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Abstract
The inbreeding coefficient (F) of individuals can be estimated from molecular marker 
data, such as SNPs, using measures of homozygosity of individual markers or runs of 
homozygosity (ROH) across the genome. These different measures of F can then be 
used to estimate the rate of inbreeding depression (ID) for quantitative traits. Some 
recent simulation studies have investigated the accuracy of this estimation with con-
tradictory results. Whereas some studies suggest that estimates of inbreeding from 
ROH account more accurately for ID, others suggest that inbreeding measures from 
SNP-by-SNP homozygosity giving a large weight to rare alleles are more accurate. 
Here, we try to give more light on this issue by carrying out a set of computer simu-
lations considering a range of population genetic parameters and population sizes. 
Our results show that the previous studies are indeed not contradictory. In popu-
lations with low effective size, where relationships are more tight and selection is 
relatively less intense, F measures based on ROH provide very accurate estimates of 
ID whereas SNP-by-SNP-based F measures with high weight to rare alleles can show 
substantial upwardly biased estimates of ID. However, in populations of large effec-
tive size, with more intense selection and trait allele frequencies expected to be low 
if they are deleterious for fitness because of purifying selection, average estimates of 
ID from SNP-by-SNP-based F values become unbiased or slightly downwardly biased 
and those from ROH-based F values become slightly downwardly biased. The noise 
attached to all these estimates, nevertheless, can be very high in large-sized popula-
tions. We also investigate the relationship between the different F measures and 
the homozygous mutation load, which has been suggested as a proxy of inbreeding 
depression.
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1  | INTRODUC TION

Inbreeding depression, the change in the mean of a quantitative 
trait with inbreeding (a reduction in fitness in the case of life-his-
tory traits), is a main factor for the extinction of endangered spe-
cies (Allendorf, Luikart, & Aitken,  2013; Frankham, Ballou, & 
Briscoe,  2010; O’Grady et  al.,  2006) and the management of live-
stock (Leroy, 2014). Regarding fitness components, inbreeding de-
pression is generally assumed to occur because of the increased 
homozygosity of partially recessive deleterious alleles (Charlesworth 
& Willis, 2009; Hedrick, 2012), although some unknown depression 
may also occur by reduced heterozygosity at loci presenting hetero-
zygote advantage (Charlesworth, 2015).

For quantitative traits, the rate of inbreeding depression (ID) 
is usually quantified by the slope of the linear regression of the 
individual phenotypic values on their inbreeding coefficient, F 
(Lynch & Walsh, 1998). The inbreeding coefficient of an individ-
ual, the probability of identity by descent of alleles, that is, alleles 
of an individual in a locus that come from a common ancestor to 
its parents, can be obtained from pedigree data (Wright,  1969) 
but also inferred from genome homozygosity (Li & Horvitz, 1953; 
Malécot, 1948; Toro et al., 2002), mainly using highly dense mo-
lecular markers, such as SNPs. Genomic or molecular measures of 
F have the advantage of providing estimates of realized inbreeding 
values, which are often more precise than pedigree ones (Curik, 
Ferenčaković, & Sölkner, 2014; Keller, Visscher, & Goddard, 2011; 
Wang, 2016), and do not require a knowledge of the genealogical 
relationships of individuals. They, however, measure overall homo-
zygosity, which includes not only identity by descent of alleles but 
also identity in state, that is, identical alleles coming from different 
ancestors.

Different metrics are available to obtain the estimates of ge-
nomic inbreeding, either based on maximum likelihood (e.g., 
Milligan,  2003; Wang,  2007), methods of moments (e.g., Purcell 
et  al.,  2007; Ritland,  1996), the diagonal elements of a genomic 
relationship matrix (VanRaden,  2008; Yang, Lee, Goddard, & 
Visscher,  2011), homozygosity measures (e.g., Bjelland, Weigel, 
Vukasinovic, & Nkrumah, 2013; Szulkin, Bierne, & David, 2010), ge-
notypic correlations (Ackerman et al., 2017) or the proportion of the 
genome within runs of homozygosity (ROH) (Ceballos, Joshi, Clark, 
Ramsay, & Wilson,  2018; Ferenčaković et al., 2013; Ferenčaković, 
Sölkner, Kapš, & Curik, 2017; McQuillan et al., 2008) or homozygos-
ity-by-descent genomic segments (Druet & Gautier, 2017). Multiple 
empirical comparisons have been made between the estimates 
of ID with alternative inbreeding measures (Bjelland et  al.,  2013; 
Goudet, Kay, & Weir,  2018; Kardos, Taylor, Ellegren, Luikart, & 
Allendorf,  2016; Pryce, Haile-Mariam, Goddard, & Hayes,  2014; 
Santure et al., 2010; Saura et al., 2015; Zhang, Calus, Guldbrandtsen, 
Lund, & Sahana, 2015), but without the knowledge of the true ID, 
it is difficult to make conclusions about which genomic F measure 
provides more appropriate estimations.

An assessment of the accuracy of some of the F measures in 
the estimation of ID can be made with computer simulations (e.g., 

Kardos, Luikart, & Allendorf,  2015; Keller et  al.,  2011), where the 
true parameters are known, even though simulated scenarios are 
always a simplified view of the natural processes. Thus, Keller 
et al.  (2011) studied the correlation between different F measures 
and the homozygous mutation load (HML) of each individual, de-
fined as the number of homozygous loci for rare alleles (MAF < 0.05) 
carried by an individual. This is assumed to be a proxy of the indi-
vidual overall load of homozygous (partially) recessive deleterious 
mutations and, thus, of inbreeding depression. Using this approach, 
Keller et al. (2011) showed that ROH-based F measures are the most 
powerful to detect ID. Kardos et al. (2015) rather considered the cor-
relation between the F measures and the proportion of the genome 
which is identical by descent (IBD), concluding that both ROH-based 
and SNP-by-SNP-based F measures can explain a large amount of 
the genomic IBD variation if the number of SNPs is sufficiently large 
(tens of thousands). However, these previous simulation studies did 
not consider ID of a quantitative trait in itself, but addressed the 
issue in an indirect way by considering some proxies of it.

More recently, Yengo et al. (2017) used data on true genotypes 
for several millions of human SNPs and simulated ID by ascribing 
phenotypic effects to a sample of the SNPs under different scenar-
ios. They then investigated the accuracy in the estimation of ID using 
different measures of individual F. The main conclusion was that the 
most accurate estimations were obtained with a measure of genomic 
inbreeding based on the correlation between uniting gametes (FUNI; 
previously called FIII by Yang et al., 2011), a statistic based on the 
deviation of SNP homozygosity from their expected values giving 
a larger weight to rare alleles than to common alleles. In contrast, 
ROH-based measures of inbreeding (FROH) were shown to provide 
very large overestimations of ID. Yengo et al. (2017) thus explicitly 
recommended the use of FIII to estimate ID with molecular data. This 
generated some debate, though, as it was argued that the simula-
tions performed by Yengo et al. (2017) were not carried out with ex-
plicit simulated individuals subjected to genetic processes (Kardos, 
Nietlisbach, & Hedrick,  2018). Rather, trait values had been simu-
lated as a function of the inbreeding coefficient which was calcu-
lated in a similar way as FIII, perhaps biasing the conclusions in favour 
of this F measure (Kardos et al., 2018; see also reply by Yengo et al., 
2018). More recently, Nietlisbach, Muff, Reid, Whitlock, and Keller 
(2019) performed a set of genetically explicit simulations conclud-
ing that, in contrast to Yengo et al. (2017) results, FROH provided the 
most accurate estimates of ID, whereas FIII (called Falt by Nietlisbach 
et al., 2019) produced substantial upwardly biased estimates. Thus, 
these sets of simulations showed contradictory results.

The scenarios considered by Yengo et al. (2017) and Nietlisbach 
et  al.  (2019), however, were also very different in terms of popu-
lation sizes and intensities of selection. For example, Nietlisbach 
et  al.  (2019) considered a subdivided population consisting of 30 
demes of 200 individuals each connected by migration, assuming 
deleterious mutations with homozygous fitness effects exponen-
tially distributed with mean −0.03. In contrast, Yengo et al. (2017) 
used in their simulations real human genotypic data from 10,000 un-
related individuals, and dominance effects were simulated assuming 
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they were inversely proportional to the allele frequency variance 
and, therefore, with a potentially very large value.

Here, we carried out another set of genetic explicit simulations 
considering simplistic scenarios to evaluate the relative performance 
of different genomic marker F measures on the estimation of the 
rate of inbreeding depression. Our results show that, for low effec-
tive population sizes (N = 100), where individuals are expected to be 
more related to each other and where natural selection is, in general, 
relatively less intense, FROH provides the most accurate estimates of 
ID, whereas FIII provides overestimations, in full agreement with the 
results of Nietlisbach et al. (2019). However, for large effective pop-
ulation sizes (N ≥ 1,000), where individuals tend to be less related 
and deleterious alleles are expected to be at lower frequencies, FIII 
provides almost unbiased average estimations of ID, in agreement 
with the results of Yengo et al. (2017), although with a great noise, 
whereas FROH can produce slightly downwardly biased average esti-
mates of ID, also with a great noise.

2  | METHODS

2.1 | Simulation procedure and parameters

Time-forward individually based simulations were carried out of a 
diploid monoecious population of constant size N (100, 500, 1,000, 
5,000 and 10,000) individuals with random mating. A modified ver-
sion of the program SLIM (Messer, 2013) was used in which mutations 
with effect on fitness have a pleiotropic effect on a quantitative trait 
(Caballero, Tenesa, & Keightley, 2015). A single genome sequence of 
100 Mb, initially devoid of variation, was assumed where mutations 
appear at a rate U per haploid genome and generation chosen to 
produce about 30,000 SNPs in the final generation for all population 
sizes. The rate of recombination between consecutive positions was 
assumed to be c = 10−8, which implies an average rate of recombi-
nation of 1 cM per Megabase. Thus, the genome length sequence 
(100 Mb) and the genetic length (1 M) are typical of a mammalian 
chromosome. Simulations were run for 10N discrete generations (5N 
in the case of N = 10,000). Ninety-five per cent of mutations were 
assumed to be neutral, the remainder having an effect on a quanti-
tative trait (QTL) and a pleiotropic effect on fitness. The genotypic 
values for the wild-type homozygote, the heterozygote and the mu-
tant homozygote were 0, ah and a for the quantitative trait, and 1, 
1 + sh and 1 + s for fitness, where a constant dominance coefficient 
of h = 0.2 was assumed. Multilocus genotypic values assumed a mul-
tiplicative model for fitness and an additive model for the quantita-
tive trait across loci. To minimize the noise, phenotypic values for the 
quantitative trait were assumed to equal genotypic values; that is, no 
environmental error was added to the phenotypic values. Values of a 
and s were obtained from a bivariate gamma distribution with mean 
effect −0.03 and shape parameter β = 1 (i.e., following an exponen-
tial distribution). A correlation (ρ) between a and s values was gener-
ally assumed to be one, that is, the trait is fitness itself, but a values 
were scaled so that the amount of ID was about the same for all 

population sizes considered (about 1% decrease in the mean per 1% 
increase in inbreeding or an inbreeding load of about one haploid le-
thal equivalent). Because mutations always reduced the value of the 
trait and were partially recessive, the model implied directional dom-
inance, that is, homozygous recessive genotypes always reduced the 
trait value, thus generating ID for the trait. Except for the impact of 
purifying selection on deleterious mutations, the simulated popula-
tions were Wright–Fisher ideal populations so that the population 
size (N) approximately equals the effective population size.

For the population sizes of N  =  100, 1,000 and 10,000, addi-
tional simulations were run considering all previous parameters 
(default scenario) with the following changes: (a) a one-order higher 
(c = 10−7) or lower (c = 10−9) recombination rate between consec-
utive genomic positions. (b) A density of SNPs one quarter of that 
assumed previously, obtained by reducing to a quarter the mutation 
rate per generation, that is U/4. (c) A percentage of 10% (instead of 
5%) of mutations affecting the trait and fitness. (d) An average effect 
of mutations on fitness of s = −0.1 instead of −0.03. (e) A distribu-
tion of effects for fitness and the trait with shape parameter for the 
gamma distribution of β = 0.1 or 2 instead of one. (f) A coefficient 
of dominance of mutations of h = 0 (complete recessive) instead of 
0.2. (g) A correlation between fitness (s) effects and effects for the 
quantitative trait (a) of ρ = 0.5 instead of one. For these scenarios, 
the rate of inbreeding depression widely varied between 0.2% and 
12% decrease in the mean per 1% increase in inbreeding, depending 
on the scenario and population size.

For all scenarios, the genotypes of all individuals of the popula-
tion in the last simulated generation were obtained and the expected 
ID was quantified by the sum of 2dpq values for all segregating QTLs 
(Morton, Crow, & Muller, 1956), where p and q are the frequencies 
of the wild and mutant allele, respectively, and d  =  a (h–½) is the 
dominance effect. An estimate of the rate of inbreeding depression 
was also obtained by making all individuals homozygous (inbreeding 
coefficient F = 1) and calculating the change in the mean of the trait 
relative to that in the original individuals. The obtained values of ID 
coincided almost perfectly with their expectations.

The homozygous mutation load (Keller et al., 2011) was obtained 
as the number of homozygous mutations carried by individuals. 
Three different measures were obtained: (a) HML, the total number 
of homozygous mutations for neutral SNPs, that is, excluding QTLs; 
(b) HMLMAF, the number of homozygous mutations for neutral SNPs 
with minor allele frequency lower than or equal to 0.05 (this is the 
definition applied by Keller et al., 2011); (c) HMLQTL, the number of 
homozygous mutations for QTLs.

2.2 | Measures of inbreeding coefficients and 
estimates of the rate of inbreeding depression

From the last generation of each simulation, the files map and ped 
were generated with all individuals of the population (to avoid the 
confounding effect of sampling) and all neutral segregating SNPs 
(i.e., QTLs were removed). No MAF pruning was made to the data. 
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The following measures of the coefficient of inbreeding of each 
individual were then obtained with the programs PLINK (Purcell 
et al., 2007) and GCTA (Yang et al., 2011):

Estimators FI, FII, and FIII provided by GCTAv1.93.0 with the –ibc 
option:

where S is the total number of markers, xk is the number of minor al-
leles of marker k (i.e., 0, 1 or 2 copies), and pk is the current frequency 
of the minor allele in the population.

The estimator FI is that proposed by VanRaden (2008) and re-
ferred to as VanRaden2. The estimator FIII was called Falt by Keller 
et al.  (2011) and Nietlisbach et al.  (2019), FGRM by Huisman, Kruuk, 
Ellis, Clutton-Brock, and Pemberton (2016) and FUNI by Yengo et al. 
(2017) and Alemu et al. (2020). For this measure of F, homozygous 
genotypes are weighted by the inverse of their allele frequencies 
(Yang et al., 2011), thus giving more weight to rare alleles. FIII can also 
be obtained as 1−

∑S

k=1
�∕S (Keller et al., 2011) (with opposite sign), 

where δ equals 1/pk for homozygotes of the minor allele, 1/(1 – pk) 
for homozygotes of the major allele and zero for the heterozygotes, 
thus explicitly showing the larger weight given to rare rather than to 
common alleles.

The estimator FHOM is a measure of the deviation from Hardy–
Weinberg proportions and is obtained by PLINK1.9 with the –het 
option.

Both FHOM and FII are based on the scaled difference between 
the observed (O[H]) and expected (E[H]) frequency of homozygotes, 
that is, (O[H] – E[H])/ (1 – E[H]), although the summation over mark-
ers is made differently in each case.

Finally, the estimator based on runs of homozygosity (FROH) was 
obtained using PLINK1.9 with the default options: a minimum of 100 
SNPs, at least 1 SNP per 50 Kb, and a scanning window of 50 SNPs. 
We considered runs of lengths larger than 0.1 Mb (FROH-0.1), 1 Mb 
(FROH-1) or 5 Mb (FROH-5), after removing highly linked SNPs (r2 > .9) 
with the --indep-pairwise 50 5 0.9 PLINK option, as recommended by 
Howrigan, Simonson, and Keller (2011).

An explanation of the rationale and relationship between the es-
timators FI, FII, FIII and FHOM is given in the Supplementary Appendix. 
The inbreeding coefficient of an individual (F), that is, the probabil-
ity of identity by descent of the two alleles at a locus, is a concept 
relative to a (sometimes arbitrary) reference base population (e.g., 

an earlier generation of the population). If the allele frequencies of 
the reference generation are considered in the estimators, these 
are expected to measure the inbreeding coefficient (IBD) relative to 
that reference generation, at least when all loci are at linkage equi-
librium (see Supplementary Appendix). Unfortunately, the reference 
generation frequencies are usually unknown and the estimates are 
obtained assuming the current generation allele frequencies. In 
this case, the measures of F from Equations (1-4) refer to the de-
viations of the frequencies of homozygotes from those expected 
under Hardy–Weinberg expectations or the correlation between 
the alleles carried by individuals. Thus, they take positive or nega-
tive values, generally implying an excess or a defect, respectively, of 
homozygotes. In contrast, the measures obtained by FROH take only 
positive values (from zero to one) as they are expected to include 
genomic segments of homozygosity produced by IBD.

The estimated ID was obtained as the slope of the linear regres-
sion of the phenotypic values (Phe) of individuals on their different 
F measures. All individuals of the population were used in this re-
gression to avoid biases due to sampling errors. In addition, as was 
mentioned above, phenotypic values were taken with no error, so 
that any deviation of the estimated ID from its true value should be 
ascribed to the different properties of the molecular measures of F.

Simulations were repeated between 100 and 1,000 times de-
pending on the population size considered. For each replicate, the 
estimated ID obtained with each F measure was compared with the 
expected (true) ID, calculating the distribution of deviations from the 
expected value and the root-mean-square error (RMSE), a combined 
measure of accuracy and precision. Pearson correlations between all 
F values and between these and the phenotypic values of individuals 
(Phe) and the different homozygous mutations loads (HML, HMLMAF 
and HMLQTL) were also obtained and averaged across replicates.

2.3 | Alternative set of simulations

To double-check the main results obtained, additional time-forward 
individually based simulations were performed with an in-house C 
program alternative to SLIM, modified from Caballero, Bravo, and 
Wang (2017). In this case, populations of size N = 100, 1,000 and 
5,000 were run for 1,000 (N = 100) or 10,000 (N ≥ 1,000) discrete 
generations, assuming a 60 Kb genome sequence of 1 Morgan ge-
netic length and a mutation rate adjusted to produce up to 30,000 
SNPs. Thus, the number of SNPs and the genetic length were similar 
to those of the previous simulations. A 10% proportion of mutations 
were assumed to be deleterious with average selection and domi-
nance coefficients of s = −0.03 and h = 0.2, respectively. Selection 
coefficients for mutations were obtained, as before, from an expo-
nential distribution, but dominance coefficients were assumed to 
be variable, with an inversely proportional relationship with selec-
tion coefficients following the model proposed by Caballero and 
Keightley (1994) (see also Caballero, 2020, p. 159). Values of the true 
ID and those estimated with the different F values were obtained 
from each of the last 200 generations of each replicated simulation, 

(1)FI=
1

S

S
∑

k=1

(

(xk−2pk)
2

2pk(1−pk)
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(2)F�� =1−
1

S

S
∑

k=1

xk(2−xk)

2pk(1−pk)
,

(3)F��� =
1

S

S
∑

k=1

x2
k
− (1+2pk)xk+2p2

k

2pk(1−pk)
,

(4)F
���

=1−

∑S

k=1
xk

�

2−xk
�

∑S

k=1
2pk

�

1−pk
�



420  |     CABALLERO et al.

considering the whole population. Given the short genome sequence 
assumed in these simulations, ROH segments larger than 1 Kb were 
considered.

3  | RESULTS

Table 1 shows the mean and variance of all F measures in the default 
scenario for three population sizes. SNP-by-SNP-based F measures 
using Hardy–Weinberg deviations or correlations between alleles 
(FI, FII, FIII and FHOM) have virtually the same mean, as expected (see 
Supplementary Appendix), but FIII and FHOM show a lower variance, 
particularly FIII. Mean and variances of FROH estimates are lower 
for increasing fragment lengths. Table 2 presents the average cor-
relations between F measures. FI has a strong negative correlation 
with FII, as suggested from their different subtracting terms (see 
Equations 1 and 2), and generally low correlations with the other 
F measures. FII also shows intermediate (for small N) or low correla-
tions (for large N) with the other measures, but larger than those for 
FI. Measures FIII, FHOM and FROH show rather large correlations with 
one another, decreasing for larger population sizes.

Figure 1 shows the proportional deviations of the estimated ID 
values obtained with different neutral molecular F measures with 
respect to the true values, that is, (EstID – TrueID)/ TrueID, where 
EstID and TrueID are the estimated and true ID, respectively. Thus, 
a value of, say  +  1, implies an overestimation of ID by 100% and 
a value of −1 an underestimation of ID by 100%. The bars exclude 
2.5% of the extreme deviations at each side and the dot is the arith-
metic mean of the deviations. The measures FI and FII provide al-
ways very biased estimates (underestimations) of ID, and this is also 
the case, although to a less extent, for FHOM. For small population 
size (N = 100), FIII produces upwardly biased estimates whereas es-
timates with FROH are unbiased, irrespective of the ROH minimum 
length assumed. However, as the population size N is increased, 
FROH estimates of ID can become underestimations, particularly if 
short fragment lengths are included in the analysis, whereas those 
from FIII become more and more accurate on average, although 
with a large variation across replicates. For the largest population 

size (N = 10,000), both FROH and FIII incur in a slight underestimation 
of ID on average, but with a great variation. Thus, FIII transits from 
providing overestimations of ID for small population sizes to slight 
underestimations for large ones. A representation of the particular 
deviations observed for each simulated replicate with different pop-
ulation sizes is shown in Figure S1.

For N = 100, the average root-mean-square error (RMSE) of the 
estimates of ID obtained with FROH-5 (0.216 ± 0.047) is lower than that 
obtained with FIII (0.597 ± 0.097) (Figure 2). However, for larger pop-
ulation sizes, this difference disappears, for example for N = 10,000, 
RMSE FROH-5 = 0.837 ± 0.255 and RMSE FIII = 0.772 ± 0.231.

Figure 3 shows results analogous to those of Figure 1 for differ-
ent parameters alternative to those of the default scenario. These 
include different recombination rates, density of SNPs, intensity 
of selection, distribution of allelic effects and degree of recessive-
ness. Rates of inbreeding depression obtained using FI and FII give 
underestimations for all scenarios and are not shown. Thus, results 
are only given in the figure for FIII, FHOM, FROH-1 and FROH-5. Although 
some quantitative differences can be observed for the different sce-
narios, the main conclusions reached above generally hold. FIII gives 
overestimations of ID in all scenarios for N = 100, becoming almost 
unbiased, on average, for N = 10,000. FHOM usually underestimates 
ID. FROH-5 provides generally good estimates of ID with a tendency to 
a slight underestimation. Averaging results from all scenarios gives 
an outcome very similar to that of the default scenario (cf. Figure 1 
and Figure S2). In addition, the corresponding results using a simula-
tion program alternative to SLIM (Figure S3) gives the same general 
picture. Estimates of ID from FROH (with ROH > 1 Kb) are nearly un-
biased for N = 100 but imply underestimations for larger N, whereas 
the overestimation incurred by FIII is reduced as N is increased. In 
this case, the error bars are very short because each simulated value 
obtained is the average of 200 estimations carried out in the last 200 
generations of each simulation.

Table  3 gives the correlation between the phenotypic values 
of individuals (Phe) and the different measures of the homozygous 
mutation load (HML). All correlations are diminished as the popula-
tion size is increased, as expected. In all cases, also as expected, Phe 
has the largest correlation with HMLQTL. For small population sizes 

TA B L E  1   Mean and variance of different genomic measures of the inbreeding coefficient (F; see text for definitions), averaged over 
replicates, for different population sizes (N)

FI FII FIII FHOM FROH−0.1 FROH−1 FROH−5

Mean

N= 100 −0.0057 −0.0053 −0.0053 −0.0052 0.1398 0.1120 0.0430

N = 1,000 −0.0006 −0.0005 −0.0005 −0.0006 0.1720 0.0712 0.0108

N = 10,000 −0.00004 −0.00004 −0.00004 −0.00004 0.0784 0.0072 0.0010

Variance

N = 100 0.0424 0.0435 0.0077 0.0250 0.0130 0.0130 0.0110

N = 1,000 0.0264 0.0266 0.0011 0.0039 0.0025 0.0026 0.0018

N = 10,000 0.0660 0.0660 0.0002 0.0007 0.0005 0.0003 0.0002

Note: Standard errors of means and variances are below 0.002 (N = 100) and 0.003 (N = 1,000 and 10,000).

[Correction added on 19 January 2021, after first online publication: table 1 has been modified.]
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(N = 100), Phe has a larger correlation with HML than with HMLMAF. 
In contrast, for larger N, Phe is more correlated with HMLMAF than 
with HML, suggesting that the phenotype of individuals can be as-
cribed more strongly to rare homozygous alleles. In fact, as shown in 
Figure S4, the larger the population size, the lower the QTL frequen-
cies and the larger the contribution to ID by rare alleles, as would be 
expected. Nevertheless, for large N (particularly for N = 10,000), all 
correlations between the different values of HML and Phe are rather 
low, indicating that the homozygous mutation load is a poor proxy of 
fitness in large populations.

Finally, Figure 4 shows the correlation between the F measures 
and the phenotypic value (Phe) of individuals and the homozygous 
mutations loads (HML). FIII has the largest correlation with Phe and 
HMLMAF for all values of N and with HMLQTL for N ≥ 1,000. The larg-
est correlation with HML is achieved by FHOM, as expected.

4  | DISCUSSION

Inbreeding depression is a key issue for explaining the evolution of 
populations and to carry out the management and conservation of 
wild and domestic species (Lynch & Walsh,  1998). The increasing 
availability of dense molecular markers (SNPs) for many species has 
allowed the prediction of the relationships among individuals in the 
absence of pedigree records. In fact, genomic measures of F can be 
more useful than pedigree estimates, as they provide realized rather 

than expected genomic relationships (Kardos et  al.,  2016; Keller 
et al., 2011). These estimates of genomic inbreeding can, in turn, be 
used to estimate the rate of inbreeding depression. If the allele fre-
quencies of many loci at Hardy–Weinberg and linkage equilibrium 
were known without error at a given previous generation of the 
population and these frequencies were included in the different SNP-
by-SNP F measures in the current generation, their expected values 
would provide the true mean inbreeding coefficient (IBD) referred to 
that previous generation (i.e., the F value that would be obtained from 
the pedigree) (see Supplementary Appendix). The usual scenario, 
however, is that only the current allele frequencies are available to 
be used in the different SNP-by-SNP F measures and these provide 
deviations of the genotypic frequencies from their HW expectations. 
Estimates from genomic segments of homozygosity (FROH) are in-
tended to look for events of IBD. However, not all ROH involve IBD 
and the measures obtained strongly depend on the length of the frag-
ments considered. Thus, it is unclear which F measures from molecu-
lar data are the most appropriate to estimate the rate of inbreeding 
depression. While the simulation results of Yengo et al. (2017) sup-
ported the use of SNP-by-SNP-based F estimates with more weight 
for rare alleles, those of Nietlisbach et al. (2019) pointed towards the 
use of ROH-based F estimates. Our results seem to reconcile these 
contrasting results and suggest that the recommendation to be made 
strongly depends on the particular population considered.

Nietlisbach et  al.  (2019) compared different F measures carry-
ing out genetically explicit simulations of a metapopulation under 

FII FIII FHOM FROH−0.1 FROH−1 FROH−5

N = 100

FI −0.6438 0.3922 0.1544 0.2038 0.2083 0.2206

FII 0.4279 0.5661 0.5193 0.5091 0.4500

FIII 0.8786 0.8775 0.8694 0.8046

FHOM 0.8526 0.8244 0.6946

FROH−0.1 0.9868 0.8507

FROH−1 0.8785

N = 1,000

FI −0.9171 0.1933 0.0690 0.0829 0.1000 0.1172

FII 0.2076 0.2754 0.2555 0.2450 0.2144

FIII 0.8587 0.8427 0.8577 0.8190

FHOM 0.8810 0.8192 0.6576

FROH−0.1 0.8893 0.6845

FROH−1 0.7607

N = 10,000

FI −0.9946 0.0501 −0.0160 0.0114 0.0324 0.0316

FII 0.0525 0.0932 0.0619 0.0512 0.0450

FIII 0.7506 0.7125 0.8102 0.7366

FHOM 0.7138 0.6075 0.4879

FROH−0.1 0.6747 0.5240

FROH−1 0.7681

Note: Standard errors are below 0.005 (N = 100), 0.003 (N = 1,000) and 0.006 (N = 10,000).

TA B L E  2   Correlation between 
different genomic measures of the 
inbreeding coefficient (F; see text for 
definitions), averaged over replicates, for 
different population sizes (N)
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purifying selection against deleterious mutations. The metapopula-
tion included 30 demes of 200 individuals each connected by migra-
tion (1.2 migrants per deme and generation) and was run for 5,000 
discrete generations. Viability selection was considered on a genome 
mimicking that of the great tit, with around 50,000 neutral loci and 

2,500 deleterious loci acting multiplicatively. Homozygous effects 
were exponentially distributed with mean s = −0.03 and a mean dom-
inance coefficient of h = 0.18 (following estimated parameters from 
Wang, Hill, Charlesworth, & Charlesworth,  1999). To perform their 
simulations, they used a binary viability model and compared the 

F I G U R E  1   Proportional deviation of the estimates of the rate 
of inbreeding depression (ID) obtained with different measures of 
the inbreeding coefficient with marker data (see text), with respect 
to the true simulated ID. The dot is the mean deviation, and the 
bar indicates the 95% of the distribution of simulated replicates. 
Simulated parameters: population size N; genome sequence 
of 100 Mb run for 10N discrete generations (5N in the case of 
N = 10,000); rate of recombination between consecutive positions 
c = 10−8; mutation rate per haploid genome and generation U 
chosen to produce about 30,000 SNPs in the final generation 
for all population sizes; 95% of mutations assumed to be neutral, 
the remainder having an effect on a quantitative trait (QTL) and 
a pleiotropic effect on fitness; homozygous effects for the trait 
(a) and fitness (s) obtained from a bivariate gamma distribution 
with mean effect −0.03 and shape parameter β = 1; the mean 
homozygous effect for the trait (a) was adjusted to obtain a true 
inbreeding depression rate of about 1 (one per cent decline in 
mean per one per cent increase in inbreeding or an inbreeding load 
of about one haploid lethal equivalent) for all population sizes; 
dominance coefficient h = 0.2; correlation ρ = 1 between a and s 
values
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F I G U R E  2   Root-mean-square error (RMSE) of estimates of the 
rate of inbreeding depression obtained from three measures of the 
individual inbreeding coefficient (FIII, FHOM and FROH-5; see text). 
Results refer to the default parameters as in Figure 1. Bars indicate 
one standard error of the mean
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different methods that can be used to estimate ID in this type of mod-
els. Deleterious variants were excluded from the analysis of genomic 
inbreeding and apparently no filtering for MAF was applied to the 
data. ROH with length > 1 Mb were obtained using sliding windows of 
50 SNPs with steps of 5, allowing up to one heterozygote per segment 
and removing SNPs with high linkage disequilibrium (r2 > .9). The main 
conclusion obtained by Nietlisbach et al. (2019) was that, under their 
simulated scenario, FROH provides unbiased average estimations of ID, 
whereas FIII gives severe average overestimations (about +0.7 in the 
scale given in our Figure 1), and FHOM a slight underestimation (about 
−0.2). Their results also showed that the variation between the esti-
mates of ID was smaller by using FROH than by using FIII and those from 

FHOM had the lowest variation (see Nietlisbach et al., 2019, Figure 2). 
In addition, the RMSE of ID estimates obtained from FHOM, FROH and 
FIII were 0.86, 1.01 and 2.02, respectively. Thus, FIII estimates of ID 
showed about twice as large RMSE as FROH ones.

Yengo et al. (2017), in contrast, used a different simulation ap-
proach, by considering human genotypic data of 10,000 unrelated 
individuals (pairwise genetic relationship < 0.05) and assigning phe-
notypic values with a model for which dominance effects were as-
sumed to be constant or a function of the inverse of the variance 
of the allele frequency. In these simulations, therefore, a much 
larger population size was assumed than for the individual demes 
of Nietlisbach et  al.  (2019), and dominance effects could be very 

F I G U R E  3   Proportional deviation of 
the estimates of the rate of inbreeding 
depression (ID) obtained with different 
measures of the inbreeding coefficient 
with marker data (see text), with respect 
to the true simulated ID. Simulations 
assume different population sizes (N). 
The dot is the mean deviation and the 
bar indicates the 95% of the distribution 
of simulated replicates. The simulation 
parameters are the same as for Figure 1 
(default parameters), with the following 
changes: (Row 1) recombination rate 
between positions c = 10−7. (Row 2) 
recombination rate between positions 
c = 10−9. (Row 3) density of SNPs one 
quarter of that assumed in Figure 1. 
(Row 4) 10% of mutations affecting the 
trait and fitness. (Row 5) Average effect 
of mutations on fitness of −0.1. (Row 6) 
Distribution of effects for fitness and 
the trait with shape parameter for the 
gamma distribution of β = 0.1. (Row 7) 
Distribution of effects for fitness and the 
trait with shape parameter for the gamma 
distribution of β = 2. (Row 8) coefficient 
of dominance of mutations of h = 0. (Row 
9) correlation between fitness (s) effects 
and effects for the quantitative trait (a) of 
ρ = 0.5
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substantial for loci with rare alleles. The analysis of inbreeding mea-
sures was carried out assuming a MAF of 0.05 and ROH fragments 
were obtained either pruning high linkage disequilibrium (LD) SNPs 
or considering only fragments  >  1.5  Mb. Yengo et al. (2017) con-
sidered different scenarios, such that causal variants could be en-
riched in random, high- or low-LD genome regions. In the random LD 
scenario (the causal variants are a random subset of all SNPs) with 
dominance effects inversely related to the variance of the allele fre-
quencies, FIII was found to provide unbiased estimates of ID, FHOM a 
slight underestimation and FROH (with ROH lengths > 1.5Mb) a large 
average overestimation of about 90% of ID (see Yengo et al., 2017, 
Figure 1b), that is, a value of about +0.9 in the scale of our Figure 1. 
They also found that the estimates of ID from FROH had about a 
threefold larger standard error than those from FIII. Additionally, 
they found that both FIII and FHOM produced overestimates of ID 
when QTLs are enriched in high-LD regions, and underestimates of 
ID when enriched in low-LD regions, and that these biases could be 
corrected or reduced if LD score and MAF stratification were ap-
plied. Population stratification also produced biases in estimates of 
ID from FHOM and FROH, which were not observed in those from FIII. In 
accordance with their simulated results, the estimations of ID over 
25 human quantitative traits were consistently larger when obtained 
from FROH measures than from FIII ones. However, more significant 
cases of ID were detected with FIII than with FROH.

Our simulations consider some parameters similar to those as-
sumed by Nietlisbach et  al.  (2019), such as the average selection 
coefficient and dominance, but assume a single undivided popula-
tion of varying size. We also considered a simple additive multilocus 
model for a quantitative trait rather than a binary viability model, so 
that a log scale is not necessary to be applied and the regression of 

raw phenotypic values on the predicted F provides a direct estimate 
of the inbreeding depression rate. Our simulations for N = 100 show 
no bias of the average ID when FROH is used, irrespective of whether 
short (>0.1 or >1 Mb) or long (>5 Mb) ROH are considered (Figure 1). 
FHOM underestimates ID by a fraction of about −0.3, whereas FIII 
overestimates it by a fraction of about +0.5. These results are actu-
ally very similar to those obtained by Nietlisbach et al. (2019), that 
is −0.2 and +0.7, respectively. In addition, for N  =  100 we found 
that the RMSE of ID estimates from FIII measures were three times 
larger than those from FROH ones (Figure 2), in concordance with a 
twofold difference in the same direction observed by Nietlisbach 
et al. (2019). We observed, however, that estimates of ID from FHOM 
for N  =  100 had a RMSE larger than those from FROH (Figure  2), 
whereas Nietlisbach et al.  (2019) results showed a RMSE for FHOM 
slightly lower than that from FROH. We should note, however, that 
apparently, Nietlisbach et al. (2019) did not consider estimates of ID 
below zero (see their Figure 2), what may explain this difference be-
tween both studies.

In contrast, our results are rather different from those of 
Nietlisbach et al.  (2019) when larger population sizes are assumed. 
In this scenario, estimates of ID by FROH can become downwardly 
biased in our simulations, particularly if short ROH are considered 
(Figure 1). For example, with ROH of length > 1 Mb the underes-
timation of ID is in a fraction of about −0.01, −0.30, −0.37, −0.37 
and −0.40 for increasing population sizes, from 100 to 10,000. 
If large fragments are used in the calculations (>5 Mb), the bias is 
lower (−0.01, −0.18, −0.17, −0.18 and −0.22 for increasing N). The in-
creased underestimation of ID when short ROH are considered may 
occur because some short ROH may not reflect IBD, as suggested 
by Pryce et al. (2014), and thus, FROH overestimates the true genomic 
inbreeding (cf. mean values of FROH-0.1, FROH-1 and FROH-5 in Table 1). 
However, it can also be argued that long ROH only account for re-
cent inbreeding whereas measures of F including also short ROH 
would incorporate more ancient inbreeding, what may contribute to 
values of short-ROH-F measures larger than those from long ones.

The increase in population size also results in a reduction of the 
average bias of the estimated ID using FIII, whose bias becomes 0.5, 
0.28, 0.21, −0.002 and −0.14 for increasing values of N. Thus, aver-
age estimates of ID with FIII for large population sizes are basically 
unbiased or slightly so, in agreement with the main result obtained 
by Yengo et al. (2017). Our results do not agree with those of Yengo 
et al. (2017), however, in relation with the estimation of ID using 
FROH, as they obtained overestimations by a fraction +0.9 whereas 
we obtained almost unbiased estimates or slight underestimations 
for large N. In fact, Yengo et al. (2017) found generally much larger 
estimates of ID for 25 human quantitative traits when FROH was 
used than when FIII was used. Kardos et al.  (2018) argued that the 
FROH measures considered by Yengo et al. (2017) only accounted 
for long ROH and, thus, for only recent inbreeding. If short ROH 
and thus more ancient inbreeding would have been incorporated, 
this could have resulted in larger estimates of F and lower ID val-
ues. Nevertheless, the larger the population size, the larger the noise 
in the estimates of ID both from FIII and FROH, pointing towards the 

TA B L E  3   Correlation between phenotypic values (Phe) for the 
quantitative trait and the homozygous mutation load, obtained 
as the number of mutant homozygotes carried by individuals 
considering all neutral SNPs (HML), neutral SNPs with MAF < 0.05 
(HMLMAF), and quantitative trait loci (HMLQTL), for different 
population sizes (N)

HML HMLMAF HMLQTL

N = 100

Phe 0.6652 0.4538 0.7930

HML 0.4711 0.8949

HMLMAF 0.4771

N = 1,000

Phe 0.1237 0.1723 0.3020

HML 0.6226 0.3694

HMLMAF 0.3270

N = 10,000

Phe 0.0107 0.0158 0.0712

HML 0.5018 0.0600

HMLMAF 0.0663

Note: Standard errors are below 0.005 (N = 100) and 0.002 (N = 1,000 
and 10,000).
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difficulties of estimating the rate of inbreeding depression in large 
outbred populations. We observed that variation in the estimates 
of ID from FIII and FROH were similar in the case of N = 10,000 (see 
Figure 1) and that the RMSE of these estimates were also about the 
same for these two F measures (see Figure 2 for N = 10,000). This 
contrasts with the result of Yengo et al. (2017), which indicated that 
the estimates of ID from FROH had a threefold larger standard error 
than those from FIII. It must be noted, however, that our simulations 
refer to a simplistic model of a constant population size, with uni-
form LD along the genome and without any source of stratification, 
which can differ from the complex structure of the human genomes 
and populations analysed by Yengo et al. (2017). Thus, there may be 
a source of unknown factors that could be contributing to the differ-
ences between the results of both studies.

We obtained estimates of the mean, variance and correlation 
between the different genomic F measures and between these and 
the homozygous mutation load (HML), suggested to be a proxy of ID 
(Keller et al., 2011). The mean of the genomic measures FI, FII, FIII and 
FHOM is basically the same (Table 1) and close to the value of the de-
viation from Hardy–Weinberg proportions expected in a panmictic 

population, −1/2N (Kimura & Crow,  1963; Robertson,  1965). The 
correlation results indicate that FI (VanRaden2) and FII measures of 
inbreeding are poorly correlated with the other measures (Table 2) 
and are poor estimators of ID (Figure 1 and Figure S3). They should 
therefore be disregarded in the estimation of ID. In addition, these 
estimators show a larger variance than the other SNP-by-SNP-based 
measures of inbreeding, FHOM and FIII. The latter shows the lowest 
variance, as demonstrated by Yengo et al. (2018). Correlations be-
tween FIII, FHOM and FROH, however, are generally high, as observed 
in empirical studies (e.g., Bérénos, Ellis, Pilkington, & Pemberton, 
2016). Estimates of ID from FHOM, however, are also generally biased 
(Figure 1 and Figures S3), so this F measure should not be used either 
to estimate ID.

We found that FIII is the measure of genomic inbreeding 
showing the largest correlation with the phenotypic values of in-
dividuals (Figure 4), as well as with HMLMAF (the definition of ho-
mozygous mutation load from Keller et  al.,  2011), and the HML 
applied to QTLs (HMLQTL) for large populations. Thus, our results 
suggest that FIII is the F statistic more related with the load of del-
eterious recessive mutations, as also suggested by the analysis of 

F I G U R E  4   Correlation between the individual values of the genomic measures of the inbreeding coefficient (FIII, FHOM and FROH-5; see 
text) and the individual phenotypic value for the quantitative trait (Phe), the total homozygous load for neutral SNPs (HML), the homozygous 
load for neutral SNPs with MAF ≤ 0.05 (HMLMAF) and the homozygous load for QTLs (HMLQTL). Bars indicate one standard error of the mean
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genomic cattle data by Alemu et al. (2020). Some of these results 
contrast with those of Keller et al. (2011), who found that FROH had 
the largest correlation with HMLMAF, followed by FIII and then FHOM 
(see Figure 7 of Keller et al., 2011), whereas we observed that the 
largest correlation is for FIII, followed by FROH and then FHOM (see 
Figure 4). However, the simulations of Keller et al. (2011) did not 
consider selection of any type. Purifying selection, as applied in 
our simulations, would imply some reduction in genetic variability 
across the genome, so that rare allele frequencies would get more 
relevance in the HML.

Regarding FROH, we found that the lowest bias in the estima-
tion of ID occurred when large ROH were considered (Figure 1 and 
Figure  S3). This could be explained, as mentioned above, because 
short ROH may not fully reflect IBD, overestimating the true ge-
nomic inbreeding, but also because short ROH are less enriched 
in QTLs. Szpiech et al.  (2013) showed that ROH in the human ge-
nome are enriched in deleterious mutations and that long ROH are 
more enriched than short ones. In cattle, however, the result is the 
opposite, with short ROH more enriched in deleterious mutations 
than long ones (Zhang et al., 2015). Our simulations show that, for 
the smallest population size (N = 100), the correlation between the 
phenotypic values (Phe) and FROH is 0.66  ±  0.003 for FROH-0.1 and 
0.58 ± 0.004 for FROH-5, in line with the cattle results. In contrast, for 
the largest population size (N = 10,000) the corresponding correla-
tions are 0.012 ± 0.001 for FROH-0.1 and 0.017 ± 0.001 for FROH-5, in 
agreement with the human genome results. It is expected that cat-
tle populations, heavily subjected to selection, have lower effective 
population sizes than human populations, so our results are consis-
tent with the observations.

The F measure showing the largest correlation with the overall 
homozygosity mutation load (HML, considering all allele frequencies) 
was FHOM. Multilocus heterozygosity has been traditionally related 
to overall fitness, although with a poor correlation (Grueber, Waters, 
& Jamieson,  2011; Slate & Pemberton,  2002). This, however, has 
been mainly focused on few markers (e.g., microsatellites) and the 
possibility to explore the multilocus heterozygosity—fitness correla-
tion with highly dense markers using FHOM or other measures of F 
opens new research areas.

In summary, our simulation results indicate that estimates of the 
rate of inbreeding depression from FROH measures of inbreeding are 
appropriate for populations with low effective sizes but may lead to 
some underestimation for large ones, unless the ROH fragments con-
sidered are sufficiently long. Estimates of the rate of inbreeding de-
pression from rare-SNP-by-SNP-based F measures (FIII) are severely 
biased in populations of small effective size, but nearly unbiased in 
large ones, showing the largest relationship with the phenotypic val-
ues of individuals and the homozygous mutation load. This different 
performance of the F measures depending on the population size 
can respond to the expectation that small populations are subjected, 
in general, to less intense selection than large ones, although purging 
selection of the inbreeding load can be more effective in the former 
(García-Dorado, 2012; López-Cortegano, Vilas, Caballero, & García-
Dorado, 2016). The use of FI and FII measures of genomic inbreeding 

and, to a lesser extent FHOM, cannot be advised to estimate ID. For 
large effective population sizes, however, the estimation of the rate 
of inbreeding depression becomes rather difficult as all estimations 
are subjected to a high error.
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