Energy management of a grid-connected photovoltaic plant coupled with a battery energy storage device using a robust approach

Context

System

-> **PV**+ **energy storage system** connected to the **grid**

Figure 1: System = PV + battery connecte to the grid

Context

Where ?

-> Remote areas: French islands (Réunion, Corse, Guadeloupe, etc)

Goal

-> The **intermittent power** from a PV/wind plant has to be **maintained at a committed level**.

How ?

-> The **energy storage system smoothes** the output and controls the ramp rate (MW/min).

Who?

-> The French Energy Regulatory Commission defines the **specifications** of the tenders *<https://www.cre.fr/>*.

Summary

1. Capacity firming vs day ahead market

- 2. Problem formulation
- 3. Case study
- 4. Conclusions & perspectives

Day-ahead energy market

- producers **bid** (level & price) **before 12 am** (deadline) at D for D+1
- **1 pm at D** -> day ahead **prices** for D+1 are **cleared** based on the **uniform pricing principle ->** *the agents have the incentive to bid at their marginal cost*
- producers can **adjust bids** on the **intraday market** up to 15 min prior delivery

Figure 2: Day ahead market

- A: opening day-ahead market
- B: bid submissions
- C: closing gate
- D: market clearing-also is executed
- E: notification of the market clearing outcomes
- F: beginning of the delivery

Energy market lesson: Thibaut Théate Antoine Dubois Adrien Bolland [http://blogs.ulg.ac.be/damien-ernst/teaching/](http://blogs.ulg.ac.be/damien-ernst/teaching/elec0018-1-energy-markets/)

[elec0018-1-energy-markets/](http://blogs.ulg.ac.be/damien-ernst/teaching/elec0018-1-energy-markets/)

See also P. Pinson teaching: [http://](http://pierrepinson.com/index.php/teaching/) pierrepinson.com/index.php/teaching/

Capacity firming energy market

- producers **bid** (level only !) **before 4 pm** (deadline) at D for D+1
- the **bidding** price is **known** ! With a peak price during peak hours (7-9pm)
- it is **not possible to adjust the bid on a intraday market** !!!
- **penalties** if deviation from the schedule

And, the engagement plan is accepted if it satisfies **the constraints**

Penalty and revenue

Figure 4: Penalty (left) and net revenue (right). Engagement = 50 % of PV installed capacity, deadband tolerance = 5%.

$$
\text{Net revenue: } r_t = \Delta_t \pi_t p_t^{\text{m}} - \underbrace{c(p_t^{\star}, p_t^{\text{m}})}_{\text{Penalty}} \forall t \in \mathcal{P}. \tag{2}
$$

Capacity firming energy market

Two steps:

- **Day ahead**: compute the **optimal bid** taking into account PV uncertainty
- **Intraday**: **minimize deviation** from the bid

Use the battery (BESS) to:

- store energy to **export** during **peak hours** !!!
- deal with PV **uncertainty ….**

IA meeting 14/12/2020 Forecaster Planner

Capacity firming energy market

Figure 5: Day ahead bidding = STEP 1: compute the optimal bid

9

Summary

- 1. Capacity firming vs day ahead market
- 2. Problem formulation
- 3. Case study
- 4. Conclusions & perspectives

Formulation: day ahead nomination

How to manage the PV uncertainty ???

- -> three approaches:
- **deterministic**: using PV *point* forecasts
- **stochastic:** using PV scenarios
- **- robust:** using PV *uncertainty sets* (prediction intervals based on *quantiles*)

Uncertainty set between quantiles 10% & 90%

Figure 7: PV scenarios (left) & PV quantiles (right)

Deterministic day ahead formulation

First-stage variables (x_t) = *engagement*.

Second-stage variables (y_t) = dispatch variables: *charge*, *discharge*, *state of charge*, etc.

Objective function to **minimize** = $J(x_t, y_t) = -Net$ **revenue** over the entire day. -> **Net revenue** = revenue - penalty.

The **deterministic** formulation is (MIQP) $\Omega(x_t, d_t)$ = set of constraints on the **dispatch** variables ̂ ⁼**set** of constraints on the **engagement** (ramping constraints). ̂ $d_t = \textsf{PV}$ point forecasts

$$
\min_{x_t \in \mathcal{X}, y_t \in \Omega(x_t, \hat{d}_t)} J(x_t, y_t) \tag{3}
$$

Stochastic day ahead formulation

First-stage variables (x_t) = *engagement*.

Second-stage variables (y_{t,w}) = dispatch variables: *charge*, *discharge*, *state of charge*, etc.

Minimization of the **expected profit over all PV scenarios** !

̂ $\hat{d}_{t,\omega}$ = **PV** scenarios

The **stochastic** formulation is (MIQP)

$$
\min_{[x_t \in \mathcal{X}, y_{t,\omega} \in \Omega(x_t, \hat{d}_{t,\omega})} \sum_{\omega} \alpha_{\omega} \cdot J(x_t, y_{t,\omega}) \tag{4}
$$

 α_{ω} = probability of scenario w

PV uncertainty set

Robust approach: PV uncertainty set.

Figure 8: PV uncertainty set

PV uncertainty set

PV **uncertainty set** D defined by PV **quantile forecasts.**

$$
\mathcal{D} = \left\{ d_t \in \mathbb{R}^T : \sum_{t \in \mathcal{T}} z_t^- + z_t^+ \leq \Gamma, \qquad \text{400} \right\}
$$
\n
$$
0 \leq z_t^- + z_t^+ \leq 1 \quad \forall t \in \mathcal{T}, \qquad \text{300}
$$
\n
$$
d_t = \overline{d}_t - z_t^- d_t^{\min} + z_t^+ d_t^{\max} \right\}
$$
\n
$$
0 \leq \Gamma \leq 96
$$
\n
$$
\text{Uncertainty budget:}
$$
\n
$$
0 \leq \Gamma \leq 96
$$
\n
$$
0 \leq \Gamma \le
$$

PV uncertainty set

Figure 10: PV worst trajectories.

Robust day ahead formulation

$$
\min_{x_t \in \mathcal{X}, y_t \in \Omega(x_t, \hat{d}_t)} J(x_t, y_t) \qquad \min_{x_t \in \mathcal{X}} \min_{y_t \in \Omega(x_t, \hat{d}_t)} J(x_t, y_t)
$$
\nRobust: $d_t \in \mathcal{D}$

\nWinimize over the **worst** PV

\ntrajectory into D.

The **two-stage robust formulation** is (**NON LINEAR**)

$$
\min_{x_t \in \mathcal{X}} \left[\max_{d_t \in \mathcal{D}} \min_{y_t \in \Omega(x_t, \hat{d}_t)} J(x_t, y_t) \right] (5)
$$

= **worst-case dispatch cost ! For a given x**

Robust day ahead formulation

The **two-stage robust** formulation is (**NON LINEAR**)

min max $J^{dual}(x_t, d_t, \phi_t)$ (6) *x*_t∈X d_t∈D, ϕ _t∈P min *xt* ∈ max d_{t} ∈ \mathscr{D} min $y_t \in \Omega(x_t, d_t)$ ̂ $J(x_t, y_t)$ (5) D**uality** ! (still **NON LINEAR …**)

with $\boldsymbol\Phi$ **the dual variables** of constraints in $\ \Omega(x_t, d_t)$ ̂

Robust day ahead formulation

EUREKA !!! -> **Convex piece-wise linear** function in x !!!

Robust day ahead formulation

Benders decomposition !!!!!

- *Master problem*: solve
- **Iteration = i** min *xt* ∈ $R_i(x_t)$ ̂
- *Sub problem*: compute

$$
\hat{R}_i(x_t) \approx \max_{d_t \in \mathcal{D}, \phi_t \in \mathcal{P}} J^d
$$

 $J^{dual}(x_t, d_t, \phi_t)$

How to compute
$$
\hat{R}_i(x_t)
$$
 ???

See J. Kazempour (DTU) teaching: *<https://www.jalalkazempour.com/teaching>*

Robust day ahead formulation

Cutting plane algorithm !!! -> each iteration adds a cut !

<https://www.jalalkazempour.com/teaching>

Figure 11: Cutting planes.

Summary

- 1. Capacity firming vs day ahead market
- 2. Problem formulation
- 3. Case study
- 4. Conclusions & perspectives

*Figure 12: Daily energy PV generation normalized by 466,4 * 24.*

Dataset = **350** days **15 min** resolution Pc = **466,4** kWp (installed capacity)

Simulation parameters

Simulation parameters:

- Peak hours: **7 9 pm**
- Selling price = **¹⁰⁰** €/MWh (**300** during peak hours)
- Deadband engagement tolerance = **5 % Pc**
- Engagement ramping constraints = **7.5 % Pc/15min**

Battery parameters:

- capacity = **466.4 kWh**
- charging/discharging efficiencies = **0.95**
- charging/discharging power **= 466.4** kW
- initial state of charge = **0** kWh each day
- state of charge of the last period = **0** kWh each day

Quantile forecasts: *<https://orbi.uliege.be/handle/2268/252357>*

Dumas, Jonathan, Xavier Fettweis, and Bertrand Cornélusse. "Deep learning-based multi-output quantile forecasting of PV generation." (2020).

ULiège case study

Figure 13: Nominations (left) and state of charge (right).

The robust approach (Benders) is more **conservative**.

Figure 14: total profit (k€) per risk-aversion pair.

Total profit by using the **optimal pair** per day = **67.51** (k€) & **69.19** (k€) with the oracle.

How to select the optimal risk-aversion pair ??? [*qmin* , *qmax*] |Γ

ULiège case study

How to select the optimal risk-aversion pair ???

Assumption:

- ^a**risk-averse** strategy provides the best revenue for a **sunny/cloudy** day (where the **forecast error** should be **minimal**)
- ^a**risk-conservative** strategy provides the best revenue for a "**middle**" day (where the **forecast error** should be **maximal**)

Is true ????

ULiège case study

Use the production under **clear sky condition** as normalizing factor -> **normalized capacity factor** !!!

ULiège case study

How to predict the optimal risk-aversion pair ???

-> use a **classifier/regressor** to **predict** the **optimal riskaversion pair** based on the day ahead PV point forecasts;

-> use the **predicted risk-aversion** pair for robust optimization

Summary

- 1. Capacity firming vs day ahead market
- 2. Problem formulation
- 3. Case study
- 4. Conclusions & perspectives

Conclusions & perspectives

- implement a **risk-aware algorithm** to optimize risk-aversion
- compare **deterministic**, **stochastic** & **robust** approaches
- use **Normalizing Flow** to compute PV scenarios, and quantiles
- **normalize** PV generation by PV generation with clear sky day to remove PV seasonality -> compute PV quantiles
- optimize **Benders convergence**