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Long-term management of radioactive wastes

Underground structures

= network of galleries

1. Context

Deep geological 

disposal

Repository in deep 

geological media with 

good confining properties

(Low permeability 

K<10-12 m/s)

Disposal facility of Cigéo project in France

(Labalette et al., 2013)
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Intermediate

(long-lived)

& 

high activity

wastes



Callovo-Oxfordian claystone (COx)

Sedimentary clay rock (France).

- Underground research laboratory

Feasibility of a safe repository 

France (Meuse / Haute-Marne, Bure)

(Armand et al., 2014)

1. Context

Borehole core samples
(Andra, 2005)
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Repository phases

Construction

Excavation

Maintenance

Ventilation

Repository

Sealing

Long term

Corrosion, 

heat generation

Type C wastes (Andra, 2005)
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1. Context
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Repository phases

Construction

Excavation

Maintenance

Ventilation

Repository

Sealing

Long term

Corrosion, 

heat generation

Type C wastes (Andra, 2005)
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Excavation Damaged Zone (EDZ)

Fracturing & permeability increase

(several orders of magnitude)

Opalinus clay in Switzerland
(Bossart et al., 2002)

1. Context

Mechanical fracturing

Excavation

↓

Stress redistribution

↓

Damage / Fracturing

↓

Coupled processes

HM property modifications

↓

Safety function alteration

Water transfer

Galleries ventilation

↓

Air-rock interaction

↓

Drainage / desaturation

↓

Modification of the 

water transfer

Construction Maintenance
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- Fracturing

Anisotropies: - stress : σH > σh ~ σv

- material : HM cross-anisotropy.
Galery // to σh

Galery // to σH

Issues: Prediction of the fracturing.

Effect of anisotropies ?

Permeability evolution & relation to fractures ?

(Armand et al., 2014)

1. Context
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1. Context

2. Fracture modelling with shear bands

3. Influence of mechanical anisotropy

4. Permeability evolution and water transfer

5. Conclusions and perspectives

Outline
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2.1. Material rupture

- Compression test on small sample

- Fracture modelling

Shear strain localisation

(continuous approach)

Shear bands are observed 
in many geomaterials.

COx : 75% of fractures 
in mode II (shear).

2. Fracture modelling with shear bands

- Mechanisms of rock mass failure around gallery

(after Diederichs, 2003)

Context Fracture modelling Anisotropy Water transfer Conclusion 10

Axial shortening, ΔH [mm]

A
x
ia

l 
lo

a
d

, 
F

 [
N

]

F

Fconf H



2.2. Constitutive models for COx

- Mechanical law - 1st gradient model

Isotropic elasto-plastic internal friction model

Non-associated plasticity,  Van Eeckelen yield surface :

φ hardening /  c softening

- Hydraulic law

Fluid mass flow (advection, Darcy) :

Water retention and permeability curves (Mualem - Van Genuchten’s model) 
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2. Fracture modelling with shear bands
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2.3. Gallery excavation modelling

- Numerical model

HM modelling in 2D
plane strain state

Gallery radius = 2.3 m

- Gallery in COx // σh

Effect of stress anisotropy

Anisotropic stress state

pw,0 = 4.5 [MPa]

σx,0 = σH = 1.3 σv = 15.6 [MPa]

σy,0 = σv = 12 [MPa]

σz,0 = σh = 12 [MPa]

- Excavation

2. Fracture modelling with shear bands

σH

σv

Context Fracture modelling Anisotropy Water transfer Conclusion 12



- Localisation zone 

Incompressible solid grains, b=1

 For an isotropic mechanical behaviour, the appearance and shape of the strain localisation are 

mainly due to mechanical effects linked to the anisotropic stress state.

3 days

σr/σr,0 = 0.4

4 days

σr/σr,0 = 0.2

5 days

σr/σr,0 = 0.0

100 days

σ/σ0 = 0.00

1000 days

σ/σ0 = 0.00

Total deviatoric strain Plasticity

2. Fracture modelling with shear bands

0 0.06

4.6 m

0.5 m

2
ˆ ˆ ˆ

3
eq ij ij  

End of

excavation
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- Gallery air ventilation :

Water phases equilibrium at gallery wall (Kelvin's law)

Compressibility of the solid grains: b=0.6

Ventilation

pw = -30.7 [MPa]

No ventilation

pw = patm [MPa]

Total 

deviatoric

strain

Plasticity

No ventilation

100 days 1000 days

0 0.184

Ventilation

100 days 1000 days

2. Fracture modelling with shear bands

,0

v c v

v w

p p M
RH exp

p RT 

 
 


 
 

 suction ↑  

 σ’ ↑   

 Elastic unloading

 Inhibition of localisation

 Restrain ε

,r w w ijij ij b S p   
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- Convergence:

Important during the excavation

Anisotropic convergence

Influence of the ventilation

Experimental results (GED - Andra’s URL)

No strain localisation

Calcul with large D or no loc SDZ? If large D ça rigidifie un peu
Shear band position
Shear bands are necessary for anisotropy

2. Fracture modelling with shear bands
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2.5. Conclusions and outlooks

- Conclusions

 Reproduction of EDZ with shear bands.

 Shape and extent of EDZ governed by anisotropic stress state.

- Next steps …

X Mechanical rock behaviour.

 Material anisotropy, gallery // σH .

X HM coupling in EDZ.

 Influence of fracturing on hydraulic properties.

X Gallery air ventilation and water transfer (drainage / desaturation).

2. Fracture modelling with shear bands
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- Linear elasticity :

Cross-anisotropic (5 param.) + Biot’s coefficients

- Plasticity :

Cohesion anisotropy with fabric tensor

Cross-anisotropy

/ / / / / / // //, , , ,E E G    / / ,b b
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3. Influence of mechanical anisotropy
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4.5m

3.3. Gallery excavation modelling for anisotropic initial stress state

- Stress state

Major stress in the axial direction σx,0 = σh = 12.40 MPa

Gallery // to σH σy,0 = σv = 12.70 MPa

σz,0 = σH = 1.3 x σh = 16.12 MPa

- Shear banding

Total deviatoric strain 

 Shape modification due to σH

0 0.05

3m

Horizontal

Vertical

- Convergence

 Long-term deformation

Experimental

Numerical

3. Influence of mechanical anisotropy
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 Creep deformation



- Creep deformation

Permanent strain

In the long term

Under constant stress
below the yield strength

- Viscosity

Time-dependent plastic strain
(Jia et al., 2008; Zhou et al. 2008)

Horizontal

Vertical

- Convergence

 Viscosity
effect

σ1

σ3
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3. Influence of mechanical anisotropy
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3.4. Conclusions and outlooks

- Conclusions

 Reproduction of EDZ in both directions.

 Shape and extent of EDZ governed by:

- anisotropic stress state.

- anisotropic mechanical behaviour.

 Long-term convergence with viscosity.

- Next steps …

X HM coupling in EDZ.

 Influence of fracturing on hydraulic properties.

X Gallery air ventilation and water transfer.

GED 
// σh 

GCS 
// σH 

3. Influence of mechanical anisotropy
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4. Permeability evolution and water transfer

4.1. Large-scale experiment of gallery ventilation (SDZ)

Characterise the effect of gallery ventilation 

on the hydraulic transfer around it.

 drainage / desaturation

 exchange at gallery wall
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4.2. Permeability variation in fractured zone

HM coupling in the EDZ.

4.2.1. Saturated permeability in boreholes

Fracture and rock matrix permeabilities

 Capture kw evolution

 Relation to fractures
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4.2.2. Evolution of intrinsic water permeability

Various approaches: deformation, damage, cracks…

- Relation to deformation

Volumetric effects = increase of porous space
()(

(Kozeny-Carman)

- Fracture permeability

Cubic law for parallel-plate approach
(Witherspoon 1980; Snow 1969, Olivella and Alonso 2008)

Poiseuille flow (laminar flow)

equivalent Darcy’s media

- Empirical law

Related to strain localisation effect

Permeability variation threshold
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4.4. Modelling of excavation and SDZ experiment

4.4.1. HM coupling in EDZ

- Gallery excavation

SDZ  GED gallery // σh

Anisotropic σij,0 and material

 Localisation zone dominated

by stress anisotropy

- Intrinsic permeability evolution

Cross-sections

Plastic strain and a part of the elastic one      EDZ extension   +   kw increase

Plasticity Total deviatoric strain kw,,ij / kw,ij,0 [-]

0.95thrYI 

 ,

, ,

ˆw ij thr

eq

w ij

k
YI YI

k
    3

0

1
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Experimental

Numerical

- Drainage / pw reproduction

Oblique 45° Horizontal

αv = 10-3 m/s
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4. Permeability evolution and water transfer



- Desaturation EDZ / w reproduction

Horizontal boreholes

 Desaturation:  overestimation in long term

 Vapour transfer (αv = 10-3 m/s)

 Good reproduction at gallery wall

At gallery wall

4. Permeability evolution and water transfer
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Outline

1. Context

2. Fracture modelling with shear bands

3. Influence of mechanical anisotropy

4. Permeability evolution and water transfer

5. Conclusions and perspectives
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5. Conclusions and perspectives

Conclusions

Better understand, predict, and model 

the behaviour of the EDZ in partially

saturated clay rock, at large scale.

Contribution : Provide new elements for the prediction and understanding of the HM behaviour of the EDZ.

Innovations : Fracturing process is predicted on a large scale with shear bands.

Strain localisation effects are taken into account in coupled processes (water flow).

Fracture description

EDZ with strain localisation.

Constitutive models

Mechanics: anisotropy, viscosity.

Coupled: fracture influence on 

permeability.

Numerical modelling

Shape, extent.

Influence of fracturing, permeability 

variation, anisotropy.

Water transfer.
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5 m

12 m

12 m 5 mR: 2.3 m

z

y

x

zx
y

- Fracturation = 3D problem

Fractures pattern around
a gallery in Boom clay

- Mesh:

Mechanical modelling in 3D state.

Classical FE, no regularisation method.

I. Gallery excavation in 3D
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I. Gallery excavation in 3D

- Localisation zone:

Equivalent deformation εeq during boring.

3.75 days 4 days 4.25 days

σ/σ0 = 0.25 σ/σ0 = 0.20 σ/σ0 = 0.15

3 days 3.25 days 3.5 days

σ/σ0 = 0.40 σ/σ0 = 0.35 σ/σ0 = 0.30

0 0.025

z

y

x

2
ˆ ˆ ˆ

3
eq ij ij  
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I. Gallery excavation in 3D

- Localisation zone:

Equivalent deformation εeq during boring.

z

y

3 days 3.25 days 3.5 days

σ/σ0 = 0.40 σ/σ0 = 0.35 σ/σ0 = 0.30

3.75 days 4 days 4.25 days

σ/σ0 = 0.25 σ/σ0 = 0.20 σ/σ0 = 0.15

0 0.025

2
ˆ ˆ ˆ

3
eq ij ij  
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- Localisation zone

Equivalent deformation εeq - for 4.25 days of excavation (σ/σ0 = 0.15) :

z<0 : excavation zone

z=0 : gallery front

z>0 : rock mass

I. Gallery excavation in 3D

z=-2.25m z=-1.25m z=-0.25m z=+0.25m z=+1.25m

0 0.025x

y



0 0.184

Biot’s coefficient:  b=0.6

Plasticity

Compressibility influence on shear banding

3 days

σr/σr,0 = 0.4

4 days

σr/σr,0 = 0.2

5 days

σr/σr,0 = 0.0

100 days

σ/σ0 = 0.00

1000 days

σ/σ0 = 0.00
End of

excavation

Total deviatoric strain Plasticity

b=0.6                                                                          b=1

4 days 5 days 4 days 5 days

,r w w ijij ij b S p   
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- Gallery air ventilation :

Total 

deviatoric

strain

Plasticity

0 0.184

suction ↑  

σ’ ↑   

Elastic unloading

Inhibition of 

localisation

 Restrain ε

,r w w ijij ij b S p   
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Air ventilation influence on shear banding

Ventilation

100 days 1000 days



- Spatial discretisation

Matricial form of balance equations:

vector of the unknown increments of nodal variables

- Element stiffness matrix

Unsaturated condition, Sr,w

Soild phase compressibility, b

Permeability anisotropy and evolution, kw,ij

Finite element formulation – 2d gradient model

37

1 2 1 2
1

*, 1 1 1 1 1 1 1

( , ) ( , ) 1 2 3

T

x x x xU E dU d


      



             

1 2

1

( , )x xdU  
 

Unknown 
fields

7 d.o.f.



38

Second gradient mechanical law – Influence of the elastic modulus

Plasticity Total deviatoric strain
2

ˆ ˆ ˆ
3

eq ij ij  

D = 80 N          D = 20 N         D = 5 N

- Second gradient mechanical law

Linear elastic law function

Independent  of pw

Internal length scale

D represents the physical
microstructure

 D should be evaluated based on experimental measurements

 Better numerical precision if a few elements compose the shear band width

 Large scale …

ijk [ ]
ij

k

D
x


 





Cross-anisotropic elasticity

Linear elasticity (5 param.)

Biot’s coefficients

Micro-homogeneity and micro-isotropy assumptions (Cheng, 1997)

for which Ks is homogeneous and isotropic at grains scale.
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Influence of mechanical anisotropy
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Anisotropic plasticity with fabric tensor

Cohesion anisotropy with fabric tensor.

c0 is the projection of the tensor on a generalised unit loading vector :

Deviatoric part:

Generalisation with higher order tensor:

Orthotropy:

Cross-anisotropy:
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Influence of mechanical anisotropy
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Viscosity

Time-dependent plastic strain, delayed plastic deformation

Progressive evolution of the material microstructure or to mechanical properties degradation (damage)

Viscoplastic loading surface and potential surface:

Delayed viscoplastic hardening function:
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Viscosity
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Permeability evolution and water transfer

- Reproduction at the end of excavation

(a) Volumetric strain

(b) Equivalent deviatoric
total strain

(c) Equivalent deviatoric
plastic strain

(d) Plastic strain and a
part of the elastic one
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- Drainage / pw reproduction

Horizontal Oblique 45°

Vertical Horizontal

αv = 10-3 m/s

 Good matching

 HM effect - kw,h> kw,v
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Permeability evolution and water transfer



- Desaturation EDZ / w reproduction

At gallery wall

 Low vertical drainage

 kw,h > kw,v :   kw,h/v = 4 10-20 / 1.33 10-20 [m²]
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Permeability evolution and water transfer



- Convergence

Total deviatoric strain

Velocity norm

Diametrical
convergence

|| || x yv v v 2 2
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σr/σr,0 = 0.04

t = 16.8 days

σr/σr,0 = 0.00

t = 21 days

σr/σr,0 = 0.08

t = 15.4 days

Mechanical anisotropy



Kinetics of drying process – Mixed boundary condition

- Non-classical mixed boundary condition

Progressive thermodynamic equilibrium by vapour transfer.

Vapour transfer in a boundary layer.

- Non-classical mixed boundary condition

Liquid water   +   water vapour

- Seepage flow :

- Evaporation flow :
(Nasrallah and Perre, 1988)
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Evaporation and seepage flows at gallery wall for a
constant air ventilation (Gerard et al., 2008).



Kinetics of drying process – Water vapour transfer

Drying test : saline solutions (control vapour phase & RH), or convective drying tests

Drying flux curve:

Thermo-hydraulic process and exchanges in a boundary layer.

1. Preheating

2. Constant flux : heat totally used for water evaporation, saturated boundary layer, external conditions (RH, T, v).

3. Decrease of the flow :  internal resistances restrict the water outflow, desaturation of the boundary layer

 αv depends on external drying conditions (RH, T, v)
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Gallery excavation modelling for anisotropic initial stress state

Gallery // to σh

Convergence and HM coupling
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Close to gallery wall:

Strong effect of the localisation bands

σΓ=cst, pw↑, σ’↓ , εpl↑ (on the yield surface)

Convergence keep increasing

In the vertical: similar

Vertical cross-section



- Displacements

Andra’s URL Mine-by experiment

Borehole – extensometers and pore pressure  Characterise the displacements in the rock mass

Mine-by experiment
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- Displacements

Viscosity based on creep tests

- Convergence

Horizontal

Vertical

Horizontal

Vertical
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Mine-by experiment



- Displacements

Viscosity based on in situ measurements  Viscosity influence

- Convergence

Horizontal

Vertical

Viscosity allows to reproduce the increase 

of convergence in the long term.

Horizontal

Vertical
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Mine-by experiment



- Pore water pressure

Mine-by test

After excavation: RH=100% , pw = 0 MPa in the gallery

Horizontal:
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Mine-by experiment




