN / ULiège 82 Modern Perl for Biologists I | The Basics

Chapter 9

A first look at operators

9.1 What are operators?
An operator is a series of one or more symbol characters used as part of the syntax of a language. Perl
operators are of different types (numeric, string, logical, bitwise and special).
Operators are further characterized by four properties:

1. The precedence of an operator governs when Perl should evaluate it in an expression. Evalua-
tion order proceeds from highest to lowest precedence. This corresponds to the common knowl-
edge thatmultiplications have priority over additions inmathematical formulas. The evaluation
order can be changed by bracketing specific parts of the expression with parenthesis characters.
a: 3 * 2 + 5
b: (3 * 2) + 5
c: 3 * (2 + 5)

gives:

a: 11
b: 11
c: 21

2. The associativity of an operator governs whether it evaluates from left to right or right to left.
For example, addition is left associative, whereas exponentiation is right associative. Again,
parentheses help making your intention clear.
a: 2 ** 2 ** 3
b: 2 ** (2 ** 3)
c: (2 ** 2) ** 3

gives:

a: '256'
b: '256'
c: '64'

Denis BAURAIN / ULiège 83 Modern Perl for Biologists I | The Basics

CHAPTER 9. A FIRST LOOK AT OPERATORS

3. The arity of an operator is the number of operands on which it operates. A nullary operator
operates on zero operands, a unary operator on one operand, a binary operator on two operands,
a ternary operator on three operands, and a listary operator on a list of operands.

4. The fixity of an operator is its position relative to its operands. Operators are infix operators
when appearing between their operands, prefix operators when preceding their operands, and
postfix operators when following their operands. Moreover, circumfix operators surround their
operands, whereas postcircumfix operators follow certain operands and surround others.

infix: $codon_n - 1
prefix: -$reading_frame
postfix: $total++
circumfix: q{Watson didn't propose the central dogma.}
postcircumfix: $aa_for{$codon}

9.2 Comparison operators
Let’s sort out the different comparison operatorswe have met so far. All are infix operators and thus
appear between their operands.

example of numeric equality '=='
unless (@ARGV == 2) {

...
}

examples of numeric less than '<'
for (my $i = 0; $i < $len; $i += 3) {

...
}
die 'ABORT! Negative reading frames not yet implemented!'

if $reading_frame < 0;

example of numeric greater/less than or equal to '>=' and '<='
die 'ABORT! Reading frame must be one of (1, 2, 3)!'

unless $reading_frame >= 1 && $reading_frame <= 3;

examples of string equality
last QUESTION if $answer eq 'EXIT';
if ($answer eq $aa) {

...
}

Comparison operators automatically impose boolean context on the result of the expression. This fits
well with control flow directives that all impose boolean context as well. However, you must specify
the value context for the comparison itself: numeric or string comparison.

When comparing strings, less than means before in lexical order and greater than means after in lexical
order. Be careful that the actual sorting order can depend on the human language you use on your
system (known as the locale).

Denis BAURAIN / ULiège 84 Modern Perl for Biologists I | The Basics

CHAPTER 9. A FIRST LOOK AT OPERATORS

'abc' lt 'def' # true
'abc' lt 'abd' # true
'abc' lt 'abcde' # true
'abc' lt 'abb' # false
'abc' gt 'abb' # true

Table 9.1: Comparison operators for numeric and string contexts

operator name fixity numeric cont. string cont.
equality infix == eq
inequality infix != ne
greater than infix > gt
less than infix < lt

greater than or equal to infix >= ge
less than or equal to infix <= le

9.3 Logical operators
Logical operators impose boolean context on the result of the expression but also on their operand(s).
They combine (and, or) or negate (not) other boolean expressions, which is useful but error-prone. The
two first ones are infix operators, while logical not is a prefix operator appearing before its operand.

Table 9.2: Logical operators of high and low precedence

operator name fixity high prec. low prec.
and infix && and
or infix || or
not prefix ! not

Mastering the interplay between branching directives on the one hand and comparison and logical
operators on the other hand requires a good understanding of boolean algebra.

these four code chunks are all equivalent

die 'ABORT! Reading frame must be one of (1, 2, 3)!'
unless $reading_frame >= 1 && $reading_frame <= 3;

die 'ABORT! Reading frame must be one of (1, 2, 3)!'
unless $reading_frame > 0 && $reading_frame < 4;

die 'ABORT! Reading frame must be one of (1, 2, 3)!'
if $reading_frame < 1 || $reading_frame > 3;

die 'ABORT! Reading frame must be one of (1, 2, 3)!'
if $reading_frame <= 0 || $reading_frame >= 4;

Denis BAURAIN / ULiège 85 Modern Perl for Biologists I | The Basics

CHAPTER 9. A FIRST LOOK AT OPERATORS

9.4 Operator precedence and associativity
All three logical operators exist in both word form and punctuation form, the former ones having
lower precedence than the latter ones. Operator precedence and associativity are quite complex but
nearly dispensable topics that boil down to the order in which evaluation proceeds. The reason why
they are dispensable is that you can force your ownorder of evaluation byusingparenthesis characters,
as demonstrated in the code below.
let's say we have the coordinates of two DNA fragments
how to determine whether these fragments overlap?

x1 x2 x1 x2
|==============| |==============|
|==============| |==============|
y1 y2 y1 y2
#
x1 x2 x1 x2
|==============| |==========|
|==========| |==============|
y1 y2 y1 y2

using high-precedence logical operators
if (($y1 >= $x1 && $y1 <= $x2) # left cases

|| ($x1 >= $y1 && $x1 <= $y2)) { # right cases
say 'fragments x and y overlap';

}

mixing high- and low-precedence logical operators
if ($y1 >= $x1 && $y1 <= $x2 # left cases

or $x1 >= $y1 && $x1 <= $y2) { # right cases
say 'fragments x and y overlap';

}

... or more intelligently...
say 'fragments x and y overlap'

unless $y1 > $x2 || $y2 < $x1; # test disjunction

Denis BAURAIN / ULiège 86 Modern Perl for Biologists I | The Basics

Chapter 10

Using Perl to compute some stats

10.1 A killer app with a fast bite
To introduce input file processing and to explore Perl’s handling of numbers, we continue our rewrit-
ing spree of bioinformatics applications. Our third program again uses the standard genetic code, but
this time to compute codon usage statistics over a series of input sequences. The equivalent web app
can be found here: http://www.bioinformatics.org/sms/codon_usage.html
To test our new killer app, follow the instructions below.

1. Open a blank text document, copy the listing in the next section and save it as codon_usage.pl.
2. Download the complete set of cDNA sequences for the model organism Escherichia coli K-12

MG1655 from the Ensembl Bacteria web portal. Go to: http://bacteria.ensembl.org/ and
follow the links there or enter the following line in your terminal. Note that the line continuation
character (\) is required if you do not type the whole URL on a single line (without spaces).
$ wget ftp://ftp.ensemblgenomes.org/pub/bacteria/release-20/fasta/\

bacteria_22_collection/escherichia_coli_str_k_12_substr_mg1655/cdna/\
Escherichia_coli_str_k_12_substr_mg1655.GCA_000005845.1.20.cdna.all.fa.gz

$ curl -O ftp://ftp.ensemblgenomes.org/... # macOS

3. Unpack the downloaded file using gunzip.
$ gunzip Escherichia_coli_str_k_12_substr_mg1655.GCA_000005845.1.20.cdna.all.fa.gz

4. For convenience, create a symbolic link to the unpacked file.
$ ln -s Escherichia_coli_str_k_12_substr_mg1655.GCA_000005845.1.20.cdna.all.fa \

Ecoli_cds.fasta

5. Install a new module from CPAN.
$ cpanm autodie

6. Make your program executable, launch it and look at its output.
$ chmod a+x codon_usage.pl
$./codon_usage.pl Ecoli_cds.fasta Ecoli_cds.usage
$ less Ecoli_cds.usage

Denis BAURAIN / ULiège 87 Modern Perl for Biologists I | The Basics

http://www.bioinformatics.org/sms/codon_usage.html
http://bacteria.ensembl.org/

CHAPTER 10. USING PERL TO COMPUTE SOME STATS

10.2 The code for our own codon_usage

1 #!/usr/bin/env perl
2

3 use Modern::Perl '2011';
4 use autodie;
5

6 use Smart::Comments;
7

8 unless (@ARGV == 2) {
9 die <<"EOT";
10 Usage: $0 <infile.fasta> <outfile.txt>
11 This tool computes codon usage over a series of DNA sequences.
12 It requires a FASTA file as input and the name of the output file to be created.
13 Example: $0 Ecoli_cds.fasta Ecoli.usage
14 EOT
15 }
16

17 my $infile = shift;
18 my $outfile = shift;
19

20 ### Reading input file: $infile
21

22 open my $in, '<', $infile;
23

24 my $seq_id;
25 my $seq;
26 my %seq_for;
27

28 LINE:
29 while (my $line = <$in>) {
30 chomp $line;
31

32 # at each '>' char...
33 if (substr($line, 0, 1) eq '>') {
34

35 # add current seq to hash (if any)
36 if ($seq) {
37 $seq_for{$seq_id} = $seq;
38 $seq = q{};
39 }
40

41 # extract new seq_id
42 $seq_id = substr($line, 1);
43 next LINE;
44 }
45

Denis BAURAIN / ULiège 88 Modern Perl for Biologists I | The Basics

CHAPTER 10. USING PERL TO COMPUTE SOME STATS

46 # elongate current seq (seqs can be broken on several lines)
47 $seq .= $line;
48 }
49

50 # add last seq to hash (if any)
51 $seq_for{$seq_id} = $seq if $seq;
52

53 close $in;
54

55 ### Building hash for standard code...
56

57 # standard genetic code definition from NCBI gc.prt file
58 my $aa = 'FFLLSSSSYY**CC*WLLLLPPPPHHQQRRRRIIIMTTTTNNKKSSRRVVVVAAAADDEEGGGG';
59 my $b1 = 'TTTTTTTTTTTTTTTTCCCCCCCCCCCCCCCCAAAAAAAAAAAAAAAAGGGGGGGGGGGGGGGG';
60 my $b2 = 'TTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGG';
61 my $b3 = 'TCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAG';
62

63 my %aa_for;
64 my $codon_n = length $aa;
65 for my $i (0..$codon_n-1) {
66 my $codon = substr($b1, $i, 1) . substr($b2, $i, 1) . substr($b3, $i, 1);
67 $aa_for{$codon} = substr($aa, $i, 1);
68 }
69

70 ### Processing: keys(%seq_for) . ' sequences...'
71

72 my %count_for;
73 my %total_for;
74

75 for my $dna_string (values %seq_for) { ### Elapsed time |===[%]
76 my $len = length $dna_string;
77

78 # split seq into codons...
79 # ... and count their occurrences...
80 # ... and count total occurrences of each amino acid
81

82 CODON:
83 for (my $i = 0; $i < $len; $i += 3) {
84 my $codon = uc substr($dna_string, $i, 3);
85

86 last CODON if length $codon < 3; # skip truncated codons
87

88 $count_for{ $codon }++;
89 $total_for{ $aa_for{$codon} }++;
90 }
91 }
92

Denis BAURAIN / ULiège 89 Modern Perl for Biologists I | The Basics

CHAPTER 10. USING PERL TO COMPUTE SOME STATS

93 ### Computing codon usage statistics...
94

95 open my $out, '>', $outfile;
96 say {$out} '# ' . join "\t", qw(codon count aa total usage);
97

98 for my $codon (sort keys %count_for) {
99 my $aa = $aa_for{$codon};
100 my $count = $count_for{$codon};
101 my $total = $total_for{$aa};
102 my $usage = 100.0 * $count / $total; # usage in percents
103 say {$out} join "\t", $codon, $count, $aa, $total,
104 sprintf "%5.1f", $usage;
105 }
106

107 close $out; # useless because files are automatically closed
108 # when the filehandle variable gets out of scope
109

110 ### Writing output file: $outfile

Denis BAURAIN / ULiège 90 Modern Perl for Biologists I | The Basics

Homework

1. Try to understand the Perl novelties appearing in this new program.
2. Write a program (hw3_check_overlap.pl) to verify that the three code chunks in the section

Operator precedence and associativity actually do give the same result. The basic strategy for testing
its behavior would be to repeatedly invoke your program with N different sets of coordinates.
To do this, ask for four values in turn (x1, x2, y1, y2) using the readline operator (<>).
$./hw3_check_overlap.pl

10
40
20
60
10-40 and 20-60 DO overlap

If you want to process more than one set of four values, you will need a while loop checking
that new values are indeed typed in by the user. To quit your program smoothly, press the keys
Ctrl and D (abbreviated as ^D and known as end-of-file). This key combomakes the <> operator
to return an undef value that can stop the loop.
It is also possible to take advantage of shell redirection to avoid typing in your test values again
and again. For this, create a suitable input file (with 4N values) and pass it to your program.
You can even simultaneously redirect its output into an output file.
$ cat input.txt

10
40
20
60
100
120
80
90

$./hw3_check_overlap.pl < input.txt > output.txt
$ cat output.txt

10-40 and 20-60 DO overlap
100-120 and 80-90 DO NOT overlap

Denis BAURAIN / ULiège 91 Modern Perl for Biologists I | The Basics

CHAPTER 10. USING PERL TO COMPUTE SOME STATS

Denis BAURAIN / ULiège 92 Modern Perl for Biologists I | The Basics

Part IV

Lesson 4

Denis BAURAIN / ULiège 93 Modern Perl for Biologists I | The Basics

Chapter 11

Input/output in Perl

11.1 Reading files
11.1.1 FASTA format
codon_usage.pl is our first program with the ability to read a file. And not just any file but a FASTA
file! In spite of its boring appearance, the FASTA format is not easy to process, precisely because of its
loose specification. Hence, a given sequence may span several lines and ends either with the definition
line of the next one (the > followed by a unique identifier) orwith the end of the file.
Thanks to loop control, however, our code for reading a FASTA file remains relatively straightforward.
Its logic is illustrated below. Observe how we need to store the last sequence as a special case due to
the two ways of ending a sequence. Moreover, note that empty sequences are automatically excluded.

11.1.2 open & close

Apart from the file opening/closing statements, there are few new Perl concepts in the corresponding
block of code. InModern Perl, the open builtin function takes three arguments:

1. a lexically-scoped variable that acts as the filehandle reference (wewill start covering references
themselves in “A gentle introduction to references”, in the second part of this course),

2. an opening mode, of which the most common ones are '<' for reading, '>' for writing and '>>'
for appending to an existing file,

3. a string expression giving the file name (optionally including its path).

The close builtin function closes the file associated to the filehandle reference. It is rarely needed in well-
designed programs using functions (see the second part of this course) and filehandles that have lexical
scope because files are automatically closed when the filehandle variable gets out of scope.

open my $in, '<', $infile;

my $seq_id;
my $seq;
my %seq_for;

Denis BAURAIN / ULiège 95 Modern Perl for Biologists I | The Basics

CHAPTER 11. INPUT/OUTPUT IN PERL

LINE:
while (my $line = <$in>) {

chomp $line;

at each '>' char...
if (substr($line, 0, 1) eq '>') {

add current seq to hash (if any)
if ($seq) {

$seq_for{$seq_id} = $seq;
$seq = q{};

}

extract new seq_id
$seq_id = substr($line, 1);
next LINE;

}

elongate current seq (seqs can be broken on several lines)
$seq .= $line;

}

add last seq to hash (if any)
$seq_for{$seq_id} = $seq if $seq;

close $in;

11.1.3 autodie and $!

Many Perl courses explain that you should ensure that the input file exists and can be read by testing
the return value of the open builtin function, and then printing the special variable $! if it has a false
value. We don’t because we use the autodie pragma, which takes care of all of that (and many other
errors) for us. autodie has just to be loaded once with a use directive at the beginning of our program.
without autodie
but using short-circuiting (or...) and the special Perl variable $!
open my $in, '<', $infile

or die "Can't open '$infile' for reading: '$!'";

with autodie
use autodie;
open my $in, '<', $infile;

Both code chunks give the same output.
$./codon_usage.pl missing.fasta missing.usage

Can't open 'missing.fasta' for reading: 'No such file or directory'
at ./codon_usage.pl line 22

Denis BAURAIN / ULiège 96 Modern Perl for Biologists I | The Basics

CHAPTER 11. INPUT/OUTPUT IN PERL

end of
file?

begin

read FASTA

store current
id/seq pair

end

new seq ? currently
in a seq?

store last
id/seq pair

memorize id
start new seq

open file

currently
in a seq?

N

elongate
current seq

N

Y Y

N

Y

N

Y

next LINE

Figure 11.1: Flowchart of our FASTA file reader

Denis BAURAIN / ULiège 97 Modern Perl for Biologists I | The Basics

CHAPTER 11. INPUT/OUTPUT IN PERL

11.2 Writing files
At the end of the analysis, codon_usage.pl produces a table reporting the frequency of each codon
relatively to the total number of codons specifying each amino acid. This table is directly written into
an output file (outfile for short), the name of which is specified by the user.
my $outfile = shift;

later in the file...
open my $out, '>', $outfile;

Observe the opening mode of the outfile ('>'), which tells perl that we want to write to the file. If the
file does not exist, it is created, otherwise, it is overwritten. Of course, we need to havewrite permission
on the corresponding directory (and on the file if it already exists).
The next line of code implements a common pattern when producing tabular files in Perl. It begins
by writing a header line that starts with a comment character (#).
say {$out} '# ' . join "\t", qw(codon count aa total usage);

Using such a header is a weak convention but it improves the autodocumentation of output files. Since
specialized text-processing programs often ignore comment lines when processing their input files, this
practice generally does not harm. That is why I suggest you to adopt it.

To write to a file, insert the variable containing the filehandle reference between the print or say
builtin functions and the list of things to be written.

InModern Perl, it is recommended to enclose the filehandle between curly brace characters for clarity.

The remaining of the line is also idiomatic. It first defines a list of column headers using the quoted
word operator (qw(...)), which splits a literal string on whitespace characters to produce a list of
strings. Then, it immediately joins the values of the list using the tab character (\t) as the separator.
This is a case where say is extremely convenient. With print, the line must include an extra pair of
parenthesis characters. Otherwise, the newline character (\n) ends up part of the column headers.
print {$out} '# ' . join("\t", qw(codon count aa total usage)) . "\n";

Then comes a foreach-style for loop that iterates over the codons, computes their usage and prints it to
the outfile. Again, we use a say combined to a call to join to generate our multi-column tabular file.
The mysterious sprintf syntax will be covered in “sprintf”, in the second part of this course.
for my $codon (sort keys %count_for) {

my $aa = $aa_for{$codon};
my $count = $count_for{$codon};
my $total = $total_for{$aa};
my $usage = 100.0 * $count / $total; # usage in percents
say {$out} join "\t", $codon, $count, $aa, $total,

sprintf "%5.1f", $usage;
}

Denis BAURAIN / ULiège 98 Modern Perl for Biologists I | The Basics

CHAPTER 11. INPUT/OUTPUT IN PERL

close $out; # useless because files are automatically closed
when the filehandle variable gets out of scope

Again, the close builtin function is not required here. Remember: at the end of the programfile, variables
with a file scope get out of scope, and the corresponding files are automatically closed.

Denis BAURAIN / ULiège 99 Modern Perl for Biologists I | The Basics

CHAPTER 11. INPUT/OUTPUT IN PERL

Denis BAURAIN / ULiège 100 Modern Perl for Biologists I | The Basics

Chapter 12

A first look at mathematics in Perl

12.1 Perl values: Numbers
Beyond strings, Perl handles other kinds of values, including various kinds of numbers. Internally,
there exist two types of numbers, each one associated to a specific way of doing arithmetic operations:

• integer numbers (i.e., round numbers),
• floating-point numbers (i.e., decimal numbers).

When you need to input numbers in a program, you can use different notations, some of them corre-
sponding to less familiar base systems. Indeed, along the decimal system (based on 10 digits because
we have ten fingers), computer languages support three other systems:

• the binary system (2 digits, 0 and 1),
• the octal system (8 digits, 0 to 7),
• the hexadecimal system (16 digits, 0 to 9 and A to F).

The latter three systems are only used for inputting integers, even if, internally, floating-point numbers
are also represented in binary form.

examples
my $integer = 46; # number of human chromosomes
my $float = 3.1416; # pi
my $sci_float = 3.08e9; # human genome size: 3,080,000,000 bp
my $binary = 0b101110; # number of human chromosomes: 46
my $octal = 056; # number of human chromosomes: 46
my $hex = 0x2E; # number of human chromosomes: 46

Hexadecimal numbers are quite common in computing, for example to specify RBG colors in a compact
way (try searching for #6a5acd in Google). In contrast, octal numbers are not very much used these days.
A notable exception are file permissions in UNIX-like operating systems. For example, chmod 644 is the
octal representation of 110100100, which reads as read/write for user, read for group and read for others. Note
that the latter are the default permissions for new files.

Denis BAURAIN / ULiège 101 Modern Perl for Biologists I | The Basics

CHAPTER 12. A FIRST LOOK AT MATHEMATICS IN PERL

BOX 16: Integer and floating-point arithmetics
In codon_usage.pl, when computing codon usage frequencies, we want them to be expressed
as percentages. That is why we multiply the usage ratio by 100.0. In older scripting languages,
such as the bash shell, mathematical operations default to integer arithmetic, which can lead to
unexpected results, for example due to aggressive rounding by the integer division.
$ echo 9/4 = $((9/4))

9/4 = 2

It is not the case in Perl, but for clarity, I always add a trailing .0 to the integer numbers that I
want to consider as decimal. However, you can force integer arithmetic if you need it by using
the integer pragma.
9/4: 9/4

use integer;
9/4: 9/4

gives:

9/4: '2.25'
9/4: 2

For more information about the binary representation of numbers in Perl (and other languages),
see: https://floating-point-gui.de/languages/perl/

12.2 Numeric and in-place operators
Another interesting bit in the FASTA file reader is the use of the in-place concatenation operator (.=),
a variant of the concatenation operator (.) that appends its second operand to its first operand.

elongate current seq (seqs can be broken on several lines)
$seq .= $line;

All in-place operators display the same behavior: they replace their first operand by the result of the
corresponding operation. We have already encountered in-place addition (+=) in the C-style for loop
and in-place division (/=) in our switch table handling alternatives with more than two options.

the three following couples of lines are equivalent

$seq .= $line;
$seq = $seq . $line;

for (my $i = 0; $i < $len; $i += 3) { ... }
for (my $i = 0; $i < $len; $i = $i + 3) { ... }

$size /= $div;
$size = $size / $div;

Denis BAURAIN / ULiège 102 Modern Perl for Biologists I | The Basics

https://floating-point-gui.de/languages/perl/

CHAPTER 12. A FIRST LOOK AT MATHEMATICS IN PERL

The table below lists the numeric operators and their in-place variants.

Table 12.1: Regular and in-place numeric operators

operator name fixity regular in-place
addition infix + +=

subtraction infix - -=
multiplication infix * *=

division infix / /=
exponentiation infix ** **=

modulo infix % %=

You should always use these operators when you update a variable because they clarify your intent.

Two other interesting in-place numeric operators are the auto-increment operator (++) and the auto-
decrement operator (--), which respectively adds one to or subtracts one from the affected variable. We
have already met both of them in codon_quizz.pl and codon_quizz_jokers.pl.
in both codon_quizz.pl and codon_quizz_jokers.pl
if ($answer eq $aa) {

say 'Correct!';
$score++; # increment score

} # equivalent to: $score = $score + 1

in codon_quizz_jokers.pl
if ($joker_n > 0) {

$joker_n--; # decrement number of jokers
next QUESTION; # equivalent to: $joker_n = $joker_n - 1

}

Denis BAURAIN / ULiège 103 Modern Perl for Biologists I | The Basics

CHAPTER 12. A FIRST LOOK AT MATHEMATICS IN PERL

BOX 17: Prefix vs. postfix forms of the auto-… operators
There exist both prefix and postfix forms of the auto-… operators that differ as to when the ex-
pression is evaluated relatively to the decrement or increment operation:

• In prefix form, the variable is first updated and then the expression is evaluated.
• In postfix form, the expression is evaluated before the variable is updated.

my $x = 2;
$x

my $y = $x++;
$x
$y

my $z = ++$x;
$x
$z

gives:

$x: 2

$x: 3
$y: 2

$x: 4
$z: 4

Such subtleties in the order of operations can be used to write ultra-concise Perl code. Consider
how much this excerpt from codon_quizz_jokers.pl is simplified by taking advantage of the
postfix form of the auto-decrement operator, which first evaluates then decrements its operand.
skip current question if asked to use a joker
if ($answer eq 'SKIP') {

if ($joker_n > 0) { # original version
$joker_n--;
next QUESTION;
}

next QUESTION if $joker_n--; # new (concise) version

say q{You don't have any joker left!};
$answer = 'EXIT';

}

Denis BAURAIN / ULiège 104 Modern Perl for Biologists I | The Basics

Chapter 13

More on hashes

13.1 Hash uses
codon_usage.pl uses hashes (or associative arrays) in two novel ways. Let’s summarize the different
uses that we have encountered so far for hashes.

1. Indexed data storage— The result of the code reading a FASTA file is the hash %seq_for (see
“open& close”, p.95). This hash stores the identifiers (ids for short) of the input sequences, along
with the sequences themselves. Associating pieces of data to their ids is a common use for hashes.

Table 13.1: Contents of hash %seq_for (reading
Ecoli_cds.fasta)

identifier sequence
AAC73112 cdna: … ATGAAACGCATTAGCACCACCATTACCACCACCATCACCA…
AAC73113 cdna: … ATGCGAGTGTTGAAGTTCGGCGGTACATCAGTGGCAAATG…
AAC73114 cdna: … ATGGTTAAAGTTTATGCCCCGGCTTCCAGTGCCAATATGA…

… (4464 other sequences)
b4701 cdna:pseudo … TTTGGGTTCGAACGCTGGCCTCAGGTTGATAGAAATATCG…
b4704 cdna:pseudo … GTAATCCGATTTAAATATCGAGTCTCCTTGTTTCGACTTA…

2. Dictionaries — We also used hashes as dictionaries in translating tasks, either when reverse-
complementing bases (%comp_for) in rev_comp.pl or when conceptually translating codons to
amino acid (%aa_for), for example in translate.pl. Don’t forget that hashes are unordered.

Table 13.2: Contents of hash %comp_for

base complement
A T
T A
G C
C G

Denis BAURAIN / ULiège 105 Modern Perl for Biologists I | The Basics

CHAPTER 13. MORE ON HASHES

Table 13.3: Contents of hash %aa_for

codon amino acid
AAA K
AAC N
AAG K
AAT N
ACA T
… …
TTG L
TTT F

3. Counters — In codon_usage.pl, we declare two hashes to be used as counters. The first one
(%count_for) holds the number of times (or occurrences) we see each codon, whereas the second
one (%total_for) keeps track of the number of occurrences of each amino acid. The heart of the
Perl idiom for using hashes as counters lies in the $hash{$key}++ construct below.

my %count_for;
my %total_for;

later in the loop...

$count_for{$codon}++;

Remember that the auto-increment operator (++) adds one to its operand. When a hash has just
been declared, it is empty and contains no key/value pair. Thus, the first time ++ is applied to
a given key, the corresponding value is first created and set to undef, then evaluated to zero (0)
in the numeric context imposed by the operator, and finally incremented to one (1).

Observe how the codons of the DNA string below are discovered and counted each one in turn.

$dna_string: 'CATGAACTTCTTTGGCGTCTTGAT'

$count_for: ||
||

$codon: CAT $count_for: | CAT |
| 1 |

$codon: GAA $count_for: | CAT | GAA |
| 1 | 1 |

$codon: CTT $count_for: | CAT | GAA | CTT |
| 1 | 1 | 1 |

$codon: CTT $count_for: | CAT | GAA | CTT |
| 1 | 1 | 2 |

Denis BAURAIN / ULiège 106 Modern Perl for Biologists I | The Basics

CHAPTER 13. MORE ON HASHES

$codon: TGG $count_for: | CAT | GAA | CTT | TGG |
| 1 | 1 | 2 | 1 |

$codon: CGT $count_for: | CAT | GAA | CTT | TGG | CGT |
| 1 | 1 | 2 | 1 | 1 |

$codon: CTT $count_for: | CAT | GAA | CTT | TGG | CGT |
| 1 | 1 | 3 | 1 | 1 |

$codon: GAT $count_for: | CAT | GAA | CTT | TGG | CGT | GAT |
| 1 | 1 | 3 | 1 | 1 | 1 |

The next time we use the same key, the existing value is incremented in place, which allows us
to update the occurrence count of the key with exactly the same code as for its initialization.

Table 13.4: Final content of hash %count_for

codon count
AAA 46021
AAC 29496
AAG 14105
AAT 24241
ACA 9657
ACC 31986
… …
TTG 18673
TTT 30444

To keep track of amino acid counts, we need amino acids as keys while we only have codons
in our DNA sequences. Consider how we obtain these keys on the fly by translating incoming
codons to amino acids using our dictionary hash %aa_for.
$total_for{ $aa_for{$codon} }++;

Table 13.5: Final content of hash %total_for

amino acid count
* 4653
A 129593
C 15846
D 70121
E 78482
F 53065
… …
W 20885
Y 38750

Denis BAURAIN / ULiège 107 Modern Perl for Biologists I | The Basics

CHAPTER 13. MORE ON HASHES

4. Boolean filters — Instead of counting the number of occurrences of each key, we can simply
create the key/value pair the first time we see the key. These hashes allow testing if some key
has been encountered at least once, which is useful when filtering data based on some given list.
We have not yet used hashes in this way; so let’s give an illustration.

You can save the program below as filter_fasta.pl. To try it, build a list of a few ids from
your Ecoli_cds.fasta file. Beware that ids in the list must be truncated on the first space
character for this program to work. Do you recover the expected sequences?

If so, can you modify this program to output the list of ids that did not match any sequence?

1 #!/usr/bin/env perl
2

3 use Modern::Perl '2011';
4 use autodie;
5

6 unless (@ARGV == 2) {
7 die <<"EOT";
8 Usage: $0 <infile.fasta> <wanted.ids>
9 This tool filters and displays sequences based on their identifier.
10 It requires a FASTA file as input and a second file containing the ids of the
11 sequences to be displayed on screen (one id per line).
12 Example: $0 Ecoli_cds.fasta Ecoli.ids
13 EOT
14 }
15

16 my $fasfile = shift;
17 my $idsfile = shift;
18

19 open my $ids, '<', $idsfile;
20

21 my %wanted;
22 while (my $line = <$ids>) {
23 chomp $line;
24 $wanted{$line} = 1;
25 }
26

27 open my $fas, '<', $fasfile;
28

29 my $seq_id;
30 my $seq;
31

32 LINE:
33 while (my $line = <$fas>) {
34 chomp $line;
35

36 # at each '>' char...
37 if (substr($line, 0, 1) eq '>') {
38

Denis BAURAIN / ULiège 108 Modern Perl for Biologists I | The Basics

CHAPTER 13. MORE ON HASHES

39 # output seq (if any) if wanted
40 if ($seq && $wanted{$seq_id}) {
41 say '>' . $seq_id;
42 say $seq;
43 }
44

45 # extract new seq_id
46 # use only first word (until first whitespace) for simplicity
47 my @words = split ' ', substr($line, 1);
48 $seq_id = shift @words;
49

50 # prepare for new seq
51 $seq = q{};
52 next LINE;
53 }
54

55 # elongate current seq (seqs can be broken on several lines)
56 $seq .= $line;
57 }
58

59 # output last seq (if any) if wanted
60 if ($seq && $wanted{$seq_id}) {
61 say '>' . $seq_id;
62 say $seq;
63 }

Table 13.6: Exemplative content of hash %wanted

seq-id wanted?
AAC77347 1
AAC77348 1
AAC77349 1

… …

5. Switch tables — Finally, hashes can be used in more exotic ways, such as when they replace
cascades of elsif blocks. We have discussed this peculiar use in “Hashes instead of cascades of
elsif”, p.63. Here’s the code again for reference.
my %div_for = (

bp => 1,
kb => 1000,
Mb => 1e6, # one million
Gb => 1e9, # one billion

);
my $div = $div_for{$unit};
die 'Unknown unit for reporting sequence size!' unless $div;
$size /= $div; # divide $size by suitable divisor

Denis BAURAIN / ULiège 109 Modern Perl for Biologists I | The Basics

CHAPTER 13. MORE ON HASHES

Table 13.7: Contents of hash %div_for

unit divisor
bp 1
kb 1000
Mb 1,000,000
Gb 1,000,000,000

13.2 values & sort and reuse of variable names
When counting codon occurrences, we don’t need the sequence identifiers. That iswhywe only iterate
over a list of the sequences themselves. This list is obtained from the hash %seq_for using the values
builtin function, which is the mirror of the keys function that we used in codon_quizz.pl.
for my $dna_string (values %seq_for) {

loop body
}

To improve the autodocumentation of my programs, I often strive to use the same variable names for
the keys and for the values when building and using the hash. Here, I don’t. This is to illustrate the
fact that iterator variables can bear any name. Thus, the $dna_string iterator actually corresponds
to the various $seq strings that have been stored in the hash %seq_for when reading the FASTA file.
add current seq to hash (if any)
if ($seq) {

$seq_for{$seq_id} = $seq;
$seq = q{};

}

In contrast, I use the same variable name ($codon) as the key for accessing the two hashes %aa_for
and %count_for to help conveyingwhat is going on in the program. Note that the four distinct uses of
$codon do not refer to the same variable but to different variables existing in different lexical scopes.
use 1: when building %aa_for
my %aa_for;
my $codon_n = length $aa;
for my $i (0..$codon_n-1) {

my $codon = substr($b1, $i, 1) . substr($b2, $i, 1) . substr($b3, $i, 1);
$aa_for{$codon} = substr($aa, $i, 1);

}

uses 2 and 3: when building %count_for and using %aa_for
CODON:
for (my $i = 0; $i < $len; $i += 3) {

my $codon = uc substr($dna_string, $i, 3);
last CODON if length $codon < 3; # skip truncated codons
$count_for{ $codon }++;
$total_for{ $aa_for{$codon} }++;

}

Denis BAURAIN / ULiège 110 Modern Perl for Biologists I | The Basics

CHAPTER 13. MORE ON HASHES

use 4: when using %count_for
for my $codon (sort keys %count_for) {

my $aa = $aa_for{$codon};
my $count = $count_for{$codon};
my $total = $total_for{$aa};
my $usage = 100.0 * $count / $total; # usage in percents
say {$out} join "\t", $codon, $count, $aa, $total,

sprintf "%5.1f", $usage;
}

In the last case, we build a list of codons in lexical order from the hash %count_for by chaining the
sort and keys builtin functions. This is reminiscent ofwhatwedid in codon_quizz.plwhen building
the list of questions, except that in the case of %count_for, we directly iterate over the list instead of
storing it in an array.
my @questions = shuffle keys %aa_for;

Denis BAURAIN / ULiège 111 Modern Perl for Biologists I | The Basics

CHAPTER 13. MORE ON HASHES

Denis BAURAIN / ULiège 112 Modern Perl for Biologists I | The Basics

Chapter 14

Towards more complex programs

14.1 A production-grade translation tool
Below is a revised and enhanced version of our conceptual translation tool.

1. Type in and save it as xxl_xlate.pl. Note that some parts can be copied-pasted from our pre-
vious programs to reduce typing.

2. Before proceeding, you will probably need to install a few new CPAN modules.

$ cpanm LWP::Simple
$ cpanm Path::Class
$ cpanm Tie::IxHash

3. Try to use the program on your E. coli CDS. I let you figure out how to run it.

4. Study the listing and do your best to understand what do the various constructs that we have
not covered yet. Don’t worry about “Regular expressions”, p.125, yet!

1 #!/usr/bin/env perl
2

3 use Modern::Perl '2011';
4 use autodie;
5

6 use Smart::Comments '###';
7

8 use File::Basename;
9 use LWP::Simple 'get';
10 use Path::Class 'file';
11 use Tie::IxHash;
12

13

14 unless (@ARGV == 3) {
15 die <<"EOT";
16 Usage: $0 <infile.fasta> <path-to-gc.prt|--remote> <gc-id>
17 This tool translates DNA sequences to proteins using any genetic code.

Denis BAURAIN / ULiège 113 Modern Perl for Biologists I | The Basics

CHAPTER 14. TOWARDS MORE COMPLEX PROGRAMS

18 It requires a FASTA file as input, the path to a local copy of NCBI 'gc.prt'
19 file (or the special --remote option) and the identifer of the desired genetic
20 code (1-6, 9-16, 21-25). There is no option for the name of the output file
21 because it is automatically derived from the name of the input file.
22 Example: $0 Ecoli_cds.fasta ~/Downloads/gc.prt 1
23 EOT
24 }
25

26 my $infile = shift;
27 my $gcfile = shift;
28 my $gc_id = shift;
29

30

31 ### Reading input file: $infile
32

33 open my $in, '<', $infile;
34

35 my $seq_id;
36 my $seq;
37 tie my %seq_for, 'Tie::IxHash'; # preserve original seq order
38

39 LINE:
40 while (my $line = <$in>) {
41 chomp $line;
42

43 # at each '>' char...
44 if (substr($line, 0, 1) eq '>') {
45

46 # add current seq to hash (if any)
47 if ($seq) {
48 $seq_for{$seq_id} = $seq;
49 $seq = q{};
50 }
51

52 # extract new seq_id
53 $seq_id = substr($line, 1);
54 next LINE;
55 }
56

57 # elongate current seq (seqs can be broken on several lines)
58 $seq .= $line;
59 }
60

61 # add last seq to hash (if any)
62 $seq_for{$seq_id} = $seq if $seq;
63

64 close $in;

Denis BAURAIN / ULiège 114 Modern Perl for Biologists I | The Basics

CHAPTER 14. TOWARDS MORE COMPLEX PROGRAMS

65

66

67 ### Building hash for code: $gc_id . '...'
68

69 # read gc.prt file
70 my $gc_content
71 = $gcfile eq '--remote'
72 ? get('ftp://ftp.ncbi.nih.gov/entrez/misc/data/gc.prt')
73 : file($gcfile)->slurp
74 ;
75 #### $gc_content
76

77 # split gc.prt file content into code blocks
78 my @codes = $gc_content =~ m/ \{ ([^{}]+) \} /xmsg;
79 die qq{ABORT! Cannot process '$gcfile' file!} unless @codes;
80 #### @codes
81

82 my %aa_for;
83

84 CODE:
85 for my $code (@codes) {
86

87 # extract code id
88 my ($id) = $code =~ m/ id \s* (\d+) /xms;
89

90 # process only specified code block
91 if ($id == $gc_id) {
92

93 # extract amino acid line
94 my ($aa) = $code =~ m/ ncbieaa \s* \"(.*?)\" /xms;
95

96 # extract three codon lines
97 my ($b1) = $code =~ m/ Base1 \s* ([TACG]+) /xms;
98 my ($b2) = $code =~ m/ Base2 \s* ([TACG]+) /xms;
99 my ($b3) = $code =~ m/ Base3 \s* ([TACG]+) /xms;
100

101 # build translation table
102 my $codon_n = length $aa;
103 for my $i (0..$codon_n-1) {
104 my $codon
105 = substr($b1, $i, 1)
106 . substr($b2, $i, 1)
107 . substr($b3, $i, 1)
108 ;
109 $aa_for{$codon} = substr($aa, $i, 1);
110 }
111

Denis BAURAIN / ULiège 115 Modern Perl for Biologists I | The Basics

CHAPTER 14. TOWARDS MORE COMPLEX PROGRAMS

112 last CODE;
113 }
114 }
115 #### %aa_for
116

117 die qq{ABORT! No code found for id '$gc_id'!} unless %aa_for;
118

119

120 ### Translating: keys(%seq_for) . ' sequences...'
121

122 # derive outfile name from infile name using cross-platform methods
123 my ($basename, $dir, $suffix) = fileparse($infile, qr{\.[^.]*}xms);
124 my $outfile = file($dir, $basename . '_pep' . $suffix);
125

126 open my $out, '>', $outfile;
127

128 while (my ($id, $dna_string) = each %seq_for) { ### Elapsed time |===[%]
129

130 my @aminoacids;
131 my $len = length $dna_string;
132

133 for (my $i = 0; $i < $len; $i += 3) {
134 my $codon = uc substr($dna_string, $i, 3);
135 push @aminoacids, $aa_for{$codon} // 'X';
136 }
137

138 say {$out} '>' . $id;
139 say {$out} join q{}, @aminoacids;
140 }
141

142 close $out; # useless because files are automatically closed
143 # when the filehandle variable gets out of scope
144

145 ### Writing output file: $outfile->stringify

Denis BAURAIN / ULiège 116 Modern Perl for Biologists I | The Basics

Homework

1. Try to understand the Perl novelties appearing in this new program.
2. Modify codon_usage.pl (rename it hw4_codon_usage_sort.pl) to get the codon usage table

sorted in lexical order on the amino acids (rather than codons).

Denis BAURAIN / ULiège 117 Modern Perl for Biologists I | The Basics

CHAPTER 14. TOWARDS MORE COMPLEX PROGRAMS

Denis BAURAIN / ULiège 118 Modern Perl for Biologists I | The Basics

Part V

Lesson 5

Denis BAURAIN / ULiège 119 Modern Perl for Biologists I | The Basics

Chapter 15

Looking at the novelties in
xxl_xlate.pl

15.1 Would you like some syntactic sugar?
15.1.1 Ordered hashes: Tie::IxHash
The FASTA reader of xxl_xlate.pl has been borrowed from codon_usage.pl except for one detail.

use Tie::IxHash;

and later...
tie my %seq_for, 'Tie::IxHash';

Tied objects are beyond the scope of this course. However, the Tie::IxHash CPAN module is so
useful that we need to mention it. In short, this module offers peculiar hashes in which the order of
key/value pairs is preserved.

For us, this means that DNA sequences will be stored in the order by which they appear in the input
FASTA file. This new behavior benefits to all hash iterators, whether keys, values or the powerful
each that allows traversing the hash by iterating over key/value pairs.

15.1.2 each and list assignment
The each builtin function returns a list of two values corresponding to the next key/value pair. These
were respectively called $seq_id and $seq in our FASTA file reader. Here, we retrieve and store them
in two different variables called $id and $dna_string in a single operation.

while (my ($id, $dna_string) = each %seq_for) {
translate sequence

}

This very concise syntax is called a list assignment. Basically, the first value of the list goes into the
first variable, while the second value of the list goes into the second variable. This is enough for now.
We will fully describe list assignment in “Perl values: Lists”, in the second part of this course.

Denis BAURAIN / ULiège 121 Modern Perl for Biologists I | The Basics

CHAPTER 15. LOOKING AT THE NOVELTIES IN XXL_XLATE.PL

As for any hash iterator, the while loop lasts as long as there are key/value pairs remaining to be re-
turned in the hash. When thewhole hash has been traversed, each returns an empty list that evaluates
to a false value in a boolean context and terminates the loop.

15.1.3 The ternary conditional operator
xxl_xlate.pl assembles its dictionary hash for translating sequences directly from the NCBI gc.prt
file (gc for genetic code). This is achieved using regexes, which are described in “Regular expressions”,
p.125. Before that, the file has to be read either from the user’s local disk or from the NCBI FTP server
(if the --remote command-line argument has been specified).
my $gc_content

= $gcfile eq '--remote'
? get('ftp://ftp.ncbi.nih.gov/entrez/misc/data/gc.prt')
: file($gcfile)->slurp

;

We will explain the functional novelties in a minute, but for now, let’s consider the general syntax
of this statement. This is actually both the declaration and the definition of a new variable called
$gc_content, which stores the full content of the gc.prt file.
The strategy we use for handling both options of the alternative in a single statement rests on the
ternary conditional operator (?:). This logical operator takes three operands. It evaluates the first
in boolean context and then evaluates to the second if the first yields a true value and to the third
otherwise. Yes, it is a shortcut for an if/else construct. Here’s a simpler example.
say $codon eq 'ATG' ? 'starting...' : 'continuing...';

There exist many different uses for the ternary conditional operator. Later, in “Character classes”,
p.135, we will see it in action to replace a cascade of elsif.

15.2 Writing portable code
15.2.1 LWP::Simple

When downloading files in the shell, we use wget (or curl). We could do the same in Perl with the
handy executing quoting operator (qx(...)) discussed in a box above.
my $gc_content = qx(wget ftp://ftp.ncbi.nih.gov/entrez/misc/data/gc.prt);

However, this would not be portable, which means that the system call could easily fail, for example
if run on an operating system where wget is not available. The recommended workaround for such
cases is to look on CPAN for a Perl module offering the same functionality.
This module exists and is called LWP::Simple. Not surprisingly, it exports the get function that does
exactly what we need. Moreover, it takes care of the numerous details that might cause trouble when
using the command-line wget.
use LWP::Simple 'get';

and later...
my $gc_content = get('ftp://ftp.ncbi.nih.gov/entrez/misc/data/gc.prt');

Denis BAURAIN / ULiège 122 Modern Perl for Biologists I | The Basics

CHAPTER 15. LOOKING AT THE NOVELTIES IN XXL_XLATE.PL

15.2.2 Path::Class

When gc.prt is locally available, we have to read it. Of course, we could open it and read it line by
line in a while loop, as we have explained in “open & close”, p.95. For our purposes, however, we
prefer to read it at once and to store all its content in a string variable. This form of file reading is
known as slurping the file and can be carried out using the following construct.

use Path::Class 'file';

my $gcfile = shift;

and later...
my $gc_content = file($gcfile)->slurp;

To completely understand this statement, you would need to know object-oriented Perl. For now, sim-
ply think of it as turning the $gcfile string into some kind of File object (using the exported file
function) that is then immediately slurped.

Slurping files is not the primary goal of the Path::Class CPANmodule. Instead, it has been written
to manipulate directory and file paths in a portable (i.e., system-independent) way. For example,
underWindows, thismodule builds paths using the backslash character (\) as the directory separator,
whereas it uses the forward slash character (/) on Linux and macOS.

my $outfile = file($dir, $basename . '_pep.fasta');

and later...
Writing output file: $outfile->stringify

Because of the object-orientation of the module and of the way Smart::Comments functions, we need
to use the stringify method to print the output file name built by Path::Class. In normal string
context, such as when opening a file, this stringification happens automatically.

open my $out, '>', $outfile;

15.2.3 File::Basename

The last CPAN module we discuss here automatically exports a function for parsing file paths into
their directory, file name and file suffix (also known as file extension). Again, it does that portably.

my ($basename, $dir) = fileparse($infile, qr{\.[^.]*}xms);

The fileparse function expects a file path and a (list of) pattern(s) describing the allowed suffix (or
suffices). Here, the pattern is a regular expression allowing for any suffix that starts with a dot (.) (see
“Regular expressions”, p.125 for details).

The function returns a list of three values corresponding to the file name, the directory and the suffix.
Since we only provide two variables for storing them, the last one (the suffix) is discarded. We then
use the other two values for building the output file name (as shown above).

my $outfile = file($dir, $basename . '_pep.fasta');

Denis BAURAIN / ULiège 123 Modern Perl for Biologists I | The Basics

CHAPTER 15. LOOKING AT THE NOVELTIES IN XXL_XLATE.PL

The code above assumes that the suffix of the output file name should be .fasta. By slightly modify-
ing the two previous lines, we can preserve the original suffix, whatever it is (e.g., .fasta, .fst).
my ($basename, $dir, $suffix) = fileparse($infile, qr{\.[^.]*}xms);
my $outfile = file($dir, $basename . '_pep' . $suffix);

Denis BAURAIN / ULiège 124 Modern Perl for Biologists I | The Basics

Chapter 16

Regular expressions

16.1 What are regular expressions?
Perl regular expressions are a sort of black magic. Actually, they are more like a language within the
language. This is whymastering their use is the quest of a lifetime. Here, I will only scratch the surface
and give some useful advices using examples from real-world bioinformatics. For a more complete
treatment, see the official Perl documentation:

• tutorial [http://perldoc.perl.org/perlretut.html]
• full documentation [http://perldoc.perl.org/perlre.html]
• quick reference [http://perldoc.perl.org/perlreref.html]

You can also consult the following books:

• Modern Perl by chromatic [http://modernperlbooks.com/books/modern_perl_2014/]
• Mastering Regular Expressions by Jeffrey Friedl (published by O’Reilly Media).

If you look at the latter book, you will realize that Perl-like regular expressions have spread to many
other languages (such as R or PHP) thanks to the PCRE librarywritten in C. Knowing them is thus a
serious asset that will prove useful in many situations. Even though, Perl still has the most powerful
regular expression engine of the known universe…

16.2 Defining regular expressions
Regular expressions are usually surrounded by a pair of forward slash characters (//). If you want
to store a regular expression (regexp or regex for short) in a variable (or pass it to a function; see
“Functions”, in the second part of this course), use the regex quoting operator (qr//). In the example
below, the ATG is called a pattern. It is even a literal pattern because it consists in a simple substring.

my $start_regex = qr/ATG/;

As for the quoting operators (q{} and qq{}), you can use any balanced pair of characters (or even a
single character) in place of the slashes (e.g., qr{}). This helps building regexes containing slashes.
Otherwise, you would need escaping them using the backslash character (\).

Denis BAURAIN / ULiège 125 Modern Perl for Biologists I | The Basics

http://perldoc.perl.org/perlretut.html
http://perldoc.perl.org/perlre.html
http://perldoc.perl.org/perlreref.html
http://modernperlbooks.com/books/modern_perl_2014/

CHAPTER 16. REGULAR EXPRESSIONS

my $web_regex = qr/http:\/\//; # hard way...
my $web_regex = qr{http://}; # better way!

This is very important. In the following, we will see that many characters have special meanings
within regexes. Remember to always escape such special characters when you intent to use them in
their literal meaning.

Stored regexes can be combined into larger regexes, which helps improving legibility. This can be
useful when using the alternation metacharacter (|) that allows a string to match either one pattern
or another pattern (or other patterns).

my $web_regex = qr{http://};
my $ftp_regex = qr{ftp://};
my $web_or_ftp_regex = qr{$web_regex|$ftp_regex};

16.3 Using regexes
To apply a regex to a string, use one of the twobinding operators (=~ and !~). These are infix operators
requiring the string to be analyzed as their left operand and the regex to be applied as their right
operand. In boolean context, the positive binding operator (=~) evaluates to a true value if the match
succeeds, whereas its negated form (!~) evaluates to a true value if the match does not succeed.

say 'web' if 'http://www.ncbi.nlm.nih.gov/' =~ $web_regex;
say 'not ftp' if 'http://www.ncbi.nlm.nih.gov/' !~ $ftp_regex;

gives:

web
not ftp

Of course, the string can be stored in a variable.

my $url = 'http://www.ncbi.nlm.nih.gov/';
say 'web' if $url =~ $web_regex;
say 'not ftp' if $url !~ $ftp_regex;

The regex can be used either in a simple search or in a search and replace. Each operation is in principle
introduced by one of two circumfix operators (m// and s///, respectively). In their absence, a simple
search is performed. Thus, the examples above could have been written more explicitly as follows.

say 'web' if $url =~ m/$web_regex/;
say 'not ftp' if $url !~ m/$ftp_regex/;

When searching and replacing, the substitution operator (s/// or s{}{}) requires itself two operands:
a regex for the search part and a regular string (not a regex) for the replacement part.

my $url = 'http://www.ncbi.nlm.nih.gov/';
$url =~ s{$web_regex}{ftp://};
say $url;

gives:

ftp://www.ncbi.nlm.nih.gov/

Denis BAURAIN / ULiège 126 Modern Perl for Biologists I | The Basics

CHAPTER 16. REGULAR EXPRESSIONS

The table below lists the operators related to regexes. Note that the negative binding operator (!~)
should only be used with the search operator (m//). Don’t worry if you don’t know the last operator;
we will describe it in a few minutes.

Table 16.1: Operators for regular expressions

operation fixity operator
match infix =~

do not match infix !~
search circumfix m//

search and replace circumfix s///
transliterate circumfix tr/// or y///

Here’s a complete example. Save it as url_regexes.pl to play with it.

1 #!/usr/bin/env perl
2

3 use Modern::Perl '2011';
4

5 my $web_regex = qr{http://};
6 my $ftp_regex = qr{ftp://};
7

8 my $web_or_ftp_regex = qr{$web_regex|$ftp_regex};
9

10 my $url = 'http://www.ncbi.nlm.nih.gov/';
11 say $url;
12

13 say 'web' if $url =~ m/$web_regex/;
14 say 'ftp' if $url =~ m/$ftp_regex/;
15 say 'web or ftp' if $url =~ m/$web_or_ftp_regex/;
16

17 say 'not web' if $url !~ m/$web_regex/;
18 say 'not ftp' if $url !~ m/$ftp_regex/;
19 say 'nor web nor ftp' if $url !~ m/$web_or_ftp_regex/;
20

21 $url =~ s{$web_or_ftp_regex}{https://}; # change protocol
22 say $url;

16.4 When not to use regexes?
Regexes are extremely powerful yet expensive monsters. This means that they can slow down your
code if not carefully crafted. Moreover, there exist cases where they should not be used at all: searches
for literal patterns and single-character search and replace (known as transliteration).

Denis BAURAIN / ULiège 127 Modern Perl for Biologists I | The Basics

CHAPTER 16. REGULAR EXPRESSIONS

16.4.1 Literal searches: index
The searches shown in “Using regexes”, p.126, can be rewritten using the index builtin function. This
efficient function returns either the position of the first occurrence of the searched substring within
the string or -1 if the string does not contain the substring. Optionally, you can even specify a position
from where to begin the search.
my $url = 'http://www.ncbi.nlm.nih.gov/';
say 'web' unless index($url, 'http://') < 0;
say 'not ftp' if index($url, 'ftp://') < 0;

1 2
0123456789012345678901234567
http://www.ncbi.nlm.nih.gov/

say index($url, 'http://');
say index($url, 'ncbi');
say index($url, 'nih');
say index($url, 'n');
say index($url, 'n', 17);

gives:

web
not ftp
0
11
20
11
20

In the programming literature, the string to be searched through is called the haystack and the substring
to be searched for is called the needle. To find all occurrences of a given string (as in index.pl below),
one can use a while loop in which the position to start the search from is updated at every match.

1 #!/usr/bin/env perl
2

3 use Modern::Perl '2011';
4

5 die "Usage: $0 <haystack> <needle>" unless @ARGV == 2;
6

7 my $haystack = shift;
8 my $needle = shift;
9

10 say qq{Searching for "$needle" in "$haystack"...};
11

12 my $pos = 0;
13 while (($pos = index($haystack, $needle, $pos)) >= 0) {
14 say $pos++;
15 }

Denis BAURAIN / ULiège 128 Modern Perl for Biologists I | The Basics

CHAPTER 16. REGULAR EXPRESSIONS

BOX 18: When speed matters
To illustrate the efficiency of the index builtin function with respect to regexes, consider the
following two one-liners (see “Perl one-liners”, p.145 to learnmore). The goal is simply to reorder
the input file (names.dmp), so as to place all the lines that contain the string scientific name at
the end of the file (without messing with the other lines).
$ time perl -nle 'unless (index($_, "scientific name") == -1) { push @sns, $_ }

else { print } END{ print for @sns }' names.dmp > names.dmp.sort.index

real 0m2.552s
user 0m2.086s
sys 0m0.523s

$ time perl -nle 'if (m/scientific name/) { push @sns, $_ }
else { print } END{ print for @sns }' names.dmp > names.dmp.sort.regex

real 0m17.801s
user 0m5.942s
sys 0m8.998s

$ diff names.dmp.sort.index names.dmp.sort.regex

While the two output files are identical, the index-based solution has run about 7 times faster
than the approach using regexes. Moreover, observe how one can split a long one-liner over
multiple lines without having to introduce a backslash character (\).

16.4.2 Transliteration: tr///
You might be tempted to use regexes for searching and replacing single characters. Consider the
following example where we manipulate gap symbols in a DNA sequence.

let's have a gapped sequence
my $seq = '-ACGT--GATG-AGT-AGCTGC-';
say $seq;

replace all hyphens by stars
$seq =~ s/\-/*/;
say $seq;

oups... replace all hyphens!
$seq =~ s/\-/*/g;
say $seq;

remove all stars
$seq =~ s/*//g;
say $seq;

Denis BAURAIN / ULiège 129 Modern Perl for Biologists I | The Basics

CHAPTER 16. REGULAR EXPRESSIONS

gives:

-ACGT--GATG-AGT-AGCTGC-
*ACGT--GATG-AGT-AGCTGC-
*ACGT**GATG*AGT*AGCTGC*
ACGTGATGAGTAGCTGC

Since the first operand of the s/// operator is a regex, we need to escape the special characters that
appear within it. Furthermore, we want to convert all hyphens, which requires enabling the global-
search modewith the corresponding regex modifier (/g).

However, these operations would benefit from using the transliteration operator (tr/// or y/// or
tr{}{} or y{}{}). This operator does not use regexes but is much faster while still powerful.

let's have a gapped sequence
my $seq = '-ACGT--GATG-AGT-AGCTGC-';
say $seq;

replace all hyphens by stars
$seq =~ tr/-/*/;
say $seq;

degap sequence
$seq =~ tr/*//d;
say $seq;

gives:

-ACGT--GATG-AGT-AGCTGC-
*ACGT**GATG*AGT*AGCTGC*
ACGTGATGAGTAGCTGC

Have you noticed that we did escape special characters nor enable the global-search mode? Instead,
we used the /d transliteration option to delete all matching chars in the second transformation.

This is certainly nice but transliteration can do much more… Remember our tool for reverse comple-
menting a DNA sequence? Type in this new and much shorter version, save it as rev_comp_tr.pl
and try it in your terminal.

1 #!/usr/bin/env perl
2

3 use Modern::Perl '2011';
4

5 die "Usage: $0 <dna-string>" unless @ARGV == 1;
6

7 my $dna_string = shift;
8

9 say $dna_string;
10 say scalar reverse $dna_string =~ tr/ACGTacgt/TGCAtgca/r;

As you can see, transliteration actually uses a search list and a corresponding replacement list, which
advantageously replaces a dictionary hash for single-character mappings.

Denis BAURAIN / ULiège 130 Modern Perl for Biologists I | The Basics

CHAPTER 16. REGULAR EXPRESSIONS

If the characters follow each other in the lexical order, simply list the first and last ones separated by
a hyphen character (-) to indicate that you want a character range.
my $number = 987.123;
$number =~ tr/0-9/A-J/;
say $number;

stupidly gives:

JIH.BCD

Note that $numberwasfirst coerced to a string prior to transliteration. Perl performs automatic coercion
based on the value context. This means that a given variable can change its type (e.g., from number
to string or the other way around) depending on the last operation that was applied to it.
Finally, the /r option tells Perl that we do not want to alter the original string. This has the effect of
returning the transliterated string. Otherwise, tr/// returns the number of characters that have been
effectively replaced in the string. Combined with the automatic replication of the search list when the
replacement list is omitted, this behavior is useful for counting specific characters.
To see it in action, type in and save the short program below as gc_content.pl (gc for GC content).
The latter file should not to be confused with the variable $gc_content (for genetic code file content)
used in xxl_xlate.pl! Sorry for the deceptively similar names.

1 #!/usr/bin/env perl
2

3 use Modern::Perl '2011';
4

5 die "Usage: $0 <dna-string>" unless @ARGV == 1;
6

7 my $dna_string = shift;
8 my $len = length $dna_string;
9 my $gc_count = $dna_string =~ tr/GCgc//;
10 my $gc_content = 100.0 * $gc_count / $len;
11

12 say "DNA: $dna_string";
13 say "len: $len";
14 say "#GC: $gc_count";
15 say "%GC: $gc_content";

The table below lists all the options that are available when transliterating strings. You can explore
the uses of /c and /s for yourself.

Table 16.2: Options for the transliteration operator

option meaning
/c complement the search list (find anything except these characters)
/d delete found but unreplaced characters
/s squash duplicate replaced characters (reduce them to one)
/r return the modified string and leave the original string untouched

Denis BAURAIN / ULiège 131 Modern Perl for Biologists I | The Basics

CHAPTER 16. REGULAR EXPRESSIONS

BOX 19: scalar reverse

Before printing the complemented string in rev_comp_tr.pl, we need to reverse it. We achieve
that without using a temporary array thanks to the construct scalar reverse, which reverses
the characters of a string.
Note that we force scalar context because, by default, the reverse builtin function reverses the
values of a list. In our case, the list has only one value: the transliterated string. Reversing it in
a list context would thus not change anything!
my $protein = 'HELLWRLD';
say reverse $protein;
say scalar reverse $protein;

my @proteins = qw(HELL WRLD);
say reverse @proteins;

gives:

HELLWRLD
DLRWLLEH
WRLDHELL

You might be surprised by the fact that the last line does not insert a space between the two pro-
tein sequences. This is so because we don’t use a join. Instead, we directly pass a list of strings
to say, which reacts by printing each of them in turn followed by a single newline character (\n).
There is no variable interpolation here and thus no use of the list separator ($"). Note that print
would act the same except for the newline.

16.5 Anchors
When searching for literal patterns, longer words that include the searched word (known as super-
words) are a common issue. They are particularly dangerous in the case of numeric or semi-numeric
(sequence) identifiers for which smaller numbers are substrings of larger numbers (seq1, seq2, seq3,
… seq10, seq11, … seq20, seq21…). This problem crops up very easily when using the grep com-
mand directly in the shell.

very dangerous
$ grep seq2 seqs.fasta

Here’s the same example in Perl.

build a series of fake seq ids
my @ids;
for my $i (1..25) {

push @ids, "seq$i unknown protein";
}
@ids

Denis BAURAIN / ULiège 132 Modern Perl for Biologists I | The Basics

CHAPTER 16. REGULAR EXPRESSIONS

look for seq2
for my $id (@ids) {

say "found seq2: $id" unless index($id, 'seq2') < 0;
}

gives:

@ids: [
'seq1 unknown protein',
'seq2 unknown protein',
'seq3 unknown protein',

...
'seq23 unknown protein',
'seq24 unknown protein',
'seq25 unknown protein',

found seq2: seq2 unknown protein
found seq2: seq20 unknown protein
found seq2: seq21 unknown protein
found seq2: seq22 unknown protein
found seq2: seq23 unknown protein
found seq2: seq24 unknown protein
found seq2: seq25 unknown protein

Ouch! Simply using a regex instead of the index function does not help.
look for seq2
for my $id (@ids) {

say "found seq2: $id" if $id =~ m/seq2/;
}

gives:

found seq2: seq2 unknown protein
found seq2: seq20 unknown protein
...

To avoid matching superwords, we need to use theword boundary anchor (\b) that forces the match
to occur at the beginning or at the end of a word (i.e., either between \w and \W or between \W and \w;
see “Metacharacters”, p.136, for details). A negated anchor also exists (\B), which matches anywhere
except at a word boundary (i.e., either between \w and \w or \W and \W).
for my $id (@ids) {

say "found seq2: $id" if $id =~ m/\bseq2\b/;
}

gives:

found seq2: seq2 unknown protein

When processing text files, two useful anchors (^ and $) allow us to match at the beginning or at the
end of the current line.

Denis BAURAIN / ULiège 133 Modern Perl for Biologists I | The Basics

CHAPTER 16. REGULAR EXPRESSIONS

while (my $line = <$in>) {
chomp $line;

if ($line =~ m/^>/) {
process FASTA id
...

}

remaining of our FASTA file reader
...

}

The following table summarizes the anchors described so far.

Table 16.3: Common anchors in regular expressions

meaning with /m without /m
word boundary \b \b

except word boundary \B \B
line start ^
line end $

string start \A \A or ^
string end \z \z or $

BOX 20: Line anchors vs. string anchors
Strictly speaking, ^ and $ respectively mean the beginning and the end of the string, which does
not make a difference since we deal with the file line by line. However, this behavior can become
very confusing when working with strings containing newline characters (\n).
To force these anchors to match at the beginning and at the end of each line, use the /m regex
modifier enabling themulti-line mode.
#!/usr/bin/env perl

use Modern::Perl '2011';

my $exons = <<'EOT';
CTTCTTTGGCGTCTTGATCAT
ATGCATGAACTTCTTTGGCGTCTTGAT
CATGAACTTCTTTGGCGT
CTTTGGCGTCTTGATCATGAA
EOT

say '[^] found one starting exon' if $exons =~ m/^ATG/;
say '[^/m] found one starting exon' if $exons =~ m/^ATG/m;

Denis BAURAIN / ULiège 134 Modern Perl for Biologists I | The Basics

CHAPTER 16. REGULAR EXPRESSIONS

gives:

[^/m] found one starting exon

If youwant to match the absolute beginning and end of the string, independently of the /m regex
modifier, use \A and \z anchors, respectively.
#!/usr/bin/env perl

use Modern::Perl '2011';

my $protein = <<'EOT';
mlqtapmlpglgphlvpqlgalasasrllgsiasvppqhggagfqavrgf
atgavstpaasspghkpaathapptrldlkpgagsfaagavaphpginpa
rmaadsasaaagasgdaalaesymahpaysdeyvesvrpthvtpqklhqh
vglrtiqvfrylfdkatgytptgsmteaqwlrrmifletvagcpgmvagm
lrhlkslrsmsrdrgwihtlleeaenermhlitflqlrqpgpaframvil
aqgvffnayfiayllsprtchafvgfleeeavktythalveidagrlwkd
tpappvavqywglkpganmrdlilavradeachahvnhtlsqlnpstdan
pfatgasqlp
EOT

say '[\A] full-length protein' if $protein =~ m/\Am/i;
say '[\A/m] full-length protein' if $protein =~ m/\Am/mi;

my $fragment = <<'EOT';
asrllgsiasvppqhggagfqavrgfatgavstpaasspghkpaathapp
trldlkpgagsfaagavaphpginparmaadsasaaagasgdaalaesym
ahpaysdeyvesvrpthvtpqklhqhvglrtiqvfrylfdkatgytptgs
mteaqwlrrmifletvagcpgmvagmlrhlkslrsmsrdrgwihtlleea
enermhlitflqlrqpgpaframvilaqgvffnayfiayllsprtchafv
EOT

say '[\A] full-length fragment' if $fragment =~ m/\Am/i;
say '[\A/m] full-length fragment' if $fragment =~ m/\Am/mi;

gives:

[\A] full-length protein
[\A/m] full-length protein

In the last code chunk, we used the /i regex modifier to enable case-insensitive mode. This
means that the pattern /m/matches both "M" and "m". (All these M’s are confusing!)

16.6 Character classes
When several different characters are allowed at a position, you can define a character class by list-
ing them between a pair of square bracket characters ([and]). If it is more convenient to list the
disallowed characters, use the caret character (^) at the beginning of the class to negate its content.

Denis BAURAIN / ULiège 135 Modern Perl for Biologists I | The Basics

CHAPTER 16. REGULAR EXPRESSIONS

1 #!/usr/bin/env perl
2

3 use Modern::Perl '2011';
4

5 my @seqs = qw(
6 HELLWRLDHELLWRLDHELLWRLD
7 caugaacuucuuuggcgucuugau
8 catraacttntttggcgtsttgat
9 catgaacttctttggcgtcttgat
10);
11

12 my $prot_like = qr/[EFILPQ]/i;
13 my $rna_like = qr/[U]/i;
14 my $bad_dna_like = qr/[^ACGT]/i;
15

16 for my $seq (@seqs) {
17 say "$seq looks like "
18 . ($seq =~ $prot_like ? 'a protein'
19 : $seq =~ $rna_like ? 'RNA'
20 : $seq =~ $bad_dna_like ? 'bad DNA'
21 : 'DNA')
22 ;
23 }

gives:

HELLWRLDHELLWRLDHELLWRLD looks like a protein
caugaacuucuuuggcgucuugau looks like RNA
catraacttntttggcgtsttgat looks like bad DNA
catgaacttctttggcgtcttgat looks like DNA

Note how we used the ternary conditional operator (?:) as a concise way to handle an alternative
with more than two options. If you use it, pay attention to code formatting for maximum legibility.

You can also use character ranges for defining classes.

my $decimal_digit = qr/[0-9]/;
my $hexadec_digit = qr/[0-9A-F]/i;

There exist placement rules for specifying true hyphens (-) and carets (^) in character classes, but it is
both easier andmore robust to escape themwith a backslash character (\), as for any special character
you need to use literally.

my $sci_num_chunk = qr/[\+\-\.0-9E]/i;

16.7 Metacharacters
Common character classes are specified using shortcuts known asmetacharacters. Most of them also
exist in a negated form (uppercase metacharacter) that implies a caret character (^) before the corre-
sponding characters.

Denis BAURAIN / ULiège 136 Modern Perl for Biologists I | The Basics

CHAPTER 16. REGULAR EXPRESSIONS

Be careful that these classes are locale-aware and Unicode-aware. This means that matching charac-
ters are likely more numerous than those of the character classes shown in the following table. How-
ever, this is not very important for bioinformatics applications.

Table 16.4: Common character classes in regular expressions

meaning char class metachar negated
word [A-Za-z0-9_] \w \W
digit [0-9] \d \D

whitespace [\ \t\n] \s \S
anything* [^\n] .

(*) As you can see from the character class above, the dot metacharacter (.) does not really match
anything because it does not match the newline character (\n). If you want it to really match anything
(including the newline), use the /s regex modifier enabling the single-line mode.

16.8 Quantifiers
So far, we have not used any regex quantifier, which implied that the components of our patterns
had to appear exactly once, in the order dictated by the regex. In most cases, however, quantifiers are
needed for specifying how often a regex component may appear in the matching string. For example,
to check whether some strings are numbers, we might do the following.

1 #!/usr/bin/env perl
2

3 use Modern::Perl '2011';
4

5 my $sci_num_chunk = qr/[\+\-\.0-9E]/i;
6 my $num_like = qr/\A$sci_num_chunk+\z/;
7

8 for my $value (qw(0 13 +6 -70 5.8 5e-2 -2.45e8 FF 527ex)) {
9 say "$value\tlooks like a number" if $value =~ $num_like;
10 }

gives:

0 looks like a number
13 looks like a number
+6 looks like a number
-70 looks like a number
5.8 looks like a number
5e-2 looks like a number
-2.45e8 looks like a number

Thisworks by requiring our pattern tomatch thewhole string (using \A and \z anchors) and the string
to be exclusively composed of one or more characters (using the + quantifier) that are allowed in a
scientific number (using the character class [\+\-\.0-9E]). Finally, we enable case-insensitive mode
(using the /i regex modifier) for allowing both lower- and uppercase exponents (e and E).

Denis BAURAIN / ULiège 137 Modern Perl for Biologists I | The Basics

CHAPTER 16. REGULAR EXPRESSIONS

Even if it looks great it is not… because we should never reinvent the wheel! In this particular
case, Perl has an internal function for testing whether a string looks like a number. It is exported
from the Scalar::Util module (found in the standard Perl distribution) and is aptly called
looks_like_number. Thus, we should have used it instead.
use Scalar::Util qw(looks_like_number);

for my $value (...) {
say "$value\tlooks like a number" if looks_like_number $value;

}

Other commonquantifiers are zero or one (?) and zero ormore (*). The zeromeans that the component
is optional but can appear once or more than once, respectively. Hence, check_overlap.pl uses the
following expression to skip empty lines, i.e., consisting of zero or more whitespace characters.
next LINE if $line =~ m/^ \s* $/xms; # skip empty lines

The extended-legibility mode enabled by the (/x) regex modifier allows us to embed whitespace
characters and comment characters in our regexes to make them more readable. Here’s an example
from one of my own modules.
my $ncbi_pkey = qr/

\A
[1-9] # a number
\d* # ... but not beginning by zero
\z

/xms;

Of course, true spaces and comment characters have to be escapedwith a backslash character (\) when
using the /x regex modifier. This is often overlooked.
next LINE if $line =~ m/^ \#/xms; # skip comment lines

The table below summarizes the available quantifiers. The four last ones allow you to bemore specific
with respect to the number of times a given component shouldmatch. Use themwisely…Don’t worry
about the greedy stuff: I explain it in the box below.

Table 16.5: Quantifiers in regular expressions

meaning greedy non-greedy
zero or one ? ??
one or more + +?
zero or more * *?
exactly n {n} {n}?
at least n {n,} {n,}?
at mostm {,m} {,m}?

between n andm {n,m} {n,m}?

Denis BAURAIN / ULiège 138 Modern Perl for Biologists I | The Basics

CHAPTER 16. REGULAR EXPRESSIONS

1 #!/usr/bin/env perl
2

3 use Modern::Perl '2011';
4

5 my $ensembl1 = qr/\A [A-Z]{4} \d{11} \z/xms;
6 my $ensembl2 = qr/\A [A-Z]{4,7} \d{11} \z/xms;
7 my $ensembl3 = qr/\A [A-Z]+ \d{11} \z/xms;
8 my $ensembl4 = qr/\A [A-Z]+ \d+ \z/xms;
9 my $ensembl5 = qr/\A ENS[A-Z]*G \d+ \z/xms;
10

11 my $human_rps2_ens = 'ENSG00000140988';
12 my $mouse_rps2_ens = 'ENSMUSG00000095406';
13 my $human_rps2_ncbi = 'P15880';
14

15 for my $id ($human_rps2_ens, $mouse_rps2_ens, $human_rps2_ncbi) {
16 say "{4} {11} found ENSEMBL ID: $id" if $id =~ $ensembl1;
17 say "{4,7} {11} found ENSEMBL ID: $id" if $id =~ $ensembl2;
18 say " + {11} found ENSEMBL ID: $id" if $id =~ $ensembl3;
19 say " + + found ENSEMBL ID: $id" if $id =~ $ensembl4;
20 say " careful found ENSEMBL ID: $id" if $id =~ $ensembl5;
21 }

gives:

{4} {11} found ENSEMBL ID: ENSG00000140988
{4,7} {11} found ENSEMBL ID: ENSG00000140988
+ {11} found ENSEMBL ID: ENSG00000140988
+ + found ENSEMBL ID: ENSG00000140988
careful found ENSEMBL ID: ENSG00000140988

{4,7} {11} found ENSEMBL ID: ENSMUSG00000095406
+ {11} found ENSEMBL ID: ENSMUSG00000095406
+ + found ENSEMBL ID: ENSMUSG00000095406
careful found ENSEMBL ID: ENSMUSG00000095406
+ + found ENSEMBL ID: P15880

16.9 Capturing groups
When processing the content of the gc.prt file in xxl_xlate.pl, we used a number of capturing
groups. To understand how they work, let’s first remind you the NCBI definition of a genetic code.

name "Standard" ,
name "SGC0" ,
id 1 ,
ncbieaa "FFLLSSSSYY**CC*WLLLLPPPPHHQQRRRRIIIMTTTTNNKKSSRRVVVVAAAADDEEGGGG",
sncbieaa "---M---------------M---------------M----------------------------"
-- Base1 TTTTTTTTTTTTTTTTCCCCCCCCCCCCCCCCAAAAAAAAAAAAAAAAGGGGGGGGGGGGGGGG
-- Base2 TTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGG
-- Base3 TCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAG

Denis BAURAIN / ULiège 139 Modern Perl for Biologists I | The Basics

CHAPTER 16. REGULAR EXPRESSIONS

Capturing groups are specified by enclosing some components of the regex between one ormore pairs
of parenthesis characters ((and)). If the regexmatches, the corresponding part(s) of the string is (are)
returned as a list. Otherwise, the regex engine returns undef.

my ($id) = $code =~ m/ id \s* (\d+) /xms;

and later...

my ($aa) = $code =~ m/ ncbieaa \s* \"(.*?)\" /xms;
my ($b1) = $code =~ m/ Base1 \s* ([TACG]+) /xms;
my ($b2) = $code =~ m/ Base2 \s* ([TACG]+) /xms;
my ($b3) = $code =~ m/ Base3 \s* ([TACG]+) /xms;

Since it is a list, we need to use list context for storing the returned text chunks. Indeed, in scalar
context, the list would evaluate to its number of values. That is why we use parentheses around the
variables thatwill store the various pieces of data. Forgetting these context-enabling parentheses often
results in horrible headaches, especially when the first thing to capture is a plain number.

As an illustration, consider the following code… The captured value for $id, which must be a NCBI
genetic code identifier, would appear correct at first sight. However, it is not and 1 actually corre-
sponds to the number of captured matches (one). In contrast, $aa clearly looks incorrect, since we
expect a long string of amino acids. We would thus easily notice that something went wrong.

my $id = $code =~ m/ id \s* (\d+) /xms; # buggy...
$id
my $aa = $code =~ m/ ncbieaa \s* \"(.*?)\" /xms; # buggy...
$aa

gives:

$id: 1
$aa: 1

By using a single capturing group in conjunction with the /g regex modifier enabling global-search
mode, we can ask the regex engine to return all matches at once. That is what we do to extract all
codes (each one delimited by a pair of curly braces) at once from the gc.prt file.

my @codes = $gc_content =~ m/ \{ ([^{}]+) \} /xmsg;

The above statement for sure packs a lot of power. You may think of it like a split on steroids that
yields a list of multi-line strings. Didn’t I tell you that regexes were almighty!

By the way, split itself actually uses regexes. Hence, in check_overlap.pl, we split the lines of the
input file on any amount (one or more) of whitespace characters.

my @coords = split /\s+/xms, $line;

Note that there exist two other ways of accessing the captured substrings. These are the numbered
captures and the more recent named captures. The first ones are quite handy for use in branching
directives, even if slightly less legible and sometimes ambiguous.

Denis BAURAIN / ULiège 140 Modern Perl for Biologists I | The Basics

CHAPTER 16. REGULAR EXPRESSIONS

BOX 21: Greedy vs. non-greedy quantifiers
By default, quantifiers are greedy, meaning that they try to match as many characters as they can.
This can be an issue with non-specific patterns like /.*/ that will match anything in the string.
A quick-and-dirty fix that works most of the time is to append the non-greedy quantifier (?) to
the greedy quantifier to reduce its greediness! In the presence of this non-greedy quantifier, the
regex engine instead tries to match as few characters as possible.
As an example, the line capturing the amino acids uses a non-greedy quantifier (.*?). Observe
how removing it affects the way the regex matches.
my ($aa) = $code =~ m/ ncbieaa \s* \"(.*?)\" /xms; # non-greedy
$aa

my ($aa) = $code =~ m/ ncbieaa \s* \"(.*)\" /xms; # greedy and buggy
$aa

gives:

$aa: 'FFLLSSSSYY**CC*WLLLLPPPPHHQQRRRRIIIMTTTTNNKKSSRRVVVVAAAADDEEGGGG'

$aa: 'FFLLSSSSYY**CC*WLLLLPPPPHHQQRRRRIIIMTTTTNNKKSSRRVVVVAAAADDEEGGGG",
sncbieaa "---M---------------M---------------M----------------------------'

Here’s a variant of the loop in our FASTA file reader. We extract the sequence identifier from the
definition line using a numbered capture. If the regex does not match, the variable $1 is set to undef.

LINE:
while (my $line = <$in>) {

chomp $line;

at each '>' char...
if ($line =~ m/^ >(.*)/xms) {

add current seq to hash (if any)
if ($seq) {

$seq_for{$seq_id} = $seq;
$seq = q{};

}

extract new seq_id
$seq_id = $1;
next LINE;

}

elongate current seq (seqs can be broken on several lines)
$seq .= $line;

}

Denis BAURAIN / ULiège 141 Modern Perl for Biologists I | The Basics

CHAPTER 16. REGULAR EXPRESSIONS

Multiple chunks can be captured in the order dictated by the successive pairs of parentheses through
the use of higher-rank numbered captures: $2, $3 etc. Imagine that we want to use only the first word
of the definition line as the identifier but also want to print the (optional) remainder of the line.

if ($line =~ m/^ >(\w+) \s* (.*)/xms) {
$seq_id = $1;
say "description for $seq_id is: $2" if $2;

}

16.10 Non-capturing groups
It sometimes happens that one needs to group several components of a regex but without wanting to
capture the match. For example, to allow for either of the components with the alternation metachar-
acter (|) or to make them optional as a whole using the ? quantifier. In these cases, you can use the
non-capturing sequence ((?:)). Here are two examples from my own modules to illustrate its use.

my $genus_only = qr/
\A # nothing before!
(?: ssp | spp | sp) # either ssp, spp or sp
\.? # optionally followed by a dot
\z # and nothing after!

/xms;

my $full_id = qr/
\A(?: # begins with...
($family) # optional family
-)? # followed by a literal dash
($genus) # genus
\s+ # whitespace
($species) # species
(?:_ # optional underscore
($strain))? # followed by strain
@ # literal '@'
($accession) # accession
\z # ... at the end

/xms;

Interestingly, when displaying regexes with Smart::Comments, these appear surrounded by one level
of non-capturing parentheses. This is how they are stored internally by Perl.

my $start_regex = qr/ATG/;
$start_regex

gives:

$start_regex: qr/(?^u:ATG)/

Denis BAURAIN / ULiège 142 Modern Perl for Biologists I | The Basics

CHAPTER 16. REGULAR EXPRESSIONS

16.11 Modifiers
We have already covered a number of regex modifiers that affect the way the regex engine deals with
the specified regex. The table below summarizes them. Others do exist but are less common.

Table 16.6: Common regular expression modifiers

modifier meaning
/g global-search mode (search-and-replace)
/i case-insensitive mode
/m multi-line mode (affecting the ^ and $ anchors)
/s single-line mode (affecting the . metacharacter)
/x extended-legibility mode (allowing for whitespace and comments)

Modern Perl programmers often enforce the rule that all regexes should bear the /xms regex modifiers for
maximum clarity and robustness. Do your best to respect it too.

Denis BAURAIN / ULiège 143 Modern Perl for Biologists I | The Basics

CHAPTER 16. REGULAR EXPRESSIONS

Denis BAURAIN / ULiège 144 Modern Perl for Biologists I | The Basics

Chapter 17

Perl one-liners

17.1 Forget sed and awk

When learning the UNIX command line, one often gets very enthusiastic about the text filtering ca-
pabilities of utilities such as grep, sort, join etc. This is perfectly justified since these programs are
invaluable tools in the toolbox of the bioinformatician.
However, as soon as you find yourself beginning to experiment with sed and awk, you should stop
and consider perl instead. There are two reasons for this:

1. Perl is much faster than chaining calls to these utilities using the pipe character (|).
2. Perl is also much more flexible.

In such quick-and-dirty applications, Perl is often used with one-liners, i.e., programs that are so short
that they fit on the command line. These single-use disposable code snippets make heavy use of id-
iomatic Perl constructs and default variables (see the second part of this course). They can thus be
very difficult to read. One-liners are specified by the -e switch of the perl interpreter.
$ perl -e 'print "There are " . 4**3 . " codons.\n"'

There are 64 codons.

17.2 -n and -l switches
Towrite one-liners, one has to understand that theymake different assumptions based on the presence
of different switches when invoking the perl interpreter. Two important ones are -n and -l.
The -n switch setups an implicit while loop reading either directly from the standard input stream or
from the input files specified as command-line arguments. Thus…
$ ls * | perl -ne 'print'

… is equivalent to running the code snippet below against each file name of the current directory (one
file name per line). If your directory contains sub-directories, their content will also be printed.
while (<>) {

print;
}

Denis BAURAIN / ULiège 145 Modern Perl for Biologists I | The Basics

CHAPTER 17. PERL ONE-LINERS

Similarly, the following command…

$ perl -ne 'print' infile1 infile2

… is semantically (albeit only approximately) equivalent to executing the following program andwill
print all the lines of the two specified files.

while (my $infile = shift) {
open $in, '<', $infile;
while (<$in>) {

print;
}

}

The -l switch enables line-ending processing. Thismeans that each line is automatically chomped and
that each print statement behaves like say, thus appending a newline character (\n) to the printed
string. In most cases, this switch is required for the robust operation of one-liners. That is why you
will often see one-liners of the form perl -nle '...'.

while (<>) {
chomp;
say;

}

17.3 The /e regex modifier
Here’s a one-liner that might be used to rename sequence identifiers in a FASTA file: each one of the
original identifiers will be replaced by seq1, seq2, seq3 and so on.

$ perl -nle 's/>.*/">seq" . ++$i /ge; print' infile.fasta > outfile.fasta

It uses a regular expression to substitute the original FASTA definition lines by new ones derived from
the counter $i. There are two tricks in this one-liner.

1. The evaluation mode enabled by the /e regex modifier forces the replacement string to be eval-
uated as a snippet of Perl code. Thus, each time the regex matches a definition line, the replace-
ment string is evaluated and its result used as the actual replacement string.

2. $i begins undefined. The first time perl sees it, it is prefixed by the auto-increment operator
(++). Since the latter imposes numeric context, perl first coerces it from undef to 0 and then
increments it to 1. Finally, it evaluates the concatenating expression to which it belongs and
uses the string >seq1 as the replacement part of the regex. Subsequent evaluations will result in
>seq2, >seq3 etc. Note that the incrementation only happens when perl finds a definition line
and not for each line of the infile.

If completely renaming the sequences seems a bit too brutal to you, consider the following two one-
liners. Can you predict what they do?

$ perl -nle 's/^>(.*)/">$1." . ++$seen{$1}/e; print' infile.fasta > outfile.fasta
$ perl -nle 's/>(.*)/ ++$seen{$1} > 1 ? ">$1." . $seen{$1} : ">$1"/e; print' ...

Denis BAURAIN / ULiège 146 Modern Perl for Biologists I | The Basics

CHAPTER 17. PERL ONE-LINERS

17.4 The -i switch
If you specify multiple files to a Perl one-liner, they retain their independence and can be processed
separately. This is extremely powerful when combined with the -i switch that enables in-place mod-
ification of the input files. Used alone, this switch is dangerous because it is easy to make a mistake
that will mangle your files in an unrecoverable way.

$ perl -i -nle '...' # dangerous; please avoid

To preserve the possibility of discarding undesired changes to a batch of files wrongly modified by a
too powerful one-liner, specify a file suffix to the -i switch. This suffix will be used to backup the files
before proceeding.

$ perl -i.bak -nle 's/>.*/">seq" . ++$i /ge; print' *.fasta

In case of mistake, simply overwrite the original files with the backup files to restore their previous
content. This can be done in two different ways.

from the point-of-view of the original files
$ for f in *.fasta; do mv -f $f.bak $f; done

from the point-of-view of the backup files
$ for f in *.bak; do mv -f $f `basename $f .bak`; done

17.5 The -a and -F switches
The very handy -a switch asks the perl interpreter to auto-split the input lines and to put the resulting
substrings in the default array @F. Columns are delimited by whitespace characters.

while (<>) {
chomp;
my @F = split ' ';
...

}

If you want to emulate the behavior of cut, which by default uses the tab character (\t) as its column
separator, add the -F switch. For example, wemight filter the content of our Ecoli_cds.usage output
file to print only those codons that are used in at least 60 percent of the cases.

$ perl -F"\t" -anle 'print if $F[4] >= 60.0' Ecoli_cds.usage

AAA 46021 K 60126 76.5
ATG 37917 M 37917 100.0
CAG 39498 Q 60503 65.3
GAA 54083 E 78482 68.9
GAT 43985 D 70121 62.7
TAA 2896 * 4653 62.2
TGG 20885 W 20885 100.0

Denis BAURAIN / ULiège 147 Modern Perl for Biologists I | The Basics

CHAPTER 17. PERL ONE-LINERS

As you may have guessed by now, this one-liner is equivalent to the following piece of code.
while (<>) {

chomp;
my @F = split "\t";
say if $F[4] >= 60.0;

}

17.6 The END code block
A last trick for one-liners involves using an END code block to perform a final operation after having
processed the content of an input file. This is useful for quickly computing a sum or a mean. Here’s
a one-liner computing the average codon usage frequency.
$ perl -F"\t" -anle 'next if m/^#/; $sum += $F[4]; $n++; END{ print $sum/$n }' \

Ecoli_cds.usage

32.8109375

The first statement skips the lines starting with a comment character (#). For every other line, the
frequency, which is stored in the fifth field ($F[4]), is extracted and cumulated in the $sum variable,
while the $n variable keeps track of the number of processed lines. Finally, the statement in the END
block computes and prints the average frequency.
In a regular script, an END code block is executed as late as possible, after perl has finished running
the program and just before the interpreter is being exited. It is executed even if the exit results from
a call to the die builtin function. You may have multiple END blocks within a file; they will execute in
reverse order of definition.

17.7 Envoi
Obviously the applications of Perl one-liners are infinite. Nevertheless, as soon as they begin to span
more than one or two lines, you should consider writing a real program instead.
As an example of such a conversion, below is the program version of the second one-liner meant
to rename duplicate sequences (rename_seqs.pl). It is noteworthy that a full program also makes
debugging easier thanks to Smart::Comments.
one-liner version
$ perl -nle 's/>(.*)/ ++$seen{$1} > 1 ? ">$1." . $seen{$1} : ">$1"/e; print' ...

program version

1 #!/usr/bin/env perl
2

3 use Modern::Perl '2011';
4 use autodie;
5

6 use Smart::Comments;
7

8 my %seen;

Denis BAURAIN / ULiège 148 Modern Perl for Biologists I | The Basics

CHAPTER 17. PERL ONE-LINERS

9

10 while (my $infile = shift) {
11 open my $in, '<', $infile;
12 open my $out, '>', "$infile.out";
13 while (my $line = <$in>) {
14 ### %seen
15 $line =~ s/^>(.*)/ ++$seen{$1} > 1 ? ">$1." . $seen{$1} : ">$1"/e;
16 print {$out} $line;
17 }
18 }

BOX 22: How to install cutting-edge or specialized software?
Ordinary Linux packagemanagers such as apt tend to be slow to adopt recent versions of rapidly
evolving software. This is the case for NCBI-BLAST+, for which the Ubuntu 18.04 repository
only provides version 2.6.0 (January 2017). In contrast, Ubuntu 20.04 comes with version 2.9.0
(April 2019), whereas the latest is 2.10.1 (September 2020). You can check that by yourself:
$ apt search ncbi-blast

Similarly, specialized bioinformatics applications (such as CAP3) are often missing from apt
repositories. To fix this problem once for all, you should install theHomebrew packagemanager.
The following instructions are for Linux, but conveniently Homebrew is also available (and was
actually first developed) for macOS. For more information, see: https://brew.sh/
install dependencies (if needed)
$ sudo apt install build-essential curl git ruby

install brew
$ URL=https://raw.githubusercontent.com/Linuxbrew/install/master/install.sh
$ sh -c "$(curl -fsSL $URL)"

setup brew (following the "Next steps" instructions)
$ echo 'eval $(/home/linuxbrew/.linuxbrew/bin/brew shellenv)' >> ~/.profile
$ eval $(/home/linuxbrew/.linuxbrew/bin/brew shellenv)

add repository for bioinformatics applications
$ brew tap brewsci/bio

After Homebrew is properly installed and configured, it becomes very easy to install new soft-
ware. Just use the brew command.
$ brew search blast
$ brew search cap3
$ brew install blast cap3

Denis BAURAIN / ULiège 149 Modern Perl for Biologists I | The Basics

https://brew.sh/

CHAPTER 17. PERL ONE-LINERS

Denis BAURAIN / ULiège 150 Modern Perl for Biologists I | The Basics

Homework

Number of segment pairs = 342; number of pairwise comparisons = 8
'+' means given segment; '-' means reverse complement

Overlaps Containments No. of Constraints Supporting Overlap

******************* Contig 1 ********************
gi|125991078+

gi|109775518+ is in gi|125991078+
******************* Contig 2 ********************
gi|125991053+
gi|109784559+
******************* Contig 3 ********************
gi|125991021-

gi|125991020+ is in gi|125991021-
gi|125989076+ is in gi|125991020+

******************* Contig 4 ********************
gi|125991014+
gi|109780664+
******************* Contig 5 ********************
gi|125991007+
gi|109778688-

gi|109773906+ is in gi|109778688-

DETAILED DISPLAY OF CONTIGS
******************* Contig 1 ********************

. : . : . : . : . : . :
gi|125991078+ CTGGACGAGCTGCAGGAGGAGGCGCTGGCGCTGGTGGCGCAGGCCCGACGAGAGGGCGAC

__
consensus CTGGACGAGCTGCAGGAGGAGGCGCTGGCGCTGGTGGCGCAGGCCCGACGAGAGGGCGAC

. : . : . : . : . : . :
gi|125991078+ ACGCCGGAAAAGACGCCCCGCGGGGAGAAGCACAACATGTTCCAGGACGCGGGCAAGCCC

__
consensus ACGCCGGAAAAGACGCCCCGCGGGGAGAAGCACAACATGTTCCAGGACGCGGGCAAGCCC

...

Denis BAURAIN / ULiège 151 Modern Perl for Biologists I | The Basics

CHAPTER 17. PERL ONE-LINERS

CAP3 is a famous bioinformatics program for assemblingDNA sequences into contigs. Upon running,
it writes out several files and displays its assembly to the screen. At the previous page is an excerpt
of a typical screen output of CAP3.
Your new assignment is to write a program (hw5_cap3_parser.pl) that parses this file and lists the
identifiers of the DNA fragments composing each contig (the expected output is shown just below).
Contig 1
- gi|125991078
- gi|109775518
Contig 2
- gi|125991053
- gi|109784559
Contig 3
- gi|125991021
- gi|125991020
- gi|125989076
Contig 4
- gi|125991014
- gi|109780664
Contig 5
- gi|125991007
- gi|109778688
- gi|109773906

Here, all ids are of the form gi|NNNNNNNNN, which can help you to write your regexes. Yet, if you do
this, your parser will not work with other id types. Therefore, try not to rely on this observation. In
contrast, you can safely assume that contigs will always be named Contig N or Contig NN etc.

Denis BAURAIN / ULiège 152 Modern Perl for Biologists I | The Basics

Index
abort, 63, 66, 70, 71
addition, 103
aliasing, 44
all, 79
alternation metacharacter, 126, 142
alternative, 63, 64, 102, 122, 136
amino acid, 41, 49, 81, 98, 105, 117, 140, 141
amount context, 21
anchor, 133, 137
and, 85
angle bracket characters, 61
arity, 84
array, 15, 17, 20, 21, 23, 27, 38, 42–44, 47, 62, 68, 72
assembly, 70
assignment, 21, 48
associative array, 16, 105
associativity, 83, 86
at sign character, 20
auto-decrement operator, 103
auto-increment operator, 103, 106, 146
auto-split, 147
autocompletion, 13
autodie, 96
autodocumentation, 14, 41, 98, 110
autovivification, 49
awk, 3, 145

backslash character, 38, 123, 125, 129, 136, 138
base system, 101
bash, 102
basic, 70
bbedit, 12
binary, 84
binary system, 101
binding operator, 126
block, 21, 45, 68, 73
block form, 62
boilerplate code, 37
boolean, 21, 45
boolean algebra, 85

boolean context, 47, 65, 68, 84, 85, 122, 126
boolean filter, 108
boolean flag, 72
branching directive, 57, 61–63, 70, 71, 73, 85, 140
break, 10
builtin function, 17, 23, 37, 38, 41, 43, 49, 66, 68, 73,

79–81, 95, 96, 98, 99, 110, 111, 121, 128

c, 3, 70
c-style, 43, 45, 47, 73
capturing group, 139
caret character, 135, 136
carriage return character, 81
case-insensitive mode, 135, 137, 143
case-sensitive, 13
character class, 135, 137
character range, 131, 136
cheat sheet, 6
chmod, 37
chomp, 81, 146
chop, 81
chromatic, 3, 4
circumfix, 84
circumfix operator, 126
close, 95
cobol, 70
code indentation, 12, 21, 72
code profiling, 45
codon, 41, 42, 45, 49, 66, 79, 80, 98, 105, 110, 117,

147
codon usage, 87, 102, 117, 148
coercion, 21, 131
colon character, 18, 72
command line, 25, 37, 61
command prompt character, 9
command-line argument, 25, 51, 61, 62, 122, 145
comment character, 9, 14, 98, 138, 148
comparison operator, 62, 84
compilation error, 23
concatenation operator, 39, 102

Denis BAURAIN / ULiège 153 Modern Perl for Biologists I | The Basics

INDEX

conceptual translation, 29, 33, 43, 48, 57, 61, 105,
113, 122

conditional comparison, 45–47, 61
conditional expression, 62, 66, 68, 72
conditional statement, 47
constant, 18
context, 20
continue, 73
control flow, 61, 70, 84
core, 17
counter, 75, 106, 146
cpan, 17, 31, 87, 113, 121–123
cpanm, 17
curl, 122
curly brace characters, 16, 21, 40, 62, 68, 98
cut, 147

data::dumper, 17
debug, 13, 17
decimal system, 101
default array, 25, 62, 147
default value, 49
defined, 49
defined-or operator, 48
definition line, 95, 141, 146
delimiter, 25, 67
devel::repl, 27
development version, 38
dictionary, 105, 122, 130
die, 66, 71
directive, 17
directory, 123
distribution, 17
division, 103
dna sequence, 11, 14, 29, 45, 107, 121, 129, 152
do not match, 127
do ... until, 71, 77
do ... while, 69
documentation, 17
dollar sign character, 20
dot metacharacter, 137
double angle bracket characters, 67
double quotes, 38–40, 67
double-quoted, 39, 67
dynamic scope, 21

each, 121
edsger w. dijkstra, 70

element, 15, 18, 23, 43, 44, 62, 68
else, 64
elsif, 65, 109, 122
empty list, 47, 122
empty string, 47
end, 148
end-of-file, 91
equality, 85
errno, 39
error message, 62, 65
escape, 126, 130, 136, 138
evaluation, 18, 45, 47, 62, 65, 68, 73, 83, 86, 104, 106,

122, 126, 140, 146
evaluation mode, 146
except word boundary, 134
exception, 70, 73
executable, 31, 37, 87
executing quoting operator, 64, 122
exists, 49
exit point, 72
exponentiation, 103
expression, 18, 41, 45, 47, 73, 84, 85, 95, 104, 146
extended-legibility mode, 138, 143

face-alternative, 63
false value, 45, 47, 65, 68, 96, 122
fasta, 95, 102, 105, 110, 121, 141, 146
file, 123
file extension, 123
file name, 95
file permissions, 101
file scope, 22, 99
file suffix, 12, 123, 147
filehandle reference, 95, 98
fileparse, 123
fix-and-proceed, 63, 71
fixity, 84
floating-point number, 101
for, 41, 43, 45, 47, 70, 73, 98
foreach, 43
foreach-style, 43, 68, 98
forward slash character, 123, 125
ftp server, 122
function, 18, 79, 95, 122, 123, 125

gc content, 131
geany, 12
gedit, 10, 12

Denis BAURAIN / ULiège 154 Modern Perl for Biologists I | The Basics

INDEX

gender, 20
genetic code, 29, 87, 122, 131, 139, 140
get, 122
global variable, 22
global-search mode, 130, 140, 143
goto, 70, 73
greater than, 85
greater than or equal to, 85
greedy quantifier, 141
grep, 132, 145
gunzip, 87

hard wrapping, 82
hash, 16, 17, 20, 21, 41, 47, 65, 79, 105, 109, 121, 122
hash iterator, 121, 122
header line, 98
heredoc syntax, 66
hexadecimal system, 101
homebrew, 149
hyphen character, 131

identifier, 15, 19, 67, 72, 105, 110, 132, 141
idiom, 62, 68, 98, 106
if, 62, 66, 70
if/else, 64, 70, 73, 122
importing, 79
in-place addition, 102
in-place division, 102
in-place modification, 147
in-place operator, 102
index, 15, 18, 23, 42, 128, 133
indexed data storage, 105
inequality, 85
infile, 80
infix, 84
infix operator, 84, 85, 126
initialization, 45
inner lexical scope, 21
input file, 80, 87, 91, 98, 140, 145, 147
input record separator, 81
integer, 102
integer arithmetic, 102
integer number, 101, 102
interpreter, 10, 20, 37, 45, 48, 61, 81, 145, 147, 148
interpreter directive, 37
iterator variable, 41, 44, 45, 47, 68, 110

join, 25, 38, 98, 132, 145

jump, 70

key, 16, 41, 65, 106
key/value pair, 16, 47, 48, 79, 106, 121
keys, 79, 110, 121
keyword, 17, 23, 43, 62, 64, 72
killer app, 11

larry wall, 3, 20
last, 72
lc, 43
length, 41
less than, 85
less than or equal to, 85
lexical order, 16, 84, 111, 117
lexical scope, 21, 45, 47, 95, 110
line continuation character, 87
line end, 134
line ending, 81
line start, 134
line-ending processing, 146
list, 15, 21, 23, 43, 44, 79, 84, 98, 108, 110, 121, 123,

132, 140
list assignment, 121
list context, 21, 80, 132, 140
list separator, 38, 132
list::allutils, 79
list::moreutils, 79
list::util, 79
listary, 84
literal, 18, 98, 136
literal meaning, 126
literal pattern, 125, 127, 132
literal string, 38
locale, 84, 137
logical operator, 85, 86, 122
looks_like_number, 138
loop, 14, 41, 43, 45, 47, 68, 70, 71, 98, 122, 128, 141,

145
loop body, 45, 47, 69
loop control, 73, 95
loop iteration, 43–45, 47, 68, 69, 73, 98, 110, 121
loop label, 72
looping directive, 61, 67, 70
lwp::simple, 122

magic number, 41
match, 127

Denis BAURAIN / ULiège 155 Modern Perl for Biologists I | The Basics

INDEX

max, 79
mesh, 79
metacharacter, 136
method, 123
modern perl, 3
modern::perl, 37, 48
module, 9, 13, 17, 23, 79, 122, 123, 138
modulo, 103
multi-line mode, 134, 143
multiplication, 103
my, 21

named capture, 140
nano, 82
negative binding operator, 127
nested block, 21
newline character, 38, 41, 49, 67, 81, 82, 98, 132,

134, 146
next, 73
niklaus wirth, 70
non-greedy quantifier, 141
not, 85
nullary, 84
number, 15, 20, 47, 87, 101, 131, 137, 140
numbered capture, 140
numeric, 21, 84
numeric context, 106, 146
numeric equality, 62
numeric inequality, 62
numeric operator, 103

object, 123
object-oriented programming, 4, 70, 71, 121, 123
occurrence, 106
octal system, 101
one or more, 137
one-liner, 27, 81, 145
one-liners, 129
open, 95, 96
opening mode, 95
operand, 84, 85, 102, 106, 122, 126
operator, 18, 83
or, 85
our scope, 21
outer lexical scope, 21
outfile, 98
output file, 91, 98, 123, 124, 147

parenthesis characters, 62, 68, 69, 83, 86, 98, 140
pascal, 70
path, 37, 67, 95, 123
path::class, 123
pattern, 123, 125, 137, 141
percent sign character, 20
perlbrew, 9, 37
perldoc, 17
pipe character, 145
placeholder, 61
pop, 23, 42
portable, 122, 123
positive binding operator, 126
postcircumfix, 84
postfix, 84, 104
postfix form, 66, 69
pragma, 23, 96, 102
precedence, 83, 86
prefix, 84, 104
prefix operator, 85
print, 38, 49, 98, 146
program name, 67
protein sequence, 29, 49, 132
punctuation form, 86
push, 23, 42
python, 17, 27

quoted word operator, 98
quoting characters, 38, 40
quoting operator, 40

rand, 80
range operator, 44
rbg color, 101
readline, 80
readline operator, 80, 91
redo, 73
regex, 125–127, 129, 133, 137, 140, 142, 143, 146
regex modifier, 130, 134, 137, 143, 146
regex quantifier, 137
regex quoting operator, 125
regular expression, 123, 125
repetition operator, 76
repl, 27
replacement list, 130
reply, 27
reverse, 132
reverse-complement, 11, 15, 45, 57, 105, 130, 132

Denis BAURAIN / ULiège 156 Modern Perl for Biologists I | The Basics

INDEX

say, 37, 49, 98, 146
scalar, 15, 20, 21, 38, 47, 48, 68
scalar context, 21, 62, 68, 79, 132, 140
scalar reverse, 132
scalar::util, 138
scope, 21
script, 37
search, 127, 128
search and replace, 127
search list, 130
search operator, 127
search-and-replace, 143
sed, 3, 145
semicolon character, 13, 14
separator, 25, 98, 123, 147
shebang character sequence, 37
shell, 3, 9, 102, 122, 132
shell redirection, 19, 80, 91
shift, 24, 42, 68
shuffle, 79
sigil, 20, 21
single quotes, 38, 40
single-line mode, 137, 143
single-quoted, 39, 67
sliding window, 45
slurp, 123
smart::comments, 17, 123, 142, 148
soft wrapping, 82
sort, 111, 145
special character, 38, 41, 126, 130, 136
special variable, 38, 39, 67, 81, 96
splice, 42
split, 25, 42, 45, 98, 140
sprintf, 98
square bracket characters, 15, 135
stable version, 38
stack, 23
standard error stream, 17, 61, 66
standard input stream, 80, 145
standard output stream, 19
statement, 14, 22, 61, 66, 122
stderr, 17, 19
stdout, 19, 64
string, 15, 21, 38, 47, 49, 66, 81, 84, 95, 98, 126, 128,

131, 137
string context, 123
string delimiters, 38

string end, 134
string start, 134
string variable, 123
stringification, 123
stringify, 123
substitution operator, 126
substr, 41, 45
substring, 25, 125, 132, 147
subtraction, 103
superwords, 132
switch table, 65, 102, 109
symbol character, 83
symbolic link, 87
syntax error, 13
syntax highlighting, 12
system call, 64

tab character, 38, 98, 147
tabular file, 98
ternary, 84
ternary conditional operator, 122, 136
text editor, 10, 12, 29, 82
tie::ixhash, 121
tied object, 121
timtowtdi, 4, 62
topic variable, 145
transliterate, 127
transliteration, 127
transliteration operator, 130
transliteration option, 130
true value, 45, 47, 62, 68, 122, 126

uc, 43
unary, 84
undef, 47–49, 65, 68, 106, 140, 141, 146
underscore character, 19
unicode, 137
unicode strings, 40
uniq, 79
unless, 62, 66, 70
unshift, 24, 42
until, 70
usage message, 61, 62, 67
use, 13, 17, 50, 96
utf8 encoding, 40

value, 16, 18, 41, 44, 65, 98, 101, 106, 121, 132, 140
value context, 21, 47, 84, 131

Denis BAURAIN / ULiège 157 Modern Perl for Biologists I | The Basics

INDEX

values, 110, 121
variable, 15, 17, 18, 38, 48, 66, 95, 98, 99, 103, 121,

125, 131, 140
variable declaration, 15, 21, 23, 41, 45, 47, 106, 122
variable definition, 15, 40, 41, 45, 47, 66, 122
variable interpolation, 38, 39, 67, 132
version number, 10
void, 21

warning, 23
warnings, 48
wget, 122
while, 68, 70, 71, 122, 128, 145
whitespace character, 98, 138, 140, 147
word boundary, 134
word boundary anchor, 133
word form, 86
write permission, 98

zero or more, 138
zero or one, 138

Denis BAURAIN / ULiège 158 Modern Perl for Biologists I | The Basics

	Acknowledgment
	How to read this course?
	I Lesson 1
	Introduction
	What is Perl?
	What is Modern Perl?
	Why for biologists?
	Covered topics
	Homework guidelines
	Perl Cheat Sheet

	Before beginning
	The need for a sandbox
	How to install our sandbox?

	First steps in Perl
	Motivation
	Our first killer app
	How to make our own rev_comp?
	How to document our program?
	Perl variables
	How to see what's going on?
	A closer look to our killer app
	Basic Perl syntax
	Names
	Sigils
	Context
	Scope
	strict and warnings pragmas

	List builtin functions
	push & pop
	unshift & shift
	split & join

	Digging deeper into Perl
	Another killer app
	The code for our own translate

	Homework

	II Lesson 2
	Looking at the novelties in translate.pl
	Shebang line
	Modern::Perl
	Perl values: Strings
	Defining and concatenating strings
	Alternate quoting operators

	String builtin functions
	length
	substr
	uc & lc

	The for loop
	foreach-style for loop
	C-style for loop

	Boolean expressions
	Perl's vision of truth
	The undef value
	Logical defined-or operator

	The say builtin function

	Batch vs. interactive programs
	Acquiring user input
	How to improve our killer app?
	Let's make our first game!

	Homework

	III Lesson 3
	Becoming a control freak
	Control flow in Perl
	Branching directives
	if & unless
	else & elsif
	die and the postfix form
	Interlude—defining multiline strings with the heredoc syntax

	Looping directives
	The while loop and its variants
	Loop control directives

	Other novelties in codon_quizz.pl
	keys & shuffle
	Reading from the standard input stream
	The readline operator
	Line endings

	A first look at operators
	What are operators?
	Comparison operators
	Logical operators
	Operator precedence and associativity

	Using Perl to compute some stats
	A killer app with a fast bite
	The code for our own codon_usage

	Homework

	IV Lesson 4
	Input/output in Perl
	Reading files
	FASTA format
	open & close
	autodie and $!

	Writing files

	A first look at mathematics in Perl
	Perl values: Numbers
	Numeric and in-place operators

	More on hashes
	Hash uses
	values & sort and reuse of variable names

	Towards more complex programs
	A production-grade translation tool

	Homework

	V Lesson 5
	Looking at the novelties in xxl_xlate.pl
	Would you like some syntactic sugar?
	Ordered hashes: Tie::IxHash
	each and list assignment
	The ternary conditional operator

	Writing portable code
	LWP::Simple
	Path::Class
	File::Basename

	Regular expressions
	What are regular expressions?
	Defining regular expressions
	Using regexes
	When not to use regexes?
	Literal searches: index
	Transliteration: tr///

	Anchors
	Character classes
	Metacharacters
	Quantifiers
	Capturing groups
	Non-capturing groups
	Modifiers

	Perl one-liners
	Forget sed and awk
	-n and -l switches
	The /e regex modifier
	The -i switch
	The -a and -F switches
	The END code block
	Envoi

	Homework

	Index

