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Abstract Damage induces strain localization in quasi-brittle materials such as

concrete. In order to correctly simulate this behaviour, it is necessary to introduce a

length scale parameter in the continuum model. The second gradient model, a spe-

cial case of kinematically enriched continua, uses an internal length parameter by

taking into account the second order derivatives of the displacements in the virtual

power principle. A penalty term is added in the original second gradient finite ele-

ment formulation in order to improve convergence and to avoid erroneous damage

distribution. A three points bending test of a reinforced concrete beam show the per-

formance of the improved second gradient finite element formulation.

1 Introduction

As a material exhibiting softening, concrete is subject to strain localization. In order

to correctly simulate this behavior a model with a length scale parameter is needed.

Chambon, Caillerie and Hassan gave a closed form solution for the one dimensional

problem of strain localization in a bar with a bilinear type constitutive law in a second

gradient continuum [2]. This was soon followed with several applications for plane

strain shear banding [4, 14, 17, 22], mostly in soils. Similar approaches were also

recently used in the framework of damage mechanics combined with homogeniza-

tion techniques by Li [15, 16], see also [10, 11, 13, 23] for application in concrete

structures.
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In this paper, it is shown that the original finite element formulation adopted in a

previous work of the authors [11] presents some numerical difficulties to correctly

simulate damage localization problems. The original finite element of Matsushima

et al. [17] is thus improved by adding a penalty term, following previous works by

Fernandes [6] for plasticity problems. The ability of the improved model to better

simulate strain localization in concrete is studied with a three points bending test of

a reinforced concrete beam.

2 Second Gradient Model

Considering a body of domain 𝛺 and of boundary 𝛤 , the general formulation of a

second gradient model using the virtual power principle can be written as follows

[2, 17]:

∫
𝛺

(𝜎iju⋆i,j + Σijku⋆i,jk) d𝛺 = ∫
𝛤

(piu⋆i + PiDu⋆i )d𝛤 , (1)

where 𝜎ij is the macro stress (the classical second order stress tensor), Σijk the double

stress (a third order tensor) and pi and Pi respectively the first (classical) and second

order surface traction (first order tensors).

In linear elasticity, the constitutive law for 𝜎ij depends as usual on the first gradient

of the displacements, while Σijk is a function of the second gradient of the displace-

ments [19]. Coupling between the first and second gradient parts is possible, see

for example [3, 7, 12]. Chambon and co-workers considered mainly cases with full

decoupling of the first and second gradient parts: nonlinear laws, independent of Σijk
and ui,jk for the first gradient part and an elastic linear isotropic law for the second

gradient part [5, 14, 17, 20]. It should be highlighted however that the introduction

of damage on the second gradient part has been studied by different authors [12, 15,

16, 23]. In [12] and for a 1D case, it is shown that a carefully formulated coupling

law leads to an a priori control of the width evolution (constant, increase or decrease)

of the localisation zone.

3 Finite Element Formulation

3.1 The Original Mixed Formulation

One way to circumvent the difficulties of the necessary C1
continuity is to adopt a

mixed formulation and to interpolate the gradient independently from the displace-

ment field [17, 21]. More specifically, the displacement field ui and its gradient noted

vij are both interpolated with C0
functions since only first order derivatives appear

in the weak formulation provided either by the virtual power principle of a general
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micromorphic media with a kinematic constrain [3] or by integration of the strong

form of the equilibrium equations [21]. In the former case, we can directly write:

∫
𝛺

(𝜎iju⋆i,j + 𝜆ij(v⋆ij − u⋆i,j) + Σijkv⋆i,jk) d𝛺 = ∫
𝛤

(piu⋆i + Piv⋆ij nj)d𝛤 (2)

with the added kinematic constraint (in weak form) :

∫
𝛺

𝜆
⋆

ij (vij − ui,j) d𝛺 (3)

where 𝜆
⋆

ij is the field of Lagrange multipliers associated with the kinematic con-

straint. For the second gradient model, Matsushima et al. [1, 17] originally developed

a 9-nodded finite element with the displacement field interpolated by biquadratic

functions of the serendipity type and the gradient field by bilinear functions. Lagrange

multipliers are constant on the element while numerical integration is performed

using a classical Gauss scheme [1]. The numerical performance of this formulation

is tested hereafter using a three points bending test of a reinforced concrete beam.

3.2 A Three Points Bending Test of a Reinforced
Concrete Beam

The concrete beam has the following geometrical characteristics: thickness b =
200mm, height h = 500mm and span 5000 mm. The tested beam and the steel rein-

forcement are shown in Fig. 1.

The finite element mesh consists of 5180 elements, 4148 of which are second gra-

dient elements and 1032 truss elements representing the horizontal reinforcement.

The average size of the concrete elements is of 0.02 m × 0.035 m. The two supports

(the two points at the bottom of the specimen, see Fig. 1) are blocked vertically while

the right support is also blocked horizontally. For the finite element calculations,

monotonically increased displacements are applied at the upper part of the beam

through an elastic plate, which is very stiff compared to the other materials [11].

At both supports at the bottom of the beam and on the upper part, where the dis-

placements are applied, an elastic linear law is introduced to prevent any artificial

numerical damage. A classical damage mechanics law is used for the first gradi-

ent constitutive law [18]. An isotropic linear elastic constitutive law is adopted for

the second gradient part depending on a single material parameter. No coupling is

assumed between the first and the second gradient constitutive laws. An elastic per-

fectly plastic law is used for the reinforcement and a perfect bond is assumed.

Figure 2 shows the damage distribution in the entire beam as well as two close

ups. It can be observed that in the localization bands and inside certain finite ele-

ments some integration points present an increasing damage variable while others

are unloading leading to serious convergence problems.
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Fig. 1 3 point bending test: beam dimensions and steel reinforcement [8, 9]

Fig. 2 Damage distribution in a three points beam test (top figure). Zoom on damage oscillation

problems (left figure) and loading integration points (red rectangles correspond to integration points

with an increasing damage variable, right figure)
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Fig. 3 3 point bending test: damage distribution for an imposed displacement of 6 mm a without

and b with a penalty factor

3.3 Addition of a Penalty Term

A way to improve the numerical performance of the original mixed second gradient

finite element formulation is to add a penalty term to enforce the kinematic constraint

(while keeping the Lagrange multipliers) [10]. A similar approach was proposed by

Fernandes et al. [6] in the context of plasticity. Noting C the penalty factor, the weak

formulation of the problem becomes:

∫
𝛺

(𝜎iju⋆i,j + 𝜆ij(v⋆ij − u⋆i,j) + C(v⋆ij − u⋆i,j)(vij − ui,j) + Σijku⋆i,jk) d𝛺 = ∫
𝛤

(piu⋆i + Piv⋆ij,knk)d𝛤

(4)

∫
𝛺

𝜆
⋆

ij (vij − ui,j) d𝛺 (5)

The three points bending test of section is modelled here using the second gradient

finite element with the added penalty term. Figure 3 gives the damage distribution

corresponding to an imposed displacement U = 6 mm without and with a penalty

factor. It is clear that the introduction of the penalty factor improves the numerical

performance of the model and results to a more smooth and continuous damage

distribution.

4 Conclusions

Following previous works [11, 13], the second gradient model is used as a regu-

larization method for concrete structures in the context of damage induced strain

localization. The performance of the 2D second gradient finite element is improved

by introducing an additional penalty term in the Lagrangian mixed formulation. An

example is provided considering a reinforced concrete beam.
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