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Abstract

The scientific community has realised that non-determinism is a major issue that affects
structural and material performance and reliability. Because experimental characterisation
alone cannot reliably sample the tails of distributions, virtual stochastic testing has thus be-
come a research field of growing interest. Since the uncertainties at the structural level also
result from the variability of the micro-structure, there is a need to develop computationally
efficient stochastic multi-scale methods. The purpose of this work is to provide a summary
of the different methods that have been developed in the context of micro-structure charac-
terisation and reconstruction, of stochastic homogenisation and of uncertainties up-scaling.
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1. Introduction and motivations

The last decades have seen the emergence of more and more accurate and detailed nu-
merical models for predicting material behaviours and structural responses, including when
considering several scales, see the reviews by Kanouté et al. (2009); Matous et al. (2017);
Yvonnet (2019). However, most of the research considers deterministic models whilst the sci-
entific community has realised that non-determinism is a major issue that affects structural
and material performance and reliability. This has motivated the introduction of uncertainty
quantification in model developments.

Uncertainties are generally classified in two categories (Rosi and Matthies, 2008; Pivo-
varov et al., 2018a, e.g.). On the one hand, aleatory uncertainties are associated with the
inherent randomness of nature, and their effect on the structural responses for a given ma-
terial system and environment cannot be reduced. Material structure randomness, loading
variability, geometrical imperfections are part of the aleatory uncertainties. On the other
hand epistemic uncertainties result from a lack of knowledge of the system under considera-
tion due to insufficient measurements, (lack of) accuracy in the experimental measurements,
or from model errors. Their effects can be reduced by obtaining more information, e.g. by
collecting more data, improving the model accuracy etc. It is common to handle aleatory
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uncertainties using statistical approaches, whilst epistemic uncertainties can be handled by
non-probabilistic uncertainty treatment like Interval and Fuzzy analyses (Moens and Van-
depitte, 2005). Models considering both sources of uncertainties are called polymorphic
(Pivovarov et al., 2018a). However, following Soize (2017), when considering probability
theory and mathematical statistics of uncertainty quantification, the same tools can be used
with these two types of uncertainties.

Uncertainties, and probabilistic approaches can also be classified in parametric and non-
parametric ones. Following Soize (2017), parametric uncertainties are associated with the
parameters of computational models, and non-parametric uncertainties are induced by mod-
elling errors. Parametric probabilistic approaches can handle model-parameter uncertainties
for predictive computational models but not the modelling errors. Soize (2017) gave the fol-
lowing example. Assuming one wants to represent the uncertainties in the matrix of a
structural model, and that the matrix b depends on a parameter x, in the parametric ap-
proach the uncertainties in the parameter are described by a distribution. As a result, if
when spanning the support of this distribution, the region spanned by the matrix b does not
include the experimental observations, the model has a deficiency which cannot be addressed
by this parametric approach. The non parametric approach pioneered by Soize (2000) con-
sists in directly building prior probability distribution of a random matrix, e.g. using the
maximum entropy principle. The non-parametric probabilistic approach can thus handle
both the model-parameter uncertainties and the model uncertainties.

In this work we mainly consider the uncertainties which originate from the material
itself, whilst remaining at the continuum mechanics scale, and that affect structural re-
sponses. This is particularly true in the context of strongly non-linear behaviours and/or
fracture (Graham-Brady et al., 2006; McDowell, 2010; Mariani et al., 2011b), in which case
the strength of a structure strongly depends on the micro-structure realisation observed in
stress concentration parts. For various applications, it is important, not only to be able to
estimate the nominal behaviour of a structure and possibly its standard deviation, but it is
also important to be able to estimate the probability of rare realisations. However, experi-
mental characterisation alone cannot reliably sample the tails of the distributions, since this
would require an excessive number of tests. This has motivated the development of virtual
stochastic testing, in which the stochastic description relies on a mathematics model or on
database, which are characterised by a quantification of the material uncertainties. Although
the stochastic model of macro-scale properties can be built directly from macro-scale mea-
surements as achieved in the context of composite materials by, e.g. Mehrez et al. (2012b,a),
because of the different involved length scales (Charmpis et al., 2007), there is a growing
interest in developing a combined experimental/numerical framework to up-scale the uncer-
tainties by formulating a computationally efficient stochastic scale transition between the
material scale and the structural scale. In this context, the uncertainty due to the material
heterogeneities has to be described as the spatial variability of the material properties at
the micro-structure level and the generated virtual specimens serve as Stochastic Volume
Elements (SVEs) in a stochastic multiscale analysis, see the review by Ostoja-Starzewski
et al. (2016).

The development of stochastic scale-transition methods is a subject of research which
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has seen a growing interest in the last decade, but which has still numerous challenges to
overcome, even for linear systems, before becoming commonly used in scientific or industrial
practices. In particular one can cite, as a non-exhaustive list, the following difficulties

• Characterising the micro-scale uncertainties, both in the micro-structure geometrical
description and material behaviours;

• Generating virtual specimens under the form of Stochastic Volume Elements (SVEs)
which respect the statistical content of real micro-structures, both in the micro-
structure geometrical description and material behaviours, in particular for 3D micro-
structure;

• Conducting stochastic analyses in an efficient and accurate way;

• Coupling stochastic micro-scale behaviour to stochastic macro-scale response, which
is not achievable by classical multi-scale methods because of the overwhelming cost;
Although the evaluation of the stochastic apparent properties of the Stochastic Volume
Elements can be decoupled to macro-scale stochastic finite elements analyses in the
linear range, the question remains open in the non-linear range.

One can find in the literature extensive reviews on micro-structures generation (Fullwood
et al., 2010; Bostanabad et al., 2018, e.g.), at least with respect to the geometrical features,
on the formulation of stochastic problems (Sudret and Der Kiureghian, 2000; Grimmett and
Stirzaker, 2001; Nouy, 1999; Soize, 2017), on stochastic homogenisation (Ostoja-Starzewski
et al., 2016), and on conducting stochastic finite element analyses (Stefanou, 2009). It is,
however, not always an easy task for a researcher to make the link between the different fields.
In particular, the notations are not always uniform, some choices made at one scale constrain
the methods that can be used at another scale, the size of the generated virtual micro-
structure affects the statistical content of the homogenised properties etc. The purpose of
this work is to provide a summary of different methods, without pretending to be exhaustive,
that have been developed at the different scales and to attempt to make the link between
micro-structure generation, stochastic homogenisation and up-scaling of uncertainties. The
manuscript is organised as follows. The definitions related to the main concepts of stochastic
analyses are provided in Section 2. The problem of virtual micro-structures generation is
reviewed in Section 3. Section 4 presents the different stochastic homogenisation methods
that have been developed, in both linear and non-linear ranges, in order to predict the
stochastic apparent properties of the virtual micro-structures. The representation of these
apparent properties, the need of generating pseudo-samples in order to conduct stochastic
structural analyses, and accounting for the size of the virtual micro-structures are discussed
in Section 5. Finally, details on stochastic and multi-scale algorithms are provided in the
appendices. Although these details can be found elsewhere, they are not provided in the
same context and the author hopes that it could be useful for the reader to have a self-content
review with a unique set of notations and conventions.
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2. Definitions and notations

In this section we introduce the notations of some statistics and probability concepts that
will be used throughout the work. This section is not a summary of probabilistic theories,
for which we refer to the books by Grimmett and Stirzaker (2001); Soize (2017) for a more
complete presentation.

2.1. Probability space

Definitions. The probability space (Q, F, P) is defined from the sample space Q, which is
the set of all possible outcomes, a collection F of subsets of Q, which is assumed to be a
σ-field1, and the probability measure P on (Q, F).

Probability measure. Following Grimmett and Stirzaker (2001), the probability measure P
on (Q, F) is a function P : F → [0, 1] satisfying (i) P(∅) = 0 and P(Q) = 1; (ii) for
A(i), i = 1, 2, ..∞ a collection of disjoint members of F, P

(
∪∞i=1A

(i)
)

=
∑∞

i=0 P(A(i)).

Conditional probability. Considering two events A and B, the conditional probability that
A occurs knowing than B occurs reads

P(A|B) =
P(A ∩ B)

P(B)
. (1)

We also have for two events A and B, with 0 < P(B) < 1 and Bc the complementary subset
of B, that

P(A) = P(A|B)P(B) + P(A|Bc)P(Bc) . (2)

Independence. Two events A and B are called independent if

P(A ∩ B) = P(A)P(B) . (3)

2.2. Random variables and vectors

2.2.1. Random variable with values in <
Definition. The random variable is a function Q : Q → < with the property that {q ∈ Q :
Q(q) ≤ q} ∈ F for each q ∈ <; such a function is said to be F-measurable (Grimmett and
Stirzaker, 2001). We note that the random variable Q is not in < but is a mapping; however
a realisation Q(q) of a fixed q ∈ Q is in <.

Cumulative distribution function. The cumulative distribution function FQ : < → [0, 1] is
given as the probability to have the random variable Q lower or equal to a value q, i.e.
FQ(q) = P(Q ≤ q)2.

The support SQ of the probability distribution of the random variable Q is the smallest
closed set SQ ⊂ < such that P(Q ∈ SQ) = 1 (Anderson et al., 2017).

1A collection F of subsets of Q is called a σ-field if (i) the empty set ∅ ∈ F; (ii) for subsets A(i) ∈ F, i =
1, ..∞ then ∪∞i=1A

(i) ∈ T; and (iii) for a subset A ∈ F, the complementary subset Ac ∈ F (Grimmett and
Stirzaker, 2001). As examples, F = {∅, Q} and F = {∅, A, Ac, Q} for any subset A ⊂ Q are both σ-fields.

2Following Grimmett and Stirzaker (2001), this last expression is an abbreviation of the more rigorous
notation FQ(q) = P(A(q)), where A(q) = {q ∈ Q : Q(q) ≤ q}. We will use this abuse of notations all along
this work for conciseness.
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Discrete random variables. In the case of a discrete random variable Q that can only take
values in some countable subset {q(1), q(2), ...} of <, the probability mass function πQ : < →
[0, 1] is defined as

πQ(q(i)) = P(Q = q(i)) . (4)

The expectation operator E [Q] ∈ < of the random variable Q is then defined as

q̄ = E [Q] =
∑

q(i);πQ(q(i))>0

q(i)πQ(q(i)) , (5)

where the summation is over all the possible q(i).
The definition of the support SQ allows defining the support indicator function χSQ :

< → {0, 1} as

χSQ(q(i)) =

{
1 if q(i) ∈ SQ ; and

0 if q(i) /∈ SQ .
(6)

The probability mass function πQ(q(i)) can then be expressed as πQ(q(i)) = χSQ(q(i))fQ(q(i)),

with no sum on i intended, where, fQ(q(i)) : SQ → [0, 1] with∑
q(i)∈SQ

fQ(q(i)) = 1 . (7)

Continuous random variables. A random variable Q is called continuous if its cumulative
distribution function can be expressed in terms of an integrable function πQ : < → [0, ∞[,
called probability density function, following∫ q

−∞
πQ(u)du = FQ(q) = P(Q ≤ q) . (8)

The expectation operator E [Q] ∈ < of the random variable Q is then defined as

q̄ = E [Q] =

∫
<
qπQ(q)dq , (9)

whenever it exists.
The definition of the support SQ allows defining a similar expression than Eq. (6) for

the support indicator χSQ : < → {0, 1} with

χSQ(q) =

{
1 if q ∈ SQ ; and

0 if q /∈ SQ .
(10)

The probability density function πQ(q) can then be expressed as πQ(q) = χSQ(q)fQ(q) where
fQ(q) : SQ → [0, ∞[ with ∫

SQ

fQ(q)dq = 1 . (11)
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Moments. For k ∈ N3, the kth-moment mkQ and the kth-central moment σkQ of a random
variable Q are defined using the expectation operator

mkQ = E[Qk] and σkQ = E[(Q−m1Q)k] . (12)

In particular, for k = 1, m1Q is the expectation operator, and for k = 2, σ2Q = m2Q −m2
1Q

corresponds to the variance, whilst σQ =
√
σ2Q is called standard deviation.

Considering nsample observations qi = Q(qi), i = 1..nsample, of the random vector Q, with
qi ∈ Q, the expectation operator can be approximated by

E [Q] ' 1

nsample

nsample∑
i=1

qi . (13)

The variance follows from

σ2
Q '

1

nsample − 1

nsample∑
i=1

(
qi − E [Q]

)2
. (14)

Event indicator function. Let A ⊂ Q be an event, and Ac its complement, the indicator
function χA : Q → {0, 1} is defined as

χA(q) =

{
1 if q ∈A ; and

0 if q ∈Ac .
(15)

The probabilities for the (Bernoulli) random variable χA to take the values 1 and 0 are,
respectively, P(A) and P(Ac).

Some distributions. The notation Q ∼ πQ means that a random variable Q follows the
mass/probability density function πQ(q). Here we present some particular cases of mass/-
probability density function πQ(q).

We first consider the case of a discrete random variable Q. A Poisson distribution Pλ

with a support N0 is defined by

Pλ(q
(i)) =

{
λq

(i)

q(i)!
e−λ if q(i) ∈ N0 ;

0 if not ,
(16)

where λ ∈]0, ∞[ is the expectation E[Q] and variance σ2
Q is λ.

We now consider a continuous random variable Q. A Gaussian or Normal distribution
Nµ, σ2 with a support ]−∞, ∞[ is defined by

Nµ, σ2 (q) =
1

σ
√

2π
exp

[
−1

2

(
q − µ
σ

)2
]
, (17)

3N is the set {1, 2, 3, ...} whilst N0 is the set {0, 1, 2, 3, ...}
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where µ and σ are respectively the expectation and standard deviation. A uniform distri-
bution Ua, b with a support [a, b] is defined by

Ua, b(q) =

{
1
b−a if q ∈ [a, b] ;

0 if q 6∈ [a, b] .
(18)

A Beta distribution βα, β, a, b of support [a, b] is defined by

βα, β, a, b(q) =

{
(q−a)α−1(b−q)β−1

(b−a)α+β−1B(α, β)
if q ∈ [a, b] ;

0 if q 6∈ [a, b] ,
(19)

where B(α, β) is the normalisation constant, and α, β > 0 are the shape parameters. The

expectation E[Q] is a + (b−a)α
α+β

and the standard deviation σQ is (b−a)
√
αβ

(α+β)
√

1+α+β
. A Gamma

distribution Γα, β, a, c of support [a,∞[ is defined by

Γα, β, a, c(q) =

( q−ac )
α−1

βαe
−β( q−ac )

cΓ(α)
if q ∈ [a, ∞[ ;

0 if q ∈]−∞, a[ ,
(20)

where Γ(α) is the normalisation constant, α > 0 is the shape parameter, β > 0 is the rate
parameter, and c allows defining the distribution independently of the possible unit of Q.
The expectation E[Q] is a+ cα

β
and the standard deviation σQ is c

√
α
β

.

2.2.2. Random vector with values in <n
Definition. The n-dimension random vector Q = [Q1 Q2 ... Qn]T is defined as a function
Q : Q → <n, where Q is a high dimension space. We note that Q is not a vector in
<n but a mapping; however a realisation Q(q) for a fixed q ∈ Q is a vector in <n. The
components Qi are also random variables. Each random variable Qi is associated to a
cumulative distribution function FQi : < → [0, 1], with FQi(qi) = P(Qi ≤ qi) the probability
for the random variable Qi to be lower than qi. The cumulative distribution function FQi :
< → [0, 1] is in this context also called marginal cumulative distribution function.

Joint cumulative distribution function. The joint probability P(Q ≤ q) is defined on the
probability space (Q, F, P) as the probability P(Q1 ≤ q1, ... , Qn ≤ qn).

The joint cumulative distribution function FQ : <n → [0, 1], of a random vector Q on
the probability space (Q, F, P) is thus given by

FQ(q) = P(Q ≤ q) ∀q ∈ <n . (21)

Discrete random vectors. In the case of discrete random vectors Q that can only take values
in some countable subset {q(1), q(2), ...} of <n, the probability mass function πQ : <n →
[0, 1] is defined using the previous notations as

πQ(q(i)) = P(Q = q(i)) . (22)
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Similarly to Eq. (5), the expectation operator q̄ = E [Q] ∈ <n of the random vector Q is
then defined for its component s as

q̄s = E [Qs] =
∑

q
(i)
s ;πQs (q

(i)
s )>0

q(i)
s πQs(q

(i)
s ) ∀s = 1..n , (23)

where the summation is over all the possible q(i), and where no sum on s is intended.

Continuous random vectors. In the case of continuous random vectors Q, the probability
density function πQ : <n → [0, ∞[, assuming it exists, is defined using the previous notations
such that ∫

]−∞, q1]×...×]−∞, qn]

πQ(u)du = FQ(q) = P(Q ≤ q) , (24)

and, if the joint cumulative distribution function FQ(q) is differentiable, it comes

πQ(q) =
∂n

∂q1 ... ∂qn
FQ(q) . (25)

Similarly to Eq. (9), the expectation operator q̄ = E [Q] ∈ <n of the random vector Q is
then defined for its component s as

q̄s = E [Qs] =

∫
<
qsπQs(qs)dq , (26)

whenever it exists and where no sum on s is intended.

Second-order random vector & mth-order random vector. Q is a second order random vector
if E[QTQ] <∞.
Q is a mth-order random vector of joint probability density πQ(q) if

E[‖Q‖m] =

∫
<n
‖q‖m πQ(q)dq < +∞ ,∀m ∈ N (27)

where ‖q‖ =
√
qTq.

Support and support indicator function. The support SQ of the probability distribution of
the random vector Q is the smallest closed set SQ ⊂ <n such that P(Q ∈ SQ) = 1.
As for a random variable, with a similar expression than Eq. (6), the support indicator
χSQ

: < → {0, 1} is defined as

χSQ
(q) =

{
1 if q ∈ SQ ; and

0 if q /∈ SQ .
(28)

The probability mass/density function πQ(q) can then be expressed as πQ(q) = χSQ
(q)fQ(q)

where ∑
q(i)∈SQ

fQ(q(i)) = 1 or

∫
SQ

fQ(q)dq = 1 , (29)

for discrete and continuous random vectors, respectively.
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Moments. We note that the moments of a random vector can also be defined for k =
{k1, ..., kn} ∈ Nn

0 as
mkQ = E

[
Qk1

1 × ...×Qkn
n

]
. (30)

Event indicator functions. Finally, the event indicator function (15) χA : Q → {0, 1} is
readily generalised for an event A ⊂ Q and Ac its complement.

2.2.3. Joint distributions of random vectors with values in <n
Let us consider the n-dimension random vector Q = [Q1 Q2 ... Qn]T : Q → <n and the

m-dimension random vector Y = [Y1 Y2 ... Ym]T : Q → <m.
The joint cumulative distribution function of a pair of random vectors (Q, Y ) is the

function FQ,Y : <n ×<m → [0, 1] such that

FQ,Y (q, y) = P (Q ≤ q and Y ≤ y) . (31)

Pair of discrete random vectors. The joint probability mass function πQ,Y : <n × <m →
[0, 1] of a pair of discrete random vectors (Q, Y ) reads

πQ,Y
(
q(i), y(j)

)
= P

(
Q = q(i) and Y = y(j)

)
. (32)

The marginal probability mass function πQ : <n → [0, 1] is defined as

πQ
(
q(i)
)

= P
(
Q = q(i)

)
=
∑
y(j)

πQ,Y
(
q(i), y(j)

)
, (33)

for all possible y(j).
The conditional cumulative distribution function of Y knowingQ = q(i), with P

(
Q = q(j)

)
>

0 is defined as
FY |Q

(
y(j)|q(i)

)
= P

(
Y ≤ y(j)|Q = q(i)

)
, (34)

and the conditional probability mass function of Y knowingQ = q(i), with P
(
Q = q(j)

)
> 0

is defined as
πY |Q

(
y(j)|q(i)

)
= P

(
Y = y(j)|Q = q(i)

)
. (35)

The conditional expectation of Y knowing Q = q(i) reads

Ψ
(
q(i)
)

= E
[
Y |Q = q(i)

]
=
∑
y(j)

y(j)πY |Q
(
y(j)|q(i)

)
, (36)

for all possible y(j), and can be seen as a vector dependent on the value q(i) taken by Q.
Ψ (Q) is thus another m-dimension random vector called the conditional expectation of Y
knowing Q and denoted E [Y |Q] (Grimmett and Stirzaker, 2001).
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Pair of continuous random vectors. The random vectors Q and Y are jointly continuous
with the joint probability density function πQ,Y : <n ×<m → [0, ∞[ if

FQ,Y (q, y) =

∫
]−∞, y1]×...]−∞, ym]

∫
]−∞, q1]×...]−∞, qn]

πQ,Y (u, v) dudv . (37)

We define the marginal cumulative distribution FQ : <n → [0, 1] such that

FQ (q) = P (Q ≤ q) =

∫
]−∞, q1]×...]−∞, qn]

(∫
<m

πQ,Y (u, y) dy

)
du , (38)

and the marginal probability density function πQ : <n → [0, ∞[ follows as

πQ (q) =

∫
<m

πQ,Y (q, y) dy . (39)

Finally, the conditional cumulative distribution function of Y knowing Q = q, with
πQ (q) > 0 is defined as

FY |Q (y|q) =
1

πQ (q)

∫
]−∞, y1]×...×]−∞, ym]

πQ,Y (q, v) dv , (40)

and the conditional probability density function of Y knowing Q = q, with πQ (q) > 0 is
defined as

πY |Q (y|q) =
πQ,Y (q, y)

πQ (q)
. (41)

The conditional expectation of Y knowing Q reads

Ψ (q) = E [Y |Q = q] =

∫
<m
yπY |Q (y|q) dy , (42)

which can be seen as a vector dependent on the value taken by Q. Ψ (Q) is another m-
dimension random vector called the conditional expectation of Y knowing Q and denoted
E [Y |Q].

2.3. Random vector fields

In order to further characterise the properties distribution over a body, we introduce the
notion of random (vector) field.

2.3.1. Discrete and continuous random vector fields

Discrete random vector field. Considering Ω = {x(0), x(1), ...} a countable set of material
points with Ω ⊂ <d, with d ∈ N, a discrete random vector field Q(Ω) is a countable family
{Q(x(i)) : x(i) ∈ Ω} of random vectors which map the sample space Q in a set SQ. For
all fixed x(i) ∈ Ω, Q(x(i)) is a random vector of support SQ. We note that for d = 1 the
random field is called random process.
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Continuous random vector field. Considering Ω ⊂ <d, d ∈ N, a space of material points, a
continuous random vector field Q(Ω) is an uncountable family {Q(x) : x ∈ Ω} of random
vectors which map the sample space Q in a set SQ. For all fixed x ∈ Ω, Q(x) is a random
vector of support SQ.

Remarks. The set SQ can be either countable or uncountable in both cases.
We also use the notations {Q(x(i); q(i)) : x(i) ∈ Ω, q(i) ∈ Q}, {Q(x(i); q) : x(i) ∈ Ω, q ∈

Q}, {Q(x; q(i)) : x ∈ Ω, q(i) ∈ Q} and {Q(x; q) : x ∈ Ω, q ∈ Q} to denote the random
field for the cases of discrete/continuous fields and countable/ uncontable supports.

2.3.2. Properties

Realisation path. For a fixed x, the evaluation of Q(x) at a given q ∈ Q yields a point of
SQ, defining the mapping Q(x; q) : Ω→ SQ.

For a fixed q ∈ Q, the collection {Q(x; q) : x ∈ Ω} is known as the trajectory or sample
path.

Stationary and homogeneous random vector fields. The random field Q(Ω) = {Q(x) : x ∈
Ω} is said to be (strongly) stationary if for any set x = (x(1), ..., x(m)) of m members of
Ω, and for any translation vector τ ∈ <d such that x(1) + τ , ..., x(m) + τ ∈ Ω, the two
families {Q

(
x(1)

)
, ..., Q

(
x(m)

)
} and {Q

(
x(1) + τ

)
, ..., Q

(
x(m) + τ

)
} have the same joint

cumulative distribution. We refer to (Grimmett and Stirzaker, 2001) for the definition of
the joint cumulative distribution function in this context.

The random field Q(Ω) = {Q(x) : x ∈ Ω} is said to be weak stationary, or second-order
stationary, or again homogeneous, if for any pair (x(1),x(2)) of Ω, and for any translation
vector τ ∈ <d such that x(1) + τ , x(2) + τ ∈ Ω, one has

E
[
Q(x(1))

]
= E

[
Q(x(1) + τ )

]
; and

E
[(
Q(x(1))− E[Q(x(1))]

) (
Q(x(1) + τ )− E[Q(x(1) + τ )]

)T]
=

E
[(
Q(x(2))− E[Q(x(2))]

) (
Q(x(2) + τ )− E[Q(x(2) + τ )]

)T]
. (43)

The random field is said to be isotropic and homogeneous, if only the norm τ of τ and
not the direction has importance in the last equation, i.e.

E
[
Q(x(1))

]
= E

[
Q(x(2))

]
; and

E
[(
Q(x(1))− E[Q(x(1))]

) (
Q(x(1) + τn(1))− E[Q(x(1) + τn(1))]

)T]
=

E
[(
Q(x(2))− E[Q(x(2))]

) (
Q(x(2) + τn(2))− E[Q(x(2) + τn(2))]

)T]
,

(44)

for any unit vectors n(1) and n(2) ∈ <d.
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Ergodicity. Finally, if the random field Q(Ω) = {Q(x) : x ∈ Ω} is stationary and ergodic4,
with E

[
Q(x(1))

]
finite, one has

1

V (ω)

∫
ω

Q(x; q)dx→ E
[
Q(x(1))

]
, (45)

where ω is a subset of Ω and V (ω) is the volume of ω, and where the → means converges
almost surely with the size of ω. This means that analysing one realisation of appropriate
size allows extracting the statistical behaviour of the random field. Besides, the expectation
obtained from many small samples yields the same value as the expectation of a large one.

2.4. Correlation & covariance matrices

On top of the moments, which characterise some statistical properties of the random
vector, the correlation, either between the vector components or between different random
vectors, is of particular interest and should be respected when generating stochastic proper-
ties. In the case of a random field this correlation evolution in terms of a translation vector
in Ω is also bringing more information on the stochastic process.

2.4.1. Random vectors

Let us consider the n-dimension random vector Q = [Q1 Q2 ... Qn]T : Q → <n and the
m-dimension random vector Y = [Y1 Y2 ... Ym]T : Q → <m.

The covariance matrix R̃Q ∈ M+
0n(<), where M+

0n(<) refers to all symmetric semi-positive-
definite real matrices of size n× n, is defined by its entries r s

R̃Qr s = E [(Qr − E[Qr])(Qs − E[Qs])] , r, s = 1..n . (46)

Assuming the standard deviations σQr of the random variables Qr are all strictly positive,
then R̃Q ∈ M+

n (<), where M+
n (<) refers to all symmetric positive-definite real matrices of

size n× n, and the correlation matrix RQ ∈ M+
n (<) is defined by its entries r s as

RQr s =
R̃Qr s
σQrσQs

=
E [(Qr − E[Qr])(Qs − E[Qs])]

σQrσQs
, r, s = 1..n . (47)

We note that the diagonal terms correspond to the unity.
We note that in the case for which the random variablesQs follow a Gaussian distribution,

the correlation also brings information on their statistical dependence, an entry RQr s close
to zero meaning statistical independence of random variables Qs and Qr. However, if the
random variables do not follow such a Gaussian distribution, the statistical dependence of
the random variables Qr cannot be assessed by the correlation. An alternative is to consider
their distance correlations matrix denoted by dRQ: each entry of dRQr s is the distance
covariance divided by the product of their distance standard deviations, whose detailed
expressions are given by Székely et al. (2007).

4We refer to (Chiu et al., 2013) for the definition of ergodicity and here give the consequence.
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The cross-covariance matrix R̃Q,Y ∈ <n×m, is defined by its entries r s as

R̃Q,Y r s
= E [(Qr − E[Qr])(Ys − E[Ys])] , r = 1..n, s = 1..m . (48)

Assuming the standard deviations of the random variables Qr and Ys are all strictly positive,
the cross-correlation matrix RQ,Y ∈ <n×m, is defined by its entries r s as

RQ,Y r s
=
R̃Q,Y r s

σYrσYs
=

E [(Qr − E[Qr])(Ys − E[Ys])]

σYrσYs
, r = 1..n, s = 1..m . (49)

2.4.2. Random vector fields

Let us consider the random field Q(Ω) as the collection {Q(x) : x ∈ Ω} of random
vectors Q(x), and the translation vector τ such that x+ τ ∈ Ω.

The covariance matrix R̃Q(x; τ ) : Ω× Ω→ <n×n, is defined by its entries r s as

R̃Qr s (x; τ ) = E [(Qr(x)− E[Qr(x)])(Qs(x+ τ )− E[Qs(x+ τ )])] , r, s = 1..n . (50)

Assuming the standard deviations σQr(x) of the random variables Qr(x) are all strictly
positive, the correlation matrix RQ(x; τ ) : Ω× Ω→ <n×n, is defined by its entries r s as

RQr s (x; τ ) =
R̃Qr s (x; τ )

σQr(x)σQs(x+ τ )

=
E [(Qr(x)− E[Qr(x)])(Qs(x+ τ )− E[Qs(x+ τ )])]

σQr(x)σQs(x+ τ )
, r, s = 1..n . (51)

In case of a homogeneous random field, one has RQ (x; τ ) = RQ (τ ) and R̃Q (x; τ ) =
R̃Q (τ ). Finally, if the random field is homogeneous and isotropic, one has RQ (x; τ ) =
RQ (τ) and R̃Q (x; τ ) = R̃Q (τ), where τ is the norm of τ .

3. Virtual micro-structures

The concept of virtual stochastic testing strongly relies on the ability to generate virtual
micro-structure samples that contain the statistical information of real materials. In this
context, the stochastic descriptions, relying on a mathematics model or on database, are
characterised by a quantification of the material uncertainties. A generator of virtual micro-
structure should then be built from these stochastic descriptions.

Different methods of characterisation and of reconstruction, the latter being strongly
linked to the former, exist. However, none of them is universal as pointed out by Bostanabad
et al. (2018) and the method should be carefully selected/developed for the studied micro-
structure. The different methods however follow a similar methodology as illustrated in Fig.
1

• First data need to be obtained, either from experimental means, e.g. Scanning Elec-
tron Microscopy (SEM) images from unidirectional (UD) composites, or possibly by
simulating the manufacturing process;
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Figure 1: Geometrical characterisation and reconstruction of the microstructure of a unidirectional com-
posite material by Wu et al. (2018a); SEM images are analysed in order to extract (distance) correlated
statistical descriptors which are in turn used to generate virtual micro-geometries respecting those statistical
descriptors, including their distance correlation.

• A statistical characterisation has then to be performed from the available data, e.g.
physical descriptors such as neighbouring distances for UD;

• A reconstruction method is developed using the statistical characterisation in order to
generate virtual micro-structures;

• The statistical properties of the virtual micro-structures are validated with the ones
of the initial data, e.g. for UD the copula of two physical descriptors, see further
explanations.

We note that the characterisation and reconstruction are not only related to the geomet-
rical properties of the micro-structure, but the material response of the different constituents
also ought to be considered in order to generate virtual micro-structures that can be used
to predict meso-scale, or homogenised, stochastic material responses. Besides, defects also
strongly affect the apparent material behaviours and should thus be characterised as well.

3.1. Statistical geometrical characterisation & Reconstruction

A recent comprehensive review of the statistical geometrical characterisation & recon-
struction has been provided by Bostanabad et al. (2018). In this section we will review the
existing methodologies with a particular emphasis for the different common micro-structures
illustrated in Fig. 2. But before we define the stochastic micro-structure.

3.1.1. Definitions related to the stochastic micro-structure

Description of a local state by a random variable/vector. Considering the probability space
(W, F, P) and a fixed material point of a micro-structure, the local state of the material
point can be represented by a random vector H : W → <n, with SH the support of the
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Figure 2: Schematics of different micro-structures ω: (a) Cross-section of a unidirectional (UD) fibre rein-
forced matrix; (b) Single-phase poly-crystal; (c) 2D schematics of short fibre reinforced matrix; (d) 2/2 twill
woven textile; and (e) Metallic open foam.

probability distribution function. Some examples are now given for the micro-structures
illustrated in 2D in Fig. 2.

Figure 2(a) represents the cross-section of a Unidirectional (UD) fibre reinforced matrix.
The matrix phase is represented by the set of material points ω0 ⊂ ω and the fibre phase
by the set of material points ωI ⊂ ω. In that case, the sample space of one material
point Wphase = {0, I} lists the two possible phases, 0 for the matrix phase and I for the
inclusion phase, of the composite material. For w ∈Wphase, let us define the random variable
H : Wphase → < as

Hphase(w) =

{
h

(1)
phase = 0 if w = 0 ; and

h
(2)
phase = 1 if w = I .

(52)

This defines a discrete random variable Hphase with the support set SHphase
= {0, 1} ⊂ <. If

the problem is statistically homogeneous, the probability mass function πHphase

(
h

(2)
phase

)
= vI,

with vI the volume fraction of fibres in the micro-structure ω and the probability mass

function πHphase

(
h

(1)
phase

)
= v0 with v0 = 1 − vI the volume fraction of matrix in the micro-

structure ω.
Figure 2(b) illustrates a single-phase poly-crystal in which each grain has a different ori-

entation. Defining the 3D local state by the Euler angles (ϕ, θ, ψ), the sample space of one
material point is defined by WEuler = {(ϕ, θ, ψ) : 0 ≤ ϕ < 2π, 0 ≤ θ ≤ π, 0 ≤ ψ < 2π}. The
random vector HEuler : WEuler → <3 is defined as the collection {[ϕ(w) θ(w) ψ(w)]T : w ∈
WEuler} and the support space of its distribution function reads SHEuler

= [0, 2π[×[0, π] ×
[0, 2π[. We however note that these bounds in the support space do not account for the pos-
sible crystal symmetries and are thus only valid for triclinic crystals; Fullwood et al. (2010)
have provided the sample space for different crystallographic structures. The probability
density function πHEuler

(hEuler) characterises the distribution of the grains orientations.
Finally, Fig. 2(c) illustrates the case of a matrix ω0 reinforced by short fibres ωI. As for

the first example, each material point belongs to a given phase, and is characterised by an
anisotropy direction of the material behaviour. Most of the time the matrix is considered
as isotropic, but is here assumed to be characterised by Euler angles too. In the general
case, an anisotropic fibre is characterised by the three Euler angles, but in the case of the
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existence of a revolution axis, the spin angle ψ is undefined; the revolution body direction
is also fully characterised by its direction vector p. As a consequence, the Euler sample
space can be different for the two phases, and the resulting sample space of one material
point reads W = {(0, ϕ, θ, ψ) : (ϕ, θ, ψ) ∈WEuler0}∪{(I, ϕ, θ, ψ) : (ϕ, θ, ψ) ∈WEulerI}, or
under the abbreviation W = Wphase0 ∪WphaseI . For w ∈ W, let us define the random vector
H(w) : W → <4 as

H(w) =

{
[1 ϕ θ ψ]T if w ∈WphaseI ; and

[0 ϕ θ ψ]T if w ∈Wphase0 .
(53)

We note that πHEuler|H1 (hEuler|H1 = 0) : <3 → [0, ∞[, respectively πHEuler|H1 (hEuler|H1 = 1) :
<3 → [0, ∞[, corresponds to the probability density function of the Euler angles distribution
πH

Euler(0)
(hEuler(0)) in the matrix phase, respectively the Euler angles distribution πH

Euler(1)

(hEuler(1)) in the fibre phase. Finally, πH1(h
(i)
1 ) : < → [0, 1] is the probability mass function

of phase, which corresponds to the volume fraction v0 = 1 − vI of the matrix phase and vI

of the fibre phase for respectively i = 0 and i = 1.

Description of the micro-structure through a random field. Let us consider micro-structures
defined on a set ω ∈ <3 of material points x. It is thus possible to represent the local states
of the microstructure by a random field H(ω) = {H(x) : x ∈ ω}, which is an uncountable
family {H(x) : x ∈ ω} of random vectors H valued in <n which maps the sample space
W in a set SH . The sample space W is defined as all the possible outcomes at the different
material points; it represents all the possible combinations of micro-structure states, at the
different material points, like the phase in the case of a multi-phase heterogeneous material
(the random variables are then discrete and can be assigned to an integer in order to have
values in <), the micro-structure orientation in the case of a single-phase poly-crystals (the
random variable is then continuous), or their combination in the case of multi-phase poly-
crystals etc., see the examples reported in the previous paragraph. We thus work in all
generalities in the probability space (W, F, P).

For a fixed point x ∈ ω, the evaluation H(x) for a given realisation w ∈ W yields a
point in the support SH ⊂ <n for which the probability of the outcomes is positive, thus
defining the mapping H(x; w) : ω → SH .

For example, going back to the UD case studied in the previous paragraph, one can define
the random field Hphase(ω) as the family {Hphase(x) : x ∈ ω} of discrete random variables
Hphase valued in < and of support {0, 1}, whilst for the single-phase poly-crystal micro-
structure ω, one can define the random vector field HEuler(ω) as the family {HEuler(x) : x ∈
ω} of continuous random vectors HEuler valued in <3 and of support SHEuler

.
A micro-structure realisation for a given w ∈ W is thus defined by the collection

{H(x; w) : x ∈ ω}, also called realisation path. In this work, we use ω to represent the
set of material points, but also, with an abuse of notation, to refer to the micro-structure
in itself, and ω(w) to denote a micro-structure realisation. We assume ergodicity so that if
the micro-structure is large enough it is statistically representative: the statistical content
of one realisation w ∈W is enough to extract the statistical content. This is not restrictive
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since, because of ergodicity, one can alternatively consider several realisations w ∈W if the
micro-structure ω is not large enough.

3.1.2. Micro-structure representation using micro-structure functions

Micro-structure functions have been defined by Fullwood et al. (2010) and their main
concepts are summarised here below.

Local state distribution. The local state distribution function f(h) was defined by Fullwood
et al. (2010) as the volume density of material points in the micro-structure ω associated to
the local state h, i.e.

f(h)dh =
V (ω|H ∈ [h, h+ dh[)

V (ω)
and f

(
h(i)
)

=
V
(
ω|H = h(i)

)
V (ω)

, (54)

for respectively the continuous and discrete random vector cases, where ω|H ∈ [h, h+ dh[
is the part of ω in a local state belonging to [h1, h1 + dh1[×...× [hn, hn + dhn[, ω|H = h(i)

is the part of ω in the local state h(i), and where V (•) is the volume operator. Since we are
considering a single micro-structure, i.e. a realisation w ∈ W, we are actually considering
the collection {H(x; w) : x ∈ ω} in Eq. (54).

Assuming the micro-structure ω is large enough to be statistically representative and
ergodicity, the local state distribution function (54) actually corresponds to the probability
density function f = πH : <n → <+ in the case of a continuous random vector and
probability mass function f = πH : <n → [0, 1] in the case of a discrete random vector
with, respectively, ∫

<n
πH(h)dh = 1 and

∑
h(i);πH(h(i))>0

πH(h(i)) = 1 , (55)

where the sum stands for all possible h(i).
Some components Hi of the local state can represent a continuous random variable

whilst other components Hj a discrete random variable, in which case one should combine
the integral and sum operators.

Micro-structure functions definition. Adams et al. (2005) have introduced the micro-structure
function m(x, h) : ω × <n → R+ to represent the micro-structure in a infinitesimal region
∆ω(x) around the material point x of the micro-structure ω.

In the case of a discrete random vector, one has

m
(
x, h(i)

)
=
V
(
∆ω(x)|H = h(i)

)
V (∆ω(x))

, and
1

V (ω)

∫
ω

∑
h(i);πH(h(i))>0

m
(
x, h(i)

)
dx = 1 ,

(56)
where ∆ω(x)|H = h(i) is the part of ∆ω(x) in a local state h(i), with the following properties∑

h(i)

m
(
x, h(i)

)
= 1 ∀x ∈ ω , and

1

V (ω)

∫
ω

m
(
x, h(i)

)
dx = πH

(
h(i)
)
. (57)
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One has in the case of a continuous random vector

m (x, h) dh =
V (∆ω(x)|H ∈ [h, h+ dh[)

V (∆ω(x))
, and

1

V (ω)

∫
ω

∫
<n
m (x, h) dhdx = 1 ,

(58)
where ∆ω(x) is the infinitesimal spatial neighbourhood of the material point x ∈ ω, and
∆ω(x)|H ∈ [h, h+dh[ is the part of ∆ω(x) in a local state belonging to [h1, h1 +dh1[×...×
[hn, hn + dhn[. Therefore the following properties arise∫

<n
m (x, h) dh = 1 ∀x ∈ ω , and

1

V (ω)

∫
ω

m (x, h) dx = πH (h) . (59)

3.1.3. Voxelisation

Since the micro-structures are practically analysed using data from images, either exper-
imentally or synthetically obtained, it is convenient to frame the function in a voxel-based
formalism.

The micro-structure ω is spatially discretized into Nx voxels δω(j) of uniform volume
V (δω(j)), with the spatial indicator function

χδω(j) (x) =

{
1 if x ∈ δω(j) ;

0 if not ;
(60)

with 1

V (δω(j))

∫
ω
χδω(j) (x)χδω(k) (x) dx = δjk.

Considering first a discrete random vector, the assumed bounded support SH is the set
of Nh possible values that can be taken by the random vector. The indicator function (28)
is then particularised as

χh(i)

(
h(p)

)
=

{
1 if h(p) = h(i) ;

0 if not ;
(61)

with
∑Nh

p=1 χh(i)

(
h(p)

)
χh(j)

(
h(p)

)
= δij, in which case the micro-structure function (56) can

be approximated by

m
(
x, h(p)

)
'

Nx∑
j=1

Nh∑
i=1

mδω(j),h(i)

χδω(j) (x)χh(i)

(
h(p)

)
, (62)

where mδω(j),h(i)
= 1

V (δω(j))

∑Nh

p=1

∫
ω
m
(
x, h(p)

)
χδω(j) (x)χh(i)

(
h(p)

)
dx. We also note that

Nh∑
i=1

mδω(j),h(i)

χh(i)

(
h(p)

)
' 1

V (δω(j))

∫
ω

m
(
x, h(p)

)
χδω(j) (x) dx , (63)

represents the local probability density function of realisation h(p) in the voxel δω(j).
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In the case of a continuous random vector, the assumed bounded support space SH
is divided into Nh independent and uniform bins δS

(i)
H , allowing redefining the indicator

functions (61) as

χ
δS

(i)
H

(h) =

{
1 if h ∈ δS(i)

H ;

0 if not ;
(64)

with Nh

d(SH)

∫
SH
χ
δS

(i)
H

(h)χ
δS

(j)
H

(h) dh = δij,
∫
δS

(i)
H
dh = d(SH)/Nh, and with d(SH) =∫

SH
dh.

The micro-structure function (58) can then be approximated as

m (x, h) '
Nx∑
j=1

Nh∑
i=1

mδω(j), δS
(i)
H χδω(j) (x)χ

δS
(i)
H

(h) , (65)

where mδω(j), δS
(i)
H = Nh

V (δω(j))d(SH)

∫
SH

∫
ω
m (x, h)χδω(j) (x)χ

δS
(i)
H

(h) dxdh. The local proba-

bility function in voxel δω(j) thus reads

Nh∑
i=1

mδω(j), δS
(i)
H χ

δS
(i)
H

(h) ' 1

V (δω(j))

∫
ω

m (x, h)χδω(j) (x) dx . (66)

Besides, since
∫
SH
m (x, h) dh = 1 ∀x ∈ ω, one has

∑Nh

i=1 m
δω(j), δS

(i)
H = Nh

d(SH)
in all cell δω(j),

and
∑Nx

j=1

∑Nh

i=1m
δω(j), δS

(i)
H = NxNh

d(SH)
.

3.1.4. n-point statistical functions

Whilst the local state distributions defined in Section 3.1.2 provides statistical informa-
tion for the whole micro-structure, information on the spatial distribution also needs to be
provided. To this end, several n-point statistical functions have been developed.

n-point correlation function. Corson (1974a,b) has developed the concept of the n-point
correlation function, see also the reviews by Fullwood et al. (2010); Bostanabad et al. (2018).

Let us consider Nω independent micro-structure realisations ωj. Considering a spatial
vector τ , Fullwood et al. (2010) have defined the independent spatial regions ωj|τ 2, ..., τ n

as the set of material points

ωj|τ 2, ..., τ n =
{
x : x ∈ ωj and x+ τ k ∈ ωj ∀ k = 2..n

}
. (67)

For discrete random vectors H taking values in <m, the n-point correlation function
fn
(
h(1), ...,h(n); τ 2, ..., τ n

)
is defined as the joint probability mass function of occurrence of

h(k) at the end extremity of the spatial vector τ k and of h(1) at the start extremity of τ k,
for k = 2..n, or in the mathematical notation:

fn
(
h(1), ...,h(n); τ 2, ..., τ n

)
= E

[
1

V (ωj|τ 2, ..., τ n)

∫
ωj |τ2,...,τn

m
(
x, h(1)

)
×

m
(
x+ τ 2, h(2)

)
× ...×m

(
x+ τ n, h(n)

)
dx
]
, (68)
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where the expectation operator E [•j] is here used as the spatial expectation on the different
micro-structures, i.e. E [•j] = 1∑Nω

l=1 V (ωl|τ2,...,τn)

∑Nω

j=1 V (ωj|τ 2, ..., τ n) •j. Assuming ergod-

icity allows considering a single, large-enough, micro-structure realisation ω that contains
all the relevant statistical information and which is usually called Representative Volume
Element (RVE). In that case, Eq. (68) reads

fn
(
h(1), ...,h(n); τ 2, ..., τ n

)
=

1

V (ω|τ 2, ..., τ n)

∫
ω|τ2,...,τn

m
(
x, h(1)

)
×

m
(
x+ τ 2, h(2)

)
× ...×m

(
x+ τ n, h(n)

)
dx . (69)

In case of continuous random vectors, the n-point correlation function is defined as the
joint probability density function and reads

fn
(
h1, ...,hn; τ 2, ..., τ n

)
=

1

V (ω|τ 2, ..., τ n)

∫
ω|τ2,...,τn

m
(
x, h1

)
×

m
(
x+ τ 2, h2

)
× ...×m (x+ τ n, hn) dx . (70)

Although the evaluation of high-order correlation functions is not straightforward, the
two-point correlation function, here given for a discrete random vector,

f2

(
h(1), h(2); τ

)
=

1

V (ω|τ )

∫
ω|τ

m
(
x, h(1)

)
×m

(
x+ τ , h(2)

)
dx , (71)

is widely used to characterise the spatial distribution of micro-structures, see (Torquato,
2002; Huang, 2005; Gao et al., 2006; Niezgoda et al., 2008) among others.

The case of a poly-crystal illustrated in Fig. 2(b) was exemplified by Huang (2005):
in that case, the two-point correlation function f2 (hEuler, h

′
Euler; τ ) represents the joint

probability density function of having an orientation h′Euler at the end extremity of the
spatial vector τ and of hEuler at the start extremity of τ . Combining this formalism with
the digitisation (65), opens the way to a representation in the Fourier space as detailed by
Adams et al. (2005) in the context of a poly-crystal.

n-point probability function. We consider the definition of the n-point probability function
given by Torquato (2002); MacSleyne et al. (2008); Fullwood et al. (2010); however some
authors use the terminology n-point correlation function for this concept.

Let us again consider Nω independent micro-structure realisations ωj. Assuming a dis-
crete random vectorH valued in <m, the indicator function of n-material points xi is defined
as

χωj ,h(i)

(
x1, ..., xn, h(p)

)
=

{
1 if h(p) = h(i) at xk ∈ ωj k = 1..n;

0 if not .
(72)

Considering Nω independent realisations of the micro-structure ωj, we define the n-point
probability function as

Sn
(
h(i); x1, ..., xn

)
= E

[
χωj ,h(i)

(
x1, ..., xn, h(p)

)]
, (73)
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where the expectation operator stands for the expectation on the different micro-structures,
i.e. E [•j] = 1

Nω

∑Nω

j=1 •j. The n-point probability Sn
(
h(i); x1, ..., xn

)
is interpreted as the

probability to have the local state h(i) at points x1, ..., xn.
One particular case is the 1-point probability function S1

(
h(i); x

)
that represents the

probability to be in a local state h(i) at position x. If the micro-structure is statis-
tically homogeneous, S1

(
h(i)
)

is independent on the material point and corresponds to

the volume fraction vi of local state h(i) of the micro-structure. Another particular case
arises when assuming statistically homogeneous micro-structures, in which case the de-
pendency on (x1, ..., xn) reduces to a dependency on (τ 2 = x2 − x1, ..., τ n = xn −
x1), yielding Sn

(
h(i); τ 2, ..., τ n

)
. In that case, Sn

(
h(i); τ 2, ..., τ n

)
corresponds to a par-

ticular case of the n-point correlation function (69) for h(1) = ... = h(n) = h(i), i.e.
fn
(
h(i), ...,h(i); τ 2, ..., τ n

)
, which is called auto-correlation function.

One of the most commonly used function is the two-point probability function S2

(
h(i); τ

)
,

which can be particularised in the case of an isotropic material, for which the direction of
the vector τ does not affect the function, as S2

(
h(i); τ

)
, where τ is the norm of τ .

Examples and other path functions. Taking as example the case of the UD two-phase com-
posite of Fig. 2(a), the discrete random variable h

(i)
phase can take only two values h

(1)
phase = 0

or h
(2)
phase = 1, see Section 3.1.1. Clearly S1(h

(1)
phase) = v0 is the volume fraction of the matrix

phase, and S1(h
(2)
phase) = vI = 1− v0 is the volume fraction of the fibre phase. However, addi-

tional information is brought on the micro-structure by S2

(
h

(2)
phase; τ

)
as the probability to

have two material points separated by the vector τ to be in the fibre phase, as illustrated
in Fig. 2(a).

Nevertheless, for non-periodic micro-structure, see the discussion by Bostanabad et al.

(2018), S2

(
h

(i)
phase; τ

)
does not fully characterise a micro-structure since different statistical

configurations can possibly yield the same function. Additional information related to the
clustering are needed. Lu and Torquato (1992) have introduced the concept of lineal path

function L(h
(i)
phase; τ ), which gives the probability for a linear segment supported by the

vector τ to lie entirely within the same phase, see Fig. 2(a). A more general representation
of the clusteredness that has been introduced by Torquato (2002); Jiao et al. (2009) is the

two-point cluster correlation function C2(h
(i)
phase; τ ) that quantifies the probability for two

material points separated by the vector τ to lie within the same cluster, see Fig. 2(a).
Finally Torquato (2002); Jiao et al. (2009) have also considered Fss(h

(i); τ ) the equivalent
of S2

(
h(i); τ

)
but for points x1 and x2, with τ = x2 − x1, belonging to the “dilated”

interface at the two phases. Fss(h
(i); τ ) is thus interpreted as the probability of finding two

points separated by τ at the two-phase inter-phase.

3.1.5. Data acquisition

The two main features to be characterised are, on the one hand, the grain size and
grain shape distributions, and on the other hand the crystallographic texture defined by the
orientation distribution functions, as it will be explained in more details in Section 3.2.4. We
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refer to the review by Segurado et al. (2018) for a review of the data acquisition related to
these two aspects. Because of the convenience of using voxelisation to represent the micro-
structure as illustrated by Eq. (65), imaging techniques are a popular way to extract the
information.

Optical microscopy of polished sections allows extracting grain size and shape distri-
butions after chemical etching has revealed the grain boundary structures.Transformation
from 2D surfaces to 3D information then requires particular treatment. Automated serial-
sectioning by means of a micro-tome combined with reconstruction algorithm yield 3D im-
ages of the micro-structures. A non-destructive alternative is the use X-ray micro-focus
Computed Tomography (µ-CT) (Segurado et al., 2018).

Grain orientation has been extracted for single-phase poly-crystals by Gao et al. (2006)
using orientation imaging microscopy (OIM), which images the microstructure using the
electron back-scattered diffraction probe (EBSD); 3D information was recovered by consid-
ering different cut orientations, see also the work by Saylor et al. (2004); high resolution
segmented back-scatter electron micro-graphs were used by Salem et al. (2014) to extract
the bi-modal microstructure statistical information of α − β titanium alloy with primary
and secondary α phases, as a non-exhaustive list.

(a) Micro-structure (b) f2(h(1), h(1); r) (c) f2(h(1), h(3); r)

Figure 3: Statistical study of a Al-Ag-Cu ternary eutectic alloy microstructure obtained via phase-field
simulations by Yabansu et al. (2017): (a) Micro-structure obtained by phase-field simulation; (b) two-
point auto-correlation f2(h(1), h(1); r) of the red phase; and (c) two-point cross-correlation f2(h(1), h(3); r)
between the red and blue phases; Reprinted from Acta Materialia, 124, Yabansu, Y.C., Steinmetz, P.,
Hötzer, J., Kalidindi, S.R., Nestler, B., Extraction of reduced-order process-structure linkages from phase-
field simulations, 182-194, Copyright (2017), with permission from Elsevier.

The “images” can also result from numerical simulations. MacSleyne et al. (2008) have
extracted “γ′” precipitates in nickel-base alloys from textures predicted by several 2D phase-
field simulations. Yabansu et al. (2017) have used the phase-field approach, see also the work
by Krill III and Chen (2002), in order to simulate the solidification of ternary eutectic alloys,
before extracting the two-point spatial correlation. The resulting statistical analysis using
the two-point correlation function (71) is illustrated in Fig. 3 for two points separated by a
vector r.
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3.1.6. Reconstruction

Practically the micro-structures are constructed under the form of voxels δωj associated
to a local state h(i) (or centred on δS

(i)
H depending on the sample space). The voxels are

then optimised in order to minimise a cost function built using the statistical functions
gl
(
{τ j, k}, {h(i)}

)
of the generated micro-structure for the set of vectors {τ j, k}, whose num-

ber depends on the statistical function considered, separating the voxels δωj and δωk, and for
the set of local states {h(i)}, whose number depends on the statistical function considered.
The cost function can be built as

C =

Ng∑
l=1

Nx∑
j=1

Nx∑
k=1

wl
[
ĝl
(
{τ j, k}, {h(i)}

)
− gl

(
{τ j, k}, {h(i)}

)]2
, (74)

where ĝl
(
{τ j, k}, {h(i)}

)
is the target function, Ng is the number of functions considered

and wl their associated weight and Nx is the number of voxels. The current techniques used
to optimise the micro-structure using this cost function have been reviewed by Bostanabad
et al. (2018).

Jiao et al. (2009) have used the so-called Yeong and Torquato (1998) stochastic optimisa-
tion with different two-point functions in Eq. (74) to reconstruct a concrete micro-structure,
see Fig. 4. Clearly the two-point probability function S2(h(2); r) is not enough to charac-
terise the micro-structure and another function related to the clusteredness is required to
get closer to the targeted micro-structure features.

3.1.7. Wang tiles

Because it can be time consuming to generate large structures of arbitrary sizes when
several realisations are required, the concept of Wang tiles to generate aperiodic micro-
structures was developed by Novák et al. (2012); Doškář et al. (2014). In this approach,
domains of reduced sizes are assumed to be fast to be generate and constraints are put on
the edges patterns so that an assembly can be readily achieved. A number of nx possible
vertical edge patterns and a number of ny possible horizontal edge patterns are defined.
It is thus possible to generate maximum of n2

xn
2
y tiles of different edges combinations. In

practice one can chose to limit the number of tiles by assigning a number n = 2..nxny with
the same top-left combination. In this case the total number of tiles is nnxny. Figure 5(a)
represents the case of nx = 2 possible vertical edges of key either “blue” or “orange” and
ny = 2 possible horizontal edges of key either “red” or “green”. The value n is selected
to be 2, meaning that we have two different tiles of the top-left keys “red-blue”, 2 tiles for
the top-left keys “green-blue”, 2 tiles for the top-left keys “red-oranges” and 2 tiles for the
top-left keys “green-oranges”. Under these conditions, a random assembly can proceed by
respecting vis-à-vis edge keys, as depicted in Fig. 5(b), whilst aperiodicity is guaranteed
(Novák et al., 2012).

Assuming known target statistical functions ĝl
(
{τ j, k}, {h(i)}

)
, see Section 3.1.6 for the

notations, it is possible to generate the micro-structure distribution of the nnxny tiles. To
this end the difference between the statistical functions gl

(
{τ j, k}, {h(i)}

)
of a generated

large enough tiles-assembly (and not by considering single tiles) with the target statistical
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(a) Micro-structure (b) Using S2(h(2); r) (c) Using S2(h(2); r) &
Fss(h

(2); r)

(d) Using S2(h(2); r) &
C2(h(2); r)

(e) Comparison in terms of
L(h(2); r)

Figure 4: Stochastic reconstruction of a concrete micro-structure by Jiao et al. (2009): (a) Digitalised target
micro-structure; and reconstructions (b) Using the two-point probability function S2(h(2); r); (c) Using
the two-point probability function S2(h(2); r) and the surface-surface correlation function Fss(h

(2); r); (d)
Using the two-point probability function S2(h(2); r) and the cluster correlation function C2(h(2); r); and (e)
Comparison of the reconstructed micro-structures in terms of the lineal path function L(h(2); r); Reprinted
from Proceedings of the National Academy of Sciences, 106, Jiao, Y., Stillinger, F.H., Torquato, S., A
superior descriptor of random textures and its predictive capacity, 17634-17639, 2009, with permission from
PNAS.

functions ĝl
(
{τ j, k}, {h(i)}

)
is minimised, see Section 3.1.6. An additional constraint is

to avoid the existence of inclusions at the corners. The two-point probability function
S2(h(2); r) was considered by Novák et al. (2012) and it was found that the method reduces
long-range artefacts in the S2(h(2); r) as compared to a periodic micro-structures. Besides,
the long-range artefacts were found to be mainly due to the tile interiors and it was concluded
that the discrete nature of Wang tiling can be almost eliminated by a proper morphology
optimisation.

Doškář et al. (2014) have extended the method using image fusion techniques in order
to define the tiles directly from micro-structure images. In this approach, diamond shapes
are cut out from the aggregate of four overlapping square reference samples extracted from
a micro-structure image, see Fig. 6(a), and placed according to the edge keys of the tiles.
These four samples are merged within their overlapping regions using a quilting algorithm,
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(a) Tiles with edge keys (b) Tiles assembly

Figure 5: Concept of Wang tiles following the presentation by Novák et al. (2012); Doškář et al. (2014): (a)
Definition of nnxny = 8 tiles with a combination of ny = 2 different horizontal edge keys (red or green) and
nx = 2 different vertical edge keys (orange or blue) ; and (b) An aperiodic assembly realisation of the tiles.

see Fig. 6(b). It was noted that weakly packed dispersion brings less complexity to perform
this automatic tile design. This quilting method also induces short-range artefacts which
were investigated by the two-point cluster correlation function C2(h

(i)
phase; τ ) by Doškář et al.

(2014).
A review of the method has been conducted by Budarapu et al. (2019).

3.2. Physical descriptors

Another methodology to construct virtual micro-structures is to generate geometries that
respect, in a statistical way, some a priori selected features of experimental observations.
Clearly, the physical descriptors and the reconstruction algorithms are strongly linked to the
material system under investigation. In the following we summarise methodologies developed
for commonly studied materials.

3.2.1. Unidirectional composites

The spatial arrangement of fibres, see Fig. 2(a), in a Unidirectional (UD) composite
micro-structure is normally not periodic, which affects significantly the failure/damage ini-
tiation and evolution under certain loading conditions as discussed by Maligno et al. (2009);
Hobbiebrunken et al. (2008); Hojo et al. (2009); Bhuiyan et al. (2020).

Besides, because of coefficients mismatch affecting the manufacturing process, fibres ex-
hibit a waviness along their principal orientation, as reviewed by Kugler and Moon (2002),
which largely affects the compression failure behaviour by micro-buckling (Jelf and Fleck,
1992). However the wavelength is above the mm size, and is thus several orders of magni-
tude larger than the distribution scatter of the fibres organisation in the cross-section; this
stochastic effect can thus be studied at the level of the ply as done by Sepahvand (2016). We
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(a) Reference squares (b) Merge by quilting

Figure 6: Construction of Wang tiles following the presentation by Cohen et al. (2003); Doškář et al. (2014):
(a) Extraction of 4 reference square samples from a micro-structure; and (b) Assembly of the reference
samples in a diamond shape with quilting performed in the overlapping regions and the final definition of
the tile edges.

note that Huang et al. (2021) have conducted a stochastic analysis by considering the corre-
lated volume fraction distribution on a 10-ply laminate cross-section and the fibre waviness
along the laminate length.

 

(a) Original SEM

(b) Processed

Figure 7: Experimental characterisation of a UD composite material: (a) Original SEM image of a polished
cross-section sample with an amplification ratio of 2000× obtained by Wu et al. (2018a), the squares represent
zero-distance fibres; and (b) Processed image by Wu et al. (2018a) with the detected fibres, the dashed
squares represent the over/under-estimated fibre circles; Reprinted from Composite Structures 189, Wu, L.,
Chung, C.N., Major, Z., Adam, L., Noels, L., From SEM images to elastic responses: A stochastic multiscale
analysis of UD fiber reinforced composites, 206-227, Copyright (2018), with permission from Elsevier.

Data acquisition. The spatial characterisation of UD cross-sections is achieved from two-
dimensional images acquired via the Scanning Electron Microscope (SEM) technique in
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scales ranging from a few to hundreds of micrometers (Vaughan and McCarthy, 2010; Hojo
et al., 2009). An example of an image treated by Wu et al. (2018a) is illustrated in Fig.
7(a). Since a single image does not include enough fibres in order to conduct a statistical
characterisation, assuming ergodicity, Wu et al. (2018a) have processed 103 SEM images of
amplification ratios 3000× and 2000× in order to identify the fibres with a circles detec-
tion tool as illustrated in Fig. 7(b). Considering round fibres was justified by Wu et al.
(2018a) by evaluating the roundness, from the perimeter p and the cross-section area A

with roundness = p2

4πA
, of a few hundreds of fibres, yielding an average value of 1.045 with a

standard deviation of 0.011.
Fibre waviness can by characterised by optical microscopy, see the review by Kugler

and Moon (2002). Huang et al. (2021) have characterised the weaviness from binary image
segments followed by a linear texture regression.

Features. In this work we focus on the fibres distribution within the cross-section, which
can be statistically analysed using the circles identified in Fig. 7(b).
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Figure 8: Comparison of histograms extracted by Wu et al. (2018a) from probability density functions of the
statistical descriptors evaluated from the experimental data and from the reconstructed micro-structures:
(a) Illustration of the statistical descriptors; (b) Fibre radius Rf distributions; (c) Nearest-neighbour net
distance D1st distributions; (b) Nearest-neighbour orientation Θ1st distributions; (c) Difference between the
net distances to the second and to the first nearest-neighbours ∆D distributions; and (d) Difference between
nearest-neighbour orientations ∆Θ distributions; Reprinted from Composite Structures 189, Wu, L., Chung,
C.N., Major, Z., Adam, L., Noels, L., From SEM images to elastic responses: A stochastic multiscale analysis
of UD fiber reinforced composites, 206-227, Copyright (2018), with permission from Elsevier.
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Statistical functions of the fibre radius rf , 1st and 2nd closest neighbours distance, d1st

and d2nd etc. were extracted from SEM images by Vaughan and McCarthy (2010). Wu et al.
(2018a) have considered the features illustrated in Fig. 8(a) and have extracted

• The probability density function of fibre radius πRf (rf );

• The nearest-neighbour net distance probability density function πD1st(d1st); By using
the net distance, the effect of fibre’s radius on the nearest-neighbour distance can be
excluded;

• The probability density function πΘ1st(ϑ1st) of the orientation of the un-directed line
connecting the centre points of a fibre and of its nearest neighbour, with support
]− π, π];

• The probability density function π∆D(∆d) of the difference between the net distances
to the second and to the first nearest-neighbours with ∆d = d2nd − d1st; Since ∆d ≥ 0
it is easier to generate random variables satisfying d2nd ≥ d1st;

• The probability density function π∆Θ(∆ϑ) on ]0, 2π] of the difference ∆ϑ = ϑ2nd −
ϑ1st of the orientations ϑ2nd and ϑ1st of the second and the first nearest-neighbours;
This allows localising the second nearest-neighbour with respect to the first nearest-
neighbour.

The distributions obtained by Wu et al. (2018a) from the experimental images are illustrated
in Fig. 8.

The correlation matrix of the four random variables D1st, Θ1st, ∆D, and ∆Θ, reads

R[D1st Θ1st ∆D ∆Θ]T =


D1st Θ1st ∆D ∆Θ

D1st 1.0 0.014 0.205 0.022
Θ1st 1.0 0.002 0.020
∆D symmetric 1.0 −0.005
∆Θ 1.0

 . (75)

However, since Fig. 8 shows that the distributions of the four spatial parameters d1st,
ϑ1st, ∆d, and ∆ϑ all exhibit non-Gaussianity, the statistical dependence of these random
variables is assessed by their distance correlations matrix, whose detailed expressions are
given by Székely et al. (2007), which reads in this case

dR[D1st Θ1st ∆D ∆Θ]T =


D1st Θ1st ∆D ∆Θ

D1st 1.0 0.040 0.273 0.075
Θ1st 1.0 0.048 0.046
∆D symmetric 1.0 0.064
∆Θ 1.0

 . (76)

There clearly exists a dependency between the first and second nearest neighbour distances.
The other random variables were assumed to be independent.
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Reconstruction. Starting from the statistically characterised physical features, Vaughan and
McCarthy (2010); Melro et al. (2008); Wu et al. (2018a); Bhuiyan et al. (2020) have developed
virtual specimen generators for UD composites and Gupta et al. (2015) for particle reinforced
composites.
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Figure 9: Generation of virtual UD micro-structures by Wu et al. (2018a): (a) The two nearest neighbours of
seed k are generated with their two closest distances; (b) After having generated the two nearest neighbours
of all the seeds, the previously generated neighbours become the new central fibres; (c) A generated micro-
structure; and (d) An SEM image; Reprinted from Composite Structures 189, Wu, L., Chung, C.N., Major,
Z., Adam, L., Noels, L., From SEM images to elastic responses: A stochastic multiscale analysis of UD fiber
reinforced composites, 206-227, Copyright (2018), with permission from Elsevier.

There basically exist two main kinds of random fibres generator:

• The compact process, as developed by Melro et al. (2008), stirs and compacts the ex-
isting fibres iteratively in order to reach a target fibre volume fraction; The generated
distributions were found to have statistical indicators close to a Poisson distribution;
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However for a given micro-structure realisation of limited size, the fibre volume frac-
tions of a real material is not deterministic (Savvas et al., 2016); Moreover, the Poisson
distribution is not always representative of the spatial point pattern of fibres;

• The additive process, as developed by Vaughan and McCarthy (2010), positions fibres
successively using the statistical spatial descriptors; Wu et al. (2018a) have considered
the dependency among these descriptors in order to, on the one hand, allow reaching
a high volume fraction and, on the other hand, improve the statistical fidelity.

In the following, we summarise the method developed by Wu et al. (2018a). First, the
following method was used to generate realisations of the random (dependent) variables:

• Pseudo-random samples of the independent random variables X, here X stands for
either Rf , Θ1st or ∆Θ, are generated using the inverse transform sampling method,
see Appendix A.2.1, from their cumulative distribution function FX(x), which are
evaluated by Eq. (8) from their probability density functions illustrated in Fig. 8;

• The pseudo-random samples of the two dependent random variables, here d1st and ∆d,
are generated by using their copula constructed from their cumulative distributions
FD1st(d1st) and F∆D(∆d) following the approach summarised in Appendix A.2.2.

The packing can then proceed as follows:

• Random seeds are located in a window;

• Each seed is considered as a central fibre; a radius rf , and the net distance functions
d1st, ∆d, are generated;

• For each central fibre, the first neighbour is generated along with its four random
variables, the fibre radius rf , the orientation ϑ1st and the net distances d1st and d2nd

to be used for locating the upcoming fibres; If the fibre violates some penetration
constraints the step is repeated;

• For each central fibre, generate the second neighbour along with its four random vari-
ables, the fibre radius rf , the orientation ∆ϑ and the net distances d1st and d2nd to
be used for locating the upcoming fibres, see Fig. 9(a); If the fibre violates some
penetration constraints the step is repeated;

• The process is repeated with as new central fibres the created ones, see Fig. 9(b).

A virtually generated micro-structure is illustrated in Fig. 9(c) and can be compared with
an SEM image in Fig. 9(d). Their statistical spatial descriptors are compared in Fig. 8.

The elliptical nature of the fibre cross-section for some material systems was recently
taken into account by Bhuiyan et al. (2020).
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(a) Volume representation (b) Ellipse fitting
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Figure 10: Characterisation of woven composites based on physical descriptors: (a) Volume representation
of the sample scanned using micro-Computed Tomography (µ-CT); (b) Image slice in weft direction showing
the warp tows in cross-section, with the upper slice showing the warp tows and the fitting ellipses of the tow
shapes; and (c) Correlation directions shown on the zero-mean deviations trends of two adjacent tow paths
(Vanaerschot et al., 2017); Figure (a) and (b) reprinted from Composite Structures 173, Vanaerschot, A.,
Panerai, F., Cassell, A., Lomov, S.V., Vandepitte, D., Mansour, N.N Stochastic characterisation methodol-
ogy for 3-d textiles based on micro-tomography, 44 - 52, Copyright (2017), with permission from Elsevier;
and (c) resketched from (Vanaerschot et al., 2017).

3.2.2. Textile composites

Most of the uncertainty quantification work has been conducted on woven composite
materials. A volume representation by Vanaerschot et al. (2017) is illustrated in Fig. 10(a).
Several length scales are involved in such a material system:

• The torons, weft and warp tows, are usually made of UD composite materials, whose
characteristic length is of a few µm, see Section 3.2.1;

• Three-Dimensional (3D) spatial geometrical variability of fibre tows are studied at
a scale of a few millimetres (Vanaerschot et al., 2013a; Blacklock et al., 2012) of
comparable order to the unit-cell length; A unit cell is defined as the repeated textile
pattern and one representation is given in Fig. 2(d) for a 2/2 till woven composite
material;

• Finally, tow loci also exhibit deviation at a larger length scale exceeding the unit cell
as studied by Rossol et al. (2015), i.e. at the order of several cm.

Most of the characterisation efforts of the literature are related to the scale of the unit-
cell. Vanaerschot et al. (2017) noted the importance of the categorisation in tow genuses for a
complete and correct statistical description of any textile composite. “Tows belonging to the
same genus must share the same trend for all tow characteristics with similar amplitude and
period (Vanaerschot et al., 2017)”. The six-layer weave depicted in Fig. 10 was represented
by 8 warp genuses and 7 weft genuses by Vanaerschot et al. (2017), whilst the 2/2 twill
weave depicted in Fig. 2(d) and studied by Vanaerschot et al. (2013a) was represented by 1
warp genus and 1 weft genus.

Data acquisition. In the context of composite materials, X-ray micro-focus Computed To-
mography (µ-CT) was used by Vanaerschot et al. (2013a); Blacklock et al. (2012) to charac-
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terise the spatial geometrical variability of fibre tows and by Tal and Fish (2016) to charac-
terise the defects at the scale of a few millimetres, see Fig. 10(b). Whereas tow orientations
and their variations cannot be clearly identified at the level of one unit-cell, they can be at
the level of several ones, requiring µ-CT scanning of the entire sample to be performed by
tiling several individual scans as achieved by Vanaerschot et al. (2017), yielding the volume
representation of Fig. 10(a). The tow reinforcement was then characterised by extracting
two-dimensional slices in the warp and weft directions, as shown in 10(b).

3D Digital Image Correlation (DIC), as a complementary technique, can be used to
characterise long-range weave defects in textile composites as achieved by Rossol et al.
(2015).

Features. At the level of one meso-scale volume element, the tow reinforcement architecture
is essentially characterised by the tow centröıd coordinates and its cross-section shape and
size.

One dimensional tow loci were expressed by Blacklock et al. (2012) in terms of the sum
of non-stochastic and periodic variations in the coordinates of the tow centröıd, and of
stochastic and non-periodic deviations calibrated from the µ-CT images.

Vanaerschot et al. (2013a,b, 2017) have developed a stochastic modelling framework for
fabrics, in which tows are represented as a sequence of elliptical cross-sections as identified
on Fig. 10(b) from the µ-CT images. The fitted ellipses fully describe the tow path with
only a few degrees of freedom: the centröıd coordinates (x, y, z), the tow cross-sectional
area a, the tow cross-sectional aspect ratio ar, and the tow cross-section orientation θ within
the slice (i).
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Figure 11: Reference period collation method proposed by Bale et al. (2012): (a) A vector τ translates tow
parts of the same genus warp –here all the warp belong the same genus– to the repeated weave of length
λx; and (b) Definition of the systematic out-of-plane location z̄(warp)(ξ) of the genus warp.

Data are collected for several tows j = 1..N tow(t)
belonging to the same genus t, with

different possible genuses t = 1..Ngenus. In order to account for the weave periodicity,
the reference period collation method proposed by Bale et al. (2012), which is illustrated
in Fig. 11 for the 2/2 till composite material, is used to define the translation vector τ
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in order to bring each tow to a reference point of the repeated weaves, see Fig. 11(a).
This allows defining the coordinate along a genus as ξ standing for either x − τx or y − τy
for respectively a genus t corresponding to a warp or a weft. Similarly, the cross-section
locus of a genus is defined by the coordinate ζ as either y − τy or x − τx for respectively
a genus t corresponding to a warp or a weft and by the coordinate z. The tow cross-
section is thus characterised by the vector εtow(j, t) = [ζ z ar a θ]

T , defining the random vector

Etow(j, t) = [Z Z Ar A Θ]T : W → <5 for the tow j = 1..N tow(t)
of the genus t = 1..Ngenus.

The definitions can be completed by a ply index for layered composite materials as done by
Vanaerschot et al. (2013a).

Since these random variables are evaluated along the tow direction ξ, one can define
the random field E(Ξ) = {Etow(j, t) (ξ) : ξ ∈ Ξ ⊂ <} as the collection of random vectors
Etow(j, t) (ξ) : W → SE, where SE = {ε ∈ <5 : ζ ∈ <, z ∈ <, ar ∈ <+, a ∈ <+, θ ∈ [0, π[}.
The systematic field ε̄(t) (ξ) of genus t is defined as the average on the number of points

Nλ(t)
from the different tows j = 1..N tow(t)

having the same reduced location ξ, i.e.

ε̄(t) (ξ) =
1

Nλ(t)

Ntow(t)∑
j=1

Ncell(j)∑
k=1

ε(j, t) (ξ + kλξ) , (77)

where N cell(j) is the number of sampled weaves along tow j, and λξ stands for either λx or
λy for respectively a genus t corresponding to a warp or a weft. Application of Eq. (77) on
the random field Z(j, (warp)) (Ξ) is illustrated in Fig. 11(b). The evaluation of ε̄(t) (ξ) has to
be performed for each genus t. Finally, the deviation is defined by

ε′
(j, t)

(ξ + kλξ) = ε(j, t) (ξ + kλξ)− ε̄(t) (ξ) , (78)

defining the deviation random field E′tow(j, t) (Ξ) = {E′tow(j, t)(ξ) : ξ ∈ Ξ} as the collection
of random vector E′tow(j, t)(ξ) : W → SE′ , with the support SE′ = {ε′ ∈ <5 : ζ ′ ∈ <, z′ ∈
<, a′r ∈ <, a′ ∈ <, θ′ ∈] − π, π[}, and which is a zero-mean random field when considering
all the tows j used to define the systematic field.

The micro-structure variability is then characterised by the different correlations, see
Section 2.4, assuming homogeneous random fields:

• The standard deviation on a genus t

σ
E′(t)r

=
1∑

iN
i − 1

√√√√∑
i

N i∑
j, k=1

[
ε′(j, t) (ξ(i) + kλξ)

]2
, (79)

where N i is the number of sampled data (considering all the tows j = 1..tow(t) and

cells k = 1..N cell(j)) at a same reduced location ξ(i);

• The correlation for pairs of data separated by a distance δ along the tows of the same
genus t

RE′
tow(t)r s

(∆ξ = δ) =
1

σ
E′(t)r

σ
E′(t)s

E
[
E′

(j, t)
r (ξ) E′

(j, t)
s (ξ + δ)

]
, (80)
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since the random field E′tow(j, t)(Ξ) has a zero-mean and where the expectation operator

E[•(j, t)
r (ξ)•(j, t)

s (ξ+δ)] here stands for 1∑
iN

i

∑
i

∑N i

j, k=1 •
(j, t)
r (ξ(i)+kλξ)•(j, t)

s (ξ(i)+kλξ+δ)

for N i sampled data, considering all the tows j = 1..tow(t) and cells k = 1..N cell(j) at
a same reduced location ξ(i); This case in illustrated as the auto-correlation on Fig.
10(c);

• The correlation for pairs of data taken at the same reduced location ξ but on different
tows j and j+ l of two genuses t and t′ (with possibly t = t′) having the same direction

RE′
tow(t) ,E

′
tow(t′)r s

(∆j = l) =
1

σ
E′(t)r

σ
E′(t
′)

s

E
[
E′

(j, t)
r (ξ) E′

(j+l, t′)
s (ξ)

]
, (81)

where the expectation operator E[•(j, t)
r (ξ) •(j+l, t′)

s (ξ)] here stands for 1∑
iN

i

∑
i

∑N i

j, k=1

•(j, t)
r (ξ(i) + kλξ) •(j+l, t′)

s (ξ(i) + kλξ) for N i sampled data, considering all the tows

j = 1..tow(t) and cells k = 1..N cell(j) at a same reduced location ξ(i); This case in
illustrated as the cross-correlation on Fig. 10(c);

• The correlation between tows of genuses t and t′ having different directions evaluated
at crossover reduced locations (x(i) − τx, y(i′) − τy)

RE′
tow(t) ,E

′
tow(t′)r s

=
1

σ
E′(t)r

σ
E′(t
′)

s

E
[
E′

(j, t)
r (x− τx) E′

(j′, t′)
s (y − τy)

]
, (82)

where the expectation operator E[•(j, t)
r (x) •(j′, t′)

s (y)] here stands for 1∑
(i, i′) N

(i,i′)

∑
(i, i′)∑N(i,i′)

j, j, k, k′=1 •
(j, t)
r (x(i) − τx + kλx) •(j′, t′)

s (y(i′) − τy + k′λy) for the N (i,i′) sampled data

at cross-over locations, considering all the tows j = 1..tow(t), j′ = 1..tow(t′) and cells

k = 1..N cell(j) , k′ = 1..N cell(j
′)

.

Reconstruction. Vanaerschot et al. (2013a,b, 2017) have developed a stochastic modelling
framework for fabrics, in which tows are represented as a sequence of elliptical cross-sections.

A deterministic micro-structure is first generated using WiseTex software (Verpoest and
Lomov, 2005), from which the systematic function ε̄(t)

(
ξ(i)
)

is sampled at different coordi-

nates ξ(i). When the systematic functions appear to be on good agreement with the ones
obtained from the experimental measurements, the WiseTex functions are used, whilst when
it is not the case, as observed for cross-sectional parameters by Vanaerschot et al. (2013a),
the experimental ones are used.

Then, as a second step the deviation random field E′tow(j, t) (Ξ) has to be generated from
the correlations and standard deviations evaluated by Eqs. (80-82). To this end, assuming
the deviations can be represented by normal distributions, Vanaerschot et al. (2014) have
used the Karhunen-Loève expansion to simulate correlated random fields, see Appendix
A.3.3 and Vanaerschot et al. (2013b) have used the Markov chain Monte Carlo (MCMC)
algorithm to simulate independent random fields, see Appendix A.5.1. The final random
field Etow(j, t) (ξ) is then obtained by Eq. (78) and sent back to WiseTex to generate a
micro-structure.
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3.2.3. Short fibres composites

Short fibre reinforced composite matrix materials, see Fig. 2(c), are usually characterised
by fibres of different lengths and having different orientations. Slender fibres can also exhibit
a curvature. The difference in the length can result from the chopping process of the fibre,
whilst the fibres orientation result mainly from the composite material process, e.g. during
injection moulding the fibres take orientations whose randomness depends on the flow. Be-
cause of this dependency to the flow, the fibre orientation randomness is not the same at
the different locations of the injected sample. As a result, properties distributions are not
spatially uniform, affecting the material response.

(a) CT-scan

0.0 0.2 0.4 0.6 0.8 1.0
z/t [-]

0.17

0.18

0.19

0.20

0.21

0.22

0.23

0.24

0.25

0.26

v I
[-]

(b) vI(z)

0.0 0.2 0.4 0.6 0.8 1.0
z/t [-]

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

a
[-]

a11

a22

a33

a12

a23

a13

(c) a(z)

Figure 12: µ-CT analysis of PA06 reinforced by 40% of weight short E-glass fibres (GF) or PA06-GF40:
(a) µ-CT sample; Evolution along the sample thickness of (b) The fibre volume fraction; and of (c) The
second-order orientation tensor. Data were obtained by Wu et al. (2020b).

Data acquisition. Fibres are detected using micro-focus Computed Tomography (µ-CT) on
mm-long samples, as discussed by Clarke and Eberhardt (2002); Vincent et al. (2005). An
example of µ-CT image obtained on a 3.2 mm-thick PA06 reinforced by 40% of weight
short E-glass fibres (GF) sample is illustrated in Fig. 12(a). It can be seen that, for such
a sample cut from a plate manufactured by injection moulding, the distribution of fibres
is not uniform along the cross-section of the plate: whilst at the lower and upper skin the
fibres tend to orient themselves with the injection direction, at the core the fibres orientation
exhibits more randomness.

Breuer et al. (2021) have extracted the aspect-ratio distribution of the fibres, or more
exactly the fibre length distribution and fibre diameter by incinerating a sample of SFRP
and measuring the fibres exposed with an optical microscope. The correlation, if any, with
the orientation distribution function (ODF) πP (p) is however lost by the process.

Assuming isotropicity of the micro-structure and ellipsoidal shape of the inclusions, Xu
et al. (2014) have developed a 2D to 3D characterisation method allowing using 2D SEM
images.

The spatial distribution of fibre orientation and volume fraction can also be predicted
by simulating the manufacturing process as achieved by Gupta and Wang (1993); Vincent
et al. (2005).
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Figure 13: Conditional distributions πAr|P obtained by injection by Mohamedou et al. (2019) of the fibre
aspect ratio ar of a PA06-GF40 plate for different facet orientations in terms of spherical polar angle θ
and azimuthal angle φ; Reprinted from Composite Structures 220, Mohamedou, M., Zulueta, K., Chung,
C.N., Rappel, H., Beex, L., Adam, L., Arriaga, A., Major, Z., Wu, L., Noels, L., Bayesian identification
of mean-field homogenization model parameters and uncertain matrix behavior in non-aligned short fiber
composites 64-84, Copyright (2019), with permission from Elsevier.
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Figure 14: Thickness averaged fibre aspect ratio distributions for different plate locations and different man-
ufactured PA06-GF40 samples as obtained by Mohamedou et al. (2019): (a) Fibre aspect ratio distribution
πAr

in terms of fibres count; and (b) Distribution of volume fraction v(ar)πAr
of inclusions of aspect ratio ar;

Reprinted from Composite Structures 220, Mohamedou, M., Zulueta, K., Chung, C.N., Rappel, H., Beex, L.,
Adam, L., Arriaga, A., Major, Z., Wu, L., Noels, L., Bayesian identification of mean-field homogenization
model parameters and uncertain matrix behavior in non-aligned short fiber composites 64-84, Copyright
(2019), with permission from Elsevier.

Features. The main features characterising the short fibres reinforced matrix are:

• The spatial distribution of the fibre volume fraction vI; Fibre volume fraction changes
with the studied location, including across the sample thickness, see Fig. 12(b) for
PA06 reinforced by 40% of weight short E-glass fibres (GF) or PA06-GF40;

• The fibre orientation distribution, with one fibre orientation characterised by a unit
vector p along the fibre axis; The statistical description of orientations P is obtained
through a probability density function πP (p), also called Orientation Distribution
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Function (ODF), with
∮
πP (p) dp=1; For practically reasons, this expression is usually

written within the spherical coordinates system, yielding∫ π

θ=0

∮ 2π

φ=0

πP (p(θ, φ)) sin(θ) dθ dφ = 1 , (83)

where θ is the polar angle and φ is the azimuthal angle; In practice, the ODF πP (p) is
not always directly available, e.g. as when considering the process simulation, and it is
more common to have access to the ODF-weighted average of p⊗p, where the symbol
⊗ designates a tensor or dyadic product, which is called the second-order orientation
tensor

a =

∮
p⊗ pπP (p) dp ; (84)

The ODF πP (p) can be retrieved from a by considering some assumptions as in the
interpolation method developed in Doghri and Tinel (2005, 2006); The ODF usually
spatially varies including with respect to the thickness, see Fig. 12(c);

• The statistical distribution of the aspect ratio ar = l
d
, with assuming each fibre of di-

ameters d considered to be straight and of length l; The aspect ratio distribution can
spatially vary including with respect to the thickness and the distribution of the aspect
ratio also varies with the direction p as illustrated in Fig. 13 for PA06 reinforced by
40% of weight short E-glass fibres (PA06-GF40) plates obtained by Mohamedou et al.
(2019); Since the ODF does not differentiate fibres of different aspect ratio values and
since the aspect ratio distributions are different along the different directions p, Mo-
hamedou et al. (2019) have considered the volume fraction of the fibres of aspect ratio
ar along a direction p as being more representative than the fibres count; Considering
the variables vf , ar, p as the volume of one fibre vf , its aspect ratio ar and its direction
p whose probability function reads πVf , Ar,P , the volume fraction v(ar,p)πAr,P (ar, p)
of fibres having an aspect ratio between ar and ar + dar and oriented along a direction
between p and p+ dp is defined as

v(ar,p) =

∫
R+ vfπVf |Ar,P (vf |ar, p) dvf∮ ∫

R+

∫
R+ vfπVf , Ar,P (vf , ar, p) dvf dar dp

, (85)

with
∮ ∫

R+ v
(ar,p)πAr,P (ar, p) dar dp=1; This distribution obtained for PA06-GF40

plates by Mohamedou et al. (2019) is illustrated in Fig. 14;

• The cumulative distribution function of the nearest aggregate/fibre as considered by
Xu et al. (2014);

• In some cases, the fibres curvature, in which case the local orientation vector of each
fibre should be characterised, see the discussion by Eberhardt and Clarke (2002); The
fibres are usually assumed as being ellipsoidal.
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Reconstruction. Based on the evaluation of the local orientation vector of the fibres directly
from the µ-CT images, Eberhardt and Clarke (2002) have reconstructed a micro-structure,
which is however unique for one analysed sample.

Packing algorithms were also developed for different inclusion shapes by Jia and Williams
(2001), for sphero-cylinder by Böhm et al. (2002); Williams and Philipse (2003); Tu et al.
(2005) and for convex shapes by Stafford and Jackson (2010). An efficient algorithm pre-
sented for periodic random packing of ellipsoids based on molecular dynamics (MD) has
been extensively described by Budarapu et al. (2019). However the link with the statistical
descriptors was not provided. These latter have been considered by Xu et al. (2014) and
by Li et al. (2016). In particular, Li et al. (2016) have developed the following packing
algorithm:

• The fibres are represented by cylinders with the same diameter, length, and thus by a
unique aspect ratio ar;

• The fibre orientations are sampled from the ODF πP (p) retrieved from the second-
order orientation tensor a;

• Newly generated fibres are located with respect to the existing fibres and the fibre
predefined diameter to control the volume fraction, with rejection until no overlap.

In contrast, Breuer et al. (2021) have also used the aspect ratio distribution πAr(ar) and the
ODF πP (p) (in a uncorrelated way) when generating the micro-structure.

3.2.4. Poly-crystal

Data acquisition. We refer to Section 3.1.5 for a short discussion on data acquisition related
to poly-crystalline structures.

Features. The main features considered in the literature are:

• The cell or volume size distribution πV (v); As discussed by Xu and Li (2009), in
crystallography, the grain sizes are often shown to follow log-normal distribution, but
bi-modal and multi-modal distributions, i.e. with more than one local maximum in
the probability density function, are also found; When limited information is available,
Sankaran and Zabaras (2007) used the Maximum Entropy framework, see Appendix
B, with as input the four first statistical moments evaluated from a limited number of
phase-field simulations, in order to identify the distribution πV (v), see Fig. 15(a);

• Grains aspect ratio; Saylor et al. (2004) have identified the grains as ellipsoids of semi-
axes (a, b, c) aligned with the sample direction in order to extract the probability
density function πA,B,C(a, b, c) related to the probability to find an ellipsoid of semi-
axes between (a, b, c) and (a + da, b + db, c + dc) at a given spatial position, which
allows deducing the distribution of the aspect ratio and of the grain size;
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(a) πV (v) (b) Sampled Voronöı

(c) ODF from maximum Entropy (d) ODF of one observation

Figure 15: Reconstruction of poly-crystal by Sankaran and Zabaras (2007): (a) Probability mass function
of the grain size constructed using the maximum entropy framework from phase-field simulation results
and comparison with the distribution obtained for one poly-crystal realisation (KL is the Kullback-Leibler
divergence measure of the two entropies); (b) One Voronöı realisation; (c) Orientation Distribution Function
(ODF) illustrated in the Frank-Rodrigues space and constructed using the maximum entropy framework
from phase-field simulation results; and (d) Orientation Distribution Function (ODF) of one poly-crystal
realisation; Reprinted from Acta Materialia 55, Sankaran, S., Zabaras, N, Computing property variabil-
ity of polycrystals induced by grain size and orientation uncertainties, 2279-2290, Copyright (2007), with
permission from Elsevier.

• Orientation distribution; Saylor et al. (2004) have characterised the orientation, here
assumed to be represented by hEuler following Section 3.1.2, by the probability density
function, here denoted, πHEuler

(hEuler), related to the probability to find an orientation
between hEuler and hEuler + dhEuler at a fixed spatial position; They have also charac-
terised the mis-orientation ∆hEuler between two neighbouring grains, by evaluating its
probability density function, here denoted, π∆HEuler

(∆hEuler); As done for the grain
size distribution, Sankaran and Zabaras (2007) used the Maximum Entropy frame-
work, see Appendix B, in order to obtain the distribution of orientation from a limited
number of phase-field simulations; The constraints are then defined as sharp textures
corresponding to localisation of intensities, see Fig. 15(c); We note that the possible
orientations are not necessary continuous; X-Ray Diffraction (XRD) measurements
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Figure 16: X-Ray Diffraction (XRD) measurements by Lucas et al. (2017) for columnar poly-silicon obtained
by Low Pressure Chemical Vapour Deposition (LPCVD) at different temperatures of the fabrication process;
The intensity of each peak, associated to one orientation, is given in counts per seconds; Reprinted from
International Journal for Numerical Methods in Engineering 111, Lucas, V., Golinval, J.C., Voicu, R.C.,
Danila, M., Gavrila, R., Müller, R., Dinescu, A., Noels, L., Wu, L, Propagation of material and surface
profile uncertainties on mems micro-resonators using a stochastic second-order computational multi-scale
approach, 26-68. Copyright (2017), with permission from John Wiley and Sons.

were obtained by Wu et al. (2016); Lucas et al. (2017) on columnar poly-silicon thin
sheets obtained by Low Pressure Chemical Vapour Deposition process (LPCVD); As
shown by the peaks in Fig. 16, only some orientations are present in the poly-crystal,
and the relative intensity of the peaks provides the relative weight fraction for the
different orientations.

Reconstruction. The grains geometry are commonly generated from Voronöı tessellation as
achieved by Barbe et al. (2001); Saylor et al. (2004); Sankaran and Zabaras (2007); Xu and
Li (2009). Among the Voronöı tessellation methods, Poisson-Voronöı uses points as seeds to
generate polyhedral shapes from the planes bisecting the bonds connecting each seed and its
nearest neighbours. As discussed by Xu and Li (2009), discrepancies with real poly-crystals
are found in terms of statistical properties such as average face numbers of cells, grain
volume variances etc. A first remedy is the Laguerre tessellation method, which replaces the
point seeds by finite size spheres. Another solution is to consider a physically-based growing
process such as the Johnson-Mehl-Avrami-Kolmogorov (JMAK) kinetics method developed
by Mahin et al. (1980); Ito and Fuller (1993).

In order to recover observed statistical features, such as the grain volume distributions
πV (v), including bi-modal ones, Xu and Li (2009, 2010) have added constraints to the
Poisson-Voronöı process, leading to an optimisation problem of the seed locations solved
using an inverse Monte Carlo process, see Appendix A.5. Saylor et al. (2004) have packed
ellipsoids sampled from πA,B,C(a, b, c), the probability density function of their semi-axes,
and whose centres became the nucleation site of grains growth simulated using Johnson-
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Figure 17: Domain definitions using the level-set functions, dashed lines denote inclusion boundaries whilst
bold lines denote ΦΘ: (a) Arbitrary-shaped inclusions resketched from the work by Sonon et al. (2015); and
(b) Spherical inclusions resketched from the work by Kilingar et al. (2019).

Mehl-Avrami-Kolmogorov (JMAK) kinetics (Ito and Fuller, 1993). Sankaran and Zabaras
(2007) have associated to randomly distributed seeds the sizes sampled from πV (v) and
developed an iterative process using repulsive forces between overlapping spheres.

Once grains are generated, grain orientation and mis-orientation are then assigned using
a Monte Carlo procedure, see Appendix A.5, to recover the probability density function
πHEuler

(hEuler) and π∆HEuler
(∆hEuler). Saylor et al. (2004) have assigned to each grain an

orientation following an iteration process in order to recover the probability density function
πHEuler

(hEuler) and π∆HEuler
(∆hEuler). Such an orientation assignment was achieved using a

Gibbs sampling, see Appendix A.5.4, by Sankaran and Zabaras (2007). We note that these
methods do not consider the correlation between the different distributions, of grain sizes
and orientation e.g..

Generation using a level-set approach. Although Voronöı tessellation methods (Barbe et al.,
2001; Saylor et al., 2004; Sankaran and Zabaras, 2007; Xu and Li, 2009) can be very effective
in generating grains assemblies based on a random distribution of points, reaching more
complex distribution such as bi-modal distributions of grain sizes leads to complex iterative
procedures. Therefore Sonon et al. (2012, 2015) have developed a level-set based approach
allowing generating complex micro-structures. In this approach, the level set functions are
used as distance indicators. Given a domain ω, see Fig. 17, in which an inclusion i has to
be introduced as member of the set I of all inclusions, ω−i and ω+

i represent respectively the
domains inside and outside the boundary Φi of the inclusion. Different definitions are then
introduced

• The signed distance field DSi(x) of inclusion i, is the distance from Φi, with negative
values in ω−i and positive in ω+

i , see Fig. 17;

• The k-th neighbour distance field, DNk(x), denoted as DN finder, gives the position
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from the k-th nearest Φi in the packing and thus, all inclusions in the packing can be
represented by using DN1(x) as a level set;

• The k-th neighbour identity map NNk(x), as an integer discontinuous function, gives
for each point x, the k-th nearest inclusion from x in the set I;

• The “Inner” domain IΘi of inclusion i is the set of points x closer to inclusion i than
to any other inclusion, i.e. NN1(x) = i,∀x ∈ IΘi;

• The “Outer” domain OΘi is the set of points closer to another inclusion than inclusion
i, i.e. NN1(x) 6= i;

• ΦΘi is the boundary of IΘi and ΦΘ is the union of all ΦΘi.

The interest of the distance fields is two-fold. On the one hand it improves the efficiency
of the packing algorithm, and on the other hand it can be used to define more complex
micro-structures.

When considering a Random Sequential Addition (RSA) algorithm, the rejection rate of
a new inclusion i of centre xC in the micro-structure ω is reduced with an a priori knowledge
of sub domains where the inclusion will respect all the criteria of the test. The use of the
neighbouring distance function fields helps in identifying these regions. For example, for
arbitrary shaped inclusions, the smallest enclosing sphere of radius r determines the non-
overlap criteria on any inclusion of centre xC in the micro-structure ω already mapped in
DN1(x) when meeting the condition

DN1(xc) > r . (86)

In the case of spherical inclusions packing, r is sampled from the radius distribution πR(r)
and the regions of ω where (86) is satisfied are readily identified. Besides, closer or more
realistic spheres packing can be achieved by a control on the distances from the first, second
and third nearest neighbours, denoted by nnl1, nnl2 and nnl3. This can also help producing
closer packings, thus enabling higher packing densities. In that case, the possible regions to
introduce a new inclusion are identified where meeting the conditions

DNk(xc) < nnlk + r with k = 1..3 . (87)

Thus, the distance field-based RSA algorithm developed by Sonon et al. (2012) reads

1. Construction of the micro-structure domain ω made of a (un)regular grid of points xn
and initialisation of DNk(xn) to +∞;

2. Generate trial inclusion i from prescribed size distribution function πV (v);

3. Extract satisfactory locations xc by applying Eq. (86) to avoid inter-penetration and
Eq. (87) to meet neighbour distance criteria; If this set is empty, the RVE is full,
terminating the process, if not add the new inclusion i;

4. Update DNk(xn) to allow the calculation of DSi(xn) of new inclusion i;

5. Follow step 2 until termination criteria is reached or the RVE is full.
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(a) Spheres packing following
πV (v)

(b) Voronöı tessellation (c) Extracted open-foam micro-structure

Figure 18: Level set-based micro-structure by Kilingar et al. (2019): (a) Spheres packing obtained using the
level set-based-RSA following πV (v); (b) Voronöı tesselation obtained using Eq. (88), the image displays
a plateau of thickness t resulting from Eq. (89); and (c) Open foam micro-structure with strut-cross
section curvature and variation. Reproduced from Kilingar, N.G., Ehab Moustafa Kamel, K., Sonon, B.,
Massart, T.J., Noels, L., 2019. Computational generation of open-foam representative volume elements
with morphological control using distance fields, European Journal of Mechanics - A/Solids 78, 103847.
Copyright (c) 2019 Elsevier Masson SAS. All rights reserved.

For a given inclusions packing generated by the level set based-RSA, see Fig. 18(a), a
Voronöı tessellation can then be implicitly constructed as the assembly of all IΘi by using
the first and the second neighbour distance fields to define the “Voronöı” level set function

OV (x) = DN2(x)−DN1(x) . (88)

The value of this function is exactly zero at loci equidistant from two nearest inclusions, see
the continuous bold lines in Fig. 17 that correspond to the faces of the tessellations, and is
positive everywhere else. Besides, with a view to the generation of more complex structures,
a quasi-constant thickness t can be used in combination with OV to extract a closed cell
geometry through the level sets following

OV (x)− t = 0 . (89)

Figure 18(b) illustrates the tessellation with boundaries of thickness t obtained from the
packing of Fig. 18(a).

3.2.5. Foamed materials

In this section we restrict ourselves to the open-cell foam case, which forms a class
of light-weight cellular materials, see Fig. 2(e). In particular, metallic open-cell foams
are usually manufactured either from moulds left after thermal treatment of reticulated
polymer foams using investment casting, or by electro-deposition onto a polymeric foam
with open cells, which is later removed resulting in hollow struts. The resulting foam
morphological characteristics are largely influenced by that of the polymeric foam they are
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Figure 19: Open-foam morphology distribution obtained with the LS-based approach by Kilingar et al.
(2019): (a) Probability density function πV (v) of the (normalised) volume distribution for different coef-
ficients of variation CV = σV

E(V ) ; (b) Probability density function πL(l) of the (normalised) struts length

distribution for different coefficients of variation CV = σV

E(V ) , comparison between the results of QHull

(Barber et al., 1996) for a Laguerre Voronöı tessellation and that of the level-set based approach, which is
more Gaussian-like; and; (c) Comparison of strut cross-section area with experimental data, dotted lines are
resketched from Jung and Diebels (2017) for 20 ppi foams and the bold line depicts the variation of a single
strut extracted from the micro-structure generated using the LS-based reconstruction procedure, see Fig.
18(c). Modified from Kilingar, N.G., Ehab Moustafa Kamel, K., Sonon, B., Massart, T.J., Noels, L., 2019.
Computational generation of open-foam representative volume elements with morphological control using
distance fields, European Journal of Mechanics - A/Solids 78, 103847. Copyright (c) 2019 Elsevier Masson
SAS. All rights reserved.

derived from, yielding complex micro-structures consisting of an interconnected network of
ligaments forming along the edges of randomly packed cells that evolve during the foaming
process of the polymer (Jang et al., 2008).

Data acquisition. Statistical information is usually extracted from 3D reconstruction from
micro-Computed Tomography (µ-CT) images. As an example, Liebscher et al. (2012, 2013)
have extracted the mean and standard deviation of cell properties such as diameters d,
surface area s, volume v, number of facets per cell nF .

Features. Foamed materials can be characterised at several levels:

• Foams are mainly referred to in terms of their number of pores per (square) inch
(ppi), which is strongly related to their porosity: the porosity usually decreases with
an increase of the pores per (square) inch (ppi);

• The statistical information that is usually extracted is related to the cells of the foam,
and can be found under the form of probability density functions πD(d) of the diameters

d, πS(s) of the surface area s, πV (v) of the volume v, see Fig. 19(a), πNF (n
(i)
F ) of the

number of facets per cells n
(i)
F , πNE(n

(i)
E ) of the number of edges per faces n

(i)
E ;

• Finally some information are also extracted related to the struts morphology: some
works (Vecchio et al., 2016, e.g.) consider the probability density functions πL(l) of
the struts length l, see Fig. 19(b), whilst for other features, such as struts cross-section
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concavity, and struts cross-section area A(ξ) evolution along the non-dimensional ab-
scissa of the struts ξ, see Fig. 19(c), only a limited amount of measurements, as the
ones provided by Jung and Diebels (2017), are available.

Reconstruction. Laguerre tessellation was used by Liebscher et al. (2013) to reconstruct
an open-foam micro-structure, in which the initial spheres are obtained by force-biased
packing algorithm with radii sampled from a log-normal or gamma distribution πR(r). This
distribution πR(r) is parametrised as suggested by Redenbach (2009) in order to recover
some statistical foam features (mean and standard deviation of diameters d, surface area s,

volume v, number of facets per cells n
(i)
F ). Since this last method only ensures a good fit for

a limited set of statistical properties and since it tends to predict struts length distributions
with too many short edges, see QHull results in Fig. 19(b), Liebscher (2015) have iterated
on the seeds location used in the Laguerre tessellation in order to recover more accurately
the observed statistical features.

Another approach used by Kraynik et al. (2003); Vecchio et al. (2016) is to model foam
structures based on the computation of the equilibrium micro-structure of soap froth. To this
end, the Surface Evolver software developed by Brakke (1992) is initialised with a random
packing of spheres and uses the principle of minimisation of surface energy that shapes
the “liquid” into Plateau borders. The resulting micro-structure exhibits a Gaussian-like
strut length distribution as experimentally observed. However, such a process requires an
important computational effort, and the extraction of a finite-element model from the micro-
structure remains cumbersome.

Generation using a level-set approach. A practical way to define the morphology of the
open-foam, which also allows extracting a finite-element model, is to rely on the level-set
method introduced in Section 3.2.4. To this end, Sonon et al. (2015); Kilingar et al. (2019)
have considered additional distance fields in order to extract, from the Voronöı tessellation
illustrated in Fig. 18(b), the open foam micro-structure illustrated in Fig. 18(c).

Indeed, the open foam micro-structures are defined by the struts morphology, which can
in turn be represented by ad-hoc level set functions. The first three neighbour distance
functions, define the “Plateau” level set function

OP (x) =
(DN3(x) +DN2(x))

2
−DN1(x) , (90)

which vanishes at the locus where the distance from the three nearest inclusions is the same,
and is positive everywhere else. Therefore, the level set of this function consists of triangles
with vertex lying on the tessellation cell boundaries, and a plateau border-like geometry of
thickness t is represented by

OP (x)− t = 0 . (91)

The struts cross-section area A is also observed to vary along its length following a
function A(ξ), where ξ is the non-dimensional abscissa. The variation of the strut cross-
section area in the generated morphology is controlled by rewriting Eq. (91) as

OP (x)− t×OS(x) = 0 , (92)
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where the functionOS(ξ) was expressed in terms of level-set functions and ofA(ξ) by Kilingar
et al. (2019). Figure 18(c) illustrates the morphology of the struts, and a cross-section area
evolution is reported in Fig. 19(c).

Beside their area, struts cross-sections are also characterised by their shape, i.e. the
cross-section curvature. Polyurethane (PU) ligaments usually have a 3-cusp hypocycloid
cross-section, whilst most of the metallic foams have a triangular cross-section that tends
towards circular with increasing ppi value. To obtain such morphological variations, a non-
constant C2 continuous function is subtracted from the function (92), leading to

OP (x)− t×OS(x)− kc ×OK(x) = 0, (93)

where 0 < kc < 1 controls the concavity. Such a C2 continuous function OK(x) can be
defined based on the maintained distance fields as

OK(x) = min

0,

((
DN3(x)−DN2(x)

2

)2

− (t×OS(x))2

)
2t×OS(x)

 . (94)

Finally, similar operations were defined by Sonon et al. (2015) to introduce coating or
again hollow struts.

3.3. Dimension reduction

Like for all stochastic approaches, the number of information can become overwhelming
to be treated when the number of random variables characterising the micro-structures
increases. This is called the “curse of dimensionality”. Therefore dimension reduction is
usually performed in stochastic approaches.

We refer to the work by Bostanabad et al. (2018) for a recent review in the context of
micro-structures characterisation and reconstruction, and we here give a short explanation
on what is intended by the concept.

3.3.1. Features selection

Since several features are considered simultaneously, one simple approach to conduct
dimension reduction is to identify the ones which affect the apparent properties or the ones
which are strongly correlated. This approach is naturally applied when describing a micro-
stricture using Physical descriptors as done in Section 3.2.

3.3.2. Features extraction

Once the micro-structures have been represented by, e.g., a random vector H valued in
<n, it is possible to apply an order reduction and to represent the statistical information by
another random vector H valued in <m with m < n, e.g. using the Principal Component
Analysis (PCA) described in Appendix A.3.1, the polynomial chaos expansion (PCE) sum-
marised in Appendix A.4.2, the data-driven probability sampling approach summarised in
Appendix A.7, etc..
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Similar approaches are also developed for random fields H(ω), such as the Karhunen-
Loève (KL) series expansion summarised in Appendix A.3.2, the PCE of a random field
summarised in Appendix A.4.4, etc..

The feature extraction can also be combined with the statistical geometrical character-
isation described in Section 3.1. As an example, Yabansu et al. (2017) have extracted the
two-point spatial correlation of ternary eutectic alloys before applying a PCA.

3.4. Micro-scale constituents behaviours

When generating micro-structures, beside the geometrical features, material models
ought to be associated to the different micro-structure phases and the model parameters
also have to be provided. Besides, the existence of spatial variability, defects etc. also
affects the homogenised material response.

3.4.1. In-situ properties

There are several difficulties related to the definition of the micro-constituent material
models and on their identification.

First, the material behaviour of a bulk material within a heterogeneous material phase
is not always the same as the one that can be observed in homogeneous macro-samples.
Chevalier et al. (2019) have shown that in fibre reinforced epoxy resin, the non-linear matrix
behaviour does not follow the model identified from epoxy macro-scale coupons. Although
the origin of the discrepancy is not fully identified in this case, Nguyen et al. (2019) have
developed a material model for polymers accounting for length-scale effects that allow re-
covering for a unique set of parameters the response of both composite material and bulk
material samples. Another identified source of discrepancy between the material response
of heterogeneous material constituents and of a macro-sample of the same material comes
from the difference in the manufacturing process. As an example, when considering open
metallic foam materials, the standard bulk material properties of the metallic alloy are in
general much higher than those identified by reverse engineering from experimental tests
performed on foamed materials because of the differences in the grains structure and tex-
ture. Heinze et al. (2018) have used an inverse identification of the struts material properties
from a compression test performed on a single pore extracted from a foam sample and whose
geometry was reproduced using µ-CT. Besides, heterogeneous materials can exhibit residual
stresses within the constituents. As an example, the residual stress can originate from the
existence of thermal gradient existing during the curing of thermoset-based composite mate-
rials. Brauner (2013) has predicted these residual stresses by simulating the manufacturing
process with a chained thermal-chemical-mechanical finite element analysis, in which the
resin curing kinetics has to be modelled (Karkanas and Partridge, 2000).

A second difficulty results from the possible variations, either between batches or as a
spatial variation, of the constituent material properties. This effect of such variations on the
homogenised properties was numerically studied by Xu and Graham-Brady (2005) who gen-
erated a random (micro-structure) medium of stochastic Young’s modulus, by Kamiński and
Kleiber (1996); Tootkaboni and Graham-Brady (2010); Kamíski (2012), who generated unit
cell of reinforced composites with stochastic Young’s modulii for both phases –a variation
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with a stochastic fibre embedded in a periodic cell being proposed by Omairey et al. (2019),
by Ma et al. (2015) who generated particle refinfored composites with varying hyperelas-
tic properties of both phases following normal distribution, by Savvas and Stefanou (2017)
who considered a normal distribution of the matrix Young’s modulus in particle reinforced
composites. Mehrez et al. (2018) have developed a hierarchical stochastic homogenisation
in the context of non-crimp fabric laminates: considering uncertainties in the resin and
carbon-fibre properties, they have predicted stochastic apparent properties of a tow and,
by considering observations of tow spacing distribution, a new stochastic homogenisation
could predict the stochastic apparent properties of the non-crimp fabric. The resin and
carbon-fibre properties were assumed to be independent and to have uniform distributions
(18) whose supports were defined from mean values and some bounds extrapolated from
manufacturer data-sheets. In these works, the properties uncertainties were however not
based on a systematic experimental uncertainty quantification.

Relying on the Stochastic Asymptotic Homogenisation-based multi-scale method devel-
oped by Fish and Wu (2011) and developed in see Section 4.2.2, Hu et al. (2017) have inferred
the probability distribution of material constitutive model parameters, i.e. the fibre and ma-
trix strength of their damage model, at the microscale from experimental observations of
macroscale quantities of interest by solving a stochastic inverse multi-scale problem. In
the same context, Bogdanor et al. (2013, 2015) have inferred rate-dependent damage model
parameters of composite material constituents from experimental data using a Bayesian In-
ference process, see Section 3.4.2. Using the distribution of the constituents damage model
parameters, a Gaussian process (GP) was used as a surrogate model for costly finite element
analyses.

When it comes to defining material properties as random fields, inverse stochastic iden-
tification of single scale constitutive behaviour was considered by Yun and Shang (2016) in
the context of elasto-plasticity, by Mehrez et al. (2012b,a) in the context of the homogenised
response of composites from vibration tests, as a non-exhaustive list. Using a Bayesian In-
ference process, see Section 3.4.2, spatially varying elasticity constants, under the form of
embedded inclusions, were identified by Koutsourelakis (2012), and Vigliotti et al. (2018)
have captured the spatial distribution of material properties from experimental measure-
ments. Nevertheless, identifying material properties as random fields at the micro-structure
level with a view to stochastic multi-scale model remains challenging.

3.4.2. Bayesian inference

When building virtual micro-structures, some micro-structural properties can be statis-
tically characterised either from experimental measurements or from the process simulation,
e.g. following Section 3.1 or Section 3.2. Nevertheless, some micro-structural parameters
cannot always be directly (statistically) identified, e.g. for the reasons previously recalled.
For a multi-scale model to be built, e.g following the coming Section 4, in order to conduct
virtual (stochastic) testing, these missing properties should be inferred.

One possibility is to evaluate these missing parameters from inverse identification using
experimental tests performed on coupons made of the heterogeneous material. However,
this identification requires several loading conditions to be performed, and a unique set

48



Inference of missing micro-

constituents properties

Macro-scale 

response UQ

Multiscale 

model
Micro-structure 

partly characterised

ar

𝜋𝐴𝑟

0 20  40  60  80

0.04

0.03 

0.02

0.01

0 𝜀M [%] 

0   1   2 3  4

200

150 

100

50

0

𝜎M[MPa] 
0o

45o

90o

𝜃

𝜋Θ

-
𝜋

2
-
𝜋

4
0 

𝜋

4

𝜋

2

0.4

0.3 

0.2

0.1

0

𝜋𝑷(𝒑
(𝑘))

E0 [GPa]

𝜋𝐸0

2.4  2.8  3.2  3.6

4

3

2

1

0

Stochastic 

multiscale model

Figure 20: Bayesian inference of multi-scale model parameters: Considering a multi-scale model, some
micro-structural properties are statistically characterised and the other ones are inferred under the form of
a distribution using different experimental coupon tests performed on the heterogeneous material.

of parameters cannot usually reproduce all the experimental tests because of the model
limitations and errors, in particular when considering non-linear responses. Besides, the
data are inevitably entailed by experimental errors. These difficulties can be circumvented by
considering a Bayesian Inference (BI) (Isenberg, 1979; Beck and Katafygiotis, 1998). In this
framework, the uncertainties in the inferred parameters arise from the identification process
itself under the form of a so-called posterior probability density function, as illustrated in
Fig. 20.

Bayesian inference is structured around Bayes’ theorem aiming at evaluating a so-called
posterior distribution function πQ|Y (q|y), also denoted πpost(q|y), of a random parameters
vector Q with values in <n, corresponding to the parameters to be inferred, for given ob-
servations of another random vector Y with values in <m, corresponding to the, e.g. exper-
imental, observations. Bayes’ theorem states that the posterior distribution is proportional
to the prior probability πprior(q) multiplied by the likelihood of Y for given observations of
Q:

πpost(q|y) ∝ πY |Q(y|q)πprior(q) , (95)

since πY (y) is a constant for given observations. In this equation

• The prior distribution πprior(q) reflects the initial belief or knowledge one has on the
parameters to be inferred Q; In particular physical bounds or previously inferred
distributions from other observations can be used to define it;

• The likelihood function is defined by a conditional probability density function πY |Q(y|q),
which is constructed from the different observation data of Y ;
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• The conditional probability density function πpost(q|y) is the posterior distribution of
the random vector Q that accounts for the observation data of the random vector Y .

Many works inferred material model parameters using the Bayesian framework: elasto-
perfectly plastic model and cohesive zone parameters were inferred by Most (2010), elasto-
plastic material model parameters by Rappel et al. (2019b,a), visco-elasticity constants by
Hernandez et al. (2015); Rappel et al. (2018) and a hyperelastic model and its parameters
by Madireddy et al. (2015), the list being non-exhaustive. Homogenised elastic constants
of composites were also inferred by Lai and Ip (1996); Daghia et al. (2007); Gogu et al.
(2013). However in the latter works, the material is considered as homogeneous, which is
not appropriate for stochastic virtual testing, motivating the use of Bayes’ theorem to infer
the parameters of multi-scale models.

Let the multi-scale model Φmultiscale (Q; ξ) be able to predict observations ymultiscale =
Φmultiscale (q; ξ), such as the macro-scale stress tensor, for a given realisation of the pa-
rameters Q, and for given conditions ξ, such as macro-scale loading conditions (macro-scale
strain, loading direction etc.). Bayesian inference can be stated by assuming different sources
for the errors, such as in the (e.g. experimental) observations y, the conditions ξ or even
the model Φmultiscale, see the summary by Rappel et al. (2019b). Assuming the main error
is in the observations y, the relation between the experimental measurements y and the
multi-scale model predictions is written as

Y = Φmultiscale(Q; ξ) + ΩY , (96)

where ΩY is the noise. A Gaussian noise is commonly assumed, as in the work of Kout-
sourelakis (2012); Most (2010); Gogu et al. (2013); Madireddy et al. (2015); Hernandez
et al. (2015); Rappel et al. (2018, 2019b), with ΩY ∼ Nµ, ,σ2(Y ). Therefore, the conditional
distribution or likelihood reads

πY |Q; ξ(y|q; ξ) = N0, σ2 (y − Φmultiscale(q; ξ)) . (97)

The evaluation of the posterior distribution in Eq. (95) using this likelihood function can
be achieved using a random walking, such as in a Metropolis-Hasting Markov Chain Monte-
Carlo algorithm, see Appendix A.5.4 and the details provided by Rappel et al. (2019a).

Mohamedou et al. (2019) have developed a Bayesian inference framework to identify the
matrix Young’s modulus and the aspect ratio of short fibre reinforced polymer following Eq.
(95), in which the multi-scale model is a two-step Mean-Field Homogenization (Camacho
et al., 1990; Doghri and Tinel, 2006) model, see also Section 4.2.4.

However, in the context of non-linear multi-scale models, the evaluation of the likelihood
function (97) can be costly and has to be repeated several thousands of times because
of the Metropolis-Hasting Markov Chain Monte-Carlo algorithm. In the context of the
Stochastic Asymptotic Homogenisation-based multi-scale method developed by Fish and Wu
(2011) and summarised in see Section 4.2.2, the Bayesian inference was used by Bogdanor
et al. (2013, 2015) to calibrate rate-dependent damage models of the composite material
constituents from experimental data. Using the distribution of the constituents damage

50



 

0O 

45O 

90O 

 

19
 

67.74 

38.10 

13
 

(a) Coupons

0.00 0.01 0.02 0.03 0.04
M

0

20

40

60

80

100

120

140

M
 in

 M
Pa

Experiments
 
NNW
 

(b) Exp. vs. NNW

0.00 0.01 0.02 0.03 0.04
M

0

20

40

60

80

100

120

140

M
 in

 M
Pa

Experiments
Two-step 
homogenization
 

(c) Exp. vs. MFH

Figure 21: Application of Bayesian inference accelerated by a Neural Network surrogate model by Wu
et al. (2020b): (a) Locations and geometries (in mm) of tested short fibre reinforced polymer coupons
along 0◦, 45◦ and 90◦ Directions; (b) The comparison of the experimental stress-strain curves to the NNW
numerical model ΦNNW(qk; ξi) prediction; and (c) The comparison of the experimental stress-strain curves
to the two-step homogenization multi-scale model Φmultiscale(qk; ξi) for the three parameters observations
qk extracted from Fig. 22; Reprinted from Computer Methods in Applied Mechanics and Engineering 360,
Wu, L., Zulueta, K., Major, Z., Arriaga, A., Noels, L., Bayesian inference of non-linear multiscale model
parameters accelerated by a deep neural network, 112693. Copyright (2020), with permission from Elsevier.
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Figure 22: Distributions of the multi-scale model Φmultiscale(Q; ξ) material properties inferred by Wu
et al. (2020b) for short fibre reinforced polymer coupons: E0 corresponds to the matrix Young’s mod-
ulus, σY0

to the matrix initial yield stress, h0, m10
and m20

to the matrix hardening law R0(p0) =
h0p

m10
0 (1− exp(−m20p0)) parameters, and Ar to the equivalent inclusion aspect ratio; Three marked points

are extracted and correspond to observations of qk of the Highest, Moderate and Lowest (among the 18000
samples) probabilities; Reprinted from Computer Methods in Applied Mechanics and Engineering 360, Wu,
L., Zulueta, K., Major, Z., Arriaga, A., Noels, L., Bayesian inference of non-linear multiscale model param-
eters accelerated by a deep neural network, 112693. Copyright (2020), with permission from Elsevier.
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model parameters, a Gaussian process (GP) is used as a surrogate model for costly finite
element analyses. Wu et al. (2020b) have trained an artificial Neural Network (NNW) as
a surrogate of a non-linear multi-scale model of short fibre reinforced polymer in order
to infer, through a Bayesian process, the polymer non-linear model parameters. Georgios
et al. (2021) have developed a PCE model of the homogenised response of a UD unit cell
in order to serve as a surrogate model of the composite material stiffness and strength in
the Metropolis-Hasting Markov Chain Monte-Carlo algorithm. They have then conducted
a Bayesian inference of the fibre volume fraction and matrix damage law from experimental
coupon tests. Balokas et al. (2021) have trained neural networks as surrogates of the stiffness
and strength of high fibre density UD composites using as data numerical elastic damage
simulations of unit cells. These surrogates were further used at the yarn level of braided
composites in order to develop a multi-fidelity surrogate of the braided composite failure.
To this end numerical damage elastic simulations of a braided unit cell were simulated
with fine time steps (high fidelity) and coarse time step (low fidelity). As a result a low
fidelity data base and a high fidelity data base were created and were further used to build
a multi-fidelity Gaussian Process regression of the braided unit cell strength. In this case
the multi-fidelity surrogate was not used to infer the model parameters but to conduct a
sensitivity analysis. Paranjape et al. (2021) have trained surrogates of quantities of interest
from finite element simulations samples made of superelastic Nickel-Titanium (NiTi) shape
memory alloys. The quantities of interest were the global load and local deformation pattern
of a loaded diamond-shaped sample, in which case the experimental observations resulted
from a digital image correlation analysis. The surrogates (one per quantity of interest) were
obtained by training a kernel support vector machine model. They have then conducted a
Bayesian inference of the NiTi constitutive model parameters.

In the following, we detail the methodology developed by Wu et al. (2020b) who have
trained an artificial Neural Network (NNW) model ΦNNW(Q; ξ), using the multi-scale model
Φmultiscale(Q; ξ) for different material parameters qk and different loading conditions ξi with
the aim of conducting a Bayesian inference of the multi-scale model parameters. The multi-
scale model was a 2-step homogenisation accounting for the measured fibre ODF, including
the skin core effect, of short fibre reinforced polymer materials obtained using an injection
moulding process. Uni-axial tension tests were performed on coupons cut along different
directions, see Fig. 21(a). The output Y corresponds to the set of macro-scale stress σi, jM at
different strain levels and loading directions ξi, and for different experimental observations j,
see Fig. 21. Using the theory of conditional independence (Bishop, 2006), see the discussion
by Wu et al. (2020b), the likelihood (97) thus becomes

πY |Q(y|q) =
∏
i, j

N0, ,σ2
Σi

M

(
σi, jM − ΦNNW(q; ξi)

)
, (98)

which is used in Bayes’ theorem (95), with σ2
ΣiM

being the variance determined on the stress

for loading conditions ξi. The inferred multi-scale model Φmultiscale(Q; ξ) parametersQ, here
the matrix material behaviour and an equivalent unique fibre aspect ratio, are represented
in Fig. 22, in which three realisations qk of different probabilities are highlighted. The com-
posite material responses obtained for these realisations with the NNW model ΦNNW(qk; ξi)
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and with the multi-scale model Φmultiscale(q
k; ξi) are reported in Fig. 21(b) and Fig. 21(c),

respectively. It can be seen that, on the one hand, several combinations of parameters yield
similar model responses and that, on the other hand, the NNW and multi-scale models pre-
dict similar results (because the loading is proportional and because the NNW was trained
for these loading conditions ξi).

As it can be seen on Fig. 22, Bayesian inference does not provide a unique set of param-
eters but a joint distribution of the inferred parameters Q. Nevertheless, the method cannot
represent existing heterogeneities in these parameters because the distributions become nar-
rower when increasing the number of observations, in which case the observation data do
not necessarily lie in the predicted values range, as in can be seen in Fig. 21(b) and Fig.
21(c), in which low probability parameters and high probability parameters predict almost
similar curves. It is however possible to capture a dispersion in the parameters: properties
spatial distributions can be inferred as done byVigliotti et al. (2018), or Bayesian inference
can be adapted in order to infer the parameters of an assumed distribution of the material
properties instead of the material properties themselves as suggested by Rappel and Beex
(2019); Mohamedou et al. (2019).

3.4.3. Defects

Beside the uncertainties in the micro-structure geometrical and material properties, de-
fects can also be present in heterogeneous materials, as a consequence of the manufacturing
process. Kamiński and Kleiber (1996); Kamíski (2012) have studied the effect of defects
at the contact interface between fibres and matrix in unidirectional composites, Goldsmith
et al. (2015) have introduced porosity voids of non-uniform void size, void shape and void lo-
cation in the micro-structure of woven ceramic matrix composite. More recently Soko lowski
and Kamíıski (2020) have considered spherical elastic inclusions embedded in a hyper-elastic
matrix, with as inter-phase a thin layer containing all the particle-matrix interface defects.
However a quantitative defect characterisation is still not commonly performed. This quan-
tification could be done either experimentally, or by simulation of the manufacturing process.
Bauereiβ et al. (2014) have developed a numerical model to illustrate the formation of defects
during powder bed based additive manufacturing; the defects result from the combination
of a stochastic powder bed with wetting and capillary forces, which induces significant fluid
motion and leads to geometric deviations of the solidified layer.

Tal and Fish (2016) have introduced geometric defects to the micro-scale model of wo-
ven composite materials. The defects take the form of discontinuities such as pores, cracks,
micro-cracks, voids and micro-voids which are statistically equivalent to the random defects
found in real material samples. Equivalent ellipsoids were extracted from 2D cross-sectional
micro-graphs as illustrated in Fig. 23(a). Location, radii and orientation of the identified
ellipses are statistically studied, including their correlation. Probability density function of
the parameters were estimated using a kernel distribution, and a bi-variate normal distri-
bution was used to approximate the joint distribution of the minor and major axes. 3D
characteristics of the defects were obtained by assuming that there is a symmetry between
the longitudinal and transverse directions. The defects were then introduced in the micro-
structure by Monte-Carlo simulations so that the statistical content is recovered, see Fig.
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(a) Identification (b) Generation

Figure 23: Generation of defects in woven composite micro-structure by Tal and Fish (2016): (a) Iden-
tification of ellipsoidal defect form two-dimensional micro-graphs; and (b) Generated defects in tows and
matrix; Reprinted from Composite Structures 153, Tal, D., Fish, J., Generating a statistically equivalent
representative volume element with discrete defects, 791 - 803. Copyright (2016), with permission from
Elsevier.

23(b).
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Figure 24: Homogenisation-based multi-scale method: (a) Schematics of homogenisation principle; and (b)
Definition of the asymptotic homogenisation formalism.

We have detailed in the previous chapters how to generate virtual random micro-structure
realisations ω(w), with w ∈ W. These micro-structure realisations can be exploited to
extract the stochastic material response at a higher scale, the so-called meso-scale response.
In the context of a homogenisation-based multi-scale method, the homogenised meso-scale
material response is estimated from the resolution of a meso-scale boundary value problem
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(BVP), see Fig. 24(a). The micro-scale problem is defined on the meso-scale volume element
ω of boundary ∂ω, see Fig. 24(a), defined from a virtual micro-structure following Section 3.
The meso-scale volume element ω(X; w) is centred on X ∈ Ω, where Ω is the macro-scale
space of interest.

In this section, we first introduce the concepts of Representative and Stochastic Vol-
ume Elements, respectively RVEs and SVEs. For the latter, the concept of meso-scale
random field of apparent properties is introduced. We then present the most common de-
terministic homogenisation methods which are developed in the literature, and which can
be applied on both RVEs and SVEs. We however restrict our-self to continuum mechanics
and homogenisation-based multi-scale approaches. A review detailing multi-scale methods
in other contexts such as discrete models was provided by Budarapu et al. (2019). Finally
we summarised different intrusive and non-intrusive methods based on the homogenisation
theories that can be used to extract the meso-scale random field of apparent properties.

4.1. Statistically representative and stochastic volume elements

When conducting homogenisation, like in Fig. 24(a), the separation of length scales is
usually assumed, with

lM >> lVE >> lm, (99)

in which lM represents a characteristic macro-scale length on which the loading conditions
are defined and that is assumed to be much larger than the size lVE of the volume element.
This condition is required in order to ensure the accuracy of the homogenisation so that the
macro-scale strain can be assumed to be constant over the volume element ω. Beside, the
size lVE of the volume element should be large enough as compared to the size of the micro-
structure constituents lm in order to be statistically representative of the heterogeneous
material behaviour, but also for the response to be independent on the applied admissible
boundary condition at the lower scale as it will be discussed in Section 5.3.1.

4.1.1. Statistically Representative Volume Element (RVE)

If this latter condition lVE >> lm is fulfilled, the volume element ω is said to be statisti-
cally representative and is called Representative Volume Element (RVE).

Assuming the case of statistical representativity of ω, the homogenised material response
is deterministic and Huet (1990) has defined, in the context of linear elasticity and under the
small displacement assumption, the effective modulus tensor ceff and the effective compliance
tensor seff through the relationship between the homogenised Cauchy stress tensor σM and
the homogenised small deformation strain tensor εM as

σM = ceff : εM , and (100)

εM = seff : σM , (101)

with the homogenised stress and strain tensors resulting from the volume average operation
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applied on the volume element

σM =
1

V (ω)

∫
ω

σm(x)dx , and (102)

εM =
1

V (ω)

∫
ω

εm(x)dx , (103)

where σm and εm are respectively the local or micro-scale Cauchy stress and strain fields.
Since the homogenised material response is deterministic, one has ceff = seff−1

.
At the local or micro-scale level, one has in linear elasticity σm(x) = cel

m(x) : εm(x) and
εm(x) = sel

m(x) : σm(x) ∀x ∈ ω, and the relations (100-101) are rewritten

σM =
1

V (ω)

∫
ω

cel
m(x) : εm(x)dx = ceff : εM , and (104)

εM =
1

V (ω)

∫
ω

sel
m(x) : σm(x)dx = seff : σM , (105)

with sel
m = cel

m
−1

. Let us define the fluctuation fields σ′(x) and ε′(x) of zero volume average
on ω such that

σm(x) = σM + σ′(x) , and εm(x) = εM + ε′(x) . (106)

As a result, Eqs. (104) and (105) are rewritten as

ceff : εM =
1

V (ω)

∫
ω

cel
m(x)dx : εM +

1

V (ω)

∫
ω

cel
m(x) : ε′(x)dx , and (107)

seff : σM =
1

V (ω)

∫
ω

sel
m(x)dx : σM +

1

V (ω)

∫
ω

sel
m(x) : σ′(x)dx , (108)

or again, by defining the perturbation fourth order tensor fields c′(x) and s′(x) of zero volume
average on ω such that cel

m(x) = 1
V (ω)

∫
ω

cel
m(x)dx+c′(x) and sel

m(x) = 1
V (ω)

∫
ω

sel
m(x)dx+s′(x),

as

ceff : εM =
1

V (ω)

∫
ω

cel
m(x)dx : εM +

1

V (ω)

∫
ω

c′(x) : ε′(x)dx , and (109)

seff : σM =
1

V (ω)

∫
ω

sel
m(x)dx : σM +

1

V (ω)

∫
ω

s′(x) : σ′(x)dx . (110)

These equations show that the Hill (1952)-Voigt (1889) tensor cVoigt = 1
V (ω)

∫
ω

cel
m(x)dx is

in general not the effective elasticity tensor ceff unless the perturbation strain field vanishes
on ω. The tensor cVoigt is actually an upper bound of ceff whatever the micro-structure
of the deterministic RVE ω may be. Similarly, the Hill (1965b)-Reuss (1929) compliance
tensor sReuss = 1

V (ω)

∫
ω

sel
m(x)dx is in general not the effective compliance tensor seff unless

the perturbation stress field vanishes on ω. The tensor sReuss−1
is actually a lower bound of

ceff whatever the micro-structure of the deterministic RVE ω.
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A similar study can be conducted by considering the internal energy ψ(ε) = 1
2
ε : cel :

ε = 1
2
σ : sel : σ. The deformation energy on the volume element ω thus reads

1

V (ω)

∫
ω

ψm(ε)dx =
1

2V (ω)

∫
ω

σm : εmdx =
1

2
σM : εM +

1

2V (ω)

∫
ω

σ′ : ε′dx

=
1

2
εM : ceff : εM +

1

2V (ω)

∫
ω

σ′ : ε′dx

=
1

2
σM : seff : σM +

1

2V (ω)

∫
ω

σ′ : ε′dx . (111)

The Hill-Mandel condition states that the strain energy should be the same at both scales,
i.e. 1

V (ω)

∫
ω
ψm(ε)dx = 1

2
εM : ceff : εM = 1

2
σM : seff : σM, showing that energy consistency

implies ∫
ω

σ′ : ε′dx = 0 . (112)

4.1.2. Stochastic Volume Element (SVE)

When lVE & lm, the volume element ω(X; w) depends on the micro-structure realisation
w ∈ W, and each realisation ω(X; w) yields a different homogenised behaviour. We refer
to Section 3.1.1 for the notation ω(w). Following Alzebdeh and Ostoja-Starzewski (1996);
Ostoja-Starzewski and Wang (1999), ω(X; w) is called a Stochastic Volume Element (SVE),
see also the review by Ostoja-Starzewski et al. (2016).

𝑋

𝑍

𝑌

SVE 𝑋 + 𝑙, 𝑌, 𝑍SVE 𝑋, 𝑌, 𝑍

SVE 𝑿 + 𝒍

𝝉

SVE 𝑿 + 𝝉

(a) 3D

𝑋

𝑌 SVE 𝑋, 𝑌 SVE 𝑋′, 𝑌

SVE 𝑿 + 𝝉′

t

𝑙SVE
Realisation 𝑤𝑖

Realisation 𝑤𝑗

Realisation 𝑤𝑘

(b) UD

Realisation 𝑤𝑗

Realisation 𝑤𝑘

𝑋

𝑌

SVE 𝑋, 𝑌 SVE 𝑋′, 𝑌

t

𝑙SVE

Realisation 𝑤𝑖

(c) Poly-crystal

Figure 25: Schematics of the window technique: (a) Extraction of a series of SVEs {ω(X; w) : X ∈ Ω, w ∈
W} from a random micro-structure W; (b) Illustration in 2D in the case of UD composites, the vector
τ represents the separation between the centres of the SVEs ω(X; wi) and ω(X + τ ; wi), with several
realisations wi ∈ W considered; and (c) In the case of poly-crystalline materials, two neighbouring SVEs
ω(X; wi) and ω(X ′; wi) of the same micro-structure realisation wi ∈W share common grains all along the
shared edge.

Moreover, beside the uncertainty in the homogenised behaviour, the dependency between
the homogenised response of two neighbouring macro-scale points X and X ′, each of them
belonging to the macro-scale domain Ω and being the centre of two possibly overlapping
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SVEs, respectively ω(X; w) and ω(X ′; w) see Fig. 25(a), needs to be investigated. To this
end, we consider several micro-structure realisations w ∈ W, see a 2D illustration in Fig.
25(b), allowing to extract the series of SVEs {ω(X; w) : w ∈ W} centred on X as well as
the series {ω(X + τ ; w) : w ∈ W} centred on X ′ = X + τ , with the distance vector τ
spanning the different directions.

Still assuming linear elasticity, each SVE realisation ω(X; w) defines apparent elastic
properties which are represented under the form of an elastic tensor realisation Cel

M(X; w),
also denoted under the matrix form Cel

M(X; w) ∈ M+
6 (<), where M+

n (<) refers to all sym-
metric positive-definite real matrices of size n×n, when using the Voigt notations, or under
the vector form of 21-components (in 3D) Cel

M(X; w).
Clearly, the set {Cel

M(X; w) : X ∈ Ω, w ∈ W} of random vectors Cel
M(X) which map

W → <21, defines a random field also denoted by {Cel
M(X) : X ∈ Ω} or simply Cel

M(Ω).
Assuming strictly positive variances, the spatial correlation can be represented by the cor-
relation matrix RCel

M
: Ω×<3 → <21×21, see Section 2.4,

RCel
Mr s

(X; τ ) =
E
[(
Cel

Mr
(X)− E

[
Cel

Mr
(X)

]) (
Cel

Ms
(X + τ )− E

[
Cel

Ms
(X + τ )

])]
σCel

Mr
(X)σCel

Ms
(X + τ )

∀ r, s = 1, ..., 21 , (113)

where τ is a spatial vector between the centres of two SVEs, see Fig. 25(a). In case
of a homogeneous random field Cel

M(Ω), one has RCel
M

(X; τ ) = RCel
M

(τ ) : <3 → <21×21.

Practically, Eq. (113) can be evaluated by assuming ergodicity and homogeneity, in which
case the number of micro-structure realisations w can be limited by considering different
initial SVE centres X on the same micro-structure realisation.

Anticipating on Section 5.1, Fig. 26(a) illustrates the component 1 3 of a random field
realisation path {Cel

M(X; w) : X ∈ Ω} extracted from a poly-silicon micro-structure by
Wu et al. (2016) using the window technique sketched on Fig. 25(c). Instead of analysing
directly the random field {Cel

M(X; w) : X ∈ Ω, w ∈W} of the apparent elasticity tensor, one
can take advantage of its semi-definite nature to define through a Cholesky decomposition
another random field {QM(X; w) : X ∈ Ω, w ∈W} easier to handle, see details in Section
5.3. Figs. 26(b) and 26(c) illustrate an auto-correlation and a cross-correlation entries of
the correlation matrix RQM

(τ ) extracted from the random fields using Eq. (113). It can
be seen that, because of the comparable size of the SVE to the micro-structure size, the
auto/cross-correlation only vanishes at distances larger than twice the SVE length, showing
that the apparent properties should be considered as a random field CM(Ω) and not as a
random tensors.

Wu et al. (2018a) have noted that in the case of UD composites, see Fig. 25(b), the
correlation can be neglected for two adjacent SVEs because the amount of shared fibres
remains marginal. In that case, if the distributions are close enough from Gaussianity, the
homogenised properties of two SVEs are independent and the apparent properties can be
considered as random tensors {Cel

M(w) : w ∈W} also denoted Cel
M.
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Figure 26: Extraction by Wu et al. (2016) from a columnar poly-silicon micro-structure of average grain size
of about lmicro ' 200 nm and using an SVE size lSVE = 0.5µm of (a) The component (1, 3) of a random
field realisation path {Cel

M(X; w) : X ∈ Ω} of the apparent properties; (b) The auto-correlation RQM1 1
(τ );

and (c) The cross correlation of a random field {QM(X; w) : X ∈ Ω, w ∈ W} defined from the Cholesky
decomposition of the random field {Cel

M(X; w) : X ∈ Ω, w ∈W}, see Section 5.3.2 for details; Modified from
Computer Methods in Applied Mechanics and Engineering 310, Wu, L., Lucas, V., Nguyen, V.D., Golinval,
J.C., Paquay, S., Noels, L., A stochastic multi-scale approach for the modeling of thermo-elastic damping
in micro-resonators, 802-839. Copyright (2016)..

4.2. Evaluation of homogenised behaviours

After having defined the effective and apparent properties, in the following we summarise
different approaches developed in order to solve the scale transition equations in the more
general context of non-linear mechanics. We refer to the reviews by Kanouté et al. (2009);
Geers et al. (2010); Noels et al. (2016); Matous et al. (2017); Yvonnet (2019) for more details
on multi-scale methods.

4.2.1. Computational homogenisation

One of the most common method used to solve the meso-scale BVP, see Fig. 24(a) is the
finite-element method. This method has been widely used in the context of random media in
the case of elasticity by Ostoja-Starzewski et al. (2007); Salmi et al. (2012), linear micro-polar
continua by Trovalusci et al. (2014, 2015); Reccia et al. (2018), elasto-plasticity by Ostoja-
Starzewski et al. (2007), thermo-elasticity by Kanit et al. (2003); Ostoja-Starzewski et al.
(2007) or again finite elasticity by Ostoja-Starzewski et al. (2007). In these latter references,
the homogenisation was mainly used to define the minimum SVE size allowing statistically
representative (and thus unique) homogenised properties to be extracted. We refer to the
review by Ostoja-Starzewski et al. (2016) for the details of the homogenisation process
for these different cited continua. However stochastic homogenisation was also applied to
capture the variation in the homogenised response with a view of up-scaling the resulting
uncertainties, in the context of elasticity by Mariani et al. (2011a); Geißendörfer et al. (2014);
Lucas et al. (2015); Stefanou et al. (2015); Savvas et al. (2016); Stefanou et al. (2017); Wu
et al. (2018a), of thermo-elasticity by Wu et al. (2016), strain-gradient elasticity by Lucas
et al. (2017), and non-local damage mechanics by Wu et al. (2019).
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In this section, we restrict our-selves to the case of finite-strain mechanics and we define
the different kinds of boundary conditions that can be applied on the meso-scale volume
element with a particular emphasis on the extraction of the homogenised material response
following the multiple-constraint projection method set up by Ainsworth (2001) and detailed
by Nguyen et al. (2017).

Definition of the meso-scale BVP. At the micro-scale, we consider the material points x ∈
ω(X; w) with w ∈W and we assume that the classical continuum mechanics equations hold.
Besides, we assume that the time for a stress wave to propagate in the meso-scale volume
element remains negligible. Therefore, in the absence of dynamical effects the equilibrium
equations read

Pm (x; w) ·∇0 = 0 ∀x ∈ ω(X; w) , (114)

Pm (x; w) · nm = Tm (x; w) ∀x ∈ ∂ω(X; w) , (115)

where the subscript “m” refers to the local value at the micro-scale, Pm (x; w) is the first
Piola-Kirchhoff stress tensor, the gradient operator ∇0 is with respect to the micro-scale
reference configuration, and Tm (x; w) is the surface traction, per unit reference surface, on
the boundary ∂ω of outward unit normal nm in the reference configuration.

To complete the micro-scale problem, the local constitutive laws of the different materials
at a given time t and material point x are written as

Pm (x, t; w) = Pm (Fm (x, t; w) ;Zm (x, τ ; w) , τ ∈ [0, t], w) , (116)

where the micro-scale deformation gradient tensor Fm(x; w) = Um(x; w)⊗∇0 + I is eval-
uated in terms of the micro-scale displacement random field Um(ω), and where Zm(ω) is a
set of internal variables random field allowing history-dependent processes to be accounted
for. In all generality, the constitutive equation depends on the micro-structure realisation
w ∈W because of the geometrical and material uncertainties.

The volume-elements, SVEs or RVEs, are usually defined as parallelepiped (rectangular
in 2D) volumes, with planar boundary faces ∂ω(i), see Fig. 27. When considering SVEs,
the volume element should be as close as possible to a real micro-structure: e.g., Trovalusci
et al. (2015) have shown that in the case of particle reinforced matrix, the inclusions should
intersect the edges as illustrated in Fig. 27(a) in order to avoid considering artificial bands
of matrix, as it would be the case in Fig. 27(b). We note that extracting SVEs using the
window technique of Section 4.1.2 from virtual micro-structures naturally leads to the former
configuration. Sometimes, a periodic micro-structure is assumed and cell elements as in Fig.
27(c) are considered. In that case different stacking organisations can be considered such
as the regular grid with a square volume element or the hexagonal grid with an hexagonal
volume element. Circular volume elements were also used by Firooz et al. (2019) to extract
isotropic properties of higher volume fraction composites. Based on the cell element con-
taining only one inclusion as illustrated in Fig. 27(c), Pivovarov et al. (2018a) have defined
the concept of statistically similar RVE by providing a surrogate model, which possesses
some statistical properties of the original model, such as the relation between the inclusion’s
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Figure 27: Definition of the meso-scale volume element ω for computational homogenisation: (a) SVE
ω(X; w) extracted using the window technique of Section 4.1.2 on particle reinforced matrix, for which the
boundary ∂ω intersects some particles; (b) An SVE with a simplified generation of the particles; (c) Possible
shapes of cell elements of a periodic micro-structure; The divisions of the boundary of the parallelepiped
volume element into the faces ∂ω(i) and into positive and negative contours ∂ω− and ∂ω+ are also illustrated;
and (d) Definition of the virtual Mean-Field Homogenisation (MFH) volume element ω as an ellipsoidal
inclusion embedded in a matrix.

radius and the area around the inclusion. By doing so, assuming ergodicity, they defined an
equivalence between a deterministic model, the RVE, with randomly distributed inclusions
and a stochastic model, a cell element with statistical properties.

The macro-scale response. At the macro-scale, assuming no dynamical effects, the linear
momentum equation reads

PM(X; w) ·∇0 + bM = 0 ∀X ∈ Ω, w ∈W , (117)

where the subscript “M” refers to the values at the macro-scale and bM is the load per unit
reference volume. The boundary conditions read

UM(X; w) = uDM
∀X ∈ ∂DΩ , and (118)

PM(X; w) · nM = tM ∀X ∈ ∂NΩ , (119)

where tM is the surface traction, per unit reference surface, on the Neumann boundary
∂NΩ of outward unit normal nM in the reference configuration, and uDM

is the constrained
displacement on the Dirichlet boundary ∂DΩ.

As for the micro-scale problem, the BVP should be completed by a constitutive law

PM (X, t; w) = PM (FM (X, t; w) ;ZM (X, τ ; w) , τ ∈ [0, t], w) , (120)

defining the relation in terms of the macro-scale deformation gradient FM (X, t; w) = I +
UM (X, t; w) ⊗∇0, through internal variables ZM (X, τ ; w). However, in the context of
homogenisation theories, see Fig. 24(a), this relation is rewritten as a relation between
the averages of the respective micro-scale deformation gradient tensor Fm(x; w) and stress
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tensor Pm(x; w) over the meso-scale volume element ω(w), with

FM (X; w) =
1

V (ω)

∫
ω(X;w)

Fm(x; w)dx , and (121)

PM (X; w) =
1

V (ω)

∫
ω(X;w)

Pm(x; w)dx . (122)

Since the micro-scale BVP (114-116) depends on the micro-structure realisation w ∈W; the
homogenised stress tensor (122) has also this dependency, and so does the corresponding
homogenised material response (120).

Beside the evaluation of the homogenised stress tensor PM for a given deformation gra-
dient FM, homogenisations also ought to evaluate the algorithmic material tensor

CM (X; w) =
∂PM

∂FM

(X; w) . (123)

The scale transition. Using the definitions (121-122), the energy consistency between the
different scales, which corresponds to the Hill-Mandel condition, is stated as

PM (X; w) : δFM (X; w) =
1

V (ω)

∫
ω(X;w)

Pm (x; w) : δFm (x; w) dx . (124)

A perturbation field U ′(x; w) is introduced in the micro-scale displacement field Um(x; w),
which is thus rewritten under the form

Um(x; w) = [FM (X; w)− I] · [x−X] +U ′(x; w) , (125)

where X is a reference point of ω (X; w). Considering the definition (121), the perturbation
field should satisfy the condition

0 =
1

V (ω)

∫
ω(X;w)

U ′(x; w)⊗∇0dx =
1

V (ω)

∫
∂ω(X;w)

U ′(x; w)⊗ nmdx , (126)

where nm is the outward unit normal to ∂ω in the reference configuration. The Hill-Mandel
condition (124) can be rewritten using Eq. (125) as

PM (X; w) : δFM (X; w) =
1

V (ω)

∫
ω(X;w)

Pm (x; w) : δFm (x; w) dx

= PM (X; w) : δFM (X; w) +

1

V (ω)

∫
ω(X;w)

Pm (x; w) : [δU ′ (x; w)⊗∇0] dx , (127)

or again after integrating by parts and using the equilibrium Eqs. (114-115), as

0 =

∫
∂ω(X;w)

(Pm (x; w) · nm) · δU ′ (x; w) dx =

∫
∂ω(X;w)

Tm (x; w) · δU ′ (x; w) dx . (128)
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Definition of the constrained micro-scale finite element problem. For conciseness, in the
following, we drop the random micro-structure w, and consider the realisation u′(x) =
U ′ (X; w), but it is understood that the homogenised response is micro-structure dependent.

With a view to the formulation of the weak form of the micro-scale problem (114-115),
Eq. (126) defines the minimum kinematic field Umin(ω) of the test and trial functions as

Umin(ω) =

{
u′ ∈ H(ω)|

∫
∂ω

u′ ⊗ nmdx = 0

}
, (129)

where H(ω) is the Hilbert space. Then, the weak form of the micro-scale Eqs. (114-115)
reads finding u′ ∈ U(ω) ⊂ Umin(ω) such that∫

ω

pm(u′) : (δu′ ⊗∇0) dx = 0 , ∀δu′ ∈ U(ω) ⊂ Umin(ω) , (130)

where δu′ ∈ U(ω) is a test function belonging to an admissible kinematic vector field U(ω)
subset of the minimum kinematic field Umin and where pm stands for a realisation Pm(w).
The resolution of this weak form with δu′ ∈ U(ω) ⊂ Umin(ω) makes the second term of the
right hand side of Eq. (127) to vanish, so that the Hill-Mandel condition (124) is always
satisfied.

This variational statement (130) of the Hill-Mandel condition was introduced by Peric
et al. (2010); Schröder et al. (2016). Its implementation was detailed by Nguyen et al. (2017)
and is carried out by defining specific boundary conditions on the meso-scale volume element
whose constraint is to satisfy Eq. (126).

The commonly applied boundary conditions on the meso-scale volume elements ω are:

• The Kinematic Uniform Boundary Conditions (KUBCs), for which the admissible
kinematic vector field U(ω) is defined by

UKUBC(ω) = {u′ ∈ H(ω)|u′ = 0 ∀x ∈ ∂ω} ⊂ Umin(ω) , (131)

i.e. there is no fluctuation on the boundary ∂ω;

• The Periodic Boundary Conditions (PBCs), for which the admissible kinematic vector
field U is defined by

UPBC(ω) =
{
u′ ∈ H(ω)|um(x+)− um(x−) = [FM − I] · (x+ − x−) ,

∀x+ ∈ ∂ω+ and corresponding x− ∈ ∂ω−
}
⊂ Umin(ω) , (132)

where the parallelepiped SVE faces have been separated in opposite surfaces ∂ω− and
∂ω+; In a kinematically-based finite-element formulation, the variational statement
does not require constraints on the symmetry of the surface traction in order to satisfy
the Hill-Mandel condition: this symmetry is a consequence of the micro-scale problem
resolution as shown by considering arbitrary δu′ ∈ UPBC(ω) in Eq. (128);
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• The Zero Average Fluctuation Boundary Conditions (ZAFBCs) for which the admis-
sible kinematic vector field U is defined by

UZAFBC(ω) =

{
u′ ∈ H(ω)|

∫
∂ω(l)

u′dx = 0 ∀ face ∂ω(l) ∈ ∂ω
}
, (133)

where the parallelepiped SVE boundary ∂ω has been decomposed in opposite faces
∂ω = ∪6

i=1∂ω
(i) in which case UZAFC(ω) ⊂ Umin(ω);

• The Static Uniform Boundary Conditions (SUBCs), which are formally written as tm =
PM (X; w) · nm ∀x ∈ ∂ω; This BC requires adding constraints in a kinematically-
based finite element formulation and is sometimes mimicked by considering ZAFBC.
Indeed, introducing Eq. (133) in Eq. (128) leads to an equation which is always
satisfied by considering arbitrary δu′ ∈ UZAFBC(ω).

• The Orthogonal Uniform Mixed Boundary Conditions (OUMBCs), which is a combi-
nation of KUBCs along direction i and ZAFBCs along the two other directions j 6= i,
and which is defined by

UOUMBC(ω) = {u′ ∈ H(ω)|u′i = 0 ∀x ∈ ∂ω, i = 1, 2, or 3 and∫
∂ω(l)

u′jdx = 0 ∀ face ∂ω(l) ∈ ∂ω, j 6= i

}
. (134)

This type of boundary condition is usually used when PBCs cannot be easily imple-
mented, like on non-periodic micro-structures.

We note that the Voigt assumption, i.e. UVoigt(ω) = {u′ ∈ H(ω)|u′ = 0 ∀x ∈ ω} ⊂
Umin(ω) for which there is no fluctuation on the volume ω, usually violates the balance of
linear momentum, leading to an unreachable upper-bound of the material operator (Firooz
et al., 2019). A similar observation can be drawn for the Reuss assumption.

The effect of the BC choice has been extensively studied in the literature. Recently
Firooz et al. (2019) have studied this effect on periodic and random 15% volume ratio
particle-reinforced matrix. For the random composite material, a single realisation of a
random micro-structure with a volume element ω of increasing relative size, see Fig. 28, is
considered. For a periodic micro-structure, see Fig. 28(a), KUBCs and SUBCs respectively
overestimate and underestimate the effective response predicted by the PBCs. For a non-
periodic micro-structure, see Fig. 28(b), the same trend can be observed although some
oscillations appear. In particular one can see that the PBCs converge faster to the effective
properties, even for a few inclusions, and that this effective property is not the same as for
the periodic micro-structure.

Using the reconstruction technique described in Section 3.2.1 and illustrated in Fig. 9 to
generate virtual micro-structures, Wu et al. (2018a) have studied random 52% volume ratio
particle-reinforced matrix using the window technique for two SVE lengths: lSVE = 10µm
and lSVE = 25µm. The extracted apparent Young’s modulus distributions for different kinds
of boundary conditions are illustrated in Figs. 29(a) and 29(b), respectively. On average,
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Figure 28: Effect of the micro-structure periodicity, boundary conditions and volume element size on the
apparent properties as studied by Firooz et al. (2019); Images resketched from (Firooz et al., 2019); The
problem consists of a 15% volume fraction 10 times stiffer inclusion reinforced matrix and with (a) A periodic
micro-structure; and (b) A single realisation of a random micro-structure.

the apparent Young’s modulii are lower for the SUBCs than for the PBCs, and for the latter
than for the KUBCs. As noted by Wu et al. (2018a) when considering the response of an
SVE of reduced size, the in-situ apparent properties of the SVE will not be equal to those
obtained for any of the three boundary condition kinds. Instead,

• If the surrounding material is stiffer than that of the SVE, e.g. when the SVE has a
lower content of stiffer fibre, strong constraints are in situ applied on this SVE and its
response will be close to the results obtained under KUBCs;

• If the surrounding material is more compliant than that of the SVE, e.g. when the
SVE has a higher content of stiffer fibre, weak constraints are in-situ applied on this
SVE and its response will be close to the results obtained under SUBCs;

• Finally, if the stiffness of the surrounding material is comparable to that of the SVE,
its response will be close to the results obtained under PBCs.

Nevertheless, the relevance of the PBCs in linear elasticity was asserted by Wu et al. (2018a)
by solving 100 so-called “Big SVEs” (BSVEs) of size 100× 100µm2 in two ways:

• By direct computation homogenisation using PBC as presented here above;

• By performing first a computational homogenisation on windows of size 25× 25µm2,
so called “Small SVEs” (SSVEs) using the different kinds of boundary condition, and
using those apparent properties during a second-step homogenisation .

Figure 29(c) shows that the use of PBCs on the SSVEs yields results in good agreement
with the direct computational homogenisation. For these reasons, PBCs are commonly used
during stochastic homogenisation. We also refer to the discussion by Pivovarov et al. (2019).

An alternative developed by Cottereau (2013) in the spirit of the Arlequin method is
to weakly couple a stochastic spatial region (SVE-like) within a deterministic homogenised
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Figure 29: Effect of the boundary conditions and volume element size on the apparent properties as studied
by Wu et al. (2018a); The problem consists of a 52% volume fraction inclusion reinforced matrix with
(a) 8100 realisations and an SVE size of lSVE = 10µm; and (b) 4900 realisations and an SVE size of
lSVE = 25µm; (c) The effect of the boundary condition is also studied by considering a 2-step computational
homogenisation performed on several Big SVE (BSVE) realisations; Reprinted from Composite Structures
189, Wu, L., Chung, C.N., Major, Z., Adam, L., Noels, L., From SEM images to elastic responses: A
stochastic multiscale analysis of UD fiber reinforced composites, 206-227, Copyright (2018), with permission
from Elsevier.

domain, whose elastic parameters are iteratively updated. It was shown that this method-
ology alleviates the biases introduced by applying SUBC or KUBC on the SVE since a
self-consistent homogenisation is actually performed, whilst the weak coupling ensures the
absence of stress/strain concentrations.

Resolution of the constrained micro-scale finite element problem. The numerical resolution
of the meso-scale BVP relies on the spatial Galerkin finite elements discretization of the
meso-scale volume element ω = ω (X; w) into finite elements ωe. The micro-displacement
field um and the test function δu′ are then written as

um =
∑
a

ϕ(a)u(a) ∈ H(ω) and δu′ =
∑
a

ϕ(a)δu′(a) ∈ H(ω) , (135)

where ϕ(a) are the nodal shape functions and u(a) are the nodal degrees of freedom. We
note that Eq. (125) allows relating the fluctuation u′(x) to the displacement u(x) and thus
to the degrees of freedom u(a), see Appendix C.1.1. Applying the constraints such as the
boundary conditions (131-134) on the finite element discretization of Eq. (130) leads to a
set of coupled equations {

fint (dm)− cTλ = 0 , and

cdm − sfk
M = 0 ,

(136)

where fint is the vector of internal forces associated to the weak form (130) of the uncon-
strained meso-scale volume element, dm is the vector gathering all the nodal displacements
u(a) –as well as the degrees of freedom used to define periodic boundary conditions as ex-
plained below, λ is the vector of the Lagrange multipliers enforcing the constraints, fk

M

represents the macro-scale kinematic variable realisation fM − I = FM(w) − I = uM ⊗ ∇M
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written under a vector form, and where c and s are the so-called constraints matrix and
kinematic matrix, respectively, built from the different constraints. The explicit expression
of the vector of internal forces is given by

fint =
∧
ωe

∫
ωe

(be)T pmdx , (137)

where be is the elementary matrix of the shape functions gradient associated to the dis-
placement vector field, pm is the first Piola-Kirchhoff stress tensor realisation pm = Pm(w)
written in the vector form, and where

∧
ωe is used to symbolise the assembly process. The

stiffness matrix km of the unconstrained meso-scale volume element reads

km =
∧
ωe

∫
ωe

(be)T cmbedx , (138)

where cm = ∂pm

∂fm
is the matrix notation of the micro-scale fourth-order material tensor

cm = ∂pm

∂fm
, with fm the deformation gradient fm written in the vector form.

Since we have shown that PBCs (132) are commonly used for non-periodic micro-
structures, we consider this particular case. Since the mesh is not periodic on the opposite
faces, the polynomial interpolation method suggested by Nguyen et al. (2012) is introduced
to enforce approximately the set of Eqs. (132). Considering the pairs i = 1, 2, 3 of opposite
faces (∂ω(i−), ∂ω(i+)), the interpolation form of degree n is defined as

ϕ(i) (x) =
n+1∑
k=1

ϕ
(i)
(k) (x)a

(i)
(k) (no sum on i) , (139)

where ϕ
(i)
(k) with k = 1, ..., n + 1 are the interpolation shape functions, and a

(i)
(k) with k =

1, ..., n+1 are first-order tensors of new degrees of freedom corresponding to the interpolation
form ϕ(i). These new degrees of freedom a

(i)
(j) with j = 1, ..., n+1 govern the fluctuation field

on the boundary x ∈ ∂ω(i−) and are thus evaluated as to satisfy the PBCs (132) throughu
′
(
x+; a

(i)
(1), . . . ,a

(i)
(n+1)

)
= ϕ(i)

(
x−; a

(i)
(1), . . . ,a

(i)
(n+1)

)
∀x+ ∈ ∂ω(i+) , and

u′
(
x−; a

(i)
(1), . . . ,a

(i)
(n+1)

)
= ϕ(i)

(
x−; a

(i)
(1), . . . ,a

(i)
(n+1)

)
∀x− ∈ ∂ω(i−) .

(140)

The functions ϕ
(i)
(k) depend on the interpolation method: e.g. a bi-linear patch Coons formu-

lation was derived by Nguyen et al. (2012). Finally, the constraints and kinematic matrices
involved in the set of Eqs. (136) were deduced from these functions by Nguyen et al. (2017),
see details in Appendix C.1.1 –we refer to the work by Nguyen et al. (2017) for other BC
cases.

The set of Eqs. (136) is solved by the multiple-constraint projection method set up by
Ainsworth (2001) and summarised in Appendix C.1.2.
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Extraction of the meso-scale response. During the resolution of the set of Eqs. (136), for a
given fM, two quantities are directly extracted:

• The homogenised first Piola-Kirchhoff stress tensor pM = 1
V (ω)

∑
e

∫
ωe

pmdx; and

• The fourth order macro-scale material tensor cM = ∂pM

∂fM
, which is required during the

Newton-Raphson iterations of a multi-scale analysis, or which is the sought apparent
material tensor in the case of a linear behaviour.

The latter fourth order macro-scale material tensor is extracted in the matrix form cM at
no additional cost since the matrix inverse which is required is the same as during the
finite-element resolution of the system (136), see the details in Appendix C.1.3.

We note that given stress states of the meso-scale volume element, e.g. plane stress
state, can easily be enforced by limiting the size of the constraints term sfk

M of the set of
Eqs. (136), and by performing Newton-Raphson iterations in order to reach the sought
components of the first Piola-Kirchhoff stress tensor pM using the tensor cM. E.g., simple
uni-axial tension is obtained by limiting the constraints term sfk

M of the set of Eqs. (136)
to s∇0xuMx , and enforcing pMij

= 0 for i or j 6= x.

Failure analysis. In the case of failure analyses, the extraction of the apparent stress-strain
curves holds up to strain softening onset only, since the stress-stain curve looses objectivity
beyond that point. However, the objectivity with the dimensions of the microscopic problems
can be recovered, e.g. in terms of a homogenised Traction Separation Law (TSL) Nguyen
et al. (2010); Verhoosel et al. (2010); Wu et al. (2013c).

In the context of micro-structures with geometrical uncertainties, Nguyen et al. (2019)
have studied carbon fibre reinforced high-cross-linked RTM6 epoxy resin in which the matrix
failure is modelled by a multi-mechanism damage model. They have then extracted objective
quantities such as the critical strength and energy release rates from SVE direct simulations.
Bhuiyan et al. (2020) have studied the statistical strength envelope of UD composites for
several loading conditions. A random field of apparent paper fibre network strength and
failure strain was extracted by Mansour et al. (2019). Mulay et al. (2015) have extracted
probabilistic meso-scale cohesive laws for poly-silicon thin film by considering random ori-
entation of the grains and inter-granular and intra-granular micro-scale cohesive laws, the
later being identified in terms of the crystal orientation. Shabir et al. (2019) has studied
the possibility to apply a scaling law, i.e. the application of simple linear elastic fracture
mechanics scaling relations to extract load-displacement curves for specimens with the same
microstructure and for various cohesive law parameters from a master load-displacement
curve, on the SVE failure response of poly-crystals.

4.2.2. Asymptotic homogenisation

The Asymptotic Homogenisation (AH) framework was initially developed assuming a
periodic micro-structure that can be represented by a cell volume element as illustrated in
Fig. 27(c). The formalism of AH is illustrated in Fig. 24(b), in which a magnification by a
ratio 1

ε
of the macro-scale structure Ω yields a representation of the periodic micro-structure
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ω(X; w). For conciseness, in the following volume integrals, we note the volume element
realization ω = ω(X; w), in which we omit the reference to w, but it is understood that the
homogenized response is micro-structure dependent.

We first present the AH formalism in finite strains as developed by Pruchnicki (1998)
so that it can be compared to the computational homogenisation case. Then the formalism
resolution is detailed for linear elasticity and for stochastic small strain elasto-plasticity
using a reduced order model as developed by Fish and Wu (2011).

The multi-scale problem. The multi-scale problem, assuming no dynamical effect, is framed
by the linear momentum equation expressed as

Pε(X; w) ·∇0 + b(X) = 0 ∀X ∈ Ω, w ∈W , (141)

where the subscript “ε” refers to the stochastic multi-scale problem, Pε(X; w) is the first
Piola-Kirchhoff stress tensor, ∇0 refers to derivatives with respect to the material position
in the reference configuration of the volume Ω and b is the load per unit reference volume.
The boundary conditions read

Uε(X; w) = uD(X) ∀X ∈ ∂DΩ, w ∈W , and (142)

Pε(X; w) · nM = t(X) ∀X ∈ ∂NΩ, w ∈W , (143)

where Uε(X; w) is the displacement field, t is the surface traction, per unit reference surface,
on the Neumann boundary ∂NΩ of outward unit normal nM in the reference configuration,
and uD is the constrained displacement on the Dirichlet boundary ∂DΩ. The deformation
gradient field Fε(Ω) is computed from the displacement field Uε(Ω) as

Fε(X; w) = I +Uε(X; w)⊗∇0 ∀X ∈ Ω, w ∈W . (144)

The multi-scale problem is completed by a constitutive relationship

Pε (X, t; w) = P (Fε (X, t; w) ;Zε (X, τ ; w) , τ ∈ [0, t], w) , (145)

defining the relationship of the stress tensor Pε(X; w) with the deformation gradient Fε(X; w)
through internal variables Zε(X, τ ; w). Assuming the existence of an energy potential ψ in
hyper-elasticity, Pruchnicki (1998) has considered the form

Pε (X; w) =
∂Ψ (Fε; w)

∂Fε

(X; w) . (146)

Asymptotic expansion. The basis of AH is to develop the displacement field Uε(X; w) into
contributions Ui at different scales i = 0, 1, ... as5

Uε(X; w) = U0(X; w) +
∑

i=1, 2...

εiUi (X, x; w) , (147)

5One could consider U0(X, x; w) in the development, but Fish et al. (1997) showed that when identifying
terms of different orders this would lead to ∇xU0(X, x; w) = 0, allowing to remove the dependency on x.
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where Ui for i = 1, ... is expressed explicitly in terms of the fine grid x = X
ε

with ε →
0. Similarly, the material derivatives with respect to the reference configuration ∇0 are
expressed in terms of the partial derivatives with respect to X and to x respectively at the
coarse and fine scales, with the operator (∇0) becoming

(∇0) =

(
∇X +

1

ε
∇x

)
. (148)

Using Eq. (148) to express the deformation gradient Fε from the displacement series
(147) yields

Fε(X; w) = I +U0(X; w)⊗∇X +U1(X, x; w)⊗∇x︸ ︷︷ ︸
F0(X,x;w)

+

ε [U1(X, x; w)⊗∇X +U2(X, x; w)⊗∇x]︸ ︷︷ ︸
F1(X,x;w)

+...

εi [Ui(X, x; w)⊗∇X +Ui+1(X, x; w)⊗∇x]︸ ︷︷ ︸
Fi(X,x;w)

+... (149)

The Piola-Kirchhoff stress tensor (145) can be asymptotically expanded using Eq. (149)
into a series of contributions Pi at different scales i = 0, 1, ... following

Pε (X; w) = P0 (X, x; w) +
∑

i=1, 2...

εiPi (X, x; w) , (150)

where
P0 (X, x, t; w) = P (F0 (X, x, t; w) ;Z (X, x , τ ; w) , τ ∈ [0, t], w) . (151)

In the particular case for which Eq. (146) holds, one has

P0 (X, x; w) =
∂Ψ (F0; w)

∂F0

(X, x; w) . (152)

The other terms Pi at the different scales i = 1, ... represent the ith-order terms of the
asymptotic expansion of ∂Ψ(Fε;w)

∂Fε
.

Finally, using the operator (148), the linear momentum balance equations (141) is ex-
panded as

0 =
1

ε
P0(X, x; w) ·∇x + [P0(X, x; w) ·∇X + P1(X, x; w) ·∇x + b] +

ε [P1(X, x; w) ·∇X + P2(X, x; w) ·∇x] + ...+

εi [Pi(X, x; w) ·∇X + Pi+1(X, x; w) ·∇x] ... (153)

Identifying the terms of same power in ε yields to the system of equations at the different
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scales

Order -1: 0 = P0(X, x; w) ·∇x ∀X × x ∈ Ω× ω(X; w), w ∈W , (154)

Order 0: 0 = P0(X, x; w) ·∇X + P1(X, x; w) ·∇x + b(X)

∀X × x ∈ Ω× ω(X; w), w ∈W , (155)

Order i ≥ 1: 0 = Pi(X, x; w) ·∇X + Pi+1(X, x; w) ·∇x

∀X × x ∈ Ω× ω(X; w), w ∈W . (156)

Meso-scale problem. For each fixed X ∈ Ω, the micro-scale deformation gradient

F0 (X, x; w) = I +U0(X; w)⊗∇X +U1(X, x; w)⊗∇x , (157)

describes the evolution of the deformation gradient in ω. When comparing this equation
with the gradient of the local displacement field (125) of the meso-scale problem in the
computational homogenisation framework, it can be seen that U0(X; w)⊗∇X plays the role
of FM and U1(X, x; w) the role of the perturbation field U ′(x; w). As for the perturbation
field, and in order to avoid indetermination of the meso-scale problem, this field should have
a zero-average on ω, with

1

V (ω)

∫
ω

U1(X, x; w)dx = 0 ∀X ∈ Ω, w ∈W . (158)

The micro-scale stress tensor P0 (X, x; w) follows from either Eq. (151) or Eq. (152).
Finally, the governing equation corresponds to Eq. (154). When comparing this set of equa-
tions with the meso-scale problem (114-116) in the computational homogenisation frame-
work, it can be seen that they are equivalent for a given X ∈ Ω, which plays the role of a
parameter into the meso-scale problem of the asymptotic homogenisation framework.

The resolution of the set of Eqs. (154) for a given U0(X; w)⊗∇X under the constraint
(158) yields the description of the fieldsU1(X, x; w) and P0(X, x; w) in Ω×ω(X; w) , w ∈
W, and is called the localisation step.

Macro-scale problem. The macro-scale problem is defined through the averaging over the
periodic micro-structure ω of Eq. (155), yielding

1

V (ω)

∫
ω

P0(X, x; w) ·∇Xdx+
1

V (ω)

∫
ω

P1(X, x; w) ·∇xdx+
1

V (ω)

∫
ω

b(X)dx

=
1

V (ω)

∫
ω

P0(X, x; w)dx ·∇X +
1

V (ω)

∫
∂ω

P1(X, x; w) · nmdx+ b(X)

= 0 ∀X ∈ Ω , (159)

where nm is the outward unit normal to ω in the reference configuration. By analogy with
Eq. (122), we define

PM (X; w) =
1

V (ω)

∫
ω

P0(X, x; w)dx . (160)
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Besides, since ω is periodic, so is P1(X, x; w) and one has P1(X, x−; w) · nm(x−) =
−P1(X, x+; w) ·nm(x+) for any pair (x−, x+) of opposite points x− ∈ ∂ω− and x+ ∈ ∂ω+,
see the notations of Fig. 27. Therefore, the system (159) reduces to

0 = PM(X; w) ·∇X + b(X) ∀X ∈ Ω, w ∈W . (161)

By analogy with Eq. (121) and using Eq. (157), we define

FM (X; w) =
1

V (ω)

∫
ω

F0(X, x; w)dx

= I +U0(X; w)⊗∇X +
1

V (ω)

∫
ω

U1(X, x; w)⊗∇xdx

= I +U0(X; w)⊗∇X , (162)

because of the periodicity of U1(X, x; w).
Finally, the Hill-Mandel condition results from Eq. (152) written in the incremental form

integrated over ω, with

1

V (ω)
δ

∫
ω

Ψ (F0(X, x; w); w) dx =

1

V (ω)

∫
ω

P0 (X, x; w) : δF0 (X, x; w) dx =

1

V (ω)

∫
ω

P0 (X, x; w) dx : (δU0(X; w)⊗∇X) +

1

V (ω)

∫
ω

P0 (X, x; w) : (δU1(X, x; w)⊗∇x) dx . (163)

The last term on the right hand side vanishes since∫
ω

P0 (X, x; w) : (δU1(X, x; w)⊗∇x) dx =∫
∂ω

δU1(X, x; w) ·P0 (X, x; w) · nmd∂ω −∫
ω

(P0 (X, x; w) ·∇x) · δU1(X, x; w)dx = 0 , (164)

where we have used Eq. (154) and the periodicity of ω which implies P0(X, x−; w) ·
nm(x−) = −P0(X, x+; w) · nm(x+) and U1(X, x−; w) = U1(X, x+; w) for any pair
(x−, x+) of opposite points x− ∈ ∂ω− and x+ ∈ ∂ω+. Therefore, using Eq. (160) and
(162), Eq. (163) is rewritten

1

V (ω)
δ

∫
ω

Ψ (F0(X, x; w); w) dx = PM (X; w) : δFM (X) , (165)
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which satisfies the Hill-Mandel condition. We also note that when the stress indeed derives
from the energy potential, this last equation implies that

PM (X; w) =
1

V (ω)

∂
∫
ω

Ψ (F0(X, x); w) dx

∂FM

. (166)

Finally, the problem should be completed by the constraints on the Dirichlet and Neu-
mann boundaries obtained by considering only the 0-order terms of the expansions and
performing a volume average, i.e

U0(X; w) = uD(X) ∀X ∈ ∂DΩ , and (167)

PM(X; w) · nM = t(X) ∀X ∈ ∂NΩ . (168)

We note that close to the boundary, the periodicity assumption of the global solution might
lead to unrealistic constraints. We refer to the discussion by Kanouté et al. (2009).

Resolution in the case of linear elasticity. In the case of linear elasticity, the multi-scale
problem (141-146) is rewritten by approximating the Piola-Kirchhoff stress tensor by the
Cauchy stress tensor Σε(X; w), leading to the conservation of linear momentum

Σε(X; w) ·∇0 + b(X) = 0 ∀X ∈ Ω, w ∈W , (169)

by considering the Cauchy strain tensor Eε(X; w)

Eε(Uε(X; w)) =
1

2
(Uε(X; w)⊗∇0 + ∇0 ⊗Uε(X; w)) ∀X ∈ Ω, w ∈W , (170)

and by using the potential Ψ (E(X; w); w) = 1
2
E(X; w) : Cel(X; w) : E(X; w) in the

constitutive law

Σε (X; w) =
∂ψ (Eε; w)

∂Eε

(X; w) = Cel
ε (X; w) : Eε(X; w) , (171)

where Cel
ε (X; w) is the elastic material tensor of the multi-scale problem.

Considering the expansion (147) allows writing the strain tensor (170) as

Eε(X; w) = εX (U0(X; w)) + εx (U1(X, x; w))︸ ︷︷ ︸
E0(X,x;w)

+

ε [εX (U1(X, x; w)) + εx (U2(X, x; w))]︸ ︷︷ ︸
E1(X,x;w)

+... (172)

with εX (•) = 1
2

(∇X ⊗ •+ • ⊗∇X) and εx (•) = 1
2

(∇x ⊗ •+ • ⊗∇x). Similarly to Eq.
(150), the Cauchy stress tensor is expended into a series of contributions Σi at different
scales i = 0, 1, ... following

Σε (X; w) = Σ0 (X, x; w) +
∑

i=1, 2...

εiΣi (X, x; w) , (173)
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where we have

Σi (X, x; w) = Cel
m(X, x; w) : Ei (X, x; w) , i = 0, 1 ... (174)

the latter equation being obtained as a local rewriting of Eq. (171).
Finally, as done to derive Eqs. (154-156) by applying the operator (148) on Eq. (169),

one has

Order -1: 0 = Σ0(X, x; w) ·∇x ∀X × x ∈ Ω× ω(X; w), w ∈W , (175)

Order 0: 0 = Σ0(X, x; w) ·∇X + Σ1(X, x; w) ·∇x + b(X)

∀X × x ∈ Ω× ω(X; w), w ∈W , (176)

Order i ≥ 1: 0 = Σi(X, x;w) ·∇X + Σi+1(X, x; w) ·∇x

∀X × x ∈ Ω× ω(X; w), w ∈W . (177)

Following the same argumentation as to derive Eqs. (160-161), Eq. (176) results into

0 = ΣM(X; w) ·∇X + b(X) ∀X ∈ Ω , (178)

with the homogenised stress tensor

ΣM (X; w) =
1

V (ω)

∫
ω

Σ0(X, x; w)dx . (179)

The apparent response ΣM is obtained by multiplying Eq. (175) by a periodic test function
δv ∈ UPBC(ω) and integrating by part on ω, yielding∫

ω

εx (δv) : Cel
m(X, x; w) : [εX (U0(X; w)) + εx (U1(X, x; w)] dx = 0∀δv ∈ UPBC(ω) ,

(180)
where we have used Eqs. (172) and (174) and the periodicity of ω which implies Σ0(X, x−; w)·
nm(x−) = −Σ0(X, x+; w) · nm(x+) for any pair (x−, x+) of opposite points x− ∈ ∂ω−

and x+ ∈ ∂ω+, see the notations of Fig. 27. As discussed by Kanouté et al. (2009); Fish
et al. (1997), the problem (180) is solved by introducing a separation of variables through a

third-order tensor
3

H (X, x; w) –periodic on ω– such that

U1(x, X; w) =
3

H (X, x; w) : εX (U0(X; w)) ∈ UPBC(ω) , (181)

with the constraint (158). Defining the fourth-order tensor H (X, x; w) such that Hijkl =

1
2
∂
∂xj

3

H ikl + 1
2
∂
∂xi

3

Hjkl, the problem (180) is stated as finding the periodic
3

H (X, x; w) such

that ∫
ω

εx (δv) : Cel
m(X, x; w) : [I + H(X, x; w)] dx = 0 ∀δv ∈ UPBC(ω) , (182)

where I is the fourth-order identity tensor with Iijkl = 1
2
δikδjl + 1

2
δilδjk. We note that H

(and thus I + H) possesses minor symmetry properties, i.e. Hijkl = Hjilk = Hjikl = Hijlk,
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but not necessarily major symmetry properties. The tensor I + H is also called elastic strain

concentration tensor. Assuming the solution
3

H (X, x; w) of the problem (182) is known,
Eq. (179) is rewritten as

ΣM (X; w) = Cel
M(X; w) : εX (U0(X; w)) , (183)

with the apparent elastic properties

Cel
M(X; w) =

1

V (ω)

∫
ω

Cel
m(X, x; w) : [I + H(X, x; w)] dx . (184)

Following Fish et al. (1994), multiplying (175) by the periodic
3

H (X, x; w), integrating by
parts on ω and making use of the periodicity on ω, yields∫

ω

HT (X, x; w) : Cel
m(X, x; w) : [I + H(X, x; w)] dx = 0 , (185)

where (HT )ijkl = Hklij. Therefore, the apparent elastic properties (184) can then also be
written

Cel
M(X, w) =

1

V (ω)

∫
ω

[I + H(X, x; w)]T : Cel
m(X, x; w) : [I + H(X, x; w)] dx . (186)

Finally, the system (182) is usually solved using a finite-element discretisation of the cell
volume element as detailed in Appendix C.2.1.

Elasto-plasticity and damage. Fish et al. (1997) have extended the method in the case of
elasto-plasticity. In elasto-plasticity, the constitutive law (171) of the multi-scale problem
reads

Σε (X; w) = Cel
ε (X; w) : [Eε(X; w)−Mε(X; w)] , (187)

where Mε(X; w) is the eigen-strain second-order tensor that characterises irreversible de-
formations, such as plastic strains. Therefore, a new expansion is considered

Mε(X; w) =
∑

i=0, 1...

εiMi (X, x; w) , (188)

where Mi for i = 0, ... is expressed explicitly in terms of the fine grid x = X
ε

.
Therefore, the expansion (173) still holds, but the stress tensors (174) at the different

scales are rewritten

Σi (X, x; w) = Cel
m(X, x; w) : [Ei (X, x; w)−Mi (X, x; w)] , (189)

the latter equation being obtained as a local rewriting of Eq. (187), with Ei (X, x; w) given
by Eq. (172).
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Following the details provided in Appendix C.2.2, the homogenised stress tensor (179)
then follows as

ΣM (X; w) = Cel
M(X, w) : [εX (U0(X; w))−MM(X; w)] , (190)

where εX (U0(X; w)) = εM(X; w), and where the overall eigen-strain MM(X; w) reads

MM(X; w) =

Cel
M

−1
(X; w) :

1

V (ω)

∫
ω

[
HT (X, x; w) + I

]
: Cel

m(X, x; w) : M0(X, x; w)dx . (191)

In this case, the method involves a model order reduction which bears similarity with
the Transform Field Analysis: the eigen-strains M0 (X, x; w) are approximated using the
separation of variables

M0 (X, x; w) =
∑
k

h(k)(x)M(k)(X; w) , (192)

where {h(k)(x)} is a set of C−1 continuous functions. In practice, piece-wise continuous
functions on some elements or clusters of elements δω(k) in the cell volume element ω can
be considered, in which case the functions h(k) are the spatial indicators (60). For these
particular functions, as detailed in Appendix C.2.3, the macro-stress tensor reads

ΣM (X; w) = Cel
M(X; w) : εX (U0(X; w)) +

∑
k

Sδω
(k)

M (X; w) : Mδω(k)

(X; w) . (193)

In this equation, the apparent elastic tensor Cel
M(X; w) results from Eq. (184), whilst the

inelastic influence tensors from

Sδω
(k)

M (X; w) =
1

V (ω)

∫
ω

Cel
m(X, x; w) :

[
Dδω(k)

(X, x; w)− Iδω(k)(x)
]
dx , (194)

with the eigen-strain influence functions

Dδω(k)

(X, x; w) =
V
(
δω(k)

)
V (ω)

H(X, x; w) :
[
CVoigt(X; w)− Cel

M(X; w)
]−1

:

1

V (δω(k))

∫
δω(k)

HT (x; w) : Cel
m(X, x; w)dx , (195)

and the indicator tensors

Iδω(k)(x) =

{
I if x ∈ δω(k) ,

0 if x /∈ δω(k) .
(196)

In this formulation, both Cel
M(X; w) and Sδω

(k)

M (X; w) can be computed off-line, whilst

the tensors µδω
(k)

(X) = Mδω(k)

(X; w) are the average inelastic strains on the clusters δω(k)

and are locally solved in-line at the micro-scale using the constitutive material law

σδω
(k)

m = σδω
(k)

m

(
εδω

(k)

0 (X) ; µδω
(k)

(X; τ ∈ [0, t]) , w
)
, (197)
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and the expression of average strain tensors εδω
(k)

0 (X) = Eδω(l)

0 (X; w) on the clusters δω(k),

which involves the different µδω
(l)

(X) following next equations, see Appendix C.2.3 for
details. The average strain on cluster δω(l) results from

Eδω(l)

0 (X; w) = Aδω
(l)

(X; w) : εX (U0(X; w)) +
∑
k

Dδω(l) δω(k)

(X; w) : Mδω(k)

(X; w) ,

(198)

with

Aδω
(l)

(X; w) =
1

V (δω(l))

∫
δω(l)

[I + H(X, x; w)] dx , and (199)

Dδω(l) δω(k)

(X; w) =
1

V (δω(l))

∫
δω(l)

Dδω(k)

(X, x; w)dx . (200)

The formulation has been extended to finite strains by Fish and Shek (1999), Fish et al.
(1999) have then considered damage-enhanced elasticity, Oskay and Fish (2007) have also
included interface separation between the clusters, and Yuan and Fish (2009) have considered
a hierarchical formulation involving multiple scales.

Stochastic AH. Fish and Wu (2011) have used this formalism to account for uncertainties
(i) in the elastic constitutive parameters Cel

m(X, x; w), (ii) in the inelastic parameters of the
constitutive law (197), or (iii) in the geometrical parameters, such as volume fraction, of the
unit cell ω(X; w). On the one hand, when the elastic constitutive parameters Cel

m(X, x; w)
or the geometrical description are considered as uncertain, the influence functions Cel

M(X; w),

Sδω
(k)

M (X; w), Aδω
(l)

(X; w), and Dδω(l) δω(k)
(X; w) have to be recomputed for each realisation

w. On the other hand, when only the inelastic properties of the constitutive law (197) change,
the influence functions are constant. Besides, two cases were considered by Fish and Wu
(2011): on the one hand, in the case of a random field, the properties can vary from one
unit cell ω(X; w) to the other, and on the other hand, in the case of random variables, the
properties are uniform on Ω.

In this context of stochastic asymptotic homogenisation in which the fine-scale and coarse
scale resolutions are concurrent, Fish and Wu (2011) generated the random fields corre-
sponding to fine-scale constitutive inelastic parameters of the constitutive law (197) using
KL expansion, see Appendix A.3.2. Elastic and micro-structural properties were considered
as random variables.

4.2.3. Reduced order models (ROMs) & Neural Networks (NNWs) as surrogates

Because when considering computational homogenisation, the response of the SVEs have
to be obtained by full-field analyses, the computation cost can become high in the non-linear
range. This important computational cost is however alleviated when the SVE analyses can
be conducted pre-off-line in order to define the meso-scale random fields, as it will be seen
in Section 5.1, allowing for a highly scalable parallelisation of the process. Nevertheless, the
cost can remain too high for complex 3D micro-structures.

Therefore, research has been carried on in the context of model order reduction, data-
driven analyses and surrogate models.
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Reduced Order Models. A Reduced Order Model (ROM) aims at providing an efficient ho-
mogenisation process with a reduced version of the full-field analysis. This usually trades
space for time by relying on pre-off-line computations. The purpose of this section is to
provide a brief review of the existing methods, and is by no means exhaustive.

Reduced versions of models can be created by projection of the governing equations into
suitably selected sub-spaces based on the acquired information from pre-off-line computa-
tions performed on a finite-element discretisation of the meso-scale volume. In the case
of computational homogenisation, the reduced number of unknown variables is defined by
means of proper orthogonal decomposition (POD) of the displacement field (135) –or of
its fluctuation part– as suggested by Yvonnet and He (2007). In this context, the equilib-
rium equations (136) of the meso-scale volume are projected in a basis of reduced size, which
speeds up the resolution process of the meso-scale volume equilibrium. The basis can also be
defined from the discrete strain energy of the system by modifying the POD norm definition
as proposed by Goury et al. (2016). A further order reduction, see the work by Hernández
et al. (2014); Soldner et al. (2017); Caicedo et al. (2019), is called hyper-reduction and aims
at reducing the computations of the internal forces (137) and tangent matrix (138) evalua-
tions. The idea behaind this hyper-reduction is to evaluate the constitutive laws at a reduced
set of points or elements within the meso-scale material domain. Soldner et al. (2017) have
compared the different projection-based ROMs in computational homogenisation.

In the context of POD-based ROM, a basis is defined from pre-off-line sampling of
the meso-scale volume element responses obtained for different paths of the macro-scale
kinematic variable fM. This defines the so-called snapshots that are used to conduct the
POD. The difficulty is to select the loading paths so that the snapshots are varied enough
for the built reduced basis to represent with a controlled error a wide variety of solutions
corresponding to arbitrary loading conditions. Goury et al. (2016) have suggested to define
random walks as loading paths with a given norm of the strain increment. Snapshots can be
enriched by considering new loading paths, for which the evaluation of the direct solution
is required, if the error of the ROM on test data is not found to be low enough. In order
to increase the efficiency of the loading paths sampling, as an alternative to this “brute
force” method, Goury et al. (2016) have defined a sequence of random loading paths spaces
starting from monotonic loading of random direction (lower degree space) and subsequently
increasing the number of changes of direction in a loading path realisation (space of degree
1 has one change of direction per path etc.). This sequence of random loading spaces makes
it possible to infer which level of refinement is necessary in order to build a ROM with a
required accuracy; i.e. when a ROM constructed from snapshots of the space of degree
n can represent a solution in the space of degree n + 1. In order to select the snapshots,
for which the evaluation of the direct solution is required, in the space of a given degree n
that will be used to construct the ROM, a Gaussian process regression of an error indicator
is built, and used to infer the loading path which maximises the error indicator through
a Bayesian optimisation. This new loading path thus enriches the loading path sampling
space of degree n by a new snapshot located in a region of potential error of the model and
thus allows constructing a ROM of a given error from a limited number of evaluations of
the direct solution.
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ROMs can also be based on micro-mechanics models involving much less variables. The
computation of the influence function in the asymptotic homogenisation method presented
in Section 4.2.2 in combination to the reduction (192), which derives from the Uniform
Transform Field Analysis (TFA) developed by Dvorak (1992); Dvorak et al. (1994), belongs
to this category. Order reduction was achieved by Michel and Suquet (2009) in the nonuni-
form transformation field analysis (NTFA) by using the pre-defined internal variables modes
obtained from pre-off-line full-field analyses. Michel and Suquet (2016) have then applied
a tangent second-order (TSO) expansion of the dissipation potential, which corresponds to
a reduction of the evolution equations related to the reduced internal variables. Fritzen
and Leuschner (2013) have developed an alternative to the TSO-expansion by extending the
NTFA in terms of a potential-based Reduced Basis Model Order Reduction (pRBMOR),
which provides the evolution law for the reduced degrees of freedom from a mixed incre-
mental variational principle. Fritzen and Hodapp (2016) have then combined this approach
with a GPU acceleration.

ROMs can also be obtained by dividing the volume element phases into clusters of
similar strains obtained through full-field analyses. Wulfinghoff et al. (2018); Cavaliere
et al. (2020) have used a Hashin-Shtrikman analysis of the clusters but the method is limited
to non-linear reversible behaviours and requires the definition of a homogeneous reference
stiffness. Liu et al. (2016, 2018) have defined the clusters from linear analyses and applied
a self-consistent homogenisation of the non-linear clusters response with constant internal
variables per cluster. In this so-called Self-Clustering Analysis (SCA), during the on-line
stage, the Lippmann-Schwinger equation is used as coupling equation between the clusters.
The interaction between the clusters is defined by influence functions expressed by the
Green’s function of a selected homogeneous material corresponding, either to a reference
material, or to the continuously updated self-consistent homogeneous and isotropic stiffness.
Huang et al. (2021) have used the SCA to study the impact of fibre volume fraction and
waviness variations on UD laminate compression response.

Data-driven methods and deep material networks. Liu et al. (2019); Liu and Wu (2019) have
developed the so-called deep material network (DMN) approach as a homogenisation method
based on analytical micro-mechanics models, such as laminate theory, defining mechanistic
building blocks, the latter being organised in a binary hierarchical topological structure.
During the training process defined from homogenised elasticity tensors of a fixed microstruc-
ture with different elastic properties, the DMN “learns” the weight ratio and interactions of
the building blocks. Once trained, the DMN is able to predict non-linear responses through
a forward homogenisation process and a backward de-homogenisation process of the lineari-
sation of the stress-strain behaviour. Accurate results were obtained in the non-linear range
although only linear elastic data were used during the offline training. The reason of this
good handling of extrapolation was theoretically explained by Gajek et al. (2020). Nguyen
and Noels (2022) have provided an efficient implementation of the forward homogenisation
process and a backward de-homogenisation process for arbitrary tree structures and Nguyen
and Noels (2021) have removed the laminate assumption in order to account for evolving
micro-structures like in porous materials. More complex micro-mechanical models such as
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mean-field homogenisation can also be used in the mechanistic building blocks as proposed
by Wu et al. (2021) for woven composite materials, which allowed reducing the needed
number of blocks to a few couples.

Data-driven methods and surrogate models. Recently, data-driven approaches have seen an
increasing popularity, in which the data are numerically obtained from the resolution of the
meso-scale volume elements.

Conducting off-line non-linear simulations in order to extract homogenised stress-strain
responses through computational homogenisation, see Section 4.2.1, is also a way of building
a synthetic data-base that can be used to construct surrogate models of the inelastic response
of the meso-scale volume elements. This synthetic data-base was used by Xu et al. (2020)
to conduct data-driven and model-free analyses (Kirchdoerfer and Ortiz, 2016; Eggersmann
et al., 2019).

This synthetic data-base can alternatively be used to build surrogate models, which
basically consist into mapping functions. Surrogate models can be of different natures.
Wirtz et al. (2015) have built such a surrogate using kernel methods, Perrin et al. (2012)
have used the polynomial chaos expansion etc. Omairey et al. (2019) have considered a
polynomial regression fit to represent the relationship between uncertainties and their effect
on apparent elastic properties of UD composites using data points obtained by computational
homogenisation. Recently the use of neural-networks as surrogates has seen a fast growing
interest. In that context, the synthetic data-base is used to train the NNWs, which serve as
surrogate either of the homogenised strain energy surface from which the stress-strain can
be derived as proposed by Le et al. (2015); Bessa et al. (2017), of directly the stress-strain
response as in the works by Fritzen et al. (2019); Yang et al. (2019), or of a function of
both the current stress and the plastic dissipation density as suggested by Zhang and Mohr
(2020).

In the context of reversible behaviours, i.e. linear elasticity or nonlinear elasticity, feed-
forward NNWs, for which the information moves only along the forward direction, are usually
used. However, in the case of history-dependent behaviours, e.g. plasticity, there is an extra-
difficulty with feed-forward NNW, in both the ANN architecture and offline training, since
the information moves only along one direction, which cannot account for complex loading
conditions, e.g. unloading, reloading. Although Huang et al. (2020) have enriched feed-
forward NNWs by variables corresponding to the strain paths, e.g. length of strain paths,
in order to introduce the history-dependency, the alternative of Recurrent Neural Network
(RNN) was shown by Mozaffar et al. (2019); Gorji et al. (2020); Ghavamian and Simone
(2019); Wu et al. (2020a); Logarzo et al. (2021) to be efficient and accurate in approximating
the history-dependent homogenised stress-strain relationships, because of their ability to
account for the information about what has been computed so far. Indeed, RNNs make
use of sequential information: they are called recurrent because they perform the same
task on every step input of a sequence, with the output being dependent on the previous
evaluations. They thus exhibit a “memory”, which captures information about what has
been calculated so far. Nevertheless, their training requires a synthetic data-base which
covers enough possible loading history paths. The generation of this data-base thus requires
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to introduce some stochasticity in the loading paths, either under the form of Gaussian
process as suggested by Mozaffar et al. (2019), cubic-spline interpolations as conducted
by Gorji et al. (2020), or more generally under the form of a random walk as developed
by Wu et al. (2020a). We refer to the recent review by Rocha et al. (2020) for a critical
comparison in the context of composite materials. Wu and Noels (2022) have combined
recurrent neural networks with dimensionality reduction for high dimensional mechanical
problems. In this context, beside the macro-stressmacro-strain response of the meso-scale
boundary value problem, the state field distribution at the micro-structure level could also
be recovered for complex loading scenarios.

Stochastic surrogate models. ROM and NNW-based mappings offer the opportunity to build
stochastic surrogate models that can be used to propagate uncertainties. In the context of
stochastic finite elasticity, a ROM was built by Clément et al. (2012); Yvonnet et al. (2013)
from the resolution of SVEs, which are called composite material elementary cells, by defining
a meso-scale potential capturing the uncertainties related to the fibres geometry/distribution
in composites. Rao and Liu (2020) have trained a three-dimensional deep convolution neural
network (3D-CNN) using a data-set consisting of spherical inclusion micro-structure images
and of the predicted homogenised elasticity tensors obtained by computational homogeni-
sation. It was shown that the 3D-CNN is able to predict the anisotropic effective material
properties of micro-structures with random inclusions. In the context of non-linear electrical
conduction, Lu et al. (2021) have developed a hybrid neural-networkinterpolation. Assuming
deterministic effective properties at the microscopic scale with respect to the microstructure
for a given volume fraction, the hybrid neural-network-interpolation was build by interpo-
lating data-set obtained at given volume fractions. At the macro-scale, uncertainties related
to non-homogeneous distributions of volume fractions could then be accounted for in non-
linear analysis by using the hybrid neural-networkinterpolation as a stochastic meso-scale
surrogate.

Clearly, the use of NNW as surrogate is a promising way of achieving stochastic multi-
scale methods, providing they can be trained with a rich enough synthetic data-base. This
creation of a data base requires a large number of direct numerical simulations of the meso-
scale volume elements (or a large number of experiments), which can be overwhelming. One
solution is to rely on interpolation in the parameter range as with the hybrid neural-network-
interpolation method, or to use ROMs to construct the off-line simulation data-base needed
for data-driven macro-scale analyses Bessa et al. (2017).

4.2.4. Mean-Field Homogenisation (MFH)

The MFH approach is a computationally efficient semi-analytical framework for the
homogenisation of 2-phase composites developed using different extensions of the Eshelby
(1957) single inclusion solution to account for the multiple-inclusion interactions. The most
popular extensions are the Mori-Tanaka (Mori and Tanaka, 1973; Benveniste, 1987) and the
self-consistent (Kröner, 1958; Hill, 1965b) schemes.

By opposition to the computational homogenisation framework described in Section
4.2.1, the microstructure is not explicitly represented but defined from the phases material
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properties, the phases volume fractions and either from the inclusions geometrical shape,
see Fig. 27(d), or from their spatial correlation (Ponte Castañeda and Willis, 1995). The
homogenisation framework is then formulated by a series of equations, completed by the
knowledge of phases properties, that can be solved iteratively.

Although it can provide accurate prediction of the homogenised behaviour in some cases,
MFH relies on some assumptions and is thus not as general as computational homogenisa-
tion. Nevertheless, it provides a computationally affordable solution, which can also be seen
as a ROM, and that will be further used in a multi-fidelity approach in Section 5.4.

Generalities on the MFH for two-phase composites. Considering a realisation w ∈W of the
micro-structure ω(X; w) and a two-phase composite material with the respective volume
fractions V0(w) + VI(w) = 1 (subscript 0 refers to the matrix and I to the inclusions), the
volume average over the volume element ω(X; w) is explicitly expressed in terms of the
volume averages over the two phases ω0(X; w) and ωI(X; w), with

EM(w) = V0(w)
1

V (ω0)

∫
ω0

Em(x; w)dx+ VI(w)
1

V (ωI)

∫
ωI

Em(x; w)dx , and (201)

ΣM(w) = V0(w)
1

V (ω0)

∫
ω0

Σm(x; w)dx+ VI(w)
1

V (ωI)

∫
ωI

Σm(x; w)dx . (202)

For conciseness, in the following volume integrals, we note the volume element realization
ω = ω(X; w), in which we omit the reference to w, but it is understood that the homogenized
response is micro-structure dependent. The key-point of the MFH method is to define the
relation between the strain averages in the different phases, using a strain concentration
tensor Bε(w). For linear material systems, this implies

ĒI(w) = Bε(I(w),Cel
0 (w), Cel

I (w)) : Ē0(w) , (203)

where I(w) represents the equivalent inclusion realisation in terms of geometry, Cel
i (w) is

the elastic stiffness tensor in phase ωi(w), and where we have used •̄i to represent the
volume average over the phase ωi(w), i.e. 1

V (ωi)

∫
ωi
•m(x; w)dx, for conciseness. Note that •̄i

represents the first statistical value estimate of the field •. A popular approach to define the
strain concentration tensor Bε(w) is to extend the single inclusion solution of Eshelby (1957)
to multiple inclusions interacting in an average way. Common homogenisation schemes are

• The Voigt model assumes the same average strain in the two phases. This hypothesis
leads to the following strain concentration tensor:

Bε(w) = I ; (204)

• The Reuss model considers that the average stress is the same in the two phases.
Consequently, the following expression arises:

Bε(w) =
(
Cel

I (w)
)−1

: Cel
0 (w) ; (205)
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• The Mori and Tanaka (1973) method (M-T), in which the average strain in the matrix
phase of the multiple-inclusion composite material corresponds to the strain at infinity
of the single inclusion problem, results in

Bε(I(w),Cel
0 (w), Cel

I (w)) = {I + Y(w) : [(Cel
0 )−1(w) : Cel

I (w)− I]}−1 , (206)

where the Eshelby (1957) tensor Y(I(w), Cel
0 (w)) depends on the geometry of the in-

clusion I(w) and on the elastic tensor of the matrix phase Cel
0 (w).

Non-linear MFH. Being computationally efficient, MFH methods were extensively devel-
oped to account for non-linear material behaviours. In such cases, the linear equations are
applied on a so-called linear comparison composite (LCC) Talbot and Willis (1985, 1987);
Ponte Castañeda (1991, 1992); Talbot and Willis (1992); Doghri and Ouaar (2003); Moli-
nari et al. (2004); Doghri et al. (2010); Wu et al. (2013a). This LCC is defined as a virtual
composite material whose constituents linear behaviours behave similarly to the linearised
behaviours of the real constituents at given stress-strain states.

For non-linear material systems, Eqs. (201-202) are rewritten

∆EM(w) = V0(w)∆Ē0(w) + VI(w)∆ĒI(w) , and (207)

ΣM(w) = V0(w)Σ̄0(w) + VI(w)Σ̄I(w) , (208)

and the strain concentration tensor is constructed using a linear comparison composite
(LCC), yet to be defined, which represents the linearized behaviour of the composite material
phases through their virtual elastic operators, i.e. ĈLCC

0 (w) for the matrix phase and ĈLCC
I (w)

for the inclusions phase. Equation (203) is thus rewritten

∆ĒI(w) = Bε
(

I(w), ĈLCC
0 (w), ĈLCC

I (w)
)

: ∆Ē0(w) . (209)

Depending on the assumptions behind the definition of the LCC, the tensors ĈLCC
0 (w) and

ĈLCC
I (w) are constructed in different ways. However, they are constructed in such a way that

they are uniform over each phase, hence the •̂i notation. In the secant method developed
by Berveiller and Zaoui (1978) the material is linearized as Σ̄i(w) = Ĉsec

i (w) : Ēi(w), in
which case only monotonic loading conditions can be considered. In the incremental-tangent
formulation pioneered by Hill (1965a) and developed by Pettermann et al. (1999); Doghri
and Ouaar (2003), the non-linear material is linearized as dΣ̄i(w) = Ĉtan

i (w) : dĒi(w),
where Ĉtan

i (w) is an elasto-plastic tangent operator, allowing considering unloading. In the
affine method, which was first proposed by Molinari et al. (1987, 2004) for visco-plastic
materials, see also the work by Pierard and Doghri (2006); Doghri et al. (2010), the material
is linearized using a polarisation stress Mi(w) as Σ̄i(w) = Ĉi(w) : Ēi(w) + Mi(w), where
Ĉi(w) can be different from the tangent moduli. Wu et al. (2013a,b) have also developed the
incremental-secant formulation, which contrarily to the secant method allows considering
cyclic loading, by defining the LCC and the operators ĈLCC

i (w) from a virtually unloaded
state of the composite material. This last definition of the LCC has several advantages as
compared to other formulations. First, the isotropization step required by the affine and
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incremental-tangent methods as discussed by Chaboche et al. (2005) is avoided because the
secant operators are naturally isotropic. Second, the method has a better accuracy in the
case of non-proportional loading as shown by Wu et al. (2013a) and in the case of damage-
enhanced elasto-plasticity since the virtual unloading step allows capturing a phase elastic
unloading during softening of another one as illustrated by Wu et al. (2013b).

With the first statistical moments formula, the equivalent von Mises stresses and equiva-
lent increment strains, corresponding to the averaged stress and strain tensors in the phases
ωi, are evaluated as

Σ̂eq
i (w) =

√
3

2

1

V (ωi)

∫
ωi

Σ(x; w)dx : Idev :
1

V (ωi)

∫
ωi

Σ(x; w)dx (210)

and ∆Êeq
i (w) =

√
2

3

1

V (ωi)

∫
ωi

∆E(x; w)dx : Idev :
1

V (ωi)

∫
ωi

∆E(x; w)dx , (211)

where Idev is the deviatoric fourth-order tensor. However, when considering the first statis-
tical moment values in the different phases when predicting their plastic flow, the plastic
yield is not always accurately captured in some material systems such as short fibres com-
posite materials, as discussed by Moulinec and Suquet (2003). In order to improve the
predictions, MFH was enriched by accounting for the second statistical moment estimates

1
V (ωi)

∫
ωi
• ⊗ •dx of field •. The second statistical moment estimate of the equivalent strain

increment in phase ωi reads

∆
ˆ̂
Eeq
i (w) =

√
2

3
Idev ::

1

V (ωi)

∫
ωi

∆Em(x; w)⊗∆Em(x; w)dx , (212)

and the second statistical moment estimate of the equivalent stress increment in the phase
ωi reads

∆
ˆ̂
Σeq
i (w) =

√
3

2
Idev ::

1

V (ωi)

∫
ωi

∆Σm(x; w)⊗∆Σm(x; w)dx . (213)

In particular, the second statistical moment estimate of the incremental strain field in the
phase ωi can be computed by

1

V (ωi)

∫
ωi

∆Em(x; w)⊗∆Em(x; w)dx =
1

vi
∆EM(w) :

∂ĈLCC(w)

∂ĈLCC
i

(w) : ∆EM(w) , (214)

as detailed by Bobeth and Diener (1987); Buryachenko (2001), where ĈLCC(w) is the effective
elastic tensor of the LCC, corresponding to the given phase virtual elastic operators ĈLCC

0 (w)
and ĈLCC

I (w). Second statistical moment values were accounted for by Suquet (1995) while
using the so-called modified-secant approach, by Ponte Castañeda (1996); Doghri et al.
(2011) while using the incremental tangent method, and by Wu et al. (2017) while using the
incremental-secant method. In order to capture with more accuracy the field fluctuations,
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Ponte Castañeda (2002a,b) have considered “generalised secant moduli” incorporating both
first and second statistical moment information and have applied the method to visco-plastic
composite materials.

Second statistical moments values are also accounted for when developing MFH meth-
ods based on variational principles as pioneered by Ponte Castañeda (1992) and further
developed by Lahellec and Suquet (2007a,b) in the context of in-elasticity, by Lahellec et al.
(2011) in the context of thermo-elasticity, and by Brassart et al. (2011, 2012); Lahellec and
Suquet (2013); Boudet et al. (2016) in the context of elasto-(visco-)plasticity.

4.3. Extraction of stochastic homogenised behaviours

For a given stochastic micro-structure w ∈ W, the apparent properties observation,
e.g. the homogenised material tensor CM(X; w), can be extracted using the approaches
developed in Section 4.2. In order to extract the random field {CM(X; w) : X ∈ Ω, w ∈
W}, the sample space W has to be spanned, and different methods can be considered.
For conciseness, in the following volume integrals, we note the volume element realization
ω = ω(X; w), in which we omit the reference to w, but it is understood that the homogenized
response is micro-structure dependent.

These methods are developed here in the particular case of stochastic micro-structure
homogenisation, but they can also be used when propagating uncertainties to the structural
scale as discussed in Section 5.5, where we further discuss their variations, advantages and
drawbacks.

4.3.1. Monte-Carlo simulations

The Monte-Carlo (MC) simulation method is the simplest resolution method. It involves
sampling several micro-structures w ∈ W, from which the apparent properties, e.g. the
homogenised material tensor CM(X; w), can be extracted using the approaches developed in
Section 4.2. For enough samples, the set of solutions corresponds to an accurate estimation
of the sought stochastic response. MC is a robust method that has widely been used in
stochastic homogenisation by Cottereau (2013); Lucas et al. (2015); Stefanou et al. (2015);
Wu et al. (2016); Lucas et al. (2017); Stefanou et al. (2017), e.g.

As examples, the correlation of the homogenised random field {CM(X; w) : X ∈ Ω, w ∈
W} of apparent poly-crystal properties sudied in Fig. 26 and the apparent UD composite
property distributions illustrated in Fig. 29 have been obtained by combining MC simula-
tions with the computational homogenisation framework presented in Section 4.2.1.

4.3.2. Perturbation stochastic finite elements

We consider the probability space (W, F, P) and as (continuous) random field U ′(ω) =
{U ′(x) : x ∈ ω} the perturbation field (125) defined in the computational homogenisation
framework, with U ′(x; w) ∈ U(ω) where U(ω) is an admissible kinematic vector field subset
of the minimum kinematic field Umin (129) defined depending on the boundary conditions
applied on the SVE.. It is assumed that the uncertainties can be expressed in terms of
Ξ = [Ξ1 ...Ξi ...Ξn]T a vector of n random variables Ξi : W → <. The stochastic strong
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form of the micro-scale problem reads

[Pm (U ′(x; ξ); ξ)] ·∇0 = 0 , (215)

with ξ = Ξ(w).
We follow the summary given by Nouy (1999) of the perturbation stochastic framework

and adapt it to linear elasticity. The stochastic strong form of the micro-scale problem (215)
thus becomes

[Σm (U ′(x; ξ); ξ)] ·∇0 = 0 , (216)

with ξ = Ξ(w) and Σm (•; ξ) the Cauchy stress tensor, which is here seen as an operator.
This operator is then developed around its value evaluated for E[Ξ] as

Σm (U ′; ξ) = Σm (U ′; E [Ξ])︸ ︷︷ ︸
Σ0(U ′)

+
∑
k

∂

∂Ξk

Σm (U ′; E [Ξ])︸ ︷︷ ︸
Σ,k(U ′)

(ξk − E[Ξk]) +

1

2

∑
k

∑
l

∂2

∂Ξk∂Ξl

Σm (U ′; E [Ξ])︸ ︷︷ ︸
Σ,kl(U ′)

(ξk − E[Ξk]) (ξl − E[Ξl]) + ... (217)

The random field of unknowns is developed around its value evaluated for E(Ξ) in a similar
way

U ′(x; ξ) = U ′ (x; E[Ξ])︸ ︷︷ ︸
u′0(x)

+
∑
i

∂

∂Ξi

U ′ (x; E[Ξ])︸ ︷︷ ︸
u′,i(x)

(ξi − E[Ξi]) +

1

2

∑
i

∑
j

∂2

∂Ξi∂Ξj

U ′ (x; E[Ξ])︸ ︷︷ ︸
u′,ij(x)

(ξi − E[Ξi]) (ξj − E[Ξj]) + ... (218)

Using the two developments (217) and (218), and assuming the operator is linear with
the unknown field, i.e. assuming linear elasticity in the present context, the strong form
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(216) reads

0 = [Σ0 (u′0)] ·∇0 +
∑
i

[
Σ0

(
u′,i
)]
·∇0 (ξi − E[Ξi]) +

1

2

∑
i

∑
j

[
Σ0

(
u′,ij
)]
·∇0 (ξi − E[Ξi]) (ξj − E[Ξj]) + ...+∑

k

[Σ,k (u′0)] ·∇0 (ξk − E[Ξk]) +
∑
k

∑
i

[
Σ,k

(
u′,i
)]
·∇0 (ξk − E[Ξk]) (ξi − E[Ξi]) +

1

2

∑
k

∑
i

∑
j

[
Σ,k

(
u′,ij
)]
·∇0 (ξk − E[Ξk]) (ξi − E[Ξi]) (ξj − E[Ξj]) + ...+

1

2

∑
k

∑
l

[Σ,kl (u
′
0)] ·∇0 (ξk − E[Ξk]) (ξl − E[Ξl]) +

1

2

∑
k

∑
l

∑
i

[
Σ,kl

(
u′,i
)]
·∇0 (ξk − E[Ξk]) (ξl − E[Ξl]) (ξi − E[Ξi]) +

1

4

∑
k

∑
l

∑
i

∑
j

[
Σ,kl

(
u′,ij
)]
·∇0 (ξk − E[Ξk]) (ξl − E[Ξl]) (ξi − E[Ξi]) (ξj − E[Ξj]) + ...

(219)

This set of equations can be rewritten as a set of recursive deterministic problems

Order 0: 0 = [Σ0 (u′0)] ·∇0 , (220)

Order 1: 0 =
[
Σ0

(
u′,i
)]
·∇0 + [Σ,i (u

′
0)] ·∇0 ∀i = 1..n , (221)

Order 2: 0 =
[
Σ0

(
u′,ij
)]
·∇0 +

[
Σ,i

(
u′,j
)]
·∇0 +

[
Σ,j

(
u′,i
)]
·∇0 +

[Σ,ij (u′0)] ·∇0 ∀i, j = 1..n , (222)

... ... ...

of unknowns u′0, u′,i, u
′
,ij ... The definition of these deterministic problems involves the

computation of the operator derivatives Σ,i (U
′) with respect of the random variables Ξi.

Since the method is developed for linear elasticity, considering the stochastic elasticity tensor
Cel

m (x; Ξ(w)) these derivatives read

Order 0: Σ0 (x; U ′) = Cel
m (x; E[Ξ]) : εx(U ′) , (223)

Order 1: Σ,i (x; U ′) = ∂Cel
m

∂Ξi
(x; E[Ξ]) : εx(U ′) , (224)

... ... ...

Once the recursive set of deterministic problems (220-222) solved, e.g. using a finite-
element discretisation, the stochastic field solution results from Eq. (218). Moments of the
solution can readily be evaluated

E [U ′] = u′0 +
1

2

∑
i

∑
j

R̃Ξ(i j)
u′,ij + ... , (225)

E [(U ′ − E[U ′])⊗ (U ′ − E[U ′])] =
∑
i

∑
j

R̃Ξ(i j)
u′,i ⊗ u′,j + ... , (226)
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with the covariance matrix R̃Ξ of the random vector Ξ defined by Eq. (46).
As an example, Sakata and Ashida (2011) have extracted the homogenised properties

of elastic fibre reinforced composites in which either the matrix properties of the volume
fraction of inclusions follows a given distribution. In that case, the theory of equivalent
inclusions, see also Section 4.2.4, was used. Lepage et al. (2011) formulated the homogeni-
sation problem using the asymptotic method described in Section 4.2.2, and have applied
the development in the uncertainties on the tensor (184) solving the problem using the finite
element discretisation of a poly-crystalline volume element. The perturbation stochastic
method was then applied to evaluate the mean and variance of the homogenised elastic
properties as a function of the grains property uncertainty of the poly-crystal.

4.3.3. Galerkin stochastic finite elements

The theory was pioneered by Ghanem and Spanos (1991) and further developed by
Ghanem and Kruger (1996); Ghanem (1999) who have set the bases of the Spectral Stochas-
tic Finite Element Method (SSFEM). The Galerkin stochastic finite element method is an
intrusive techniques avoiding the extensive sampling and deterministic simulations of the
MC methods and allowing treating more general cases than the perturbation method. More
details can also be found in the works by Nouy (1999) and Ernst and Ullmann (2010).

Finite approximation of the expansion of a random field. Let us consider the continuous
random field U ′(ω) = {U ′(x) : x ∈ ω}, of random vectors U ′ that take values in <m,
for ω ⊂ <d a space of material points x, with d ∈ N. Its expectation (26) is denoted by
ū′ (x) = E [U ′ (x)] : ω → <m. When considering a purely mechanical problem, the size m
is equal to the dimension d.

Let Ξ = [Ξ1 ...Ξi ...Ξn]T be a vector of n independent, zero-mean, and unit variance
random variables Ξi : W → < of finite second order moment and of support SΞi . The
support of Ξ is denoted by SΞ = SΞ1 × ... × SΞi × ... × SΞn . Similarly as set in Appendix
A.4.4, and in particular Eq. (A.75), the stochastic field U ′(ω) = {U ′(x) : x ∈ ω} is
represented by the finite separated expansion through the random vector Ξ, for which a
realisation w ∈W reads

u′(x) = U ′ (x; Ξ(w)) ' ū′(x) +

nC
p∑

l=1

uk(l) (x)ψk(l) (Ξ(w)) , (227)

with the multi-index k(l) = {k(l)
1 , ..., k

(l)
n } ∈ Nn

0 defined in

KC
p = {k(l) ∈ Nn

0 : k
(l)
1 + ...+ k

(l)
i + ...k(l)

n ≤ p , l = 0..nC
p } , (228)

of total degree at most p and elements k(0) = {0, ..., 0}, k(1), ..., k(nC
p ), with nC

p = (n+p)!
n!p!
− 1.

In Eq. (227), {ψk(l)(ξ) = ψ
(1)

k
(l)
1

(ξ1)× ...×ψ(i)

k
(l)
i

(ξi)× ...×ψ(n)

k
(l)
n

(ξn) : k(l) ∈ KC
p ; ξ = Ξ(w)} is

an orthonormal polynomial family belonging to the Hilbert space H(W), and the coefficients
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uk(l)(x) valued in <m are evaluated by

uk(l)(x) = E [(U ′(x)− ū′(x))ψk(l)(Ξ)]

=

∫
<n

(U ′(x; ξ)− ū′(x))ψk(l)(ξ)πΞ(ξ)dξ , l = 1..nC
p . (229)

Defining uk(0)(x) = ū′(x) and considering ψk(0)(ξ) = 1, Eq. (227) becomes

u′(x) = U ′ (x; Ξ(w)) '
nC
p∑

l=0

uk(l) (x)ψk(l) (Ξ(w)) . (230)

A common choice for the orthonormal polynomials family {ψ(i)
l : l ∈ N0, i = 1..n} is

based on the Hermite polynomials Hl(ξ), see Eq. (A.52), with ψ
(i)
l (ξi) = Hl(ξi).

Stochastic Galerkin finite element. We now consider the probability space (W, F, P) and
as (continuous) random field U ′(ω) = {U ′(x) : x ∈ ω} the perturbation field (125) defined
in the computational homogenisation framework.

It is assumed that, through a non-linear mapping, see Appendix A.1, the uncertainties
can be expressed in terms of Ξ = [Ξ1 ...Ξi ...Ξn]T a vector of n independent, zero-mean, and
unit variance random variables Ξi : W → < of finite second order moment and of support
SΞi .

Therefore the strong form of the micro-scale problem reads

[Pm (U ′(x; ξ); ξ)] ·∇0 = 0 , (231)

with ξ = Ξ(w).
Following Pivovarov and Steinmann (2016), we now multiply Eq. (231) by a stochastic

test function δU ′(x; ξ) ∈ U(ω) × H(W), where U(ω) is an admissible kinematic vector
field subset of the minimum kinematic field Umin (129) defined depending on the boundary
conditions applied on the SVE. Integrating on the probabilistic space and on the spatial
domain yields∫

ω

∫
SΞ

δU ′(x; ξ) · [[Pm (U ′(x; ξ); ξ)] ·∇0] πΞ(ξ)dξdx = 0 ∀δU ′ ∈ U(ω)×H(W) . (232)

Integrating by parts in the spatial domain, the weak form (130) is then restated on the
product between the physical and probabilistic spaces as finding U ′ ∈ U(ω) ×H(W) such
that∫

ω

∫
SΞ

Pm (U ′(x; ξ); ξ) : (δU ′(x; ξ)⊗∇0) πΞ(ξ)dξdx = 0 , ∀δU ′ ∈ U(ω)×H(W) .

(233)
The finite element discretisation of Eq. (233) is based on the separation of variables with

the use of the finite element discretisation (135) and of the expansion (230), yielding{
U(x; ξ) =

∑
a

∑nC
p

l=0 ϕ
(a)(x)ψk(l) (Ξ(w))u

(a)

k(l) ; and

δU ′(x; ξ) =
∑

a

∑nC
p

l=0 ϕ
(a)(x)ψk(l) (Ξ(w)) δu

(a)

k(l) .
(234)
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We note that Eq. (125) allows relating the fluctuation U ′(x; ξ) to the displacement U(x; ξ)

and thus to the degrees of freedom. The degrees of freedom u
(a)

k(l) represent nC
p + 1 nodal

displacement vectors resulting from the expansion (230), and are collected in the vector
dm, which has now a size of d × (nC

p + 1) × nnode, for nnode nodes and a physical space of
dimension d. It is seen that the system is similar to the traditional finite elements, with
however more degrees of freedom whose number increases dramatically with the size of the
stochastic process.

The vector fint of the internal forces associated to the weak forms (233) reads

fint =
∧
ωe

∫
ωe

∫
SΞ

(b′e)
T
Pm(x; ξ)πΞ(ξ)dξdx , (235)

where b′e is the elementary matrix of the shape functions gradient associated to the stochas-
tic displacement vector field, i.e. built from ∇ϕ(a)(x)ψk(l) (Ξ(w)), Pm is the first Piola-
Kirchhoff stress tensor Pm written in the vector form, and where

∧
ωe is used to symbolise

the assembly process.
The stiffness matrix km of the unconstrained meso-scale volume element reads

km =
∂fint

∂dm

=
∧
ωe

∫
ωe

∫
SΞ

(b′e)
T

Cm(x; ξ)b′eπΞ(ξ)dξdx , (236)

where dm is the vector gathering all the micro-scale degrees of freedom, i.e. the nodal
displacements u

(a)

k(l) , Cm = ∂Pm

∂Fm
is the matrix notation of the micro-scale fourth-order material

tensor Cm = ∂Pm

∂Fm
, with Fm the deformation gradient Fm written in the vector form.

Spectral Stochastic Finite Element Method (SSFEM). In the context of linear elasticity, the
Galerkin stochastic finite element method simplifies as shown by Ghanem and Kruger (1996);
Ghanem and Brzakala (1996); Ghanem (1999), see also the review by Nouy (1999).

Assuming linear elasticity, the stress tensor reads

Σm(x; w) = Cel
m(x; w) : Em(x; w) , (237)

where the local elasticity tensor Cel
m(x; w) is a realisation of the random field {Cel

m(x; w) :
x ∈ ω, w ∈ W} assumed to be characterised through the covariance matrix R̃Cel

m
(x; τ ), in

which we have considered the elasticity properties written under the 21-component vector
form Cel

m and a vector τ separating two points of ω.
Following Appendix A.3.2, a Karhunen Loève expansion allows representing the random

field Cel
m(ω) by the collection of

Cel
m(x; w) ' c̄el

m(x) +
n∑
i=1

√
λ

(i)

Cel
m

Hi(w)u
(i)

Cel
m

(x) =
n∑
i=0

√
λ

(i)

Cel
m

Hi(w)u
(i)

Cel
m

(x) , (238)

where H is a new random vector of zero-mean, unit variance and uncorrelated (but possibly

dependent) components Hi, λ
(i)

Cel
m

and u
(i)

Cel
m

(x) for i > 0 are the ordered eigen-values and

90



orthonormal eigen-basis of the covariance matrix R̃Cel
m

(x; τ ), n is the order of the expansion,

and where we have defined H0(w) = λ
(0)

Cel
m

= 1 and u
(0)

Cel
m

(x) as the expectation c̄el
m(x).

In particular, if the random process {Cel
m(x; ω); x ∈ ω, w ∈W} is Gaussian6, the random

variables {Hi} are not only zero-mean and of unit variance, but they are also independent, as
discussed in Appendix A.3.2. It is thus assumed that the finite separation expansion (230)
of the displacement field is built on the same random variables, and Eq. (238) is rewritten
for convenience as

Cel
m(x; w) ' c̄el

m(x) +
n∑
i=1

√
λ

(i)

Cel
m
ξiu

(i)

Cel
m

(x) =
n∑
i=0

√
λ

(i)

Cel
m

Ξi(w)u
(i)

Cel
m

(x) , (239)

where Ξ = [Ξ1 ...Ξi ...Ξn]T is a vector of n independent, zero-mean, and unit variance
Gaussian random variables Ξi : W → < of finite second order moment and of support
SΞi = <. Therefore, starting from the stochastic weak form (233) and considering the small
strain approximation with Eqs. (237) and (238) yields finding U (x; ξ)7 such that∫

ω

∫
SΞ

n∑
i=0

[√
λ

(i)

Cel
m
ξiu

(i)

Cel
m

(x) : (U(x; ξ)⊗∇0)

]
: [δU ′(x; ξ)⊗∇0] πΞ(ξ)dξdx = 0 ,

∀δU ′ ∈ U(ω)×H(W) , (240)

where u
(i)

Cel
m

is the symmetric matrix notation of u
(i)

Cel
m

. Introducing the discretization (234),

this last equation becomes

n∑
i=0

nC
p∑

p=0

nC
p∑

q=0

δdTk(q)

∧
ωe

∫
ωe

∫
SΞ

[√
λ

(i)

Cel
m
ξiψk(p) (ξ)ψk(q) (ξ)

]
(be)T u

(i)

Cel
m

(x)beπΞ(ξ)dξdx dk(p) = 0 , ∀δdk(q) ,(241)

where dk(p) is the vector of u
(a)

k(p) , part of dm, or again

nC
p∑

p=0

n∑
i=0

∧
ωe

∫
ωe

(be)T u
(i)

Cel
m

(x)bedx︸ ︷︷ ︸
k

(i)
m

∫
SΞ

[√
λ

(i)

Cel
m
ξiψk(p) (ξ)ψk(q) (ξ)

]
πΞ(ξ)dξ︸ ︷︷ ︸

c(i, p, q)

dk(p) = 0 ,

∀q = 0..nC
p , (242)

The stiffness matrix km (236) is thus made of the blocks k(p, q)
m =

∑n
i=0 c

(i, p, q)k(i)
m , ∀ p, q =

0..nC
p . Ghanem and Kruger (1996) have used this formalism to study the loading of a sample

6which is an approximation since the material tensor is actually definite positive.
7We recall that Eq. (125) allows relating the fluctuation U ′(x; ξ) to the displacement U(x; ξ).
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with spatially varying Young’s modulus taking advantage of the structure of the stiffness
matrix.

In the case for which the material stochasticity process is not Gaussian, Ghanem and
Brzakala (1996); Ghanem (1999) have assumed that Cel

m(x; w) depends in a non-linear man-
ner on a Gaussian process. For example Ghanem and Brzakala (1996) have considered an
interface between two media defined by the height

h(x; w) = h(x; Ξ(w)) ' h̄(x) +
n∑
i=1

√
λ

(i)
H Ξi(w)u

(i)
H (x) =

n∑
i=0

√
λ

(i)
H Ξi(w)u

(i)
H (x) , (243)

where the random variables {Ξi} form a Gaussian vector of zero-mean and unit-covariance

matrix, λ
(i)
H and u

(i)
H (x) for i > 0 are the ordered eigen-values and orthonormal eigen-basis

of the correlation RH(x; τ ), n is the order of the expansion, and where we have defined

H0(w) = λ
(0)
H = 1 and u

(0)
H (x) as the expectation h̄(x). As to obtain (230), the polynomial

chaos is then applied on the material operator Cel
m(x; w) written in the vector form as

Cel
m(x; w) = Cel

m(x; h(x; w)) ' Cel
m (x; h(x; Ξ(w))) =

nC
p∑

l=0

uk(l) (X)ψk(l) (Ξ(w)) , (244)

with the coefficients uk(l)(x) evaluated by

uk(l)(x) = E
[(
Cel

m(x;W)− c̄el
m(x)

)
ψk(l)(Ξ)

]
=

∫
<n

(
Cel

m(x; h(x; ξ))− c̄el
m(x)

)
ψk(l)(ξ)πΞ(ξ)dξ , l = 1..nC

p , (245)

and uk(0)(x) = c̄el
m(x). The terms uk(l)(x) of Eq. (245) can be evaluated from the non-

linear dependency of Cel
m(x; w) with the Gaussian random field {H(x; w); x ∈ ω, w ∈ W}

developed under the Karhunen-Loève expansion (243). Proceeding as before, Eq. (241)
becomes

nC
p∑

i=0

nC
p∑

p=0

nC
p∑

q=0

δdTk(q)

∧
ωe

∫
ωe

∫
SΞ

[ψk(i) (ξ)ψk(p) (ξ)ψk(q) (ξ)]

(be)T uk(i)(x)beπΞ(ξ)dξdx dk(p) = 0 , ∀δdk(q) ,(246)

where uk(i)(x) is the symmetric matrix notation of uk(l) , or again

nC
p∑

p=0

nC
p∑

i=0

∧
ωe

∫
ωe

(be)T uk(i)(x)bedx︸ ︷︷ ︸
k

(i)
m

∫
SΞ

[ψk(i) (ξ)ψk(p) (ξ)ψk(q) (ξ)] πΞ(ξ)dξ︸ ︷︷ ︸
c(i, p, q)

dk(p) = 0 ,

∀q = 1..nC
p ,(247)
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In Tootkaboni and Graham-Brady (2010), a spectral stochastic computational scheme
was proposed that links the global properties of multiphase periodic composites to the
random material properties of their microstructural components. In particular, they have
considered the case for which material properties of the two phases of the composite material
are uncorrelated and the case of perforated two-phase composites with correlated elastic
properties. Xu and Graham-Brady (2005) have analysed the elastic behaviour of random
media by considering varying elasticity constants, for the two cases of Gaussian and non-
Gaussian processes.

Finally, the case of perfect plasticity with varying elasticity constants and yield stress
was studied by Rosi and Matthies (2008).
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Figure 30: Schematics of the random unit cells studied: (a) by Pivovarov and Steinmann (2016) in which
the centre location (d1, d2) of the particle is defined by a couple of random variables (D1, D2); (b) by
Pivovarov et al. (2018b) in which the inclusion radius r is defined by a random variable R; and (c) in which
a global stochastic finite element method is considered with the displayed integration points, resketched
from (Pivovarov et al., 2018b).

Local & global Galerkin finite elements. The difficulty with the Galerkin stochastic finite
element method is to define the boundary of phases in heterogeneous structures since the
latter are varying with the realisation w ∈W. Another difficulty with the Galerkin stochastic
finite element method is the definition of the integration process both in the physical domain
ω and in the stochastic support SΞ.

In the context of non-linear elasticity, Pivovarov and Steinmann (2016) have considered
an inclusion embedded in a matrix, see Fig. 30(a), and whose centre (d1, d2) is defined by
a couple of random variables D1 ∼ Ntrunc

d̄1, σ2
1

and D2 ∼ Ntrunc
d̄2, σ2

2
, where Ntrunc is the truncated

normal distribution N (17). These random variables can be defined from two independent,
zero-mean, and unit variance random variables Ξ1, Ξ2 : W → < with Ξ1, Ξ2 ∼ Ntrunc

0, 1 and

D1(w) = d̄1 + σ1Ξ1(w); D2(w) = d̄2 + σ1Ξ2(w) . (248)

The boundary of the inclusion of deterministic radius r is implicitly defined though a level-set
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function

z(x, w) = r

[√
[x1 −D1(w)]2

r2
+

[x2 −D2(w)]2

r2
− 1

]
, (249)

defined as being negative within the inclusion and positive within the matrix. The material
properties, such as the shear modulus µ, are then described by a hyperbolic tangent of the
level set function

µ(x, w) = µ0 +
1

2
[µI − µ0] [1− tanh (kz(x, w))] , (250)

where the subscripts I and 0 refer to the inclusion and matrix respectively, avoiding the
use of a Karhunen-Loève expansion to define the random field. A regular spatial mesh
was then used in the stochastic finite element discretisation. Since the material properties
have large variations in a reduced space, this requires an increase of the basis {ψ(i)

l : l ∈
N0, i = 1..2} and thus of the order of the Hermite polynomials, yielding oscillations due
to numerical errors when performing the integration process in the stochastic support SΞ.
This required a special treatment and a new quadrature rule, in particular in the case
of truncated Gaussian distributions (Pivovarov and Steinmann, 2016). In this stochastic-
local finite element method, Pivovarov and Steinmann (2016) have also considered usual
Lagrangian shape functions ϕ(a)(x) in the physical domain, and sequences of trigonometric
functions to define the shape function ψk(l) (Ξ(w)) in the stochastic domain.

A stochastic-global finite element method was developed by Pivovarov et al. (2018b)
in which the inclusion radius r is defined by a random variable R which follows a log-
normal distribution, see Fig. 30(b). Trigonometric shape functions are considered for both
the physical domain and the stochastic domain, resulting in a global discretisation and
integration rule as illustrated in Fig. 30(c). For the physical domain, the functions are
enriched by discontinuous functions defined by the level-set (249), and a rectangular splitting
was performed to get a local refinement. Compared to local stochastic finite elements, the
stiffness matrix is of reduced size, but its sparsity is lower. Accuracy is also generally lower
(Pivovarov et al., 2018b).

These approaches are in-line with the concept of statistically similar RVE proposed by
Pivovarov et al. (2018a) and shortly presented in Section 4.2.1 since in the latter a stochastic
model of a cell element with statistical properties has to be solved.

5. Stochastic macro-scale simulations

In the general context of non-linear and history dependent material behaviours at the
micro-structure scale, following Eq. (116), the macro-scale response of a body Ω ought to
capture this history-dependency and the meso-scale constitutive law (120) at a given time t
and material point X ∈ Ω is written as

PM (X, t; w) = PM (FM (X, t; w) ;ZM (X, τ ; w) , τ ∈ [0, t], w) , (251)
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where the macro-scale deformation gradient tensor FM(X; w) = I + UM (X; w) ⊗∇0 is
evaluated in terms of the macro-scale displacement UM (X; w) and constitutes the aver-
age deformation gradient at the micro-scale following Eq. (121), and where ZM(X; w) is
a set of internal variables allowing history-dependent processes to be accounted for. In all
generalities, the constitutive equation depends on the micro-structure realisation w ∈ W

because of the geometrical and material uncertainties. In a classical multi-scale simulation
the macro-scale first Piola-Kirchhoff stress tensor PM (X, t; w) follows from the volume av-
eraging of the micro-scale following Eq. (122) which thus substitutes to the constitutive
law (251). However conducting concurrent deterministic non-linear multi-scale analyses is
already computationally demanding, so that concurrent stochastic non-linear multi-scale
analyses is usually unreachable, although in some particular cases it is possible to solve
the stochastic multi-scale problem in a fully coupled way. For example, in the context of
stochastic asymptotic homogenisation in which the fine-scale and coarse scale resolutions
are concurrent, see Section 4.2.2, Fish and Wu (2011) generated the material fields, corre-
sponding to fine-scale constitutive inelastic parameters of the constitutive law (197), using
KL expansion. However, this method can be expensive, and one alternative is to extract
apparent properties during an off-line stage, and to generate random fields at the meso-
scale level that can then be used for stochastic macro-scale simulations. In that case, the
stochastic meso-scale law (251) should be substituted by a surrogate model defined from
these meso-scale random fields.

In what follows, we first introduce general concepts on the discretisation of a random-
field when considering macro-scale stochastic finite elements. Particular attention is paid
on the requirements allowing the stochastic macro-scale simulation to capture the statistical
content of the random field. The different methods developed to represent a random field,
but also to generate pseudo-samples of the random field, are then introduced in a general
context. Some of these methods are particularised, first, in the context of random tensor
fields for stochastic linear analyses and then in the context of stochastic non-linear analyses
for which some multi-fidelity examples are given. Some stochastic finite element methods
used at the macro-scale are then briefly summarised since they closely follow the methods
developed at the micro-scale in Section 4.3.

5.1. Random fields and stochastic finite-element discretisation

5.1.1. Random field description

As discussed in Section 4.1.2, the window technique illustrated in Fig. 25 allows a meso-
scale random field {QM(X, w) : X ∈ Ω, w ∈W}, with the random vectors QM(X) valued
in <n, to be extracted on the macro-scale domain Ω. This random field is characterised
by a correlation matrix RQM

(X; τ ) : Ω × <3 → <n×n defined by Eq. (47), where τ is
the separation vector between two points of Ω. Assuming an homogeneous random field,
the correlation matrix simplifies into RQM

(X; τ ) = RQM
(τ ), and is characterised by the

correlation lengths

lRQMr s
=

∫∞
−∞RQMr s

(τ)dτ

RQMr s
(0)

. (252)
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Figure 31: Extraction by Lucas et al. (2015) of different random field realisations Ex(X, wi), with wi ∈ W

and i = 1..5, of the apparent Young’s modulus Ex of a columnar poly-silicon micro-structure of average grain
size of about lmicro ' 200 nm for: (a) An SVE length lSVE = 0.1µm and; (b) An SVE length lSVE = 0.4µm;
and extraction of (c) The probability density function πEx

of the apparent Young’s modulus Ex for different
SVE sizes lSVE; (d) The corresponding apparent Young’s modulus auto-correlation REx

(τ) for different
SVE sizes lSVE; and (e) Different entries (auto and cross) of the correlation matrix R(τ) for lSVE = 0.1µm;
Reprinted from Computer Methods in Applied Mechanics and Engineering 294, Lucas, V., Golinval, J.C.,
Paquay, S., Nguyen, V.D., Noels, L., A stochastic computational multiscale approach; application to mems
resonators, 141-167. Copyright (2015), with permission from Elsevier.

As an example, Fig. 31 illustrates apparent properties extracted for different SVE length
lSVE values by Lucas et al. (2015) on poly-silicon micro-structures, see Fig. 25(c), of average
grain size of about lmicro ' 200 nm. Figures 31(a) and 31(b) illustrate five random field
realisations Ex(X, w

i) of the Young’s modulus obtained with the window technique, see
Section 4.1.2, for two different SVE length sizes of respectively lSVE = 0.1µm and lSVE =
0.4µm. Clearly, when increasing the SVE length, the “randomness” of the field decreases
since less spatial variations are observed and since the standard deviation σEx decreases. This
is confirmed by Fig. 31(c), which reports the probability density function πEx of the apparent
Young’s modulus for different sizes lSVE of the SVEs. It can be seen than when lSVE increases,
the coefficient of variation of the distribution decreases, and that the apparent properties
tend toward the effective properties of a RVE. Beside its entries distribution, the random
field QM(Ω) defined from the apparent elasticity properties of the anisotropic homogenised
material –different Young’s modulii, Poisson ratios and shear modulii– is characterised by
its correlation matrix RQM

(X; τ ) : Ω× <3 → <n×n. The auto-correlation of the apparent
Young’s modulus is illustrated in Fig. 31(d) for different SVE length lSVE values. As
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shown in Fig. 25(c), since two SVEs share common grains even if they are not intersecting,
a correlation is observed at distances beyond the SVE length, although the correlation
at a distance equal or larger than the SVE size tends to vanish when the SVE length
increases. Finally, some components of the correlation matrix RQM

(τ ), see Eq. (113), of the
homogeneous random field are reported in Fig. 31(e) for a given SVE length lSVE = 0.1µm
of the SVEs. It can be seen that the different auto- and cross-correlations are characterised
by a similar correlation length (252).

Several questions have then to be addressed when it comes to consider these random
fields as material input for stochastic macro-scale simulations, such as how to discretise the
random field with respect to the finite elements, but also, since the random field depends
on the choice of the SVE size, what are the conditions ensuring converge of the distribution
of the macro-scale response.

5.1.2. Discretisation of the random field
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Figure 32: Random field discretisation: (a) Illustration of a uni-variate random field realisation path
{QM(X, w) : X ∈ Ω} and of a finite element mesh discretization Ω ' ∪eΩe into finite element Ωe; (b)
Illustration of different point discretisation methods of the random field sketched in grey with the mid-point
method in green, Gauss-point method in orange and shape function method in blue; and (c) Illustration
of different average discretisation methods of the random field sketched in grey with the spatial-average
method in green and the weighed integral method in blue.

Assuming the random field {QM(X, w) : X ∈ Ω, w ∈ W} description is available
–this point will be discussed in the random-field generation Section 5.2– for any point X in
the finite element discretisation ∪nee Ωe of the macro-structure Ω, the n stochastic material

properties at the ngp integration points X
(i)
gp of the ne finite elements Ωe can be extracted

from a discretization of the random field, see Fig. 32(a). During this discretization the
approximated random field is defined from a finite set of N random vectors U (i) valued in

<n grouped in the form of a global random vector Ug =
[
U (1)T U (2)T ...U (N)T

]T
valued in
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<n·N . In order to define this random field approximation, including the value of N and
the expression of the random vectors U (i), different methods have been developed and their
accuracy has been compared by Der Kiureghian and Ke (1988); Matthies et al. (1997). We
here below give the main lines of some popular methods and refer to the review by Sudret
and Der Kiureghian (2000) for more details

Point discretisation method. For the point discretisation method, the N random vectors
U (i) correspond to the evaluation QM(X

(i)
p ) of the random field at N locations X

(i)
p ∈ X,

i = 1..N . The number N of points and their locations X
(i)
p depend on the method, see Fig.

32(b):

• The mid-point method considers the N = ne finite element centröıds location X
(e)
p =

X
(e)
c , see the green sketch of Fig. 32(b); The random field approximation is then

defined by the random vector Ug =
[
QT

M(X
(1)
c )QT

M(X
(2)
c )...QT

M(X
(ne)
c )

]T
valued in

<n·ne , and the random field at the Gauss integration point X
(i)
gp ∈ Ωe is approximated

by QM

(
X

(i)
gp

)
' QM

(
X

(e)
c

)
; The mid-point method tends to over-represent the vari-

ability of the random field as shown by Der Kiureghian and Ke (1988);

• The integration point method is a similar approach in which the random field is directly
evaluated at the N = ngp Gauss points at location X

(i)
p = X

(i)
gp , see the orange sketch

of Fig. 32(b); The random vector Ug =
[
QT

M

(
X

(1)
gp

)
QT

M

(
X

(2)
gp

)
...QT

M

(
X

(ngp)
gp

)]T
valued in <n·ngp

then defines the random field approximation, and the random field

at Gauss integration point X
(i)
gp is approximated by QM

(
X

(i)
gp

)
; This improves the

accuracy as compared to the mid-point method and we will discuss further on the
accuracy of this approach in the context of stochastic multi-scale method in Section
5.1.3;

• With the shape function method, the random field is evaluated at the N = nnode

finite element nodes of locations X
(a)
p = X(a), see the blue sketch of Fig. 32(b),

and the random vector Ug =
[
QT

M

(
X(1)

)
QT

M

(
X(2)

)
...QT

M

(
X(nnode)

)]T
valued in

<n·nnode
defines the random field approximation; The random field at Gauss integra-

tion point X
(i)
gp is then approximated using the finite element discretization (135) by

QM

(
X

(i)
gp

)
'
∑

(a) ϕ
(a)
(
X

(i)
gp

)
QM

(
X(a)

)
, where ϕ(a)(X) are the nodal shape func-

tions;

• The optimal linear estimation method builds an approximated field under the form
QM (X) ' a(X) + b(X)Ug, with Ug the random vector constructed from N random

vectors U (i) corresponding to the evaluation QM(X
(i)
p ) of the random field at N loca-

tions X
(i)
p ∈ Ω, i = 1..N ; The coefficients functions a(X) and b(X) are evaluated in

order to minimise at each point X ∈ Ω the variance of the error whilst keeping the
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mean unbiased, see the details given by Sudret and Der Kiureghian (2000); In order
to minimise the variance error, one wants

bpq(X) = arg minb′pq(X)

(
E

[(
QMi

(X)− q̄Mi
(X)−

n·N∑
k

b′ik(X)(Ugk − ūgk)

)
(
QMj

(X)− q̄Mj
(X)−

n·N∑
k

b′jk(X)(Ugk − ūgk)

)])
∀i, j, p = 1..n, q = 1..n ·N ; (253)

The solution is obtained by evaluating the stationary point in terms of bpq(X) –i.e.
evaluating the root of the derivative, yielding

b(X) = R̃
−1

Ug
R̃Ug,QM(X) ; (254)

Minimisation of the expectation error implies

ap(X) = arg mina′p(X)

(
q̄Mi

(X)− ai(X)−
n·N∑
k

b′ik(X)ūgk

)
∀i, p = 1..n ;(255)

which is obtained directly by

a(X) = q̄M(X)− b(X)ūg ; (256)

This method always under-estimates the variance of the original random field.

Average discretisation methods. For the average discretisation method, the N = ne random
vectors U (e) correspond to the weighted averages of the random field over the finite element
Ωe with U (e) =

∫
Ωe
QM(X)w(X)dΩe, with the weight function w(X) and e = 1..ne, ne

being the number of finite elements.

• In the spatial average method, the weight function is simply taken as w(X) = 1
V (Ωe)

to evaluate the random vectors U (e), see the green sketch in Fig. 32(c), with Ug

the random vector valued in <n·ne constructed from the ne random vectors U (e); The
random field at the Gauss integration point X

(i)
gp ∈ Ωe is approximated by U (e); The

spatial-average method tends to under-represent the variability of the random field as
shown by Der Kiureghian and Ke (1988); Besides, Matthies et al. (1997) have pointed
out difficulties in the case of non-rectangular elements, such as the possibility to obtain
a non-positive-definite covariance matrix.

• The weighted integral method performs the integration directly on the stiffness ma-
trix KM =

∧
Ωe

∫
Ωe

(be)T Cel
MbedX; Assuming linear elasticity, and assuming that the

elasticity tensor Cel
M can be written under the matrix form Cel

M = c̄el
M [1 +QM(X)]
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with the zero-mean uni-variate random field QM(X), the elementary stiffness matrix
is rewritten

K
(e)
M =

∫
Ωe

(be)T c̄el
Mbedωe︸ ︷︷ ︸

Ke(0)

M

+
nmonomials∑

l=1

a(l)

∫
Ωe
Xα(l)

Y β(l)

Zα(l)

QM(X)︸ ︷︷ ︸
U

(e)
(l)

, (257)

where nmonomials is the number of monomials Xα(l)
Y β(l)

Zα(l)
resulting from the gradient

of the shape function be and possibly from the tensor c̄el
M, and where a(l) is their

coefficients; One thus has the ne ·nmonomials random variables U
(e)
(l) with Ug the random

vector valued in <ne·nmonomials
constructed from the ne ·nmonomials random variables U

(e)
(l) ;

The interpretation of the method is sketched in blue in Fig. 32(c); This method bears
similarities with the shape function point discretization method, but considering as
polynomial approximation the one defined from the gradient of the shape function be

and possibly from the tensor Cel
M.

5.1.3. Convergence analysis

In order to study the effect of the SVE size and of the finite-element size on the distri-
bution of the macro-scale response, Lucas et al. (2015) have studied the eigen-frequencies
of a poly-crystalline MEMS (standing for MicroElectroMechanical Systems) beam. The
micro-structure corresponds to columnar poly-silicon grains of average size of about lmicro '
200 nm, which is not several order of magnitude lower than the characteristic MEMS beam
length of a few µm.

As a reference case, direct Monte Carlo simulations were conducted on the fully discre-
tised beam as illustrated in Fig. 33(a). A random field {EX(X, w) : X ∈ Ω, w ∈ W}
of the homogenised Young’s modulus Ex was then extracted using the window technique
described in Section 4.1.2, for different SVE lengths as illustrated in Fig. 31. For each SVE,
the stochastic computational homogenisation was performed using the framework described
in Section 4.2.1. A stochastic multi-scale method could then be performed by considering
beam finite elements whose material properties were defined by discretising the random field
EX(X) using the integration point method (one Gauss integration point by beam element).
Several random fields {EX(X, w) : X ∈ Ω} trajectories, with w ∈ W, obtained for differ-
ent SVE lengths lSVE, and thus characterised by different corresponding correlation lengths

lREX , were considered for different mesh sizes lmesh, defining the ratio α =
lREX
lmesh

, see Fig.

33(b). A large value of α corresponds in fine to overlapping SVE larger than the finite
element, and on the contrary a small value of α corresponds to smaller SVE than the finite
elements.

Fig. 33(c) shows than when the value of α becomes larger than one, i.e. when the
mesh size is smaller than the correlation length, the coefficient of variation of the structural
quantity of interest distribution, i.e. the first eigen-frequency of the beam, predicted by the
stochastic multi-scale method is converging to the one observed by the direct Monte Carlo
simulations conducted on the fully discretised poly-crystalline beam. This observation holds
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Figure 33: Convergence analysis conducted by Lucas et al. (2015) of the stochastic multi-scale method on
the vibration analysis of a poly-silicon MEMS beam: (a) One realisation of a direct simulation in which all
the grains of the micro-structure realisation w are meshed; (b) Stochastic multi-scale simulation for different

values of the ratio α =
lREx

lmesh
, the ratio between the correlation length of the Youngs modulus, lREx

, and

the mesh size, lmesh, of the beam elements; (c) Comparison of the coefficient of variation
(
σF1

E[F1]

)
of the

first resonance frequency f1 obtained with the direct stochastic method with the ones predicted by the

stochastic multi-scale method for different values of the ratio α =
lEEx

lmesh
and of the SVE length lSV E ; and

(d) Comparison of the first resonance frequency histogram obtained with the direct stochastic method with
the one obtained with the stochastic multi-scale simulation for an SVE length lSV E = 0.4 µm and a beam
mesh size lSV E = 0.27 µm; Reprinted from Computer Methods in Applied Mechanics and Engineering 294,
189, Lucas, V., Golinval, J.C., Paquay, S., Nguyen, V.D., Noels, L., A stochastic computational multiscale
approach; application to mems resonators, 141-167. Copyright (2015), with permission from Elsevier.

for the different sizes of the SVE. Besides, the distributions were also found to be in good
agreement for α > 1 as shown in Fig. 33(d). The requirement to use α > 1 can be physically
understood from Fig. 33(b). Indeed, if the mesh size is larger then the SVE size used to
evaluate the random field, i.e. for the cases α < 1, the random vector of properties associated
to the elements over-represents the scatter, see also Fig. 31(c). On the contrary, in the cases
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in which the SVEs overlap each other, i.e. for the cases α > 1, although the random vector
of properties in a given finite element under-estimates the scatter, this effect is corrected by
using a random field which naturally involves a spatial correlation. A similar analysis holds
in the case of several Gauss integration points per elements by using the length associated
to a Gauss integration point instead of the Finite Element length in the definition of α.

This example illustrates several important points:

• Because of the existing spatial correlation between the homogenised properties from
the SVEs, the meso-scale properties should be defined under the form of a random-field
and not considered as random vectors;

• The SVE length modifies the characteristics of the meso-scale random field of ho-
mogenised properties; However, as long as its correlation length remains small com-
pared to the structure size, it is possible to conduct stochastic multi-scale analyses;

• At the structural scale, the finite element length, or the length associated to a Gauss
point subdomain in the case of the integration point method, should remain smaller
than the meso-sale correlation length, which depends on the SVE length: considering
smaller SVE results in decreasing the size of the finite elements at the structural scale.

5.1.4. Case of spatially uncorrelated meso-scale properties
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x
0.0

0.5
1.0

1.5
2.0

y
0.0

0.5
1.0

1.5
2.0

1.0
1.5
2.0
2.5
3.0
3.5
4.0

Material Property

(b) Interpolation

Figure 34: Stochastic multi-scale simulation of elastic UD composites conducted by Wu et al. (2018a): (a)
discretisation of the random field (top) into cells having the size of the SVEs and of the structure (bottom)
into finite elements of size smaller than the RF discretisation; and (b) properties interpolation smoothed at
the SVEs boundaries; Reprinted from Composite Structures 189, Wu, L., Chung, C.N., Major, Z., Adam,
L., Noels, L., From SEM images to elastic responses: A stochastic multiscale analysis of UD fiber reinforced
composites, 206-227, Copyright (2018), with permission from Elsevier.

In some cases, as in the homogenisation of elastic UD composites conducted by Wu et al.
(2018a) and illustrated in Figs. 25(b) and 29(b), the correlation can be neglected for two
adjacent SVEs because the amount of shared fibres remain marginal. In that case, if the
distributions are close enough from Gaussianity, which was the case for large enough SVEs,
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see Fig. 29(b), the homogenised properties of two adjacent SVEs are independent and the
apparent properties can be considered as random tensors {Cel

M(w) : w ∈W} or simply Cel
M.

Stochastic multi-scale simulations were then conducted by considering the discretisation
of the random field and of the finite elements illustrated in Fig. 34(a). The random field
at the two ends of the sample was discretised into domains of size 125 × 125µm2 whilst
the random field of material properties was discretized into squares of 25 × 25µm2 in the
central part in which higher strain gradients were expected because of the loading condition.
The random material properties were generated under the form of random tensors {Cel

M(w) :
w ∈W} based on the homogenisation of SVEs of sizes matching the cell size of the random-
field discretization, i.e. either 125 × 125µm2 or 25 × 25µm2. As a result, the transition
of the material properties in the random vector field discretization follows a step function,
leading to a strong contrast of material properties at the boundaries of the random field
discretization. In order to avoid an artificial stress concentration which could arise in the
finite element resolution at the boundaries of the random field discretization, smooth-step
functions, see Fig. 34(b), were used to describe the transition of material properties at the
internal boundaries of the random field discretization. The finite element discretization was
then conducted so that the finite elements remain smaller that the grid of the random vector
field discretisation in order to account for the correct amount of properties scatter.

Alternatively, one can still consider random fields {CM(X, w) : X ∈ Ω, w ∈ W} as in
Section 5.1.3, thus avoiding the need for the smooth-step functions.

5.2. Representation and Generation of random vectors and fields

During the stochastic resolution of the structural problem using e.g. MC simulations, see
Section 5.5, several random fields of the apparent properties need to be considered: one for
each structural scale resolution. Besides, if the structural-scale domain geometry changes,
the random fields need to be defined on a different spatial discretisation. It is thus not
possible to define the random field realisations directly from the stochastic homogenisation
described in Section 4. Similarly, when considering Spectral Stochastic Finite Element, the
random field of the apparent meso-scale properties needs to be adequately represented.

It is thus necessary to represent the random field from the apparent properties extracted
during the stochastic homogenisation and, if needed, to be able to generate pseudo-samples
of it, with an arbitrary number and on an arbitrary spatial domain.

We here below summarise some methods that are commonly considered in the literature
and which are more detailed in Appendix A.

5.2.1. Expansion method

Considering the random vector field QM(Ω) = {QM(X, w) : X ∈ Ω, w ∈ W}, with the
random vector QM valued in <n. The expectation is denoted by q̄M (X) = E [QM (X)] :
Ω→ <n and the covariance matrix by R̃QM

(X; τ ), see Eq. (50).

Representation.
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• As already introduced in Section 4.3.3, following Appendix A.3.2, a Karhunen Loève
(KL) expansion allows representing the random field QM(Ω) by the collection of

QM(X; w) ' q̄M(X) +
m∑
i=1

√
λ

(i)
Q Hi(w)u

(i)
QM

(X) =
m∑
i=0

√
λ

(i)
QM

Hi(w)u
(i)
QM

(X) , (258)

where H is a new random vector of uncorrelated (but possibly dependent) compo-

nents Hi, λ
(i)
QM

and u
(i)
QM

(X) for i > 0 are the ordered eigen-values and orthonormal

eigen-basis of the covariance matrix R̃QM
(X; τ ), m is the order of the expansion, and

where we have defined H0(w) = λ
(0)
QM

= 1 and u
(0)
QM

(X) as the expectation q̄M. The
method is largely used for Gaussian processes {QM (X; w) : X ∈ Ω, w ∈W) in which
case H = [H1 ...Hi ...Hm]T is a vector of m independent, zero-mean, and unit variance
Gaussian random variables Hi : W → < of finite second order moment and of support
SHi = <. The difficulty with the KL approach is to solve the eigen-value problem as ex-
plained in Appendix A.3.2. One solution consists in defining a Galerkin-type procedure
as suggested by Ghanem and Spanos (1991). Recently, in order to ease the implemen-
tation in the case of physical domain of given complexity, the use of isogeometric basis
functions in the Galerkin-type procedure was developed by Li et al. (2018). Another
approach is to sample the random field as the collection {QM(X(1)), ..., QM(X(N))},
following Section 5.1.2, in order to define a new random vector Y valued in <N ·n and
to build a covariance matrix whose eigen-values and vectors can be extracted using
the PCA as summarised in Appendix A.3.2.

• In the context of non-Gaussian random field, following Appendix A.4.4, the random
vector field QM(Ω) = {QM(X, w) : X ∈ Ω, w ∈ W}, with the random vector QM

valued in <n can then be considered as a deterministic non-linear mapping of the
random germ Ξ valued in <ng following the Polynomial Chaos Expansion (PCE)

QM(X; w) ' q̄M(X) +

nC
p∑

l=1

uk(l)(X)ψk(l)(Ξ(w)) , (259)

with the complete multi-index set of total degree at most p defined by Eq. (228) and

composed of the elements k(0) = {0, ..., 0}, k(1), ..., k(nC
p ), with nC

p = (ng+p)!
ng !p!

− 1, and

with the multi-variate polynomial chaos ψk(l)(Ξ) taken from a polynomial orthonormal
family {ψk(l)(Ξ)} of the Hilbert space H(W). The coefficients uk(l)(X) are defined as

uk(l)(X) = E [(QM(x)− q̄M(X))ψk(l)(Ξ)]

=

∫
<ng

(QM(X)− q̄M(X))ψk(l)(ξ)πΞ(ξ)dξ , l = 1..nC
p . (260)

• In order to define the polynomials chaos ψk(l)(Ξ) and to identify the coefficients
uk(l)(X), the PCE can be applied on the random vector H valued in <m of uncorrelated
(but dependent in the non-Gaussian case) components Hi defined in the KL expansion
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(258), with H = f(Ξ) '
∑nC

p

l=0 ck(l)ψk(l)(Ξ), see the details in Appendix A.4.4. This
consists in a deterministic non-linear mapping of the random germ Ξ, e.g., considering
the random germ as ng = m independent and uniformly distributed random variables
Ξi. As an example, one can consider the inverse of the Rosenblatt transform with
Ξ = fR U(H) following Appendix A.1.3, in combination with the shifted Legendre
polynomial for ψk(l)(Ξ), see the details provided in Appendix A.4.3. The coefficients
valued in <m are then evaluated by

ck(l) = E [Hψk(l)(Ξ)] =

∫
<m
f(ξ)ψk(l)(ξ)πΞ(ξ)dξ , (261)

and uk(l)(X) of Eq. (260) corresponds to uk(l)(X) =
∑m

i=1

√
λ

(i)
QM
ck(l) iu

(i)
QM

(X). As

for the KL expansion, in order to evaluate λ
(i)
QM

and u
(i)
QM

(X), the approach can be

applied on the random vector Y =
[
QT

M(X(1)) ...QT
M(X(N))

]T
taking values in <n·N

and built as the collection defined by {QM(X(1)), ..., QM(X(N))} of random vectors
sampled for X = (X(1), ..., X(N)). This last approach however suffers from the curse
of dimensionality when the size of the expansion m ≤ n ·N increases.

Generation.

• For Gaussian random fields, starting from the KL expansion (258), pseudo-samples
can be generated as

qpM(X) ' q̄M(X) +
m∑
i=1

√
λ

(i)
QM
ηpiu

(i)
QM

(X) , (262)

from pseudo-samples ηp. Assuming Gaussianity, the pseudo-samples ηp are generated
as m independent Gaussian variables ηpi using either Monte Carlo sampling (MC) or
Latin Hyper-cube Sampling (LHS). In the case in which the random field was sampled
as the collection {QM(X(1)), ..., QM(X(N))} in order to build a larger random vector
Y on which PCA was applied, the formula is still used to generate pseudo samples yp of
the random vector Y and the random field pseudo-samples {qpM(X(1)), ..., qpM(X(N))}
are obtained by extraction of their components as summarised in Appendix A.3.3. If
other locationsX than at the initial sampling pointsX(k), k = 1..N are sought, an op-
timal linear estimation, see details in Section 5.1.2, can be used. A non-Gaussian trans-
formation, see Appendix A.1, can also be applied in order to simulate non-Gaussian
random fields, with the details reported by Vořechovský (2008). The method has
however some limitations as studied by Vořechovský (2008). An iterative procedure
combined to a non-linear transformation can also be applied on the pseudo-samples
ηp in order to generate non-Gaussian random fields as summarised in Appendix A.3.4.

• For non-Gaussian random fields, considering the PCE (259), and assuming that the
coefficients uk(l)(X) of the polynomials chaos ψk(l)(Ξ) have been identified, pseudo-
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samples can be generated as

qpM(X) ' q̄M(X) +

nC
p∑

l=1

uk(l)(X)ψk(l)(ξp) , (263)

from pseudo-samples ξp of the random germ.

• After having applied the PCE on the KL expansion, see Eq. (261), and assuming the
coefficient ck(l) have been identified for a given germ Ξ and a family {ψk(l)(Ξ)} of the
Hilbert space, pseudo-samples of the random field follow from Eq. (262), for given
pseudo-samples ηp. The latter follow from pseudo-samples ξp of the random germ

following ηp = f(ξp) '
∑nC

p

l=0 ck(l)ψk(l)(ξp). The generation of the pseudo samples ξp is
straightforward if the transform H = f(Ξ) was designed such that the random germ
Ξ can be considered as m independent random variables Ξi, see Appendix A.4.3.

5.2.2. Spectral methods

Considering the random vector field QM(Ω) = {QM(X, w) : X ∈ Ω, w ∈ W}, with the
random vector QM valued in <n. The expectation is denoted by q̄M (X) = E [QM (X)] :
Ω → <n and the covariance matrix by R̃QM

(X; τ ), see Eq. (50). We assume that the
random field is homogeneous with the covariance matrix R̃QM

(τ ) : <d → <n×n, with d the
space dimension.

Representation. Following Shinozuka and Jan (1972), a spectral representation can be con-
structed from the random field evaluation at a set of discrete positions τ = {τ (nx ny nz)}
defined by the vector components τ (nx ny nz) = [nx∆τx ny∆τy nz∆τz]

T , where ∆τi, for
i = x, y, z, is the spatial increment in each dimension i and where ni = 0, 1, 2, ..., Ni − 1,
for i = x, y, z, with Ni the total number of discrete points in each dimension i. This allows
redefining the covariance R̃[τ] as the set

R̃r s[τ] = {RQMr s

(
τ (nx ny nz)

)
} , (264)

from which the set of spectral density matrix S[κ] can be computed using the Discrete Fourier
Transform (DFT) method, see details in Appendix A.6, with the set κ = {κ(mxmymz)} of
regularly spaced sampling points in the frequency domain of vector components κ(mxmymz) =[
κ

(mx)
x κ

(my)
y κ

(mz)
z

]T
with mi = 0, 1, ... for i = x, y, z.

Generation. The set of spectral density matrix S[κ] represents the random field in the fre-
quency domain and serves as a basis to generate pseudo-random fields

• Considering first the case of a Gaussian Random field, since S
(
κ(mxmymz)

)
is an

Hermitian matrix, one has S
(
κ(mxmymz)

)
= H

(
κ(mxmymz)

)
H∗
(
κ(mxmymz)

)
, with H∗

the conjugate transpose of H. A pseudo-sample realisation of random field QM(Ω)
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is generated as a set of random vector realisations qpM(X(i)) at different locations
X(i) ∈ Ω, with for entry r of a realisation

qpMr
(X(i)) = q̄Mr +

√
2∆<


n∑
s=1

∑
mx

∑
my

∑
mz

Hr s

(
κ(mxmymz)

)
η(smxmymz)e2πi(X(i)·κ(mxmy mz)+θ(smx my mz))

}
, (265)

where ∆ = ∆κx ∆κy ∆κz, where θ(smxmymz) is an independent random variable (for
each s, mx, my, mz) sampled from Θ ∼ U0,1, and where η(smxmymz) is sampled from
a logarithmic transformation of a uniform distribution, see details in Appendix A.6.1.

• Following Deodatis and Micaletti (2001), it is possible to map the Gaussian field
generated by Eq. (265) to a non-Gaussian field. To this end, an intermediate spectral
representation SN [κ] to be used in the generator of the Gaussian random fields (265)
is iteratively built so that the generated random field, after mapping, has the correct
spectral representation STarget [κ], see details in Appendix A.6.2.

5.2.3. Maximum entropy

Considering the random vector QM valued in <n, the maximum entropy principle al-
lows constructing a probability mass or density function when only a limited amount of
information is available, see Appendix B, without making assumptions on what is unknown.

Representation. In order to construct the probability density function, assuming a contin-
uous random vector, the Shannon entropy s (πQM

) ∈ < of the probability density function
πQM

, which represents the measure of the uncertainties of the random vector QM, with

s (πQM
) = −

∫
<n
πQM

(qM)log (πQM
(qM)) dqM , (266)

is maximised under some known constraints. The constraints can correspond to the known
statistical information such as the support SQM

⊂ <n of the distribution or some statistical
properties written under the form∫

<n
g(qM)πQM

(qM)dqM = b ∈ <m , (267)

with the mapping g(qM) : <n → <m. As an example, statistical moments can be used to
define the constraints. The maximum entropy principle is then stated as

πQM
= arg maxπ∈Ps(π) , with

P =

{
π of support SQM

:

∫
<n
π(qM)dqM = 1 , and

∫
<n
g(qM)π(qM)dqM = b

}
, (268)
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where the second constraint is a normalisation. The constrained problem resolution consists
in introducing Lagrange multipliers (λ0, λ) ∈ <+×<m with

∫
<n exp

(
−λTg(qM)

)
dqM <∞,

yielding the Lagrangian

L(π; λ0, λ) = s(π)− (λ0 − 1)

(∫
<n
π(qM)dqM − 1

)
− λT

(∫
<n
g(qM)π(qM)dqM − b

)
.

(269)
The problem (268) is then substituted by finding the stationary point of L(π; λ0, λ) at πQM

for (λ0, λ) = (λsol
0 , λsol), with

πQM
(qM) =


exp(−λsolT g(qM))

exp(λsol
0 )

if qM ∈ SQM
;

0 if qM /∈ SQM
.

(270)

• A numerical method can be develop to solve the optimisation problem and is sum-
marised in Appendix B.3.

• In some cases a closed form expression of πQM
can be derived. For example, in the

case in which the support SQM
= <n, the expectation denoted by q̄M = E [QM] ∈ <n

is known and in which the covariance matrix denoted by R̃QM
, see Eq. (50), is also

known, the maximum entropy principle yields, as shown by Soize (2017),

πQM
(qM) =

1

(2π)
n
2

√
det
(
R̃QM

)exp

(
−1

2
(qM − q̄M)T R̃

−1

QM
(qM − q̄M)

)
, (271)

resulting in a multi-variate Gaussian distribution. In all generalities, the random
variables QMr are dependent. Other examples including cases of bounded support
and/or in which only the first moment is given are detailed by Soize (2017).

• We now consider the random vector field QM(Ω) = {QM(X, w) : X ∈ Ω, w ∈ W},
with the random vector QM valued in <n and of support SQM

= <n. For simplicity, we
also assume that the random field is homogeneous, but this is not mandatory. We still
consider that both the expectation, denoted by q̄M = q̄M (X) = E [QM (X)] : Ω→ <n
and the covariance matrix denoted by R̃QM

(τ ) = R̃QM
(X; τ ), are known and have to

be constrained. Since the maximum entropy principle yields in this case a multi-variate
Gaussian distribution (271), one can define the homogeneous germ Ξ(X) valued in <n
of independent and zero-mean random fields Ξr(Ω), r = 1..n, i.e. with the covariance
matrix R̃Ξ(τ ) such that R̃Ξ(0) = In. This germ is obtained from the non-linear
transformation Ξ(X) = fN(QM(X)) with

Ξ(X) = fN(QM(X)) = L−1
QM

(QM(X)− q̄M) , (272)

where the matrix LQM
has been obtained by the Cholesky decomposition of R̃QM

(0),
i.e. R̃QM

(0) = LQM
LT
QM

, see Appendix A.1.1. In that case, the d × n, with d the
spatial dimension, correlation lengths {lRΞi i

}k, with k = 1..d and i = 1..n, define the
correlation of the random field.
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Generation.

• In all generalities Markov chain Monte Carlo (MCMC) simulations, see Appendix
A.5.4, are used to generate pseudo-samples qpM. Let us consider a stationary random
process Z(T) = {Z(t(i)) : t(i) ∈ T ⊂ <+

0 } in the discrete set T = (t(1), ..., t(k), ...),
with t(k)− t(k−1) = ∆t and Z(t(i)) valued in <n. Having a pseudo-sample z

(
t(p)
)

= zp,

the pseudo-sample z
(
t(p+1)

)
can be constructed in order to simulate the random vector

QM taking values in <n and having as stationary distribution πZ(t) (z) of the Markov
chain, the distribution density function πQM

(qM) (270), see details in Appendix A.5.4.

• In the case of a Gaussian like distribution as in Eq. (271), Monte Carlo (MC) sim-
ulations can be used after having defined the germ Ξ valued in <n as a zero-mean
with unit covariance matrix, i.e. R̃Ξ = In, Gaussian distribution, from the non-linear
transformation (272).

• In the case of a random field which can be expressed in terms of a germ Ξ(X) valued in
<n as a zero-mean with unit covariance matrix, i.e. R̃Ξ(0) = In, Gaussian distribution
with the correlation structure {lRΞi i

}k with k = 1..d, i = 1..n known, a Gaussian
generation process such as the one developed by Shinozuka (1971), see Section 5.2.2,
can generate pseudo samples ξpi (X

(q)), i = 1..n at different locations X(q) from which

the pseudo-samples qpm(X(q)) = fN−1 (
ξp(X(q))

)
arise, e.g. by inverting Eq. (272) in

the case in which the maximum entropy yields the multi-variate distribution (271).

5.2.4. Data-driven probability sampling

We here present the data-driven sampling method that has recently been developed by
Soize and Ghanem (2016) and that is detailed in Appendix A.7.

Representation. Considering the random vector QM valued in <n, and with support SQM
⊂

<n, it is assumed that the available information consists in a given set of N statistically
independent realisations qkM = QM(wk), with wk ∈ W, k = 1..N . It is further assumed
that the local structure of the given data-set is preserved via a random matrix QM =
[Q1

M ... Qk
M ... QN

M], which is defined on (W,F,P), with value in <n×N and in which each
column Qk

M, k = 1..N , is an independent copy of the random vector QM. Therefore, the
matrix qM = [q1

M ... qkM ... qNM] is a realisation of QM.
The observation data-set qM is then used to

• Define a random matrix realisation η = [η1 ... ηk ... ηN ] of size n×N defined from the
realisations of the random vector H of zero-mean and unit variance obtained through
a PCA, see Appendix A.3.1, with

{ηk}i =
1√
λ

(i)
QM

(qkM − q̄M)Tu
(i)
QM
, k = 1..N , (273)

with the ordered eigen-values λ
(i)
QM

> 0, and the normalised eigen-vectors u
(i)
QM

of the

covariance matrix R̃QM
, and with the mean q̄M.
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• Construct a kernel-density estimation of the probability distribution of the random
vector H;

• Construct a diffusion-map basis φ ∈ <N×N from the observation data-set η for dis-
covering and characterising the geometry and the structure of the data-set; A reduced-
order representation of the diffusion map φr ∈ <N×m then follows;

These three steps are detailed in Appendix A.7.

Generation. A MCMC process is then used to generate extra data samples based on the
matrix qM through the following steps:

• Since the given data-set η serves as N realisations of the random vector H, it is also
a realisation of the random matrix V = [H1 ... Hk ... HN ] with value in <n×N . This
random matrix V is then represented using the reduced diffusion map basis φr as

V = ZφT
r , (274)

in which
Z = Va, with a = φr

(
φT

r φr

)−1 ∈ <N×m . (275)

In particular, using the realisation η of the stochastic matrix V yields the realisation
z = ηa ∈ <n×m.

• Additional realisations ηp of the random matrix V are computed through Eq. (274)
from additional realisations zp of Z obtained using a MCMC algorithm, see Appendix
A.7.

• The generated random data-set ηp = [η1p ... ηN
p
] is transferred back to recover the

scale and mean of the original data-set by inverting Eq. (273), yielding N new pseudo-
samples

qi
p

M = q̄M +
n∑
j=1

√
λ

(j)
QM
u

(j)
QM
ηi
p

j , ∀i = 1..N , (276)

providing N pseudo-samples for each value of p.

5.3. Linear cases & Tensor random fields

In the context of linear problems, random fields of dependent material properties can
be generated using the expansions methods. Liebscher et al. (2013) have considered a
particular spatial correlation structure as an exponential function multiplied by sine- and
cosine-functions and an iterative KL expansion to generate non-Gaussian random-fields as
summarised in Appendix A.3.4. Mehrez et al. (2018) have considered hierarchical stochastic
homogenisation in the context of non-crimp fabric laminates: considering uncertainties in the
resin and carbon-fibre properties, stochastic apparent properties of a tow could be described
using the Polynomial Chaos Expansion as described in Section 5.2.1; apparent properties of
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non-crimp fabric could then be predicted from observations of tow spacing distribution and
represented using the Polynomial Chaos Expansion and so on...

However, because the partial differential equations of a boundary value problem can be
stated in terms of positive-definite matrices, there is an interest in being able to represent
and generate random matrices or random matrix fields. For example, in the context of linear
mechanics, the meso-scale stochastic constitutive law (251) simplifies as

ΣM(X; w) = Cel
M(X, w) : εX(UM(X; w)) , (277)

with the Cauchy stress tensor ΣM(X; w) and the small deformation tensor operator εX (U)
standing for the small strain tensor 1

2
(∇0 ⊗U +U ⊗∇0). The constitutive behaviour is

thus defined by the random field {Cel
M(X, w) : X ∈ Ω, w ∈ W} of the meso-scale apparent

properties expressed as a random fourth-order tensor field, the latter being also expressed
as a 6 × 6 positive definite random matrix field {Cel

M(X, w) : X ∈ Ω, w ∈ W} using the
Voigt notations.

Without loss of generality, we here consider the random field {Cel
M(X, w) : X ∈ Ω, w ∈

W}, with Cel
M : W → M+

n (<), where M+
n (<) refers to all symmetric positive-definite real

matrices of size n × n. A realisation w ∈ W is denoted by cel
M(X) = Cel

M(X, w) ∈ M+
n (<),

∀X ∈ Ω.
We here introduce some concepts for a n× n symmetric matrix b ∈ Mn(<):

• The norm of the matrix

‖b‖ = sup‖z‖≤1,z∈<n (‖bz‖) = |λmax
b | , (278)

with λmax
b the eigen-value of largest absolute value of the matrix b;

• The Frobenius norm

‖b‖2
F = tr

(
bTb

)
=

n∑
i=1

n∑
j=1

b2
ij (279)

with the properties
‖b‖ ≤ ‖b‖F ≤

√
n‖b‖ ; (280)

• The Loewner ordering definition{
a < b if b− a ∈ M+

n (<) ;

a ≤ b if b− a ∈ M+
0n(<) .

(281)

In order to represent, and afterwards to generate, random fields, several physical con-
straints have to be satisfied, e.g. a material tensor should remain symmetric and some terms
have to be strictly positive. Besides, as emphasised by Soize (2006), in order to be able to
conduct macro-scale stochastic analyses, an important property for the random matrix field
is its invertibility, which is stated as

E
[
‖
(
Cel

M(X)
)−1 ‖2

]
≤ c2 < +∞ ∀X ∈ Ω . (282)
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As pointed out by Soize (2006), if cel
M(X) belongs almost surely8 to M+

n (<), then
(
cel

M(X)
)−1

exists almost surely, but this does not imply the mean-square convergence and Eq. (282)
cannot simply be deduced.

In this section we present several approach for generating pseudo-samples celp

M (X) of the
random field {Cel

M(X, w) : X ∈ Ω, w ∈W} whilst ensuring invertibility.

5.3.1. Partition theorem

Remembering the definition of a statistically Representative Volume Element (RVE),
here denoted ωRVE(w), of size lVE large enough as compared to the size of the micro-structure
constituents lm, see Section 4.1.1, following Huet (1990) there exists in the context of lin-
ear elasticity and under the small displacement assumption, an effective modulus tensor
ceff, which is independent on the micro-structure realisation w ∈ W and on the boundary
conditions.

Considering now Stochastic Volume Elements (SVE) realisations ωlSVE
(w) of a given size

lSVE and with w ∈W, in the context of linear elasticity the apparent homogenised elasticity
tensor Capp

lSVE
(w) can be extracted following the approach described in Section 4.2.1 for a given

realisation of a given SVE length lSVE. In particular the problem can be solved either using
constrained boundary displacement (131), with the so-called KUBCs, or constrained surface
traction, with the so-called SUBCs, yielding respectively Capp KUBC

lSVE
(w) and Capp SUBC

lSVE
(w),

with Sapp KUBC
lSVE

(w) and Sapp SUBC
lSVE

(w) their respective inverse, i.e. the compliance tensors.
Huet (1990); Ostoja-Starzewski (1993)9 have formulated the so-called partition theorem

from energetic considerations:

sReuss−1 ≤
(

E
[
Sapp SUBC
l′SVE

])−1

≤
(

E
[
Sapp SUBC
lSVE

])−1

≤ (seff)−1 =

ceff ≤ E
[
Capp KUBC
lSVE

]
≤ E

[
Capp KUBC
l′SVE

]
≤ cVoigt , (283)

for l′SVE ≤ lSVE, and where we have used the Voigt notations and Loewner ordering.

5.3.2. High number of parameters approach

We here assume that the random field {Cel
M(X, w) : X ∈ Ω, w ∈ W}, with Cel

M :
W → M+

n (<) could be extracted in an accurate way, e.g. following the window technique
illustrated in Fig. 25 and discussed in Section 4.1.2, by evaluating enough realisations
ciM(X) = Cel

M(X, w) ∈ M+
n (<), for w ∈W.

Introduction of a lower bound and of a Cholesky decomposition. In order to ensure the
invertibility (282), a deterministic symmetric positive definite lower bound cL is introduced
such that

0 ≤ sL − Sel
M(X, w) ∀X ∈ Ω, w ∈W , (284)

8A condition is almost surely satisfied if there is a subset of probability 0 where it is not respected
9Huet (1990) has actually established a formulation in which the SVEs are subsets of the RVE
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where we have defined the inverse of the lower bound sL = c−1
L , which exists and is also

positive definite, the random matrix Sel
M(X, w) =

(
Cel

M(X, w)
)−1

, and where we have used

the Loewner ordering definition (281). We note that we have Cel
M(X, w)− cL ≥ 0.10. From

the definition of a positive semi-definite matrix, one has:

zT sLz − zTSel
M(X, w)z ≥ 0 ∀z ∈ <n . (288)

In particular, considering as vector z the normalised eigen-vector umax
S (X) corresponding

to λmax
S (X), the maximum eigen-value of the positive definite matrix Sel

M(X,w), this last
relation becomes

(umax
S (X))T sLu

max
S (X)− (umax

S (X))T Sel
M(X, w)umax

S (X) ≥ 0 , (289)

or, using the properties of eigen-values and normalised eigen-vectors,

(umax
S (X))T sLu

max
S (X) ≥ λmax

S (X) . (290)

Since sL = c−1
L is positive definite, one always has

zT sLz ≤ λmax
sL
zTz ∀z ∈ <n , (291)

with λmax
sL

the maximum eigen-value of the positive definite matrix sL. Considering for z
the particular case of the normalised eigen-vector umax

S (X) in the last equation, Eq. (290)
is rewritten as

λmax
sL
≥ λmax

S (X) , (292)

which demonstrates the property (282).
The lower bound introduced in Eq. (284) allows defining the random field {∆Cel

M(X, w) :
X ∈ Ω, w ∈W}, with ∆Cel

M : W → M+
0n(<) as

∆Cel
M(X, w) = Cel

M(X, w)− cL . (293)

10We remark that if sL ≥ sM, and considering ucL and ucM as the respective square root matrices of cL

and cM –which exist because they are symmetric positive definite– one has starting from Eq. (288) with
z = ucM

y:
yTuTcM

sLucM
y ≥ yTuTcM

sMucM
y = yT Iy ,∀y ∈ <n|y 6= 0 . (285)

This shows that g = uTcM
sLucM

≥ I, with g a symmetric definite positive matrix and g = ugug. Therefore,
considering y = u−1

g z for any z ∈ <n|z 6= 0 in this last equation results in

zT Iz = zTu−1
g gu−1

g z ≥ zTg−1z = zTu−1
cM

cLu
−1
cM
z ,∀z ∈ <n| z 6= 0 . (286)

Considering this time z = ucMp for any p ∈ <n|p 6= 0 in this last result yields

pT cMp = pTucMucMp ≥ pT cLp ,∀p ∈ <n|p 6= 0 , (287)

showing that cM ≥ cL.
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Besides, the Cholesky decomposition allows defining the random field {L∆Cel
M

(X, w), X ∈
Ω, w ∈W}, with the realisation L∆Cel

M
(X, w) a lower triangular matrix in <n×n with

∆Cel
M(X, w) = L∆Cel

M
(X, w)

(
L∆Cel

M
(X, w)

)T
. (294)

The matrix L∆Cel
M

(X, w) has n(n+ 1)/2 non-zero entries, which form the n(n+ 1)/2 depen-

dent entries of a new random vector field QM(Ω) = {QM(X, w) : X ∈ Ω, w ∈ W}, with

the random vector QM valued in <
n(n+1)

2 . No conditions are required on the elements of the
random vector field QM(Ω) since Eq. (293) ensures the invertibility (282).

Definition of the random vector field. The random vector field QM(Ω) = {QM(X, w) : X ∈
Ω, w ∈ W}, with the random vector QM valued in <m and of support SQM

= <m can be
defined from the entries of the triangular matrices of the Cholesky decomposition (294),
possibly applied on different dependent random fieldse.g. when considering a multi-physics
problem characterised by several tensorial properties. Considering a random field defined by
ntensor dependent random matrix fields {C(i)

M (X, w) : X ∈ Ω, w ∈ W}, i = 1..ntensor, with

C
(i)
M (X, w) valued in <n(i)×n(i)

, each random matrix field yields the triangular matrix field

{L
∆C

(i)
M

(X, w), X ∈ Ω, w ∈ W} of n(i)(n(i)+1)
2

dependent entries valued in <. The random

vector fieldQM(Ω) = {QM(X, w) : X ∈ Ω, w ∈W} is then defined from the random vector

QM valued in <m and of support SQM
= <m with m =

∑ntensor

i=1
n(i)(n(i)+1)

2
and with

QM =

[
L

∆C
(1)
M 1 1

L
∆C

(1)
M 2 1

L
∆C

(1)
M 2 2

... L
∆C

(1)
M n(1) n(1)

... L
∆C

(ntensor)
M n(ntensor) n(ntensor)

]T
. (295)

It is mandatory to define a single random field in the case in which different apparent
properties are obtained from the stochastic homogenisation process in order to take into
account their dependency.

Lucas et al. (2015) have used this approach in order to define a vector random field
QM valued in <21 from the random field {Cel

M(X, w) : X ∈ Ω, w ∈ W} of the meso-scale
apparent properties of a columnar poly-crystalline material. After applying the Cholesky
decomposition (294) on the matrix random field ∆Cel

M(Ω) obtained from Eq. (293), the
21 entries of the random triangular matrix field L∆Cel

M
(Ω) were used to define the vector

random field QM(Ω).
When extending to thermo-mechanical damping, Wu et al. (2016) have also applied the

Cholesky decomposition (294) on the apparent thermal conductivity random tensor field
{KM(X, w) : X ∈ Ω, w ∈ W}, yielding the 6 entries of the random triangular matrix
field L∆KM

(Ω). The 21st entries of the random vector field QM(Ω) = {QM(X, w) : X ∈
Ω, w ∈ W}, with QM(X, w) ∈ <33, were then obtained from L∆Cel

M
(Ω), the Cholesky

decomposition of the elasticity tensor increment, and the entries 22 to 27 from L∆KM
(Ω)

the Cholesky decomposition of the conductivity tensor. Entries 28 to 33 were obtained from
the dilation coefficient random matrix field {AM(X, w) : X ∈ Ω, w ∈ W}, which does
not require a Cholesky decomposition because there is no restriction on its definite positive
nature.
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Lucas et al. (2017) have considered stochastic higher order homogenisation of 3D micro-
structures for plate structural simulations, yielding the random matrix field {UM(X, w) :
X ∈ Ω, w ∈W} valued in <6×<6 of the so-called A-B-D matrix of thin structures. Because
of the characteristic of the micro-structure (rough surface in that case), the apparent density
per unit surface was also defining a random value field {PM(X, w) : X ∈ Ω, w ∈W}, with
a lower bound ρL. The 21st entries of the random vector field QM(Ω) = {QM(X, w) : X ∈
Ω, w ∈W}, with QM(X, w) ∈ <22, were then obtained from L∆UM

(Ω) the Cholesky decom-
position of the A-B-D matrix increment, and the 22nd entry was obtained by considering the
random value field resulting from the transformation log(PM(X, w)−ρL) in order to ensure
the positive nature of the density ρM.

Evaluation of the lower bound. The definition of the lower bound sL depends on the material
system under consideration. For a multi-phase material ω = ∪iωi of known and fixed volume
fractions vi, the Reuss bound sReuss = 1

V (ω)

∫
ω

sm(x)dω =
∑

i visi can be evaluated from the
phases material compliance tensor si and can be used to define the lower bound cL. However,
when evaluating the random field from SVE simulations, e.g. following the window technique
illustrated in Fig. 25, the volume fraction is not constant from one SVE to the others and
the Reuss bound cannot be used.

In the context of the homogenisation of the mechanical properties of a poly-crystal, Lucas
et al. (2015) have considered as lower bound cL an isotropic elasticity tensor ciso(Eiso, νiso)
whose Young’s modulus Eiso and Poisson ratio νiso result from an optimisation problem

Eiso, νiso = arg min(E′iso, ν′iso)∈C‖ciso(E ′iso, ν
′
iso)− ccrystal‖

with C =
{
E ′iso, ν

′
iso ∈ <+ : ciso(E ′iso, ν

′
iso) ≤ ccrystal

}
, (296)

with ccrystal the elasticity tensor of a single-crystal.
Wu et al. (2016) have considered thermo-mechanical damping problem and have con-

sidered ciso(Eiso, νiso) with Eq. (296) as a bound cL for the elasticity tensor random field
{Cel

M(X, w) : X ∈ Ω, w ∈ W}. An empirical monotonic relation in terms of the grain size
was used to define the lower scale conductivity tensor κm (x) during the application of the
window technique. Knowing the minimum grain size of the SVE realisations w, the same
relation was used in order to evaluate the bound κL of the homogenised thermal conductivity
tensor field {KM(X, w) : X ∈ Ω, w ∈W}.

In the case of a higher order homogenisation of 3D micro-structures for plate structural
simulations, Lucas et al. (2017) have used the available realisations extracted following the
window technique in order to evaluate a bound uL of the random field {UM(X, w) : X ∈
Ω, w ∈ W} valued in <6×6 of the so-called A-B-D matrix of thin structures. To this end,
they set

uL = ελminI6 , (297)

where λmin is the smallest of the eigen-values of the evaluated realisations UM(X, w) and
0 < ε < 1. A similar approach was used to evaluate the apparent density bound.

115



Generation. The method able to generate pseudo-samples c
(i)p

M (X) of the ntensor dependent

random matrix fields {C(i)
M (X, w) : X ∈ Ω, w ∈ W}, i = 1..ntensor, with C

(i)
M (X, w) valued

in <n(i)×n(i)
is then summarised as

• Evaluate a number of observations C
(i)
M (X, wl), wl ∈ W with l = 1..nobservation, e.g.

from SVE simulations following the window technique illustrated in Fig. 25 and dis-
cussed in Section 4.1.2;

• When required, i.e. when c
(i)
M (X) ∈ M+

n(i)(<), evaluate a lower bound and apply the

Cholesky decomposition (294) to evaluate the observations L
∆C

(i)
M

(X, wl) of the tri-

angular random matrix field {L
∆C

(i)
M

(X, w) : X ∈ Ω, w ∈W} of n(i)(n(i)+1)
2

dependent

entries valued in <;

• Build the realisations QM(X, wl) of the random vector field QM(Ω) = {QM(X, w) :

X ∈ Ω, w ∈W} valued in <m and of support SQM
= <m with m =

∑ntensor

i=1
n(i)(n(i)+1)

2

following Eq. (295);

• Use the realisations QM(X, wl) to build a random vector field representation and
generator following Section 5.2; In particular, assuming that enough realisations could
be extracted in order to represent the fields in an accurate way, an expansion method
or a spectral method followed by a non-Gaussian mapping can be considered;

• Generate pseudo-samples qpM(X);

• Deduce the pseudo-samples lp
∆C

(i)
M

(X) from Eq. (295); and deduce the pseudo samples

c
(i)p

M (X) from Eq. (294).

This methodology was used in combination with a spectral generator in the context of
poly-silicon elasticity by Lucas et al. (2015), thermo-elastic damping by Wu et al. (2016), and
plate bending by Lucas et al. (2017), and in the context of two-phase composite materials
by Stefanou et al. (2017). It was used in combination with a copula method, see Appendix
A.2.2, by Wu et al. (2018a) in the context of two-phase composite materials. Liebscher et al.
(2012) have considered both the KL expansion and the spectral generator in the context
of open foams. Finally, Sena et al. (2013) have used the window technique to extract the
spatial correlation structure of a two-phase material.

As an illustration example, the described methodology using a spectral generator com-
bined to a non-Gaussian mapping, see Section 5.2.2, was applied by Wu et al. (2016) to gen-
erate pseudo-samples of the apparent thermo-mechanical properties of a poly-silicon micro-
structure. Figure 35 compares, for some entries, the distributions and cross-correlation eval-
uated from the observations C

(i)
M (X, wl), wl ∈W with l = 1..nobservation extracted from SVE

simulations, e.g. following the window technique illustrated in Fig. 25, with the distributions
and cross-correlation arising from the generated pseudo-samples c

(i)p

M (X), p = 1, 2, ... This
example shows that the method can represent non-Gaussian distributions, see Figs. 35(a)
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and 35(b), whilst preserving the cross-correlation, see Figs. 35(c) and 35(d). However, Wu
et al. (2016) showed that although non-Gaussian distributions of the random vector field
QM(Ω) = {QM(X, w) : X ∈ Ω, w ∈ W} valued in <m are always accurately captured
by the intermediate pseudo-samples qpM(X), when combining their entries to evaluate the

pseudo samples c
(i)p

M (X) to represent the random fields {C(i)
M (X, w) : X ∈ Ω, w ∈ W},

i = 1..ntensor, with C
(i)
M (X, w) valued in <n(i)×n(i)

, some components loose accuracy when
they result from several dependent component of qpM(X). Illustrations of a random field
realisation directly deduced from the window technique and as generated are also given in
respectively Fig. 35(e) and 35(f) showing that the “randomness” of the random field is
preserved by the generator.

5.3.3. Covariance structure and spectral representation of elasticity tensors

Malyarenko and Ostoja-Starzewski (2016b,c, 2017) have developed models of second-
order random fields, taking values in some sets of tensors, for each of the eight different
elasticity symmetry classes of crystal. For these models, the one-point, i.e. mean c̄el

M,
and two-point covariance, i.e. R̃Cel

M
(τ ) where R̃ is a 8th-order tensor and τ is the vector

between two material points, functions need to be explicitly specified, under the assumption
of statistical homogeneity and wide sense isotropy11 The two-point correlation is needed to
account for the dependency in the orientation of neighbouring crystals.

In particular Malyarenko and Ostoja-Starzewski (2017) derived the general form of the
two-point covariance tensor R̃Cel

M
(τ) under the form (Karimi et al., 2020)

R̃Cel
Mi j k l p r s t

(τ ) =
29∑
n=1

L
(n)
i j k l p r s t(τ )K(n)(τ) , (298)

where the 8th-order tensors L(n) depend on the symmetry class and are given by Malyarenko
and Ostoja-Starzewski (2016a), and where the scalar functions K(n)(τ) can be obtained by
micro-mechanics considerations: e.g. using the window techniques in combination with MC
simulations, as described in Section 5.3.2, see also the work by Sena et al. (2013). Finally,
using this structure, Malyarenko and Ostoja-Starzewski (2017) have also derived the general
expression of the spectral expansion of the random field Cel

M.
Extending this approach to account for the SVE size has been studied by Karimi et al.

(2020), using as a basis the partition theorem, see Section 5.3.1.

5.3.4. Bayesian inference of meso-scale random fields

More recently, assuming that realisations ciM(X) = Cel
M(X, wi) ∈ M+

n (<), for wi ∈ W,
could be extracted following the window technique illustrated in Fig. 25 and discussed in
Section 4.1.2, the random field of an apparent uni-variate elastic property, and in particular
its correlation structure, was inferred using the Bayesian approach, see Section 3.4.2.

11Here homogeneity and wide sense isotropy are related to the random field and not the material property,
i.e. R̃Cel

M
(kτ ) = r(k)R̃Cel

M
(τ )r−1(k) for k belonging to the group of rotation and reflection in <3 and r(k) an

orthogonal representation of that group.
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Rappel et al. (2019c) have inferred the Young’s modulus random field of poly-crystalline
beams by constructing a random field characterised by non-Gaussian uni-variate marginal
distributions (at different material points X(q) ∈ Ω) that are joined in a single distribution
using Gaussian copulas. They used a beta distributions for the uni-variate marginal dis-
tributions of the Young’s modulus in order to ensure its positiveness. The parameters of
the correlation matrix, characterising the spatial correlation, and of the uni-variate distribu-
tion were inferred from the SVE realisations using the Bayesian approach. Using Bayesian
learning, Savvas et al. (2020) have identified the most appropriate correlation kernels and
marginal distributions of uni-variate random field corresponding to different entries of the
apparent elasticity tensor field {Cel

M(X, w) : X ∈ Ω, w ∈ W} of two-phase composite ma-
terials. The method should be extended to multi-variate random fields to account for the
cross-correlation function between the entries.

5.3.5. Limited amount of information is available

Soize (2005, 2006); Guilleminot et al. (2011); Noshadravan et al. (2013) have applied the
maximum entropy principle, see the summary in Section 5.2.3, in order to represent random
matrices when the available information is limited. The available information is typically
the positive definite nature of the matrix, some statistical moments, or again some known
bounds on the matrix. The maximum entropy principle was also applied by Mignolet and
Soize (2008) to enforce the variance of a set of eigenvalues in stochastic dynamics problems.

Case in which the expectation is known. This case was developed by Soize (2005) who
considered the random matrix field {Cel

M(X, w) : X ∈ Ω, w ∈W}, with Cel
M : W → M+

n (<),
with the expectation c̄el

M(X) = E
[
Cel

M(X)
]
∈ M+

n (<) known. Because of the positive definite
nature of the expectation, the Cholesky decomposition allows defining the lower triangular
matrix lc̄el

M
(X)

c̄el
M(X) = lc̄el

M
(X)

(
lc̄el

M
(X)

)T
. (299)

This, in turns, allows defining the symmetric random matrix field {G(X, w) : X ∈ Ω, w ∈
W}, with G : W → M+

n (<) and with identity as mean value, following

Cel
M(X) = lc̄el

M
(X)G(X)

(
lc̄el

M
(X)

)T
, (300)

with E [G(X)] = In.
Considering the random matrix G : W → M+

n (<), the associated Shannon entropy (266)
is written as

s (πG) = −
∫

M+
n (<)

πG(g)log (πG(g)) dg , (301)

whose constrained maximisation defines the probability density function πG. The maximum
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entropy principle (268) then becomes

πG = arg maxπ∈Ps(π) , with

P =

{
π of support M+

n (<) :

∫
M+
n (<)

π(g)dg = 1 ,

∫
M+
n (<)

gπ(g)dg = In ,

and

∫
M+
n (<)

log (det(g))π(g)dg = cg , |cg| < +∞
}
. (302)

The first constraint defining the manifold P enforces the positive-definiteness of G, the sec-
ond constraint enforces the normalisation of the probability density function, and the third
constraint the matrix expectation. The last constraint of the manifold P was introduced by
Soize (2005) in order to ensure the invertibility relation (282).

The solution of the constrained optimisation problem can be expressed in terms of the
Lagrange multipliers following Eq. (270), and in turns in terms of cg used as a constraint
in Eq. (302). Following Soize (2000), expressing the distribution in terms of the latter
parameter is not necessarily useful since its purpose is to ensure the invertibility. Instead,
the probability density function can be written as

πG (g) =

c0 (det(g))
(n+1)(1−δ2G)

2δ2
G exp

(
−n+1

2δ2
G

tr (g)
)

if g ∈ M+
n (<) ;

0 if g /∈ M+
n (<) ;

(303)

in which c0 is the normalisation constant and δG is the dispersion parameter controlling the
fluctuation of the random matrix and defined as:

δ2
G =

E [||G− In||2F ]

n
, (304)

where 0 < δG <
√

n+1
n+5

is required to hold in order to ensure E
[
‖
(
Cel

M(X)
)−1 ‖2

F

]
≤ c2 <

+∞ (Soize, 2005) and thus, because of Eq. (280), the invertibility (282). This last
condition substitutes to the last constraint of the optimisation problem defined by Eq.
(302).

Case in which bounds are known. Assuming a deterministic symmetric positive definite
lower bound cL is known such that Cel

M(X, w) > cL(X) is satisfied, then the random field
{∆Cel

M(X, w) : X ∈ Ω, w ∈W}, where ∆Cel
M : W → M+

n (<) can be defined from Eq. (293)
and the approach developed in the previous paragraph can be applied on the latter.

Guilleminot et al. (2011); Noshadravan et al. (2013) have developed two methods in
order to introduce both a deterministic symmetric positive definite lower bound cL and a
deterministic symmetric positive definite upper bound cU such that

0 < cL(X) < Cel
M(X, w) < cU(X) ∀X ∈ Ω, w ∈W , (305)

allowing the following non-linear transformation

N(X, w) =
(
Cel

M(X, w)− cL(X)
)−1 − (cU(X)− cL(X))−1 . (306)
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It is also considered that the expectation n̄(X) = E [N(X)] ∈ M+
n (<) is known. The

approach developed in the previous paragraph can then be applied on the random tensor
field {N(X, w) : X ∈ Ω, w ∈ W}, with N : W → M+

n (<). We note that, because of
the non-linear mapping, this method does not constrain the expectation of Cel

M(X), so that
generated samples based on this formalism will not have the same expectation.

Another approach proposed by Guilleminot et al. (2011) is to introduce the bounds when
writing the constrained optimisation problem (302), which now becomes

πCel
M

= arg maxπ∈Ps(π) , with

P =
{
π of support SCel

M
with SCel

M
= {cel

M ∈ M+
n (<) : cL < cel

M < cU} :∫
S

Cel
M

π(cel
M)dcel

M = 1 ,

∫
S

Cel
M

cel
Mπ(cel

M)dcel
M = c̄el

M ,∫
S

Cel
M

log
(
det(cel

M − cL)
)
π(cel

M)dcel
M = cL , |cL| < +∞

and

∫
S

Cel
M

log
(
det(cU − cel

M)
)
π(cel

M)dcel
M = cU , |cU| < +∞

 . (307)

The first constraint defines the support, the second constraint enforces the normalisation of
the probability density function, and the third constraint the matrix expectation. The last
two constraints were introduced by Das and Ghanem (2009) to control the behaviour near
the bounds.

The lower and upper bounds were evaluated by Guilleminot et al. (2011); Noshadravan
et al. (2013) from micro-structure realisations using the partition theorem, see Section 5.3.1,
in the context of poly-crystalline materials.

Generation of random matrix field. The resolution of the constrained optimisation problem
(307) yields a distribution in terms of the Lagrange multipliers following Eq. (270), and in
turns in terms of cL and cU. The generation of pseudo-samples cpM can be achieved using a
Markov Chain Monte Carlo method, see Appendix A.5.3.

The other cases result in the probability density function (303) of the random matrix
field {G(X, w) : X ∈ Ω, w ∈ W}, with G : W → M+

n (<) with identity as mean value.
The probability density function is controlled by the dispersion parameter δG (304). Fol-

lowing Soize (2005); Guilleminot et al. (2011), one can define the n(n+1)
2

homogeneous germs
Ξi j(X) valued in < of independent and zero-mean random fields, i.e. with the covariance12

R̃Ξi j(τ ) such that R̃Ξi j(0) = 1, 1 ≤ i ≤ j ≤ n. This germ is obtained from a non-linear
transformation of the lower triangular random matrix field {LG(X, w) : X ∈ Ω, w ∈ W}
of the new Cholesky decomposition

G(X, w) = LG(X, w) (LG(X, w))T . (308)

12In this section, the symbol R̃Ξi j
(τ ) is not the component i j of the matrix R̃Ξ(τ ) but the covariance of

the random variable field Ξi j .
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The non-linear transformation reads{
LGi i

(X) = δG√
n+1

√
2hai (Ξi i(X)) and;

LGi j
(X) = δG√

n+1
Ξi j(X) if j > i ;

(309)

with the parameter ai = (n+1)

(2δ2
G)

+ (1−i)
2

and where hai defines a non-linear mapping from a

Gaussian random variable towards a Gamma random variable of shape parameter ai and
rate parameter 1, i.e.

Γ = hai(Ξ) = F Γ
ai, 1, 0, 1

−1 (
FN

0,1(Ξ)
)

∼ Γai, 1, 0, 1 , (310)

where FN
0, 1 is the zero-mean and unit variance Gaussian cumulative distribution, and where

F Γ
ai, 1, 0, 1

is the cumulative distribution of the Gamma distribution Γai, 1, 0, 1 defined by Eq.

(20). Since the n(n+1)
2

homogeneous germs Ξi j(X), 1 ≤ i ≤ j ≤ n, valued in < are

independent with the covariance R̃Ξi j(τ ) such that R̃Ξi j(0) = 1, the d× n(n+1)
2

, with d the
spatial dimension, correlation lengths {lRΞi j

}k with k = 1..d, 1 ≤ i ≤ j ≤ n, define the

correlation of the random field.
In this case, the generation of pseudo-samples celp

M follows

• Evaluate a number of realisations Cel
M(X, wi), e.g. from SVE simulations;

• If required evaluate a lower bound cL(X) and an upper bound cU(X), e.g. using
partition theorem (283) as suggested by Guilleminot et al. (2011); Noshadravan et al.
(2013), in order to define the observations ∆Cel

M(X, wi), withX ∈ Ω, wi ∈W, through
Eq. (293) or the observation N(X, wi), with X ∈ Ω, wi ∈ W, through Eq. (306);
These observations then substitutes to Cel

M(X, wi) in the following;

• Perform the different non-linear mappings, i.e. through (300), from either the obser-
vations Cel

M(X, wi), ∆Cel
M(X, wi) or N(X, wi), with X ∈ Ω, wi ∈ W, in order to

evaluate the observations G(X, wi) and the dispersion parameter δG from Eq. (304);

• Evaluate the d× n(n+1)
2

correlation lengths {lRΞi j
}k with k = 1..d, 1 ≤ i ≤ j ≤ n, e.g.

from the non-linear mappings (308-310);

• Use a Gaussian generation process such as the one developed by Shinozuka (1971),
see Appendix A.6.1, to generate pseudo samples ξpi j(X

(q)), 1 ≤ i ≤ j ≤ n, at dif-

ferent locations X(q), with Ξi j the independent and normalised Gaussian variables of
correlation lengths {lRΞi j

}k with k = 1..d.

• From the pseudo-samples ξpi j(X
(k)) evaluate the pseudo samples gp(X(q)) through the

mappings (308-310);

• Perform the different non-linear mappings, i.e. through Eq. (300), from the pseudo
samples gp(X(q)) to obtain the pseudo-samples of either celp

M (X(q)), ∆celp

M (X(q)) or
np(X(q)), and in the last cases finally evaluate the pseudo-samples of celp

M (X(q)) through
either Eq. (293) or Eq. (306).

121



5.4. Non-linear cases: multi-fidelity approach

In the linear case, the meso-scale stochastic constitutive law (251) simplifies in the eval-
uation of tensor random fields, as detailed in Section 5.3, since the macro-scale behaviours
is fully characterised by the latter. However, in the context of non-linear and history depen-
dent material behaviours at the micro-structure scale, following Eq. (116), a surrogate of
Eq. (251) has to be provided, which bears some difficulties since it should remain accurate
for different loading conditions but also for the full range of micro-structure realisations.

Because of the prohibitive cost of direct computational homogenisation and of the possi-
ble loss of accuracy of reduced order models, it is possible to conduct multi-fidelity analyses
in which a high fidelity model (HFM) is first calibrated and then used to train a low fidelity
model as suggested by Fish et al. (2018).

In particular, Fish et al. (2018) have used such a multi-fidelity model to develop a
computational certification framework of woven composites under limited experimental data,
in which the high fidelity model is a first-order computational homogenization model, which
resolves microstructural details including the structure of defects, as illustrated in Fig. 23,
and in which the low fidelity model is a reduced-order homogenization in the spirit of the
unit cells used in Section 4.2.2.

This multi-fidelity approach is a pragmatic approach for stochastic multi-scale simulation
in the non-linear range since it allows the definition of a “fast” stochastic model and since
stochastic computational homogenisation is unreachable.

5.4.1. Meso-scopic constitutive behaviours

One solution is to use an existing constitutive model whose parameters are defined as
random fields. Yin et al. (2008) have conducted simulations on porous SVEs in order to
obtain the stochastic properties of the parameters of a porous steel alloy constitutive material
model, and Yin et al. (2009) used the Karhunen-Loève expansion method to generate these
stochastic parameters.

Hun et al. (2019) have homogenised 2D particle-reinforced matrix using a circular moving
window technique to extract the random-field {[K(X; w)G((X; w))]T ; X ∈ Ω, w ∈W} of
an assumed isotropic elastic behaviour characterised by apparent bulk k and shear g mod-
ulii. They have extracted a homogenised critical energy release rate, which was approxi-
mated as being deterministic. Hun et al. (2019) have generated random field realisations
{[kp(X) gp(X)]T : X ∈ Ω}, though a non-linear transformation from a bi-variate Gaus-
sian field. They have thus built a stochastic meso-scale elasticity-phase-field formulation
using the homogenised critical energy release rate extracted from lower scale simulation and
approximated as being deterministic.

In the context of MicroElectroMechanical Systems (MEMS), adhesive surface forces, such
as van der Waals (vdW) forces and capillary forces, are of comparable order of magnitude
as the repulsive surface forces described by a Hertz model. As a result, the contact forces
fM(dM; X) exhibit an attractive and a repulsive parts in terms of the contact distance
dM as sketched in Fig. 36(a). Because the surface roughness is of random nature, the
apparent force evolution at the meso-scale exhibits uncertainties. Hoang et al. (2017, 2018)
have generated random surfaces, standing for micro-scale realisations wk ∈ W, from which
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the apparent contact force evolution FM(dM; X, wk) could be predicted from a micro-
mechanics model standing as high-fidelity model. Clearly the evolution is non-linear with
the separation distance dM, and, in order to perform stochastic analyses of the MEMS
behaviour, a stochastic low fidelity model of the adhesive contact force was developed. Since
the adhesive contact curve has a shape similar to a Morse potential, it was described by

fM(dM) =

{
fmax(e−2aright(dM−dmax) − 2e−aright(dM−dmax)) for dM ≥ dmax;

fmax(e−2aleft(dM−dmax) − 2e−aleft(dM−dmax)) for dM < dmax.
(311)

which reaches the maximum adhesive force fmax at a distance dmax, and involves the adhesive
energy eM = aright + aleft. A fourth parameter is defined as the distance dlim at which the
compressive force reaches a given value, e.g. 2 MPa.

Performing Monte-Carlo (MC) simulations of the micro-mechanics model allowed ex-
tracting the observations fkmax, dkmax, ekM, and dklim for each micro-mechanics model realisa-
tion wk ∈ W, see the observation curves in Fig. 36(b). The observation vectors were then
constructed as

qkM =

[
log(ekM)

σlog(EM)

log(fkmax)

σlog(Fmax)

dkmax

σDmax

log(dkmax − dklim)

σlog(Dmax−Dlim)

]T
, (312)

in which the log operators are used to enforce the physical constraints, i.e. the positive
nature, during the generation process. The vectors qkM correspond to observations of the
random vector QM : W → <4. Hoang et al. (2017, 2018) have shown that two neighbour-
ing SVEs ω(X; wk) and ω(X ′; wk) yield spatially uncorrelated apparent properties QM.
Following the discussion in Section 5.1.4, the apparent properties were thus considered as
random vectors and not random vector fields.

A polynomial chaos expansion of the random vector QM : W → <4 was then considered
and a generator was constructed following the polynomial chaos expansion (PCE) methodol-
ogy summarised in Section 5.2.1 and detailed in Appendix A.4.3. Pseudo-samples qpM could
then be obtained from which the pseudo-samples fpmax, dpmax, epM, and dplim are deduced from
Eq. (312) and the pseudo-samples of the adhesive contact curves fpM(dM) from Eq. (311),
see some examples in Fig. 36(c).

5.4.2. Stochastic MFH model

In the following we detail a process developed by Wu et al. (2018b, 2019) for particle-
reinforced composites using Mean-Field Homogenisation (MFH) as a stochastic low fidelity
model. In the context of MFH, the volume element ω is not discretised and is defined by
an equivalent ellipsoid embedded in a matrix material, see Fig. 27(d), on which a micro-
mechanics based model is applied to extract the homogenised response, see Section 4.2.4.
Wu et al. (2018b, 2019) have identified the equivalent MFH model from computational
homogenisation performed on different SVE realisations as sketched in Fig. 37, leading to
a stochastic MFH meso-scale model. MFH was also considered by Hoang et al. (2016) as
a low fidelity model in order to determine the size of RVE. Equivalent MFH models of
nano-composites have also been identified by Yang et al. (2013) from the overall mechanical
behaviour given by molecular dynamics simulations.
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Inverse identification of the stochastic MFH model. Wu et al. (2018b, 2019) have considered
as high-fidelity model the computational homogenisation described in Section 4.2.1 and
applied on SVE of random 52% volume ratio particle-reinforced matrix constructed using
the technique described in Section 3.2.1 and illustrated in Fig. 9. The SVE length considered
was lSVE = 25µm and the extracted apparent Young’s modulus distributions are illustrated
in Fig. 29(b). The low fidelity model considered was the MFH model described in Section
4.2.4.

In the context of linear elasticity, Wu et al. (2018b) have extracted the fibre volume
fraction vI, the equivalent inclusions of equivalent semi-axes ã and b̃, equivalent orientation
θ̃ and the equivalent matrix elastic properties as illustrated in Fig. 38(a) for each SVE
realisation ω(X; wk) whose homogenised elasticity tensor was extracted in Section 4.2.1.
The resulting equivalent values are reported in Fig. 39 in the first three and in the last
columns, where the dependency between the parameters can be observed.

Wu et al. (2019) have extended this methodology in the context of elastic inclusions em-
bedded in an elasto-plastic matrix as illustrated in Fig. 38(b). In that case, the incremental-
secant MFH is used as low fidelity model and, beside the equivalent inclusions and elastic
matrix properties being evaluated in the elastic regime, an equivalent matrix yield stress
σ̃Y 0 and hardening law r̃0(p̃0) = k̃10 p̃0 + k̃20

(
1− e−m̃0p̃0

)
of the non-linear incremental se-

cant MFH model, see Fig. 38(b), was extracted from each SVE realisation ω(X; wk) by
computational homogenisation. The extracted effective parameters for the different SVE
realisations ω(X; wk) with wk ∈W are reported in Fig. 39, and the study of the correlation
distance matrix by Wu et al. (2019) showed a dependency between most of the parameters.

Taking advantage of the incremental-secant MFH scheme which can account for Lemaitre-
Chaboche damage-enhanced materials through a virtual unloading, the inverse identification
was then applied by Wu et al. (2019) to the case of elastic-inclusions embedded in a damage-
enhanced elasto-plastic matrix following the methodology illustrated in Figs. 38(c)-38(d).
For a given SVE, once the equivalent inclusion and matrix elastic properties are identified
from the elastic behaviour, see Fig. 38(a), the equivalent damage evolution law d̃0(p̃0) is
identified from the virtual unloading step of the incremental-secant formulation through
the change in the elastic response, see Fig. 38(c). The equivalent matrix hardening law
r̃0(p̃0) = k̃10 p̃0 + k̃20

(
1− e−m̃0p̃0

)
can then be extracted from the effective (or undamaged)

stress σ̄0

1−d̃0
evolution evaluated during the reloading process, see Fig. 38(d). The extracted

effective elasto-plastic parameters are also reported in Fig. 39 for the different SVE reali-
sations ω(X; wk), with wk ∈ W. The application to the damage-enhanced elasto-plasticity
holds up to strain softening onset only since the stress-stain curve looses objectivity beyond
that point. The method can still be applied during strain softening by considering other ob-
jective quantities such as an equivalent fracture critical energy release rate. Critical strength
and energy release rates were extracted from SVE direct simulations by Nguyen et al. (2019)
for carbon fibre reinforced high-cross-linked RTM6 epoxy resin and exploited in the MFH
inverse identification process by Calleja et al. (In Preparation).

One important note is that, apart in the elastic-regime for which the homogenisation is
not assuming a loading case, the equivalent properties extracted with the methodology can
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depend on the loading case, in which case the micro-model should be enriched.

Random field generation process. This low fidelity model of an SVE ω(X; wk) is defined by
its fibre volume fraction vI, by the equivalent semi-axes ã and b̃ of the equivalent inclusion
of equivalent orientation θ̃, by the equivalent matrix Young’s modulus Ẽ0 and Poisson ratio
ν̃0, by an equivalent matrix yield stress σ̃Y 0 and by an equivalent matrix hardening law
r̃0(p̃0) = k̃10 p̃0 + k̃20

(
1− e−m̃0p̃0

)
.

Since each SVE realisation ω
(
wk
)
, wk ∈W, yields new effective values, Wu et al. (2019)

have defined the observation vector qkM = [vkI
ãk

b̃k
θ̃k Ẽk

0 ν̃
k
0 σ̃

k
0 k̃

k
10
k̃k20

m̃k
0]T , where the super-

script k refers to the SVE realisation ω
(
wk
)
. These vectors qkM correspond to observations

of the random vector QM : W → <9 of meso-scale effective properties. Following the discus-
sion in Section 5.1.4, two neighbouring SVEs ω(X; wk) and ω(X ′; wk) of particle-reinforced
composites yield spatially uncorrelated apparent properties QM and the apparent properties
are thus considered as random vectors and not random vector fields.

Considering nSVE = 1900 independent realisations allowed Wu et al. (2019) to define
the observation data-set qM = [q1

M ... qkM ... qn
SVE

M ] as a realisation of the random matrix QM.
The data-driven sampling method developed by Soize and Ghanem (2016) and summarised
in Section 5.2.4, was then applied in order to generate 18,000 additional samples. 300
random observations and 300 pseudo-samples are illustrated in Fig. 40 showing that the
pseudo-samples respect the statistical content, including dependency, of the observations.

5.5. Macro-scale realisations

In the absence of dynamical effects the equilibrium of the body Ω was formulated by Eq.
(117) repeated here for clarity as

PM (X; w) ·∇0 + b(X) = 0 ∀X ∈ Ω , ∀w ∈W , (313)

where the subscript “M” refers to the local value at the macro-scale, PM is the first Piola-
Kirchhoff stress tensor, and the gradient operator ∇0 refers to the macro-scale reference
configuration. The linear momentum equation is completed by the boundary conditions
(118-119), also repeated for clarity as

UM(X; w) = uDM
∀X ∈ ∂DΩ , ∀w ∈W , and (314)

PM(X; w) · nM = tM ∀X ∈ ∂NΩ , ∀w ∈W , (315)

where tM is the surface traction, per unit reference surface, on the Neumann boundary
∂NΩ of outward unit normal nM in the reference configuration, and ūDM

is the constrained
displacement on the Dirichlet boundary ∂DΩ. In these equations we assume that the uncer-
tainties result from the micro-scale information only.

The uncertainties of the material properties can then be propagated to the macro-scale
structural response through a stochastic finite element discretisation Ω ∼ ∪eΩe of the
boundary value problem problem (313) as suggested by Alzebdeh and Ostoja-Starzewski
(1996); Ostoja-Starzewski and Wang (1999); Ghanem and Spanos (1991); Le Maitre and
Knio (2010). To this end, the problem is completed by the stochastic constitutive behaviour
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(251) which is formulated under the form of a random field, see Section 5.3 in the linear
range and Section 5.4 in the non-linear range. The random field is discretised following the
methods developed in Section 5.1.

The different stochastic finite element methods detailed in Section 4.3 can then be used
to evaluate the stochastic structural behaviour. These methods are here summarised in the
context of handling the meso-scale random field {QM(X, w) : X ∈ Ω, w ∈W} of apparent
meso-scale properties and their technical aspects are discussed. A recent discussion on
their practical applications was given by Arregui-Mena et al. (2016). Finally, an alternative
to the stochastic multi-scale approach is to consider a multi-scale adaptive model, which
locally resolves the heterogeneity and their randomness in sub-domains where they affect the
separation of scales, whilst considering an homogenenous deterministic continuum elsewhere.
This will be briefly summarised in Section 5.5.4.

5.5.1. Monte-Carlo simulations

The Monte-Carlo simulation strategy, see also Section 4.3.1, involves considering nMC

realisations QM(X, wi), with wi ∈ W, of the random field QM(Ω). In practice pseudo-
samples {qpM(X(q)) : X(q) ∈ Ω} are generated by any of the different methods summarised in
Section 5.2 and a deterministic simulation is conducted for each realisation. As an example,
Fig. 33(c) was obtained using the MC simulation approach.

Assuming the standard deviation of the structural response FM is σFM
, the error on the

expectation of FM is a random variable E following a Gaussian distribution (Nouy, 1999)

E = E[FM]− 1

nMC

nMC∑
i

FM(wi) ∼ σFM√
nMC

N0, 1 , (316)

with the normal distribution (17), showing that the error decreases with the square-root of
the number of pseudo-samples but does not depend on the dimension of the random field.

The Monte-Carlo simulations method has several advantages

• Any of the different random-field representation and generation methods, see Section
5.2, can be considered;

• Both linear and non-linear problems can be handled;

• Modifications to an existing finite-element code are limited to the discretisation of the
random field, see Section 5.1;

• It can capture rare events, but this requires a high number of realisations nMC in order
to have enough samples in the regions of rare events;

• It can handle systems that have large variability and involve complex models that
include several dependent random variables since Eq. (316) shows that the error does
not depend on the size of the random field;
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• Parallelisation is straightforward since it consists in sending the different uncoupled
deterministic resolutions on different processors.

The main disadvantage of the MC simulation method is that it can require a high number
of realisations in order to be accurate, as shown by the error (316) of order O(nMC−1/2

), which
decreases with the square root of the number of samples. Accuracy has to be assessed during
the iterations by asserting the convergence of the structural responses distribution. Several
strategies have thus been developed to reduce the number of samplings, which are detailed
by Caflisch (1998); Nouy (1999); Stefanou (2009), among which two commonly used methods
are

• Variance-reduction techniques in which the generation of pseudo-samples is controlled
in order to improve the efficiency, e.g. in the importance sampling technique the
generation of samples is controlled by a sampling distribution concentrated in the
regions of rare events; this is, however, only efficient for a limited number of random
variables; in the stratified sampling technique, the sampling region is first divided, e.g.
with a regular grid with uniform density;

• Quasi-Monte Carlo method: Whilst Monte Carlo methods use independent pseudo-
samples (following pseudo-random sequences), with the Quasi-Monte Carlo method,
the pseudo-samples are correlated (following a quasi-random or low discrepancy se-

quence) to make them more uniform; Convergence is faster, order O
(
nMC−1

logk(nMC)
)

instead of O(nMC−1/2
); The method is however rather used for integration than sim-

ulation and behaves like Monte Carlo in high dimension (Caflisch, 1998); However, it
can provide faster convergence when studying structural failure as shown by Pitz and
Pochiraju (2019).

5.5.2. Stochastic Galerkin finite element method

The displacement field solution of (313) is written as a continuous random field U(Ω) =
{U(X) : X ∈ Ω}, which takes values in <d, for Ω ⊂ <d a space of material points X,
with d ∈ N. Its expectation (26) is denoted by ū (X) = E [U (X)] : Ω → <d. Let
Ξ = [Ξ1 ...Ξi ...Ξn]T be a vector of n independent, zero-mean, and unit variance random
variables Ξi : W → < of finite second order moment and of support SΞi . The support of Ξ
is denoted by SΞ = SΞ1 × ... × SΞ1 × ... × SΞn . Similarly as set in Appendix A.4.4, and in
particular Eq. (A.75), the stochastic field U(Ω) = {U(X) : X ∈ ω} is represented by the
finite separated expansion through the random vector Ξ, with for a realisation w ∈W

u(X) = U (X; Ξ(w)) '
nC
p∑

l=0

uk(l) (X)ψk(l) (Ξ(w)) , (317)

with the multi-index k(l) = {k(l)
1 , ..., k

(l)
n } ∈ Nn

0 defined by Eq. (228) and of total degree at

most p and with nC
p = (n+p)!

n!p!
− 1, with {ψk(l)(ξ) = ψ

(1)

k
(l)
1

(ξ1)× ...× ψ(i)

k
(l)
i

(ξi)× ...× ψ(n)

k
(l)
n

(ξn) :
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k(l) ∈ KC
p ; ξ = Ξ(w)} an orthonormal polynomial family belonging to the Hilbert space

H(W), and with the coefficients uk(l)(X) valued in <d and evaluated for ξ = Ξ(w) by

uk(l)(X) =

∫
<n

(U(X; ξ)− ū(X))ψk(l)(ξ)πΞ(ξ)dξ , l = 1..nC
p , (318)

and by uk(0)(X) = ū(X). In the Stochastic Galerkin finite element approach, the stochastic
problem (313) is solved simultaneously in the spatial and stochastic domains by considering
stochastic test functions δU(X; ξ) ∈ U(Ω)×H(W), where U(Ω) is an admissible kinematic
vector field subset of H(Ω). The weak form associated to Eq. (313) is then restated on the
product between the physical and probabilistic spaces as finding U ∈ H(Ω) ×H(W) such
that, assuming no external forces for conciseness,∫

ω

∫
SΞ

PM (U(X; ξ)) : (δU(X; ξ)⊗∇0)πΞ(ξ)dξdω = 0 , ∀δU ∈ U(Ω)×H(W) , (319)

see details in Section 4.3.3. The finite element discretisation of the latter is based on the
separation of variables with the use of the finite element discretisation

u =
∑
a

ϕ(a)(X)u(a) ∈ H(Ω) and δu =
∑
a

ϕ(a)(X)δu(a) ∈ H(Ω) , (320)

where ϕ(a)(X) are the nodal shape functions and u(a) are the nodal degrees of freedom, and
of the expansion (317), yielding{

U(X; ξ) =
∑

a

∑nC
p

l=0 ϕ
(a)(X)ψk(l) (Ξ(w))u

(a)

k(l) ; and

δU(X; ξ) =
∑

a

∑nC
p

l=0 ϕ
(a)(X)ψk(l) (Ξ(w)) δu

(a)

k(l) .
(321)

The degrees of freedom u
(a)

k(l) represent nC
p +1 nodal displacements resulting from the expan-

sion (317), and are collected in the vector dM, which has now a size of d× (nC
p + 1)× nnode,

for nnode nodes and a physical space of dimension d. The stochastic Galerkin finite element
form thus yields, see details in Section 4.3.3, the vector fM of the internal forces and the
stiffness matrix kM

fM =
∧
Ωe

∫
Ωe

∫
SΞ

(b′e)
T
PM(X; ξ)πΞ(ξ)dξdX , (322)

kM =
∧
Ωe

∫
Ωe

∫
SΞ

(b′e)
T

CM(X; ξ)b′eπΞ(ξ)dξdX , (323)

where b′e is the elementary matrix of the shape functions gradient associated to the stochas-
tic displacement vector field, i.e. built from ∇ϕ(a)ψk(l) (Ξ(w)), CM is the matrix notation
of the fourth-order material tensor CM = ∂PM

∂FM
, and where

∧
Ωe is used to symbolise the

assembly process.
Some remarks on the method
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• It is seen that the system is similar to the traditional finite elements, with however
more degrees of freedom whose number increases dramatically with the size n of the
stochastic process.

• Assuming linear elasticity and the random field {Cel
M(X, w) : X ∈ Ω, w ∈ W} of

the elastic properties, in the Spectral Stochastic Finite Element approach, Ghanem
and Kruger (1996); Ghanem and Brzakala (1996); Ghanem (1999), see also the re-
view by Nouy (1999), have considered an expansion of Cel

M(Ω), either a KL expansion
or a PCE for respectively Gaussian and non-Gaussian processes, with the stochastic
germ Ξ = [Ξ1 ...Ξi ...Ξn]T , of n independent, zero-mean, and unit variance random
variables Ξi : W → <, consisting of the same random vector as the one used for the
displacement separation of variables, Eq. (317). This allows evaluating the stochastic
stiffness matrix (323) as detailed in Section 4.3.3. Recently, still in the context of linear
elasticity, in order to ease the implementation in the case of physical domains of given
complexity, Li et al. (2018) have used isogeometric basis functions in the KL expan-
sion of the random field, see Section Appendix A.3.2, and a PCE for the displacement
separation of variables, Eq. (317). Liu et al. (2021) used the same discretisation of
the random field but have represented the structural response in the basis vectors of
the Krylov subspace to reduce the dimensions.

• Although the consideration of linear elasticity with an expansion of the random field is
the most common approach, it is possible to also express meso-scale material properties
directly in terms of independent, zero-mean, and unit variance random variables and
to perform non-linear analyses, see the work by Pivovarov and Steinmann (2016);
Pivovarov et al. (2018b) summarised in Section 4.3.3.

5.5.3. Perturbation stochastic finite element method

In the perturbation method, the displacement field solution of Eq. (313) is written as
a random field U(Ω) = {U(X) : X ∈ Ω} and is expressed in terms of the random vector
Ξ = [Ξ1 ...Ξi ...Ξn]T of n random variables Ξi : W → <. The random field U(Ω) is then
developed around its value evaluated for E[Ξ], yielding,

U(X; Ξ) = u0(X) +
∑
i

u,i(X) (Ξi − E[Ξi]) +

1

2

∑
i

∑
j

u,ij(X) (Ξi − E[Ξi]) (Ξj − E[Ξj]) + ... , (324)

where the operator •,i means derivative with respect to the random variable Ξi, see Section
4.3.2 for details. Assuming a linear response and no external forces for conciseness, after
having applied a similar development on the Cauchy stress tensor, this yields a system of
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deterministic problems to be solved, see Section 4.3.2 for details,

Order 0: 0 =
[
Cel

M (X; E[Ξ]) : εX(u0)
]
·∇0 , (325)

Order 1: 0 =
[
Cel

M (X; E[Ξ]) : εX (u,i)
]
·∇0 +[

∂Cel
M

∂Ξi

(X; E[Ξ]) : εX (u0)

]
·∇0 ∀i = 1..n , (326)

... ... ... ,

where the operator εX (u) stands for the small strain tensor 1
2

(∇0 ⊗ u+ u⊗∇0).
The method has some practical limitations

• As pointed out by Nouy (1999), although theoretically the method can be used for a
complete representation of the solution, the perturbation method is practically limited
to second order and can thus be applied only when the coefficient of variation remains
limited.

• Although non-linear extensions have been considered by Liu et al. (1986), the method
is mainly applied to linear systems.

5.5.4. Adaptive multi-scale model

This model initially aims at reducing the error arising when considering a deterministic
homogeneous model at the macro-scale by locally accounting explicitly for heterogeneous
and random structures. In that context, the body Ω is initially divided into sub-domains Ωk

with Ω = ∪kΩk. Considering at first that the solution is deterministic and can be obtained,
in the linear range, by considering the meso-scale effective elastic properties ceff

M on each
Ωk ⊂ Ω, the governing Eq. (313) is rewritten

∇0 ·
[
ceff

M : εX
(
uhM(X)

)]
+ b(X) = 0 ∀X ∈ Ω , (327)

where uhM(X) is the homogeneous solution obtained by a deterministic multi-scale process.
A dual problem is then defined from the definition of a quantity of interest, e.g. a quantity
defined from statistical properties of UM(X; w) on some Ωl ⊂ Ω. If the quantity of interest
only involves statistical properties of UM(X; w), the solution wh

M(X) of the dual problem
considered with the meso-scale effective elastic properties ceff

M on each Ωk ⊂ Ω is also deter-
ministic (Albert et al., 2006). Using these two solutions, lower and upper bounds of the ho-
mogenisation error can be computed from the random field {Cel

M(X, w) : X ∈ Ω, w ∈W},
e.g. using Monte-Carlo simulations. From the error bounds, some sub-domains Ωk ⊂ Ω can
be solved locally using stochastic finite elements stated. The governing equations in these
sub-domains read

∇0 ·
[
Cel

m(x, w) : εx
(
U l

m(x, w)
)]

+ b(x) = 0 ∀x ∈ Ωk , ∀w ∈W , (328)

where the heterogeneities of the sub-domain Ωk have to be explicitly represented, hence
the use of the subscript “m” referring to the local value at the micro-scale, and where
{U l

m(x, w) : x ∈ Ωk, w ∈ W} is the local random field. This problem is completed by
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applying Dirichlet boundary conditions arising from the homogeneous solution obtained by
the deterministic multi-scale process, i.e. uhM(X) the homogeneous solution obtained by the
deterministic multi-scale process, yielding

U l
m(x, w) = uhM(X) ∀x = X ∈ ∂Ωk\∂NΩ , ∀w ∈W . (329)

Finally, using the indicator function χΩk(X) the random field on the full domain Ω reads
{UM(x, w) = uhM(X) + χΩk(X)

[
U l

m(x, w)− uhM(X)
]

: x ∈ Ω, w ∈W}.
Some remarks on the method

• As discussed in Section 4.2.1, enforcing Dirichlet boundary conditions might result in
stress/strain concentrations, motivating the use of Arlekin methods as the alternative
developed by Cottereau (2013).

• Bonilla-Villalba et al. (2020) have developed error estimates based on Huet’s partition
theorem (283), which prevents the need of performing the integration in the small scale
features.

• The different stochastic finite element methods detailed in Section 4.3 can be readily
used to solve the problem (328-329).

6. Conclusions

In this work we have reviewed different methods aiming at conducting stochastic virtual
testing. There remain however several problems motivating future research.

In order to build accurate virtual micro-structures, which represent the variability of real
micro-structure geometry and local material responses, it is necessary to account for envi-
ronment and process parameters of the manufacturing technique. In particular, whilst most
of the current research has focused on the geometrical uncertainty characterisation, identi-
fying material properties as random field at the micro-structure level remains challenging.
Similarly, a quantitative defects characterisation is still not commonly performed, although
they strongly affect the failure behaviour. These quantifications require a combination of in-
situ experimental measurements and accurate models of the manufacturing process, which
should allow for building data-base of micro-structures by relying on data-driven concepts
and tools developed for uncertainty quantification, statistical analysis, dimension reduction,
machine learning, and data mining methods. This approach has recently led to the so-called
material data sciences (Kalidindi et al., 2016).

Coupling stochastic micro-scale behaviour to stochastic macro-scale response remains
challenging in the non-linear range since the stochastic apparent properties of the Stochas-
tic Volume Elements cannot be decoupled from the macro-scale stochastic finite element
analyses. One more time, data-driven approaches relying on data obtained from numerical
realisations of the virtual random micro-structures (Clément et al., 2012; Yvonnet et al.,
2013; Bessa et al., 2017) offer a possibility to couple micro-scale and structural scale anal-
ysis at affordable cost in the context of uncertainty quantification for non-linear systems.
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In this context the use of Neural Networks as surrogate appears to be a promising tool as
illustrated by the first results (Rao and Liu, 2020; Lu et al., 2021), but which is yet to be
deepened.

The problem of failure is only partly addressed in the literature because of the loss of
objectivity of the stress-strain curves during homogenisation. Stochastic multi-scale methods
are currently only addressing strength envelope and in some cases the brittle failure response.

With these tools in hand, it would be possible to develop a so-called process-(micro)structure-
(structural)properties (PSP) linkage (Gupta et al., 2015; Yang et al., 2018, e.g.), which,
from the simulation of the manufacturing, via the prediction of micro-scale properties and
geometry, including their uncertainties, could provide a relationship between manufacturing
conditions and the statistical structural response. This, in turn, would allow optimising
process and design in order to achieve some targeted performance within a given confidence
interval.
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Appendix A. Generation tools

The purpose of this appendix is not to provide complete formalisms, but to give a quick
overview of the different methods used in the literature. These methods are discussed further
in the provided references. Before presenting the main methods, we recall some common
probabilistic transformations.

Appendix A.1. Probabilistic transformations

Let us consider the n-dimension random vector Q : Q → <n. Its expectation (26) is
denoted by q̄ = E [Q], and its covariance matrix (46) by R̃Q ∈ M+

n (<). We note that we
assume the positive definite nature of R̃Q

13, and the existence of the probability density
function πQ : <n → [0, ∞[ following Eq. (24).

In this section, we apply a transformation Ξ = f(Q) in order to obtain some sought
particular properties of the random vector Ξ valued in <n, of covariance matrix R̃Ξ ∈ M+

n (<),
and of probability density function πΞ : <n → [0, ∞[.

13We assume in this section that the standard deviations σQr
of the random variables Qr are all strictly

positive
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Appendix A.1.1. Transformation of a Gaussian random vector

Assuming Q follows a Gaussian distribution with expectation q̄ = E [Q] and covariance
matrix R̃Q ∈ M+

n (<) and assuming we want Ξ to follow a zero-mean with unit covariance
matrix, i.e. R̃Ξ = In with In the unit matrix of size n, Gaussian distribution, we consider
the non-linear transformation Ξ = fN(Q) which reads

Ξ = fN(Q) = L−1
Q (Q− q̄) , (A.1)

with the lower triangular matrix LQ obtained by the Cholesky decomposition of R̃Q, i.e.
R̃Q = LQLT

Q.

Appendix A.1.2. Nataf transformation of a non-Gaussian random vector

In this section, we consider the random vector Q with the n dependent components Qi

and with the correlation matrix RQ given by Eq. (47). Each random variable has a marginal
cumulative distribution function FQi(qi) : < → [0, 1] assumed to be continuous and of
support SQi . We assume we want Ξ to follow a zero-mean with unit covariance matrix,
i.e. R̃Ξ = RΞ = In, Gaussian distribution through the non-linear Nataf transformation
Ξ = fT(Q).

First a Gaussian random vector Z is constructed from

zi = FN−1

0, 1 (FQi(qi)) , (A.2)

where FN
0, 1 is the zero-mean and unit variance Gaussian cumulative distribution. It is then

assumed that the joint probability density function reads

πZ(z) =
1

(2π)n/2
√

det(RZ)
exp

(
−1

2
zTR−1

Z z

)
, (A.3)

with the correlation matrix RZ that has to be evaluated so that the joint probability density
function of Q can be written as

πQ(q) = πQ1(q1) ... πQn(qn)
πZ(z)

N0, 1(z1) ...N0, 1(zn)
(A.4)

with the probability density function (A.3) and the normal probability density function N0, 1

given by Eq. (17). The correlation matrix RZ is now computed so that the correlation of
two components Qi and Qj arising from Eq. (A.4) matches the prescribed correlation RQi j ,
yielding, see the details by Der Kiureghian and Ke (1988), the following implicit equation
in the unknown correlation RZi j to be solved

RQi j =

∫ ∞
−∞

∫ ∞
−∞

(
qi − q̄i
σQi

)(
qj − q̄j
σQj

)
π[Zi Zj ]

T ([zi zj]
T )dzidzj , (A.5)

with π[Zi Zj ]
T ([zi zj]

T ) = 1

(2π)
√

det(R
[Zi Zj]

T )
exp

(
−1

2
[zi zj]R

−1

[Zi Zj ]
T [zi zj]

T
)

the standard bi-variate

Gaussian density function of zero-mean, unit variance and correlation RZi j (we note that
the diagonal terms of R[Zi Zj ]

T are 1 and the out of diagonal terms RZi j).
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Assuming Q has a Nataf joint probability density function, then Z is a Gaussian random
vector of zero-mean and covariance matrix R̃Z = RZ = LZLT

Z . The transformation (A.1)
can then be applied

Ξ = L−1
Z Z , (A.6)

yielding Ξ a random vector of zero-mean with unit covariance matrix, i.e. R̃Ξ = In, following
a Gaussian distribution.

We note that this transformation has required some assumptions on the joint probability
distribution of Q.

Appendix A.1.3. Rosenblatt Transformation of a non-Gaussian random vector

Contrarily to the other transformations, the conditional probability density functions
have first to be evaluated from

πQk|Qk−1, ..., Q1(qk|qk−1, ..., q1) =
πQk, Qk−1, ..., Q1(qk, qk−1, ... q1)∫

< πQk, Qk−1, ..., Q1(qk, qk−1, ... q1)dqk
, k = 1..n , (A.7)

and the conditional cumulative distribution follows from

FQk|Qk−1, ..., Q1(qk|qk−1, ..., q1) =

∫ qk

−∞
πQk|Qk−1, ..., Q1(q′k|qk−1, ..., q1)dq′k , k = 1..n . (A.8)

To hyper-cube distribution. We first consider the case in which we want Ξ to be defined as
n independent and uniformly distributed random variables Ξi in the support SΞ = [0, 1]n,
i.e.

πΞ(ξ) = U0, 1 × ...×U0, 1 , (A.9)

with U0, 1 defined by Eq. (18).
The non-linear transformation Ξ = fR U(Q) thus reads

ξ1 = FQ1(q1), ξ2 = FQ2|Q1(q2|q1), ..., ξn = FQn|Qn−1, ..., Q1(qn|qn−1, ..., q1) , (A.10)

with the conditional cumulative distribution following from Eq. (A.8).

To Gaussian distribution. In the case in which we want Ξ to follow a zero-mean with unit
covariance matrix, i.e. R̃Ξ = In, Gaussian distribution, we consider the non-linear transfor-
mation Ξ = fR N(Q) which reads

ξ1 = FN−1

0, 1 (FQ1(q1)) , ξ2 = FN−1

0, 1

(
FQ2|Q1(q2|q1)

)
, ...,

ξn = FN−1

0, 1

(
FQn|Qn−1, ..., Q1(qn|qn−1, ..., q1)

)
, (A.11)

where FN
0, 1 is the zero-mean and unit variance Gaussian cumulative distribution and where

the conditional cumulative distribution follows from Eq. (A.8).
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Appendix A.2. Generation from cumulative distribution functions

Appendix A.2.1. Inverse transform sampling

Pseudo-random samples of a random variable Q can be generated by constructing the
inverse F−1

Q : [0, 1]→ SQ of the cumulative distribution function, assumed to be continuous,
of support SQ. Therefore, considering a random variable U ∼ U0, 1 following a uniform
distribution, see Eq. (18), one has the inverse function

Q = F−1
Q (U) . (A.12)

By generating pseudo-random samples up of the random variable U ∼ U0, 1, pseudo
random samples of the random variable Q are obtained as {qp : qp = F−1

Q (up)} using Eq.
(A.12).

Appendix A.2.2. Copula method

Let us consider the random vector Q = [Q1 ... Qn]T of dependent random variables Qi.
Each random variable has a marginal cumulative distribution function FQi(qi) : < → [0, 1]
assumed to be continuous and of support SQi . A random vector U = [U1 ... Un]T whose
components marginal probability density functions πUi are uniform, i.e. Ui ∼ U0, 1, see Eq.
(18), is then defined as

[U1 ... U2]T = [FQ1(Q1) ... FQn(Qn)]T . (A.13)

The copula of Q is defined as the joint cumulative distribution function FU : [0, 1]n →
[0, 1] of the random vector U , see Eq. (21), and is denoted

C(u1, ..., un) = P (U1 ≤ u1, ..., Un ≤ un) , (A.14)

or using Eq. (A.13),

C(u1, ..., un) = P
(
Q1 ≤ F−1

Q1
(u1), ..., Qn ≤ F−1

Qn
(un)

)
. (A.15)

Therefore, considering a random variable U whose joint cumulative distribution function
FU follows the copula (A.14), one has the inverse function

[Q1 ... Qn]T = [F−1
Q1

(U1) ... F−1
Qn

(Un)]T . (A.16)

Pseudo-random samples up of U are generated from the copula distribution FU (u) =
C(u1, ..., un) using the process described here below and the pseudo-random samples of the
random vector Q are obtained as {qp : qp = [F−1

Q1
(up1) ... F−1

Qn
(upn)]T} using Eq. (A.16).

In order to generate a pseudo-sample up of U following the copula joint cumulative
distribution C(u1, ..., un) = FU (u), one follows the chain rule

• Draw a pseudo sample upn from U0, 1;
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• Evaluate the conditional probability density πUn−1|Un (un−1|upn) from

πUn−1|Un (un−1|upn) =
1

U0, 1(upn)

∂2

∂un−1∂un
FUn−1, Un (un−1, u

p
n) ; (A.17)

Draw a pseudo sample upn−1 from the conditional probability density πUn−1|Un (un−1|upn),
using the inverse transform sampling of Appendix A.2.1;

• ...

• Evaluate the conditional probability density πUn−i−1|Un−i, ..., Un
(
un−i−1|upn−i, ..., upn

)
from

πUn−i−1|Un−i, ..., Un
(
un−i−1|upn−i, ..., upn

)
=

1[
πUn−i|Un−i+1, ..., Un(upn−i|u

p
n−i+1, ..., u

p
n)× ...× πUn−1|Un(upn−1|u

p
n)×U0, 1(upn)

]
∂i+2

∂un−i−1 ... ∂un
FUn−i−1, ..., Un

(
un−i−1, u

p
n−i, ..., u

p
n

)
; (A.18)

Draw a pseudo sample upn−i−1 from the conditional probability density πUn−i−1|Un−i, ..., Un(
un−i−1|upn−i, ..., upn

)
, using the inverse transform sampling of Appendix A.2.1;

• ...

• Evaluate the conditional probability density πU1|U2, ..., Un (u1|up2, ..., upn) from

πU1|U2, ..., Un (u1|up2, ..., upn) =

1[
πU2|U3, ..., Un(up2|u

p
3, ..., u

p
n)× ...× πUn−1|Un(upn−1|u

p
n)×U0, 1(upn)

]
∂n

∂u1 ... ∂un
FU1, ..., Un (u1, u

p
2, ..., u

p
n) ; (A.19)

Draw a pseudo sample up1 from πU1|U2, ..., Un (u1|up2, ..., upn), using the inverse transform
sampling of Appendix A.2.1.

In this method, the derivatives ∂i+2

∂un−i−1 ... ∂un
FUn−i−1, ..., Un

(
un−i−1, u

p
n−1, ..., u

p
n

)
are evalu-

ated numerically using a hash-table of the observations uk obtained from Eq. (A.13) for the
observations qk = Q(qk), with qk ∈ Q.

More details are provided by Strelen and Nassaj (2007).

Appendix A.3. Principal Components Analysis & Karhunen-Loève (KL) series expansion

Appendix A.3.1. Principal Components Analysis (PCA)

Let us consider the n-dimension random vector Q : Q → <n. Its expectation (26) is
denoted by q̄ = E [Q], and its covariance matrix (46) by R̃Q ∈ M+

n (<). We note that we
assume the positive definite nature of R̃Q.
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One can extract the n eigen-vectors u
(i)
Q and the n eigen-values λ

(i)
Q of the matrix R̃Q,

with
R̃Q u

(i)
Q = λ

(i)
Q u

(i)
Q ∀i = 1..n , (A.20)

with no sum on (i) intended. The eigen-values are ordered as λ
(n)
Q ≥ λ

(n−1)
Q ≥ ... ≥ λ

(1)
Q > 0,

and the eigen-vectors are normalised so that
(
u

(i)
Q

)T
u

(j)
Q = δij.

A new random vector H with values in <n is then defined, with its realisation η ∈ <n
such that

ηi =
1√
λ

(i)
Q

(q − q̄)T u
(i)
Q ∀i = 1..n . (A.21)

The random vector H is characterised by the following properties

E[H] = 0n and R̃H = In , (A.22)

with 0n a zero vector of size n and In the unit matrix of size n. We note that the components
of H are uncorrelated, but can be dependent. For Gaussian distributions, they are also
independent since uncorrelated.

Using the orthogonality property of the eigen-modes, inverting Eq. (A.21) allows ex-
pressing a realisation q of the random vector Q from the relation

q ' q̄ +

m≤n∑
i=1

√
λ

(i)
Q ηiu

(i)
Q . (A.23)

In the case m = n, Eq. (A.23) is exact whilst in the case m < n one has performed an order
reduction.

Appendix A.3.2. Karhunen-Loève (KL) series expansion

Let us consider the continuous random vector field Q(Ω) = {Q(x) : x ∈ Ω} for Ω ⊂ <d
a space of material points x, with d ∈ N. Its expectation (26) is denoted by q̄ (x) =
E [Q (x)] : Ω → <n, and its covariance matrix by R̃Q (x; τ ), see Eq. (50). In this section,
using x′ = x+ τ , we use the notation R̃Q (x, x′) : Ω× Ω→ <n×n.

Eigen-vectors u
(i)
Q (x) and eigen-values λ

(i)
Q have to be extracted from the Fredholm inte-

gral equation of the second kind∫
Ω

R̃Q (x, x′)u
(i)
Q (x′)dx′ = λ

(i)
Q u

(i)
Q (x) , ∀i ∈ N , (A.24)

with the ordered eigen-values λ
(1)
Q ≥ λ

(2)
Q ≥ ... → 0, and with the orthonormal eigen basis

such that
∫

Ω

(
u

(i)
Q (x)

)T
u

(j)
Q (x)dx = δij.

A new random vector H is then defined, with its realisation η such that

ηi =
1√
λ

(i)
Q

∫
Ω

(q(x)− q̄(x))T u
(i)
Q (x)dx ∀i ∈ N . (A.25)
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The random vector H is characterised by the following properties

E[Hr] = 0 and R̃Hr, s = δrs ∀r, s ∈ N . (A.26)

We note that the components of H are uncorrelated, but can be dependent. For Gaussian
fields, they are also independent since uncorrelated.

The random field Q(Ω) can then be represented by the collection of realisations

q(x) ' q̄ (x) +
m∑
i=1

√
λ

(i)
Q ηiu

(i)
Q (x) , (A.27)

where the relation is exact for m→∞.
Since the resolution of Eq. (A.24) cannot always be pursued, it is possible to consider

the collection {Q(x(1)), ..., Q(x(N))} of random vectors sampled for x = (x(1), ..., x(N)), i.e.

N members of Ω, defining the random vector Y =
[
QT (x(1)) ...QT (x(N))

]T
taking values

in <n·N , see details in Section 5.1.2. From its expectation ȳ and its covariance matrix R̃Y

the PCA described in Appendix A.3.1 is applied in order to construct a statistical reduction
similar to Eq. (A.23), i.e.

y ' ȳ +

m≤n·N∑
i=1

√
λ

(i)
Y η
′
iu

(i)
Y , (A.28)

with the n ·N eigen-vectors u
(i)
Y and the n ·N ordered eigen-values λ

(i)
Y of the matrix R̃Y ,

and realisations of the random variable H′ obtained as

η′i =
1√
λ

(i)
Y

(y − ȳ)T u
(i)
Y ∀i = 1..n ·N . (A.29)

An approximation of {Q(x(1)), ..., Q(x(N))} is deduced directly from Eq. (A.28) by reorder-
ing the components of Y , or if other locations x than at the initial sampling points x(k),
k = 1..N , are sought by using an optimal linear estimation, see details in Section 5.1.2.

Another solution to solve the system of Eqs. (A.24) consists in defining a Galerkin-type
procedure as suggested for uni-variate random fields by Ghanem and Spanos (1991) and
summarised by Sudret and Der Kiureghian (2000). Recently, Li et al. (2018) have used
isogeometric basis functions in this Galerkin-type procedure.

Appendix A.3.3. Generation of Gaussian random fields using the Karhunen-Loève (KL) ex-
pansion

We here consider as random field the collection {Q(x(1)), ..., Q(x(N))} of N random
vectors valued in <n and extracted for x = (x(1), ..., x(N)), with x(j) ∈ Ω, j = 1..N , see
details in Section 5.1.2. An approximation of a Gaussian random field can be sampled
following

• The definition of the random vector Y =
[
QT (x(1)) ...QT (x(N))

]T
taking values in

<n·N ;

138



• The pseudo-sampling of the random field using Eq. (A.28) as

yp ' ȳ +

m≤n·N∑
i=1

√
λ

(i)
Y η
′p
i u

(i)
Y , (A.30)

from pseudo-samples η′p. Assuming Gaussianity, the pseudo-samples η′p are generated
as m independent Gaussian variables η′pi using either Monte Carlo sampling (MC) or
Latin Hyper-cube Sampling (LHS);

• The extraction of a pseudo-sample of {qp(x(1)), ..., qp(x(N))} from Eq. (A.30) by
reordering the components of yp, or through an optimal linear estimation, see details
in Section 5.1.2, if other locations x than at the initial sampling points x(k), k = 1..N ,
are sought.

However, the size m ≤ n · N of the covariance matrix can be overwhelming when N
or n increases. Therefore, Vořechovský (2008) has developed a method to simulate cross
correlated Gaussian homogeneous random fields by using the KL series expansion method,
which reduces the size of the correlation matrix to be considered. It is assumed that the
random field is homogeneous, yielding q̄ (x) = q̄ and a covariance matrix R̃Q ∈ M+

n (<).
Besides, it is assumed that all the components Qi of the random vector Q share the same
spatial correlation function on Ω.

First, for a fixed x(j), j = 1..N , the eigen-values and vectors of R̃Q are extracted, see

Appendix A.3.1, yielding the n eigen values λ
(i)
Q and orthonormal eigen-vectors u

(i)
Q . Then the

uni-variate random field U(Ω) valued in < can be defined from any random field Qi(Ω) and
yields the correlation RU(x, x′). Since it is assumed that all the components share the same
spatial correlation, any value i = 1..n can be chosen providing the correlation is used instead
of the covariance since the variance might change between components. The eigen-values and
vectors of RU(x, x′) are extracted, and N eigen values λ

(j)
U and orthonormal eigen-vectors

u
(j)
U (x) related to the unit standard deviation are retained. This extraction can result from

the sampling at the N locations x(j) using U = [Qi(x
(1)) ... Qi(x

(N))]T as described in
Appendix A.3.2 and following the methods described in Section 5.1.2, yielding the N eigen
values λ

(j)
U and orthonormal eigen-vectors u

(j)
U related to a unit standard deviation.

Second, a random vector Ξ with values in <N ·n is defined. The idea suggested by
Vořechovský (2008) is that the components Ξ(j−1)·N+1 to Ξj·N , for j = 1..n represent a Gaus-
sian random vector with N independent random variables, whilst the components Ξ(j−1)·N+1

to Ξj·N are correlated to Ξ(k−1)·N+1 to Ξk·N , for k = 1..n. We use the notation

Ξ =


Q1 [Ξ1 ...ΞN ]T

... ...
Qj [Ξ(j−1)·N+1 ...Ξj·N ]T

... ...
Qn [Ξ(n−1)·N+1 ...Ξn·N ]T

 . (A.31)
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Its covariance matrix R̃Ξ ∈ M+
n·N(<) is built from the covariance matrix R̃Q ∈ M+

n (<) as
follows

R̃Ξ =



Q1 ... Qi ... Qn

Q1 R̃Q1 1IN ... R̃Q1 i
IN ... R̃Q1nIN

... ... ... ... ... ...
Qj R̃Qj 1

IN ... R̃Qj iIN ... R̃Qj nIN
... ... ... ... ... ...
Qn R̃Qn 1IN ... R̃Qn iIN ... R̃Qn·nIN

 , (A.32)

where IN is the N × N identity matrix. The matrix R̃Ξ has the ordered eigen-values λ
(i)
Ξ ,

which are N repeated times the eigen values λ
(i)
Q , and the orthonormal eigen-vectors u

(i)
Ξ ,

which are constructed from u
(i)
Q (avoiding the resolution of the eigen-value problem).

Similarly to Eq. (A.23), the random vector Ξ has realisations ξ ∈ <N ·n

ξ =
n·N∑
i=1

√
λ

(i)
Ξ u

(i)
Ξ ζi ∀i = 1..n ·N , (A.33)

with the random vector Z –of realisations ζ– having independent Gaussian random variables
as components:

E[Zr] = 0 and R̃Zr s = δrs ∀r, s = 1..n ·N . (A.34)

Finally, pseudo-samples ξp are obtained from Eq. (A.33) by generating n ·m indepen-
dent Gaussian variables ζ ′pi using either Monte Carlo sampling (MC) or Latin Hyper-cube
Sampling (LHS). One can then express pseudo-sampling qp of the Gaussian random vector
Q from the relation

qpj (x) ∼ q̄j + σQj

N∑
i=1

√
λ

(i)
U ξ

p
(j−1)·N+iu

(i)
U (x) , ∀j = 1..n , (A.35)

where we note the use of the eigen-vectors and eigen-values resulting from the uni-variate
random field U(Ω). In the case in which the PCA was achieved from the sampling at the
N locations x(j) using U = [Qi(x

(1)) ... Qi(x
(N))]T , pseudo-samples of the Gaussian random

vector at locations x(k), k = 1..N , arise from

qpj (x
(k)) ∼ q̄j + σQj

N∑
i=1

√
λ

(i)
U ξ

p
(j−1)·N+iu

(i)
Uk
, ∀j = 1..n ∀k = 1..N , (A.36)

where we note the use of the eigen-vectors and eigen-values resulting from the spatial sam-
pling. If other locations x than at the initial sampling points x(k), k = 1..N , are sought, an
optimal linear estimation, see details in Section 5.1.2, can be used.

Besides, it is possible to apply order reduction in both equation (A.33) and (A.35).
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Appendix A.3.4. Generation of non-Gaussian random fields using the Karhunen-Loève (KL)
expansion

Following Eq. (A.27), the random field Q(Ω), with Q valued in <n, can be represented
by the collection

q(x) ' q̄ (x) +
m∑
i=1

√
λ

(i)
Q ηiu

(i)
Q (x) , (A.37)

where the relation is exact for m→∞. As previously described, for Gaussian random fields,
starting from the KL expansion (A.37), pseudo-samples can be generated as

qp(x) ' q̄(x) +
m∑
i=1

√
λ

(i)
Q η

p
iu

(i)
Q (x) , (A.38)

from pseudo-samples ηp generated as m independent Gaussian variables ηpi using either
Monte Carlo sampling (MC) or Latin Hyper-cube Sampling (LHS).

If one wants to generate pseudo-samples following the targeted marginal cumulative
distributions FQr of the random variablesQr, Phoon et al. (2005) have proposed the following
iterative process:

• Construct the inverse F−1
Qr

: [0, 1] → SQr of the marginal cumulative distribution
functions, assumed to be continuous, of support SQr of the component r of the random
vector Q;

• Initialise the pseudo-samples ηp
(0)

i , see the discussion for the univariate case given by
Phoon et al. (2005), as m independent variables drawn from a zero-mean and unit
variance distribution;

• Repeat until convergence

1. At iteration (k), generate several pseudo-samples

q̃p
(k)

(x) ' q̄ (x) +
m∑
i=1

√
λ

(i)
Q η

p(k)

i u
(i)
Q (x) , (A.39)

from the pseudo-samples ηp
(k)

i ;
2. Estimate the marginal cumulative distributions F

Q̃
(k)
r

from the pseudo-samples

(A.39);
3. Transform each pseudo-sample to have the target marginal distribution following

qp
(k)

r (x) = F−1
Qr

(
F
Q̃

(k)
r

(q̃p
(k)

r (x))
)
, r = 1..n ; (A.40)

4. Estimate the new pseudo-samples ηp
(k+1)

i from

ηp
(k+1)

i =
1√
λ

(i)
Q

∫
Ω

(
qp

(k)

(x)− q̄p(k)

(x)
)T
u

(i)
Q (x)dx, i = 1..m , (A.41)

followed by a standardisation to give unit variance to ηp
(k+1)

i ;
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5. Ensure that the updated ηp
(k+1)

i random variables are approximately uncorrelated
by product-moment orthogonalisation technique, see the developments by Phoon
et al. (2005);

6. Go back to step #1 until convergence.

We note that the method was developed by Phoon et al. (2005) in the uni-variate case, i.e.
assuming n = 1, but has been used by Liebscher et al. (2012) when considering correlated
random variables Qr.

The method described in Appendix A.3.3 was also extended to non-Gaussian random-
fields by considering a non-linear transformation, see Appendix A.1, before applying the KL
expansion. In particular, Vořechovský (2008) has applied the Nataf transformation, see Ap-
pendix A.1.2, and adapted the block-generation process described in Appendix A.3.3. The
following difficulty was however pointed out: “We remark also that not every combination of
the auto-correlation structure with the non-Gaussian marginal distribution can be admissible
for the mapping via underlying Gaussian random field. There are two possible incompatibil-
ities. The first one arises when the auto-correlation functions of the non-Gaussian fields do
not have a corresponding admissible correlations in the Gaussian space (this happens often
in cases of high negative correlations combined with strongly non-Gaussian marginals). The
second incompatibility arises when the auto-correlation function (or matrix) in the Gaussian
space becomes non-positive definite and, therefore, not admissible.”

Appendix A.4. Polynomial Chaos Expansion (PCE)

Appendix A.4.1. Definitions

Let Ξ = [Ξ1 ...Ξi ...Ξn]T be a vector of n random variables Ξi : Q → < with the joint
probability density function πΞ : <n → [0, ∞[ and which is pth-order, see Eq. (27), ∀p ∈ N.
The support of Ξ is denoted by SΞ. Following Soize (2017), the random vector Ξ is called
a random germ. We thus have the realisation Ξ(q) ∈ SΞ for all q ∈ Q.

Let us consider the second-order random vector X = f(Ξ) valued in <m as the deter-
ministic non-linear mapping of the random germ Ξ such that x = f(ξ) : <n → <m.

The algebraic form of the polynomial chaos expansion of X = f(Ξ) reads

X =
∞∑
k=0

c(k)ψα(k)(Ξ) , (A.42)

where {ψα(k)(Ξ) : k ∈ N0} are the multi-variate polynomial chaos and where {c(k) : c(k) ∈
<m, k ∈ N0} are the vector valued coefficients.

Finally, we define the Hilbert space H(Q) of <-valued functions square integrable on <n
with respect to the probability density function πΞ(ξ) so that for two functions f(Ξ) and
g(Ξ) in H(Q), the inner product is defined by

E [f(Ξ)g(Ξ)] =

∫
<n
f(ξ)g(ξ)πΞ(ξ)dξ . (A.43)
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Appendix A.4.2. Polynomial Chaos Expansion of a random vector

Let k(l) = {k(l)
1 , ..., k

(l)
n } ∈ K = Nn

0 be the multi-index, with |k(l)| = k
(l)
1 + ... + k

(l)
n .

We then consider the Hilbert basis {ψk(l) : k(l) ∈ K, l ∈ N0}, as an orthonormal family of
H(Q), i.e.:

E [ψk(l)ψk(l′) ] = δk(l)k(l′) ∀k(l), k(l′) ∈ K , (A.44)

and as a total family, i.e. if E [ψk(l)g] = 0 for all k(l) ∈ K then g = 0.
The expansion of the random vector X = f(Ξ) valued in <m thus reads

X = f(Ξ) =
∑
k(l)∈K

ck(l)ψk(l)(Ξ) , (A.45)

with the coefficients ck(l) valued in <m given by

ck(l) = E [Xψk(l)(Ξ)] =

∫
<n
f(ξ)ψk(l)(ξ)πΞ(ξ)dξ . (A.46)

Finite approximation of the expansion. The complete multi-index set of total degree at most
p is defined as

KC
p = {k(l) ∈ Nn

0 : k
(l)
1 + ...+ k

(l)
i + ...k(l)

n ≤ p, l = 0..nC
p } ⊂ K , (A.47)

and has the elements k(0) = {0, ..., 0}, k(1), ..., k(nC
p ), with nC

p = (n+p)!
n!p!
− 1.

The approximation of the expansion (A.46) of the random vector X = f(Ξ) valued in
<m thus reads

X = f(Ξ) '
∑

k(l)∈KC
p

ck(l)ψk(l)(Ξ) =

nC
p∑

l=0

ck(l)ψk(l)(Ξ) , (A.48)

with the coefficients valued in <m evaluated by

ck(l) = E [Xψk(l)(Ξ)] =

∫
<n
f(ξ)ψk(l)(ξ)πΞ(ξ)dξ . (A.49)

Particular case of independent Ξi. Let Ξ = [Ξ1 ...Ξi ...Ξn]T be defined from n independent
random variables Ξi : Q → <. Therefore, the joint probability density function πΞ : <n →
[0, ∞[ reads πΞ(ξ) = πΞ1(ξ1) × ... × πΞi(ξi) × ... × πΞn(ξn), with the probability density
function πΞi : < → [0, ∞[ of the random variable Ξi. Besides, the support of Ξ reads
SΞ = SΞ1 × ...× SΞi × ...× SΞn , with SΞi the support of Ξi.

Let {ψ(i)
l : l ∈ N0, i = 1..n} be the family of orthonormal polynomials such that∫

SΞi

ψ
(i)
l ψ

(i)
o πΞi(ξi)dξi = δlo , (A.50)

then the Hilbert basis {ψk(l) : k(l) ∈ K} can be defined from the multi-variate polynomials

ψk(l)(ξ) = ψ
(1)

k
(l)
1

(ξ1)× ...× ψ(i)

k
(l)
i

(ξi)× ...× ψ(n)

k
(l)
n

(ξn) , (A.51)

since Eq. (A.44) is satisfied.
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Gaussian polynomial chaos expansion. Considering the particular case for which Ξ = [Ξ1 ...
Ξi ...Ξn]T is defined from n independent random variables Ξi : Q → < whose distributions
follow a Gaussian density probability function, Ξi ∼ N0, 1, of zero-mean and unit variance, see

Eq. (17), a common choice for the orthonormal polynomials family {ψ(i)
l : l ∈ N0, i = 1..n}

is based on the Hermite polynomials

ψ
(i)
l+1(ξi) = Hl+1(ξi) =

1√
l + 1

(
ξiHl(ξi)−

dHl(ξi)

dξi

)
∀i = 1..n , l ∈ N0 , (A.52)

with H0(ξi) = 1, H1(ξi) = ξi, H2(ξi) =
ξ2
i−1√

2
etc.

The approximation of the Gaussian polynomial expansion of the random vector X =
f(Ξ) valued in <m is then defined by Eqs. (A.48-A.49) with the multi-variate polynomials
(A.51) defined using the Hermite polynomials (A.52). We finally note that, because of the
shape of H0(ξi), Eq. (A.48) can alternatively be rewritten when considering a realisation x
for q ∈ Q as

x = f(Ξ(q)) '
nC
p∑

l=0

ck(l)ψk(l)(Ξ(q)) = x̄+

nC
p∑

l=1

ck(l)ψk(l)(Ξ(q)) , (A.53)

with

ψk(l)(ξ) = ψ
(1)

k
(l)
1

(ξ1)× ...× ψ(i)

k
(l)
i

(ξi)× ...× ψ(n)

k
(l)
n

(ξn)

= H
k

(l)
1

(ξ1)× ...×H
k

(l)
i

(ξi)× ...×Hk
(l)
n

(ξn) . (A.54)

Appendix A.4.3. Generation of non-Gaussian random vectors

Let us consider the n-dimension random vector Q : Q → <n. Its expectation (26) is
denoted by q̄ = E [Q], and its covariance matrix (46) by R̃Q ∈ M+

n (<). We note that we
assume the positive definite nature of R̃Q. Following Appendix A.3.1, a principal component
analysis can be conducted up to order m ≤ n to approximate the random vector realisations
by

Q(q) ' q̄ +

m≤n∑
i=1

√
λ

(i)
Q Hi(q)u

(i)
Q =

m∑
i=0

√
λ

(i)
Q Hi(q)u

(i)
Q , (A.55)

where H is a new random vector of uncorrelated (but possibly dependent) components

Hi, λ
(i)
Q and u

(i)
Q for i > 0 are the ordered eigen-values and orthonormal eigen-basis of the

covariance matrix R̃Q, m is the order of the expansion, and where we have defined H0(q) =

λ
(0)
Q = 1 and u

(0)
Q as the expectation q̄. We note that the components of H are uncorrelated,

but can be dependent; however, for Gaussian distributions they are also independent since
uncorrelated. Besides, the random vector H is characterised by the following properties

E[H] = 0m and R̃H = Im . (A.56)
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A finite PCE on the random vector H valued in <m can then be considered as a de-
terministic non-linear mapping of the random germ Ξ valued in <m. Following Appendix
A.4.2, it comes

H = f(Ξ) '
∑

k(l)∈KC
p

ck(l)ψk(l)(Ξ) =

nC
p∑

l=0

ck(l)ψk(l)(Ξ) , (A.57)

with the coefficients valued in <m evaluated by

ck(l) = E [Hψk(l)(Ξ)] =

∫
<m
f(ξ)ψk(l)(ξ)πΞ(ξ)dξ , (A.58)

and with the complete multi-index set of total degree at most p defined by Eq. (A.47) and

composed of the elements k(0) = {0, ..., 0}, k(1), ..., k(nC
p ), with nC

p = (m+p)!
m!p!

− 1. Because of

the properties (A.56), Eq. (A.57) implies that the following properties must be satisfied

ck(0) = 0 and

nC
p∑

l=1

ck(l)cTk(l) = Im , (A.59)

with Im the identity matrix of size m.
Starting from Eq. (A.57), the question is to identify the coefficient ck(l) and the ap-

propriate germ Ξ valued in <m in order to build a suitable generator. We here follow the
method summarised by Hoang et al. (2017).

Multivariate kernel density estimation. The random vector H with values in <m can be
sampled from nη realisations qs following

ηsi =
1√
λ

(i)
Q

(qs − q̄)T u
(i)
Q ∀i = 1..m , (A.60)

allowing defining an approximation of the probability density πH(η), for example using as
bandwidth matrix the thumb-up rule proposed by Scott (2015) with

πH(η) ' 1

nη

nη∑
s=1

1

(2π)m/2(nη)−m/(m+4)
exp

(
− ‖η − ηs‖2

2(nη)−2/(m+4)

)
. (A.61)

The conditional probability density functions thus arise from

πHk|Hk−1, ...,H1(ηk|ηk−1, ..., η1) =
πHk,Hk−1, ...,H1(ηk, ηk−1, ... η1)∫

< πHk,Hk−1, ...,H1(ηk, ηk−1, ... η1)dηk
, k = 1..m , (A.62)

and the conditional cumulative distribution follows from

FHk|Hk−1, ...,H1(ηk|ηk−1, ..., η1) =

∫ ηk

−∞
πHk|Hk−1, ...,H1(η′k|ηk−1, ..., η1)dη′k , k = 1..m . (A.63)
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Rosenblatt transformation. In order to obtain a germ Ξ defined as m independent and
uniformly distributed random variables Ξi with the support SΞ = [0, 1]m, i.e.

πΞ(ξ) = U0, 1 × ...×U0, 1 , (A.64)

with U0, 1 defined by Eq. (18), we apply the Rosenblatt transformation Ξ = fR U(H) follow-
ing Appendix A.1.3, with Eq. (A.10) evaluated from the conditional cumulative distribution
following from Eq. (A.63) as

ξ1 = FH1(η1), ξ2 = FH2|H1(η2|η1), ..., ξm = FHm|Hm−1, ...,H1(ηm|ηm−1, ..., η1) . (A.65)

Legendre polynomials. Since the random variables Ξi, i = 1..m, are independent, the Hilbert
basis can be defined by the multi-variate polynomials (A.51), with the family of orthonormal

polynomials {ψ(i)
p : p ∈ N0, i = 1..m}. A practical choice for the polynomials ψ

(i)
p is to

consider the Legendre polynomials shifted in the domain [0, 1], with

ψ(i)
p (ξi) = Pp(2ξi − 1)

√
2p+ 1 , (A.66)

where Pp is the Legendre polynomial of order p with P0(x) = 1, P1(x) = x, ..., Pp+1(x) =
2p+1
p+1

xPp(x)− p
p+1

Pp−1(x), for x ∈ [−1, 1]. Finally, one has

ψk(l)(ξ) = ψ
(1)

k
(l)
1

(ξ1)× ...× ψ(i)

k
(l)
i

(ξi)× ...× ψ(m)

k
(l)
m

(ξm) . (A.67)

Identification of the PCE coefficients. Considering the multi-variate polynomial chaos {ψk(l)(Ξ) :
l = 1..nC

p } built using the Legendre polynomials (A.66), and using Eq. (A.64), the coeffi-
cients (A.58) are obtained from the inverse Rosenblatt transformation following

ck(l) = E [Hψk(l)(Ξ)] =

∫
<m
f(ξ)ψk(l)(ξ)πΞ(ξ)dξ =

∫
SΞ

fR U−1
(ξ)ψk(l)dξ , (A.68)

which is detailed components by components as

ck(l)1 =

∫
[0 1]

F−1
H1

(ξ1)ψk(l)(ξ1)dξ1 ,

ck(l)2 =

∫
[0 1]2

F−1
H2|H1

(ξ2|ξ1)ψk(l)(ξ1, ξ2)dξ1dξ2 , ... ,

ck(l)m =

∫
[0 1]m

F−1
Hm|Hm−1...H1

(ξm|ξm−1...ξ1)ψk(l)(ξ1, ξ2, ..., ξm)dξ1dξ2...dξm , (A.69)

with ψk(l)(ξ1, ξ2, ..., ξi) =
∫

[0, 1]m−i
ψk(l)(ξ)dξi+1dξi+2...dξm.

Sampling of non-Gaussian random vectors. Once the coefficient ck(l) are identified, pseudo-
samples qp of the random vector Q can be generated as follows:

• Pseudo-samples ξp can be readily generated from Ξi ∼ U0, 1;

• Transform them into pseudo-samples ηp using Eq. (A.57);

• Transform the latter into pseudo-samples qp using Eq. (A.55).
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Appendix A.4.4. PCE of a random field

Let us consider the continuous random vector field Q(Ω) = {Q(x) : x ∈ Ω} for Ω ⊂ <d
a space of material points x, with d ∈ N. Its expectation (26) is denoted by q̄ (x) =
E [Q (x)] : Ω → <n, and its covariance matrix by R̃Q (x; τ ), see Eq. (50). In this section,
using x′ = x+ τ , we use the notation R̃Q (x, x′) : Ω× Ω→ <n×n.

Following Appendix A.3.2, a finite Karhunen Loève expansion up to order m allows
approximating the random field Q(Ω) by the collection of

Q(x; q) ' q̄ (x) +
m∑
i=1

√
λ

(i)
Q Hi(q)u

(i)
Q (x) =

m∑
i=0

√
λ

(i)
Q Hi(q)u

(i)
Q (x) , (A.70)

where H is a new random vector of uncorrelated (but possibly dependent) components Hi,

λ
(i)
Q and u

(i)
Q (x) for i > 0 are the ordered eigen-values and orthonormal eigen-vectors of the

covariance matrix R̃Q(x, x′), m is the order of the expansion, and where we have defined

H0(q) = λ
(0)
Q = 1 and u

(0)
Q (x) as the expectation q̄(x). Besides, the random vector H is

characterised by the following properties

E[H] = 0m and R̃H = Im . (A.71)

A PCE of the random field consists in performing a finite PCE on the random vector H
valued in <m and considered as the deterministic non-linear mapping of the random germ
Ξ valued in <ng . Following Appendix A.4.2, it comes

H = f(Ξ) '
∑

k(l)∈KC
p

ck(l)ψk(l)(Ξ) =

nC
p∑

l=0

ck(l)ψk(l)(Ξ) , (A.72)

with the coefficients valued in <m evaluated by

ck(l) = E [Hψk(l)(Ξ)] =

∫
<ng
f(ξ)ψk(l)(ξ)πΞ(ξ)dξ , (A.73)

and with the complete multi-index set of total degree at most p defined by Eq. (A.47) and

of elements k(0) = {0, ..., 0}, k(1), ..., k(nC
p ), with nC

p = (ng+p)!
ng !p!

− 1. Because of the properties

(A.71), Eq. (A.72) implies that the following conditions must be satisfied

ck(0) = 0 and

nC
p∑

l=1

ck(l)cTk(l) = Im , (A.74)

with Im the identity matrix of size m.

Defining uk(l)(x) =
∑m

i=1

√
λ

(i)
Q ck(l) iu

(i)
Q (x), Eq. (A.70) is then rewritten

Q(x; q) ' q̄ (x) +

nC
p∑

l=1

uk(l)(x)ψk(l)(Ξ(q)) , (A.75)
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with, using Eq. (A.74) and the orthonormal properties of u
(i)
Q (x),

uk(0) = 0 and

∫
Ω

uk(l)(x)Tuk(l′)(x)dx =
m∑
i=1

λ(i)ck(l) ick(l′) i l, l′ = 1..nC
p , (A.76)

and with

uk(l)(x) = E [(Q(x)− q̄ (x))ψk(l)(Ξ)]

=

∫
<ng

(Q(x)− q̄ (x))ψk(l)(ξ)πΞ(ξ)dξ l = 1..nC
p . (A.77)

Appendix A.5. Markov chain Monte Carlo
Appendix A.5.1. Markov Chain of discrete random vectors

Definition. Let us consider a random process Q(T) = {Q(t(i)) : t(i) ∈ T ⊂ <+
0 }, the

collection of random vectors in the discrete set T = (t(1), ..., t(k), ...), with 0 ≤ t(1) < t(2) <
... < t(k−1) < t(k). Besides it is assumed that Q(t(i)) takes values in a countable support
SQ ⊂ <n with N possible states q(j) ∈ SQ, j = 1..N .

The random process is a Markov chain if the probability of an event at t(k) only depends
on the event at t(k−1), i.e.

P
(
Q(t(k)) = q(j)|Q(t(k−1)) = qk−1,

Q(t(k−2)) = qk−2, ..., Q(t(2)) = q2, Q(t(1)) = q1
)

=

P
(
Q(t(k)) = q(j)|Q(t(k−1)) = qk−1

)
= ... , (A.78)

where qp−1 ∈ SQ denotes the state taken by Q(t(p−1)).

Transition matrix & homogeneous Markov chain. For an homogeneous Markov chain process
indexed in the discrete set T = (t(1), ..., t(k), ...), with 0 ≤ t(1) < t(2) < ... < t(k−1) < t(k),
and assuming t(k) − t(k−1) = t(k−1) − t(k−2) = ... = ∆t, one has a transition probability that
depends only on ∆t = t(i) − t(i−1) with,

pQ
(
q(i); q(j), ∆t

)
= P

(
Q(t(k)) = q(j)|Q(t(k−1)) = q(i)

)
= P

(
Q(t(k−1)) = q(j)|Q(t(k−2)) = q(i)

)
, (A.79)

where pQ
(
q(i); q(j), ∆t

)
is the transition probability of the homogeneous process, which

corresponds to a conditional probability mass function, and which defines the transition
matrix

PQ (∆t) =


pQ
(
q(1); q(1), ∆t

)
... pQ

(
q(1); q(m), ∆t

)
... pQ

(
q(1); q(N), ∆t

)
... ... ... ... ...

pQ
(
q(n); q(1), ∆t

)
... pQ

(
q(n); q(n), ∆t

)
... pQ

(
q(n); q(N), ∆t

)
... ... ... ... ...

pQ
(
q(N); q(1), ∆t

)
... pQ

(
q(N); q(m), ∆t

)
... pQ

(
q(N); q(N), ∆t

)

 .

(A.80)
The transition matrix is a stochastic matrix, i.e. of non-negative entries pQ

(
q(i); q(j), ∆t

)
≥

0 and whose rows have a unit sum
∑N

j=1 pQ
(
q(i); q(j), ∆t

)
= 1, and its entries are denoted

PQr s (∆t) = pQ
(
q(r); q(s), ∆t

)
.
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Stationary distribution. Considering the Markov chain process indexed in the discrete set
T = (t(1), ..., t(k), ...), with 0 ≤ t(1) < t(2) < ... < t(k−1) < t(k) and assuming t(k) − t(k−1) =
t(k−1)− t(k−2) = ... = ∆t, the distribution at sampling point t(j) is represented by the vector

πQ
(
t(j)
)

=
[
P
(
Q(t(j)) = q(1)

)
... P

(
Q(t(j)) = q(N)

)]T
, (A.81)

with its entry {πQ
(
t(j)
)
}r = πQ

(
q(r); t(j)

)
∈ [0, 1] and

∑N
i=1 πQ

(
q(i); t(j)

)
= 1. Assuming

a homogeneous chain, one has πTQ
(
t(j+1)

)
= πTQ

(
t(j)
)

PQ(∆t).
The distribution πQ is a stationary distribution of the homogeneous chain if

πTQ = πTQPQ(∆t) = πTQPm
Q(∆t) ∀m ∈ N0 . (A.82)

Reversibility. If Q(T) = {Q(t(i)) : t(i) ∈ T}, with T = (t(1), ..., t(k)) and assuming t(k) −
t(k−1) = t(k−1) − t(k−2) = ... = ∆t, is an irreducible non-null persistent Markov chain with
transition matrix PQ (∆t) and stationary distribution πQ, the sequence Y (T) = {Y

(
t(i)
)

=

Q
(
t(k−i+1)

)
: t(i) ∈ T, 1 ≤ i ≤ k} is also a Markov chain with

P
(
Y (t(k)) = q(j)|Y (t(k−1)) = q(i)

)
=
πQ
(
q(j)
)

πQ (q(i))
pQ
(
q(j); q(i), ∆t

)
, (A.83)

with no sum intended.
The Markov chain Q(T) = {Q(t(i)) : t(i) ∈ T} is said to be reversible if its transition

matrix is the same as the one of Y (T) = {Y
(
t(i)
)

= Q
(
t(k−i+1)

)
: t(i) ∈ T, 1 ≤ i ≤ k}, i.e.

pQ
(
q(i); q(j), ∆t

)
=
πQ
(
q(j)
)

πQ (q(i))
pQ
(
q(j); q(i), ∆t

)
, (A.84)

with no sum intended.

Appendix A.5.2. Markov chain Monte Carlo simulation of a discrete random vector

Let us consider a stationary random process Q(T) = {Q(t(i)) : t(i) ∈ T ⊂ <+
0 } in the

discrete set T = (t(1), ..., t(k)), with t(j+1)−t(j) = ∆t and Q(t(i)) taking values in a countable
support SQ ⊂ <n, with N possible states q(j) ∈ SQ, j = 1..N . Besides, it is assumed that
the chain is reversible, so that the transition probability satisfies Eq. (A.84).

Having a pseudo-sample q
(
t(p)
)

= q(i), the pseudo-sample q
(
t(p+1)

)
can be constructed

to simulate a random vector Z taking values in a countable support SQ ⊂ <n and having
as probability mass function πZ (z) the stationary distribution πQ of the Markov chain.

Principles. The general lines of the algorithm are

• The so-called proposal stochastic matrix H of size N × N is first constructed; Its
entries are denoted Hi j, with Hi j > 0 and

∑N
i=1Hi j = 1;

• The realisation y of the random vector Y is picked so that P
(
Y = q(j)|q

(
t(p)
)

= q(i)
)

=
Hi j;
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• The so-called acceptance matrix A, with entries 0 ≤ Ai j = a
(
q(i); q(j)

)
≤ 1 and of

size N ×N is then constructed;

• Knowing Y = q(j), the pseudo-sample q
(
t(p+1)

)
is constructed as follows

q
(
t(p+1)

)
=

{
q(j) with probability Ai j;

q
(
t(p)
)

with probability 1− Ai j .
(A.85)

In order to define H and A, following Grimmett and Stirzaker (2001), the transition
probability of Eq. (A.85) reads

pQ
(
q(i); q(j), ∆t

)
=

{
Hi jAi j if i 6= j;

1−
∑

j′: j′ 6=iHi j′Ai j′ if i = j ;
(A.86)

and Eq. (A.84) is satisfied by the Hasting algorithm

Ai j = a
(
q(i); q(j)

)
=


πZ(q(j))Hj i
πZ(q(i))Hi j

if
πZ(q(j))Hj i
πZ(q(i))Hi j

< 1;

1 if not .
(A.87)

A particular case is studied here below.

Markov chain Monte Carlo simulation of a uni-variate random process/field. We here sum-
marise the methodology developed by Blacklock et al. (2012) to generate pseudo-samples
q
(
t(p)
)

satisfying the statistical properties of the random variable field Q(T) (or random
vector, of independent components, fields).

Considering a random process Q(T) = {Q(t(i)) : t(i) ∈ T ⊂ <+
0 } in the discrete set

T = (t(1), ..., t(k), ...), with t(k+1) − t(k) = ∆t and Q(t(i)) taking values in an uncountable
support SQ, the random variable Q

(
t(j)
)

is then discretized on a N = 2Nm + 1-grid with

values q(m)− q̄ = (m−Nm− 1)∆q, with m = 1..2Nm + 1. This corresponds to the creation
of a discrete random variable, so that the algorithms of Appendix A.5.1 can be applied.
The distribution (A.81) of Q

(
t(j)
)

at sampling point t(j) is thus represented by the vector

πQ
(
t(j)
)

of size N = 2Nm + 1.
We also define the associated cumulative distribution function

FQ(q; t(j)) =


0 if q < q(1) ;∑

k: q(k)<q P
(
Q(t(j)) = q(k)

)
if q(1) ≤ q < q(2NM+1) ;

1 if q(2Nm+1) ≤ q .

(A.88)

Assuming an homogeneous Markov chain process, one has

πTQ
(
t(j+1)

)
= πTQ

(
t(j)
)
PQ (∆t) , (A.89)

with the probability transition matrix PQ (∆t).
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Assuming a stationary process of distribution πQ, the matrix PQ has to be calibrated so
that, in the asymptotic regime, the distribution πQ

(
t(j)
)
, but also the correlation between

πQ(t(j)) and πQ
(
t(j−1)

)
, are good approximations of the random field Q(T) to be simulated.

Once the matrix PQ has been calibrated, one can generate pseudo-samples following the
argumentation by Blacklock et al. (2012).

• Generate a pseudo-sample u1 from the random variable U ∼ U0, 1;

• Initialise the function FQ(q; t(1)) from the stationary distribution πQ in order to avoid
a transient stage;

• Compare u1 with the function FQ(q; t(1)) to generate q
(
t(1)
)

= q(i) with FQ(q(i); t(1)) ≤
u1 < FQ(q(i+1); t(1)), giving the first point of the pseudo-sample of the random process
to be simulated;

• Repeat the iterative process

1. Given the generated pseudo-sample q
(
t(p)
)

= q(i) create the distribution vector

πQ(t(p)) = [0 ... 1 ...0]T with the only non-zero entry at location i;

2. Evaluate the distribution vector πTQ
(
t(p+1)

)
= πTQ

(
t(p)
)

PQ;

3. Generate a pseudo-sample up+1 from the random variable U ∼ U0, 1;

4. Compare up+1 with the function FQ
(
q; t(p+1)

)
to generate q

(
t(p+1)

)
= q(j) with

FQ
(
q(j); t(p+1)

)
≤ up+1 < FQ

(
q(j+1); t(p+1)

)
;

5. Increment p and go back to step #1.

Appendix A.5.3. Markov Chain of continuous random vectors

We refer to the book by Soize (2017) for a complete description and give here the main
concepts in order to build a Metropolis-Hasting Markov Chain Monte-Carlo algorithm.

Definition. Let us consider a random process Q(T) = {Q(t(i)) : t(i) ∈ T ⊂ <+
0 } the

collection of random vectors in the, here assumed discrete, set T = (t(1), ..., t(k), ...), with
0 ≤ t(1) < t(2) < ... < t(k−1) < t(k). Besides, it is assumed that Q(t(i)) takes values in an
uncountable support SQ ⊂ <n.

The random process is a Markov chain if the probability of an event at t(k) only depends
on the event at t(k−1), i.e.

P
(
Q(t(k)) ∈A|Q(t(k−1)) = qk−1,

Q(t(k−2)) = qk−2, ..., Q(t(2)) = q2, Q(t(1)) = q1
)

=

P
(
Q(t(k)) ∈A|Q(t(k−1)) = qk−1

)
, (A.90)

where qp ∈ SQ denotes the state taken by Q(t(p−1)).
Similarly, the random process Q(<+

0 ) = {Q(t) : t ∈ <+
0 }, defined as the collection of

random vectors indexed by continuous time and taking values in an uncountable support
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SQ ⊂ <n, has a Markov property if the state at time t + dt depends on the state at time t
only, i.e. if

P (Q(t) ∈A|Q(s) = q,

Q(tk) = qk, ..., Q(t2) = q2, Q(t1) = q1
)

=

P (Q(t) ∈A|Q(s) = q) , (A.91)

where 0 ≤ t1 < ... < tk < s < t and where qp ∈ SQ denotes the state taken by Q(tp).

Transition probability (density) distribution. For an homogeneous Markov chain process in-
dexed in the discrete set T = (t(1), ..., t(k), ...), with 0 ≤ t(1) < t(2) < ... < t(k−1) < t(k), one
has a transition probability that depends only on ∆tk = t(k) − t(k−1) and neither on t(k) nor
on t(k−1) with,

pQ
(
q; A, ∆tk

)
= P

(
Q(t(k)) ∈A|Q(t(k−1)) = q

)
=

∫
A

ρQ
(
q; q′, ∆tk

)
dq′ , (A.92)

where pQ
(
q; A, ∆tk

)
is a transition probability with

∫
q′∈<n pQ

(
q; dq′, ∆tk

)
=
∫
q′∈<n ρQ

(
q; q′, ∆tk

)
dq′ =

1, and where ρQ
(
q; q′, ∆tk

)
is the transition probability density function of the homoge-

neous process. Therefore, for an homogeneous process, one can write

P
(
Q(t(k)) ∈Ak, ..., Q(t(1)) ∈A1

)
=∫

Ak

...

∫
A1

πQ(t(1)), ...,Q(t(k))

(
q1, ..., qk; t(1), ..., t(k)

)
dq1...dqk =∫

Ak

...

∫
A1

πQ(t(1))

(
q1; t(1)

)
ρQ
(
q1; q2, ∆t2

)
... ρQ

(
qk−1; qk, ∆tk

)
dq1dq2 ... dqk , (A.93)

where we have used the transition probability density functions and where πQ(t(1))

(
q; t(1)

)
is the probability density function of Q(t(1)).

Similarly, for an homogeneous Markov chain process indexed by a continuous time in
<+

0 , with 0 ≤ s < t, one has a transition probability dependent on the difference t − s and
not on the time indices t and s with

pQ (q; A, t− s) = P (Q(t) ∈A|Q(s) = q) =

∫
A

ρQ (q; q′, t− s) dq′ , (A.94)

where pQ (q; A, t− s) is a transition probability, i.e. pQ (q; A, ∆t) : <n → [0, 1] and∫
q′∈<n pQ (q; dq′, t− s) =

∫
q′∈<n ρQ (q; q′, t− s) dq′ = 1, and where ρQ (q; q′, t− s) is the

transition probability density function of the homogeneous process. Also, for an homoge-
neous process one can write

P
(
Q(tk) ∈Ak, ..., Q(t1) ∈A1

)
=∫

Ak

...

∫
A1

πQ(t1), ...,Q(tk)

(
q1, ..., qk; t1, ..., tk

)
dq1...dqk =∫

Ak

...

∫
A1

πQ(t1)

(
q1; t1

)
ρQ
(
q1; q2, ∆t2

)
... ρQ

(
qk−1; qk, ∆tk

)
dq1dq2 ... dqk , (A.95)
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where we have used the transition probability density functions and where πQ(t1) (q; t1) is
the probability density function of Q(t1).

Stationary distribution. Considering the stochastic process indexed in the discrete set T =
(t(1), ..., t(k), ...), with 0 ≤ t(1) < t(2) < ... < t(k−1) < t(k) and ∆ti = t(i) − t(i−1), it is said to
be stationary if, for a shift u ≥ 0, one has

P
(
Q(t(k) + u) ∈Ak, ..., Q(t(1) + u) ∈A1

)
= P

(
Q(t(k)) ∈Ak, ..., Q(t(1)) ∈A1

)
. (A.96)

A necessary and sufficient condition for a process to be stationary is to be homogeneous
and to have πQ(t(i))

(
q; t(i)

)
= πQ(q) the probability density function of Q(t(i)) independent

on t(i). Since for a stationary process πQ(t(1))

(
q; t(1)

)
is independent on t(1), Eq. (A.93)

becomes

P
(
Q(t(k)) ∈Ak, ..., Q(t(1)) ∈A1

)
=∫

Ak

...

∫
A1

πQ (q1) ρQ
(
q1; q2, ∆t2

)
... ρQ

(
qk−1; qk, ∆tk

)
dq1dq2 ... dqk . (A.97)

Similarly, considering the stochastic process indexed by a continuous time t in <+
0 with

0 ≤ t1 < t2 < ... < tk, with ∆ti = ti − ti−1, it is said to be stationary if, for a shift u ≥ 0,
one has

P
(
Q(tk + u) ∈Ak, ..., Q(t1 + u) ∈A1

)
= P

(
Q(tk) ∈Ak, ..., Q(t1) ∈A1

)
. (A.98)

A necessary and sufficient condition for a process to be stationary is to be homogeneous and
to have πQ(ti) (q; ti) = πQ(q) the probability density function of Q(ti) independent on ti.
Therefore, Eq. (A.95) is rewritten

P
(
Q(tk) ∈Ak, ..., Q(t1) ∈A1

)
=∫

Ak

...

∫
A1

πQ
(
q1
)
ρQ
(
q1; q2, ∆t2

)
... ρQ

(
qk−1; qk, ∆tk

)
dq1dq2 ... dqk . (A.99)

Wiener process. A process W (<+
0 ) = {W (t) : t ∈ <+

0 } defined as the collection of random
vectors valued in <n and indexed by a continuous time is said to be a normalised Wiener
process if i) the <-valued processes Wi, i = 1..n, are mutually independent; ii) W (0) = 0n;
iii) {W (t) : t ∈ T ⊂ <+

0 } is a process with random increments; and (iv) ∆W st =
W (t)−W (s), 0 ≤ s < t, in an <n valued second order zero-mean Gaussian random vector
of covariance matrix R̃W st = (t− s)In ∈ M+

n (<), for t > s.
The normalised Wiener stochastic process W (<+

0 ) is a homogeneous Markov process
with the transition probability density function written for t > s,

ρW (w; w′, t− s) =
1

(2π(t− s))
n
2

exp

(
−1

2

(w′ −w)T (w′ −w)

t− s

)
. (A.100)

The probability density function of W (t) reads for t > 0

πW (t) (w; t) =
1

(2πt)
n
2

exp

(
−1

2

wTw

t

)
, (A.101)

which depends on t showing that the Wiener process is not stationary.
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Appendix A.5.4. Markov chain Monte Carlo simulation of a continuous random vector

Let us consider a stationary random process Q(T) = {Q(t(i)) : t(i) ∈ T ⊂ <+
0 } in the

discrete set T = (t(1), ..., t(k), ...), with t(k) − t(k−1) = ∆t and Q(t(i)) taking values in an
uncountable support SQ ⊂ <n.

Having a pseudo-sample q
(
t(p)
)

= qp, the pseudo-sample q
(
t(p+1)

)
can be constructed in

order to simulate a random vector Z taking values in <n and having as distribution density
function πZ (z) the stationary distribution πQ(t(i))

(
q; t(i)

)
= πQ (q) of the Markov chain.

Principles. The general lines of the algorithm are

• The so-called proposal distribution density ρ (q; y) is constructed with ρ (q; y) > 0
and

∫
<n ρ (q; y) dy = 1;

• The realisation y of the random vector Y is picked from the probability distribution
πY |Q(t(p))

(
y|q

(
t(p)
))
dy = ρ (qp; y) dy;

• Construct an acceptance ratio a (qp; q) with 0 ≤ a (qp; q) ≤ 1;

• Knowing y, the pseudo-sample q
(
t(p+1)

)
is constructed as follows

q
(
t(p+1)

)
=

{
y with probability a (qp; y) ;

q
(
t(p)
)

= qp with probability 1− a (qp; y) .
(A.102)

The equivalent of the Hasting acceptance (A.87) reads

a (qp; q) =

{
πZ(q)ρ(q; qp)
πZ(qp)ρ(qp; q)

if πZ(q)ρ(q; qp)
πZ(qp)ρ(qp; q)

< 1;

1 if not .
(A.103)

Common particular choices for the proposal distribution density and acceptance ratio
are described here below.

Metropolis Hastings algorithm. The proposal matrix has to be chosen, and there is no general
form. Here we consider a normal distribution (17) centred on the previous realisation with
a covariance matrix regularly adapted as proposed by Haario et al. (1999), i.e.

ρ (q; y) = N
q, 2.382

n
R̃Q

(y) , (A.104)

where R̃Q ∈ M+
n (<) is the covariance matrix updated from the last Nk sampling.

The algorithm is as follows

• Initialise R̃Q to the n× n identity matrix In;

• Take an initial pseudo-sample q
(
t(1)
)
∈ <n;

• Repeat the iterative process
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1. Given the pseudo-sample q(t(p)) = qp, generate a pseudo-sample yp+1 from Y ∼
N
q(t(p)), 2.382

n
R̃Q

;

2. Evaluate the Hasting acceptance (A.103), which simplifies because the proposal
matrix is symmetric into

a
(
q(t(p)); yp+1

)
=


πZ(yp+1)
πZ(q(t(p)))

if
πZ(yp+1)
πZ(q(t(p)))

< 1;

1 if not .
(A.105)

3. Generate a pseudo-sample up+1 from the random variable U ∼ U0, 1;
4. If a

(
q(t(p)); yp+1

)
≥ up+1 then q(t(p+1)) = yp+1; If a

(
q(t(p)); yp+1

)
< up+1 reject

the pseudo-sample and go back to step #1;
5. For steps p+ 1 = x ·Nk, x ∈ N reevaluate the covariance matrix, i.e.

R̃Q =
1

Nk − 1

Nk∑
k=1

(
q(t(p−Nk+1+k))− E[Q]

) (
q(t(p−Nk+1+k))− E[Q]

)T
;

(A.106)

6. Increment p and go back to step #1.

• Do not consider the first thousands of pseudo-samples in order to have a stationary
process.

Gibbs sampling. Each step of the Gibbs sampling process corresponds in replacing the value
of the component i of the sampled vector by a value drawn from the conditional distribution
of that variable knowing the remaining components. The proposal matrix thus reads

ρ (q; y) = πZi|Z1, ..., Zi−1, Zi+1, ..., Zn (yi|q1, ..., qi−1, qi+1, ..., qn) . (A.107)

This method thus requires the possibility to build the conditional distributions, contrarily
to the Metropolis Hastings algorithm. However, because of the definition of the proposal
(A.107), the Hasting acceptance (A.103) simplifies into

a (qp; q) = 1 , (A.108)

since

πZ (q) ρ (q; qp)

πZ (qp) ρ (qp; q)
=

πZ (q) πZi|Z1, ..., Zi−1, Zi+1, ..., Zn (qpi |q1, ..., qi−1, qi+1, ..., qn)

πZ (qp) πZi|Z1, ..., Zi−1, Zi+1, ..., Zn

(
qi|qp1, ..., q

p
i−1, q

p
i+1, ..., q

p
n

)
=

πZ (q) πZi|Z−i (qpi |q−i)
πZ (qp) πZi|Z−i

(
qi|qp−i

) =
πZi|Z−i (qi|q−i) πZ−i (q−i) πZi|Z−i (qpi |q−i)
πZi|Z−i

(
qpi |q

p
−i
)
πZ−i

(
qp−i
)
πZi|Z−i

(
qi|qp−i

)
=

πZi|Z−i
(
qi|qp−i

)
πZ−i

(
qp−i
)
πZi|Z−i

(
qpi |q

p
−i
)

πZi|Z−i
(
qpi |q

p
−i
)
πZ−i

(
qp−i
)
πZi|Z−i

(
qi|qp−i

) = 1 , (A.109)

where Z−i = [Z1 ... Zi−1 Zi+1 ... Zn]T is the random vector with realisations z−i in <n−1, and
where we have used the fact that q−i = qp−i.

The algorithm is as follows
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• Take an initial pseudo-sample q
(
t(1)
)
∈ <n;

• Repeat the iterative process

1. Given the pseudo-sample q(t(p)) = qp, select the component i ∈ [1, n] either from
a uniform distribution or following a given order;

2. Generate a pseudo-sample yp+1 from Y defined using the conditional distribution
Y ∼ πZi|Z1, ..., Zi−1, Zi+1, ..., Zn

(
y|qp1, ..., q

p
i−1, q

p
i+1, ..., q

p
n

)
;

3. The new pseudo-sample is constructed as qp+1 = [qp1 ... q
p
i−1 y

p+1 qpi+1 ... q
p
n]T ;

4. The Hasting acceptance (A.103) simplifies into a
(
q(t(p)); qp+1

)
= 1, so that

pseudo-sample q(t(p+1)) = qp+1 is accepted;

5. Increment p and go back to step #1.

• Do not consider the first thousands of pseudo-samples in order to have a stationary
process.

Itô Stochastic Differential Equations (ISDEs). Considering the random vector Z with a
probability density function πZ(z), we assume the support SZ = <n, the cases of bounded
supports being detailed by Soize (2017). There is thus a potential function φ(z), assumed
to be continuous, and a normalisation constant c such that

πZ(z) = cexp (−φ(z)) . (A.110)

The ISDEs are defined as a Markov stochastic process
{

(Q(t), Y (t)) : t ∈ <+
0

}
on the

probability space (Q,F,P), with value in <n × <n, indexed on <+
0 . The ISDEs are defined

for t > 0 as

dQ(t) = Y (t)dt , (A.111)

dY (t) = −∇qφ (Q(t)) dt− 1

2
f0Y (t)dt+

√
f0dW (t) , (A.112)

with the initial conditions

Q(0) = z0 ∈ <n , Y (0) = y0 ∈ <n , W (0) = 0n , (A.113)

where W (t) consists in a normalised Wiener process valued in <n, see Appendix A.5.3, and
f0 > 0 is an algorithmic parameter. In general the initial boundary conditions are taken as
z0 = 0 and y0r sampled from Y0r ∼ N0, 1.

There is a unique asymptotic stationary solution, which is a Markov process with

limt→∞πQ(t),Y (t)(q, y; t, t)dqdy = ρs(q; y)dqdy (A.114)

with

ρs(q; y) = c2exp

(
−1

2
yTy − φ(q)

)
, (A.115)
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where c2 is a normalisation constant. As a result, using the definition (A.110), one has

limt→∞πQ(t)(q; t) = πZ(q) , (A.116)

showing that the stationary state of the Markov chain process Q(<+
0 ) can simulate the

random vector Z taking values in <n and having as distribution density function πZ (z) since
it corresponds to the stationary distribution πQ (q) of the Markov chain process Q(<+

0 ).
The ISDEs presented in Eqs. (A.111-A.112) are discretised and integrated using the

Störmer-Verlet scheme. The continuous index parameter t is discretized into t(0), t(1), ..., t(l), ...
with the constant sampling step ∆t and t(l) = l∆t. Using the following notations Ql =
Q(t(l)), Y l = Y (t(l)) and W l = W (t(l)), the Störmer-Verlet scheme yields

Ql+ 1
2 = Ql +

∆t

2
Y l ,

Y l+1 =
1− α
1 + α

Y l +
∆t

1 + α
Ll+

1
2 +

√
f0

1 + α
∆W l+1 ,

Ql+1 = Ql+ 1
2 +

∆t

2
Y l+1 , (A.117)

where Ll+
1
2 = L

(
Ql+ 1

2

)
, with L (q) = −∇qφ(q), and α = f0∆t/4.

The generation algorithm consists in evaluating the stationary state of the realisation
path

{
(Q(t; q), Y (t; q)) : t ∈ <+

0

}
, i.e. for given q ∈ Q of the stochastic process, as follows

• Take initial conditions Q(0; q) = 0 and Y (0; q) drawn from n zero-mean normalised
Gaussian distributions;

• Consider a time integration with t(l) = l∆t, and generate a Wiener process realisation
W (<+, q) = {W (t; q) : t ∈ <+} from which the increments ∆W l(q) arise;

• Integrate the differential equations using the Störmer-Verlet scheme (A.117) yielding
one realisation path

{
(Q(t; q), Y (t; q)) : t ∈ <+

0

}
of the stationary diffusion process;

• Extract the pseudo-samples qp = Q (pM0∆t; q), where M0 is a positive integer sam-
pling parameter.

Appendix A.6. Spectral Generator

Let us consider the continuous random vector field Q(Ω) = {Q(x) : x ∈ Ω} for Ω ⊂ <d
a space of material points x, with d = 3 in this section. Its expectation (26) is denoted
by q̄ (x) = E [Q (x)] : Ω → <n, and its covariance matrix by R̃Q (x; τ ), see Eq. (50).
We assume that the random field is homogeneous, i.e. we consider the covariance matrix
R̃Q (τ ) : <d → <n×n.
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Appendix A.6.1. Gaussian random field generator

In this section we detail the spectral representation method (Shinozuka and Jan, 1972),
which is applied to generate the required Gaussian random field Q(Ω) = {Q(x) : x ∈ Ω}.

The covariance entries are denoted R̃Qr s (τ ) , r, s = 1..n. In order to use the Discrete
Fourier Transform (DFT), we first define the covariance matrices set R̃[τ] as

R̃r s[τ] = {RQr s
(
τ (nx ny nz)

)
} , (A.118)

where the set of discrete positions τ = {τ (nx ny nz)} is defined by its vector components
τ (nx ny nz) = [nx∆τx ny∆τy nz∆τz]

T , where ∆τi, for i = x, y, z, is the spatial increment
in each dimension i and where ni = 0, 1, 2, ..., Ni − 1, for i = x, y, z, with Ni the total
number of discrete points in each dimension i. Depending on the spatial size, [lx ly lz]

T , of
the random field to be generated, it is required that Ni∆τi ≥ li (with no sum on i intended).
This is achieved through a zero-padding once R̃(τ ) reaches zero, allowing the number of
points Ni to be increased as required. The set of covariance matrix R̃[τ] is now periodised
by adding extra discrete points at its end in order to satisfy

R̃
(

[(Nx − 1 + j)∆τx (Ny − 1 + k)∆τy (Nz − 1 + p)∆τz]
T
)

=

R̃
(

[(Nx − j)∆τx (Ny − k)∆τy (Nz − p)∆τz]T
)

for j = 1..Nx − 1; k = 1..Ny − 1; p = 1..Nz − 1 , (A.119)

and to have 2Ni − 1 discrete points along each dimension.
The indices set m is defined by the vector components m(mxmymz) = [mx my mz]

T with
mi = 0, 1, ..., 2Ni − 2 for i = x, y, z. The increments in the frequency domain are defined
in each direction as

∆κi =
1

(2Ni − 1)∆τi
, i = x, y, z , (A.120)

allowing defining the set κ = {κ(mxmymz)} of sampling points in the frequency domain from

the vector components κ(mxmymz) =
[
κ

(mx)
x κ

(my)
y κ

(mz)
z

]T
defined as (no sum on i = x, y, z)

κ
(mi)
i =

{
mi∆κi if mi < (2Ni − 1)/2;

[mi − (2Ni − 1)]∆κi if mi > (2Ni − 1)/2;
(A.121)

where the second case is consider in order to avoid the failure of power and logarithm
identities during the inverse DFT of the coming random field generation.

The spectral density matrix S[κ] of the covariance matrices set R̃[τ] is computed using
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the DFT method following

Sr s
(
κ(mxmymz)

)
= ∆τx∆τy∆τz

2Nx−2∑
nx=0

2Ny−2∑
ny=0

2Nz−2∑
nz=0

R̃r s

(
τ (nx ny nz)

)
e−2πiκ(mxmy mz)·τ (nx ny nz)

= ∆τx∆τy∆τz

2Nx−2∑
nx=0

2Ny−2∑
ny=0

2Nz−2∑
nz=0

R̃r s

(
τ (nx ny nz)

)
e
−2πi

(
mxnx
2Nx−1

+
myny
2Ny−1

+ mznz
2Nz−1

)
,

(A.122)

for mi < (2Ni − 1)/2. We note that the matrix Sr s
(
κ(mxmymz)

)
actually depends on

m(mxmymz) and not κ(mxmymz). The matrix S
(
κ(mxmymz)

)
is an Hermitian matrix, which

can be expressed as

S
(
κ(mxmymz)

)
= H

(
κ(mxmymz)

)
H∗
(
κ(mxmymz)

)
, (A.123)

with H∗
(
κ(mxmymz)

)
the conjugate transpose of the matrix H

(
κ(mxmymz)

)
.

Eventually, a pseudo-sample realisation of random field Q(Ω) is generated as a set of
random vector realisations qp(x) at different locations x(i) ∈ Ω, with for entry r of a reali-
sation

qpr (x
(i)) = q̄r +

√
2∆<


n∑
s=1

2Nx−2∑
mx=0

2Ny−2∑
my=0

2Nz−2∑
mz=0

Hr s

(
κ(mxmymz)

)
η(smxmymz)e2πi(x(i)·κ(mxmy mz)+θ(smx my mz))

}
, (A.124)

where ∆ = ∆κx∆κy ∆κz, where θ(smxmymz) is an independent random variable (for each
s, mx, my, mz) sampled from Θ ∼ U0,1, and where η(smxmymz) can be defined in the two
following ways

η(smxmymz) =


1 yields a Gaussian field only when

Nx, Ny, Nz →∞;√
−logϕ(smxmymz) yields a Gaussian field when

ϕ(smxmymz) is sampled from Φ ∼ U0,1.

(A.125)

Appendix A.6.2. Non-Gaussian random field generator

In order to generate a non-Gaussian random field, the described method of Appendix
A.6.1 is first applied to generate an intermediate Gaussian random field. Afterwards, this
Gaussian stochastic vector field is transformed into a non-Gaussian random field using proper
mapping techniques, see for example the work by Popescu et al. (1998).

The Discrete Fourier Transform (DFT), Eq. (A.122), was computed on evenly spaced dis-
crete points using the periodised covariance matrices set R̃r s [τ], with the set of discrete posi-
tions τ = {τ (nx ny nz)}. This defines the target spectrum Scont Target

r s (κ) = (∆τx∆τy∆τz)S
Target
r s (κ)
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evaluated in the frequency range at κ as

Scont Target
r s (κ) = (∆τx∆τy∆τz)S

Target
r s (κ)

= (∆τx∆τy∆τz)
2Nx−2∑
nx=0

2Ny−2∑
ny=0

2Nz−2∑
nz=0

R̃r s

(
τ (nx ny nz)

)
e−2πiτ (nx ny nz)·κ ,

(A.126)

where Scont Target(κ) is the continuous form of the spectrum STarget(κ), τ (nx ny nz) are the spa-
tial points coordinates, [∆τx ∆τy ∆τz]

T the coordinates increments and R̃ (τ ) the periodised
covariance matrix following Eq. (A.119).

A pseudo-sample of the non-Gaussian vector field is obtained following the steps:

• Construct the inverse F−1
Qr

: [0, 1] → SQr of the marginal cumulative distribution
functions, assumed to be continuous and of support SQr , of the components r of the
random vector Q;

• Initialise the spectrum of the Gaussian spectral representation ScontN(0)

(κ)= Scont Target(κ);
and iteration index at (k) = 0;

• Repeat until convergence

1. Generate the Gaussian pseudo-samples {qNp(x(i))} of the Gaussian field QN(Ω)

from Eq. (A.124) using as spectrum ScontN(k)

(κ) (in the continuous form);

2. Evaluate the expectation q̄r and the standard deviation σQN
r

from the pseudo-
samples qN

p
;

3. Following Deodatis and Micaletti (2001), map the Gaussian field to a non-Gaussian
field by

qNGp

r (x(i)) = F−1
Qr

[
FN
q̄r, σ2

QN
r

(
qN

p

r (x(i))
)]

, (A.127)

where FN
q̄r, σ2

QN
r

(•) is the marginal cumulative Gaussian distribution function, and

F−1
Qr

is the inverse of the (targeted) marginal cumulative distribution function of
the random variable Qr;

4. Compute the continuum spectrum Scont NG(κ) of the non-Gaussian random field
QNG(Ω) obtained from Eq. (A.127) using the Fourier transform Q̂NG(κ) with

Q̂NG(κ) =
lll∑

x(i)=0

(
qNGp

(
x(i)
)
− q̄
)
e−2πix(i)·κ ; (A.128)

and

Scont NG(κ) =
∆τx∆τy∆τz

Nx

¯̂
QNG(κ)

(
Q̂NG(κ)

)T
, (A.129)

where Nx is the total number of discrete points of the generated field, and
¯̂
QNG(κ)

is the conjugate of Q̂NG(κ); Because sample points of each random field are not
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enough to calculate the converged spectrum Scont NG(κ), thousands of pseudo-
samples {qNp(x(i))} of the random fields are generated at once in step #1 to
calculate the converged spectrum Scont NG(κ) in this step;

5. Compare Scont NG(κ) to Scont Target(κ), the error being calculated by (Popescu
et al., 1998)

e =

∫
κ

∑
r|Scont NG

r r (κ)− Scont Target
r r (κ)|dκ∫

κ

∑
r|S

cont Target
r r (κ)|dκ

; (A.130)

6. If e < Tol, then the pseudo-samples qNGp(Ω) computed from Eq. (A.127) corre-
spond to pseudo-samples of the random field Q(Ω); Else, if e > Tol, update the

spectrum ScontN(k)

(κ) of the Gaussian spectral representation following Wu et al.
(2016)

ScontN(k+1)

r r (κ) = ScontN(k)

r r (κ)
Scont Target
r r (κ)

Scont NG
r r (κ)

, (A.131)

ScontN(k+1)

r s (κ) = ScontN(k)

r s (κ)

(
Scont Target
r r (κ)Scont Target

s s (κ)

Scont NG
r r (κ)Scont NG

s s (κ)

) 1
2

;

(A.132)

Set (k) = (k + 1); and go back to step #1.

Appendix A.7. Data-driven probability sampling

The data-driven sampling method has been developed by Soize and Ghanem (2016).
Let us consider the probability space (Q, F, P) and the random vectorQ = [Q1 ... Qn]T :

Q → <n of dependent random variables Qi and of support SQ ⊂ <n. The available infor-
mation consists of a given set of N statistically independent realisations qk = Q(qk), with
qk ∈ Q, k = 1..N . It is further assumed that the local structure of the given data-set is
preserved via a random matrix Q = [Q1 ... Qk ... QN ], which is defined on (Q,F,P), with
values in <n×N and in which each column Qk, k = 1..N , is an independent copy of the
random vector Q. Therefore, the matrix q = [q1 ... qk ... qN ] is a realisation of Q.

A MCMC process is then used to generate extra data samples based on the matrix q
following the detailed three sequential sub-processes:

• The original data-set qk, k = 1..N is first normalised by removing the mean and scaling
it to the unit variance using the PCA, see Appendix A.3.1, from the covariance matrix

R̃Q =
1

N − 1

N∑
k=1

(
qk − q̄

) (
qk − q̄

)T
, (A.133)

with the mean q̄ = 1
N

∑N
k=1 q

k; The normalised data-set is then computed from Eq.
(A.21) by

{ηk}i =
1√
λ

(i)
Q

(qk − q̄)Tu
(i)
Q , k = 1..N, i = 1..n , (A.134)
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with the ordered eigen-values λ
(i)
Q > 0, and the normalised eigen-vectors u

(i)
Q of R̃Q;

The original data-set q of size n × N is thus transferred to η = [η1 ... ηk ... ηN ] of
size n×N ;

• The random data generating process is built through the following steps:

1. The given data-set {ηk : k = 1..N} serves as N realisations of the random vector
H : Q → <n defined so that E[H] = 0n and R̃H = In because of the PCA; The
non-parametric estimate of the probability density function πH is obtained using
the Gaussian kernel-density estimation method, with

πH(ηηη) =
1

N

N∑
i=1

1

(
√

2πŝn)n
exp

(
− 1

2ŝ2
n

‖ ŝn
sn
ηηηi − ηηη‖2

)
, (A.135)

where ‖η‖2 = η2
1 + ... + η2

n, and where the multidimensional optimal Silverman
bandwidth sn and parameter ŝn read

sn =

[
4

N(2 + n)

]1/(4+n)

, ŝn =
sn√

s2
n + N−1

N

; (A.136)

2. Based on the observation data-set η, a diffusion-map basis φ ∈ <N×N is con-
structed as follows

(a) Considering the Gaussian kernel defined on <n ×<n

kε(η
i, ηj) = exp

(
− 1

4ε
‖ηi − ηj‖2

)
, i, j = 1..N , (A.137)

the symmetric matrix K is defined in MN (<) with entries Ki j = kε(η
i, ηj);

(b) A diagonal real matrix ρ = diag(ρ1, ..., ρN) is constructed in MN with

ρi =
N∑
j=1

Ki j, i, j = 1..N ; (A.138)

(c) A symmetric matrix Ps is then defined as

Ps = ρ−1/2Kρ−1/2 , (A.139)

with its eigen-values λ
(i)
Ps

and eigen-vectors u
(i)
Ps

, with i = 1..N . The definition

of Ps, Eq. (A.139), and multiplying by ρ−1/2 its corresponding eigen-value
problem, lead to

ρ−1Kρ−1/2u
(i)
Ps

= λ
(i)
Ps
ρ−1/2u

(i)
Ps
, (A.140)

which corresponds to the new eigen-value problem,

Pu
(i)
P = λ

(i)
P u

(i)
P , i = 1..N , (A.141)
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with the matrix P = ρ−1K and its eigen-values λ
(i)
P = λ

(i)
Ps

and eigen-vectors

u
(i)
P = ρ−1/2u

(i)
Ps

; Because of the definition of the diagonal matrix ρ, Eq.

(A.138), one has
∑N

j=1 Pi j = 1, ∀i = 1..N ; Therefore, P is a transition
matrix, obtained in one step, of a Markov chain, see Appendix A.5.1;

(d) The diffusion map basis is defined by φ = [φ1 ... φk ... φN ] ∈ <N×N , such
that

φk = λ
(k)
P u

(k)
P ∈ <

N , k = 1..N ; (A.142)

Assuming the eigen-values of P are ordered in a descending order, it can be
proved that

1 = λ
(1)
P ≥ λ

(2)
P ≥ ... ≥ λ

(N)
P ; (A.143)

A dimension reduction can be achieved by discarding the basis vectors corre-
sponding to the eigen-values which are lower than a threshold value τ , such
that

τ ≥ λ
(m+1)
P ≥ λ

(m+2)
P ≥ ... ≥ λ

(N)
P , (A.144)

leading to the reduced basis φr = [φ1 ... φm] ∈ <N×m.

Remembering that the given data-set η serves as N realisations of the ran-
dom vector H, it can also be seen as a realisation of the random matrix V =
[H1 ... Hk ... HN ], which is defined on the probability space (Q, F,P), with value
in <n×N ; This random matrix V is then represented using the reduced diffusion
map basis φr as

V = ZφT
r , (A.145)

in which
Z = Va, with a = φr

(
φT

r φr

)−1 ∈ <N×m ; (A.146)

In particular, using the realisation η of the stochastic matrix V yields the reali-
sation

z = ηa ∈ <n×m ; (A.147)

Remark: In the absence of order reduction in the random vector generating pro-
cess, the step of diffusion map basis construction is not necessary anymore and
one has a = IN×N , m = N and φr = φ = IN ;

3. Additional realisations of the random matrix V are computed through Eq. (A.145)
with additional realisations of Z, which are generated by solving the Itô stochastic
differential equations (ISDEs), see Appendix A.5.4; Considering stochastic matri-
ces, the ISDEs are defined as a Markov stochastic process

{
(Z(r), Y(r)) : r ∈ <+

0

}
on the probability space (Q,F,P), with values in <n×m ×<n×m, indexed on <+

0 ;
The ISDEs for r > 0 are defined as

dZ(r) = Y(r)dr , (A.148)

dY(r) = L(Z(r))dr − 1

2
f0Y(r)dr +

√
f0dW(r) , (A.149)
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with the initial conditions

Z0 = z = ηa , Y0 = Na , W0 = 0n×m , (A.150)

where N represents the random matrix whose entries are n × N independent
random variables with normalised Gaussian distribution, and dW(r) = dW (r)a
with dW(r) consisting of a n×N independent normalised Wiener process; The
term L (Z(r)) of size n×m in Eq. (A.149) is expressed as

L (Z(r)) = L
(
Z(r)φT

r

)
a ; (A.151)

The columns of the matrix L (y) read

{L (y)}:, i = −∂V(g)

∂g
|g={Z(r)φT

r }: i , ∀i = 1..N , (A.152)

where the potential V(g) is evaluated using column i of Z(r)φT
r and is defined

on <n from the probability density function (A.135), with values in <+, i.e.

V(g) = −log

[
1

N

N∑
j=1

exp

(
− 1

2ŝ2
n

‖ ŝn
sn
ηj − g‖2

)]
; (A.153)

In this last equation, ηj, ∀j = 1..N are column vectors of the given data-set η,
and the parameters ŝn and sn are defined in Eq. (A.136);

4. The ISDEs presented in Eqs. (A.148-A.149) is then solved with the Störmer-
Verlet scheme (A.117); The continuous index parameter r is discretized into
r(0), r(1), ..., r(l), ... with the constant sampling step ∆r and r(l) = l∆r; Per-
forming the integration for one realisation q ∈ Q of the stochastic process yields
the stationary state of the realisation path

{
(Z(r; q), Y(r; q)) : r ∈ <+

0

}
; The

additional realisations of Z are sampled after every M0 steps of the realisation
path

{
Z(r; q) : r ∈ <+

0

}
; Let zp denote the additional samples of Z, which take

the value of Z(r(l); q) at l = pM0 with p = 1..NMC, where NMC is the number of
the required additional realisations and M0 is a positive integer sampling param-
eter, hence, the additional realisations of the random matrix V are obtained by
rewriting Eq. (A.145) as

ηp = zpφT
r ∈ <n×N , ∀p = 1..NMC . (A.154)

• Generated data are finally expressed according to the original data-set using Eq.
(A.134); The generated random data-set ηp = [η1p ... ηN

p
], with p = 1..NMC, is

transferred back to recover the scale and mean of the original data-set by

qi
p

= q̄ +
n∑
j=1

√
λ

(j)
Q u

(j)
Q η

ip

j , ∀i = 1..N , (A.155)

providing N additional pseudo-samples of Q for each p = 1..NMC.
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Appendix B. Maximum Entropy framework

Let us consider the probability space (Q, F, P) and the random vectorQ = [Q1 ... Qn]T :
Q → <n of dependent random variables Qi and of support SQ ⊂ <n.

Appendix B.1. Shannon entropy

The Shannon entropy s (πQ) ∈ < (<+ for discrete random variables) of the probability
mass or density function πQ represents the measure of the uncertainties of the random vector
Q, with

s (πQ) = −
∑

q(i)∈SQ

πQ(q(i))log
(
πQ(q(i))

)
, (B.1)

and

s (πQ) = −
∫
<n
πQ(q)log (πQ(q)) dq , (B.2)

for respectively discrete and continuous random vectors.

Appendix B.2. Maximum entropy principle

The maximum entropy principle allows constructing a probability mass or density func-
tion when only a limited amount of information is available. In this section we assume a
continuous random vector.

Following Jaynes (2003), “Amongst the probability distributions that satisfy our incom-
plete information about the system, the probability distribution that maximises entropy is
the least-biased estimate that can be made. It agrees with everything that is known but
carefully avoids anything that is unknown.”

In particular what is known are the support SQ ⊂ <n of the distribution and some
statistical properties written under the form∫

<n
g(q)πQ(q)dq = b ∈ <m , (B.3)

with the mapping g(q) : <n → <m. As an example, statistical moments can be used to
define the constraints.

The maximum entropy principle is then stated as

πQ = arg maxπ∈Ps(π) , with

P =

{
π of support SQ :

∫
<n
π(q)dq = 1 , and

∫
<n
g(q)π(q)dq = b

}
. (B.4)

Appendix B.3. Constrained problem resolution

Following Agmon et al. (1979); Soize (2017), the optimisation problem (B.4) is solved
by introducing Lagrange multipliers (λ0, λ) ∈ <+ × <m with

∫
<n exp

(
−λTg(q)

)
dq < ∞,

yielding the Lagrangian

L(π; λ0, λ) = s(π)− (λ0 − 1)

(∫
<n
π(q)dq − 1

)
− λT

(∫
<n
g(q)π(q)dq − b

)
. (B.5)
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The problem (B.4) is then substituted by finding the stationary point of L(π; λ0, λ) at πQ
for (λ0, λ) = (λsol

0 , λsol), with

πQ (q) =


exp(−λsolT g(q))

exp(λsol
0 )

if q ∈ SQ ;

0 if q /∈ SQ .
(B.6)

Finding the solution (λsol
0 , λsol) usually requires a numerical method. First, the solution

(B.6) is rewritten as

πQ (q) =


exp(−λsolT g(q))∫

SQ
exp(−λsolT g(q′))dq′

if q ∈ SQ ;

0 if q /∈ SQ .
(B.7)

The constraints equation (B.3) then becomes

1∫
SQ

exp
(
−λsolTg(q′)

)
dq′

∫
SQ

g(q)exp
(
−λsolTg(q)

)
dq = b . (B.8)

The dual optimisation problem of (B.4) is restated as finding λsol ∈ <m such that

λsol = arg minλΓ(λ) with Γ(λ) = λTb+ log

(∫
SQ

exp
(
−λTg(q′)

)
dq′

)
, (B.9)

since the gradient reads

∇λΓ(λ) = b−

∫
SQ
g(q′)exp

(
−λTg(q′)

)
dq′∫

SQ
exp (−λTg(q′)) dq′

, (B.10)

showing that the constraints equation (B.8) is the solution of ∇λΓ(λ) = 0, justifying the
optimisation problem (B.9). The problem (B.9), i.e. ∇λΓ(λ) = 0, is solved using a Newton
Raphson method, with the Hessian

∇λ (∇λΓ(λ)) =

∫
SQ

(g(q′)) (g(q′))T exp
(
−λTg(q′)

)
dq′∫

SQ
exp (−λTg(q′)) dq′

−(∫
SQ
g(q′)exp

(
−λTg(q′)

)
dq′
)(∫

SQ
g(q′)exp

(
−λTg(q′)

)
dq′
)T

(∫
SQ

exp (−λTg(q′)) dq′
)2 .

(B.11)
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Appendix C. Finite element resolution of the homogenisation problems

Appendix C.1. Resolution of the constrained micro-scale finite element problem

Appendix C.1.1. Constraint and kinematic matrices for PBCs

Using Eq. (125) allows relating the fluctuation u′ to the nodal unknowns u(a) on the
boundary gathered in the nodal vector d±m, where the superscript “±” refers to all the
boundary nodes, and Eq. (140) becomes

d±m − sfk
M − adam = 0 , (C.1)

where a is the constraint coefficients matrix constructed from the values of the interpolation
bases ϕ

(i)
(k) (x−), where a

(i)
(k) with k = 1, ..., n + 1 are gathered under the nodal vector dam of

size 9(n + 1) (3 surfaces ∂ω(i) and three degrees of freedom per term a
(i)
(k)), and where s is

the assembly matrix of boundary nodal positions x± from X

s3nb×9 =



x±
T

x 01×nb 01×nb

x±
T

y 01×nb 01×nb

x±
T

z 01×nb 01×nb

01×nb x±
T

x 01×nb

01×nb x±
T

y 01×nb

01×nb x±
T

z 01×nb

01×nb 01×nb x±
T

x

01×nb 01×nb x±
T

y

01×nb 01×nb x±
T

z



T

, (C.2)

where nb is the number of boundary nodes.
The set of Eqs. (136) is then rewritten by considering as degrees of freedom dm =

[dI
T

m d±
T

m da
T

m ]T , where dIm are the nodal degrees of freedom u(a) of the nI nodes not lying
on the boundary ∂ω.

The missing matrices read

c =
[
03nb×3nI I3nb×3nb −a3nb×9(n+1)

]
, (C.3)

and

km =

 kIIm kI±m 03nI×9(n+1)

k±Im k±±m 03nb×9(n+1)

09(n+1)×3nI 09(n+1)×3nb 09(n+1)×9(n+1)

 , (C.4)

where the micro-scale BVP stiffness matrix (138) has been redefined in terms of the internal
and boudary displacement degrees of freedom and completed to match the system size. More
details about the implementation are given by Nguyen et al. (2017).
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Appendix C.1.2. Resolution of the constrained meso-scale BVP

The set of Eqs. (136) is solved by the multiplier elimination method pioneered by
Ainsworth (2001) and detailed by Nguyen et al. (2017). The first set of equations of the

system (136) yields λ =
(
ccT
)−1

cfint, allowing the system (136) to be rewritten under the
residual form {

rm = fint − cTλ = qTfint = 0 , and

rc = cdm − sfk
M = 0 ,

(C.5)

with q = I−cT
(
ccT
)−1

c. Linearizing the system (C.5) with respect to both the micro-scale
unknown fields dm and the macro-scale kinematic field fk

M leads to{
rm + qTkmqδdm − qTkmcT

(
ccT
)−1 [

rc − sδfk
M

]
= 0 , and

rc + cδdm − sδfk
M = 0 ,

(C.6)

where the stiffness matrix km is given in Appendix C.1.1.
The solution of the meso-scale BVP is obtained by considering δfk

M = 0 in Eq. (C.6)
and the solution reads

δdm = −k̃
−1

m r̃m , (C.7)

with {
k̃m = cTc + qTkmq , and

r̃m = rm +
(
cT − qTkmcT

(
ccT
)−1
)
rc .

(C.8)

Appendix C.1.3. Extraction of homogenised material tensors

Following the Lagrange multiplier elimination approach detailed by Nguyen et al. (2017)
and summarised in Appendix C.1.2, the fourth order macro-scale material tensors cM can
be extracted in the matrix form cM as

cM =
∂pM

∂fM

=
∂

∂dm

(
1

V (ω)

∫
ω

pmdx

)
∂dm

∂fk
M

= d
∂dm

∂fk
M

. (C.9)

The last term on the right hand side is obtained by considering zero-residual in the system
of Eqs. (C.6), yielding

cM = dk̃
−1

m

(
cT − qTkmcT

(
ccT
)−1
)

s , (C.10)

where the last term d = ∂
∂dm

(
1

V (ω)

∫
ω
pmdx

)
reads

d =
1

V (ω)

∧
ωe

∫
ωe

cmbedx . (C.11)

The extraction of the meso-scale material tensor (C.10) is obtained at no additional cost

since the required matrix inverse k̃
−1

m is the same as during the finite-element resolution
(C.7).
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Appendix C.2. Resolution of AH

For conciseness, in the following, we drop the reference to the random micro-structure w

symbol, and consider the realisation u = U(w), σ = Σ(w), ε = E(w), µ = M(w), and the
different material tensor realisations cel = Cel(w) and h = H(w).

Appendix C.2.1. Resolution of the AH finite element problem

Omitting the reference to the macro-scale material point X, each meso-scale problem is

stated as finding the periodic
3

h (x) with the periodicity constraint (158) such that∫
ω

εx (δv) : cel
m(x) : [I + h(x)] dx = 0 ∀δv ∈ UPBC(ω) , (C.12)

where I is the fourth-order identity tensor with Iijkl = 1
2
δikδjl +

1
2
δilδjk, and the fourth-order

tensor h (x) is defined as hijkl = 1
2
∂
∂xj

3

hikl + 1
2
∂
∂xi

3

hjkl.

Each component
3

hijk (x) is written under the form
3

hijk (x) = ϕ(a)(x)
3

h
(a)

ijk, where ϕ(a)(x)

is the shape function related to the node a = 1..nnode and
3

h
(a)

ijk is the nodal unknowns, with

nnode the number of nodes. As a result hijkl (x) = 1
2
∂
∂xj

3

hikl (x)+ 1
2
∂
∂xi

3

hjkl (x) = 1
2
b

(a)
j (x)

3

h
(a)

ikl +

1
2
b

(a)
i (x)

3

h
(a)

jkl, where b(a)(x) is the gradient of the shape function at node a = 1..nnode.

Because
3

h
(a)

ikl =
3

h
(a)

ilk , the unknowns can be sorted in the matrix dm with

dm
3nnode×6

=



3

h
(1)

111

3

h
(1)

112 ...
3

h
(1)

133

... ... ...
3

h
(nnode)

111

3

h
(nnode)

112 ...
3

h
(nnode)

133

3

h
(1)

211

3

h
(1)

212 ...
3

h
(1)

233

... ... ...
3

h
(nnode)

211

3

h
(nnode)

212 ...
3

h
(nnode)

233

3

h
(1)

311

3

h
(1)

312 ...
3

h
(1)

333

... ... ...
3

h
(nnode)

311

3

h
(nnode)

312 ...
3

h
(nnode)

333



. (C.13)

The system of Eqs. (C.12) is thus rewritten as∧
ωe

∫
ωe

(be)T cel
m(x)dx+

∧
ωe

∫
ωe

(be)T cel
m(x)bedxdm

3nnode×6
= 0 , (C.14)

169



where be is the elementary matrix of the shape functions gradient of size 6× 3nnode and cel
m

of size 6× 6 is the matrix notation of the material tensor cel
m. The set of Eq. (C.14) actually

consists into 6 problems that can be successively solved under the constraints of periodic
boundary condition and of zero-average on ω.

Appendix C.2.2. Extension of the AH to elasto-plasticity

Using (189), the governing equation (175) at order ε−1 is thus rewritten

0 =
{

cel
m(X, x) : [εX (u0(X)) + εx (u1(X, x))− µ0 (X, x)]

}
·∇x

∀X × x ∈ Ω× ω . (C.15)

This problem is solved by introducing the separation of variables similarly to Eq. (181) but
accounting for the eigen-strain through the tensor dµ(X), which is the macroscopic portion
of the solution resulting from the eigen-strains (Fish et al., 1997), with dµ(X) = 0 when

µ0 (X, x) = 0. One thus has, with the third-order tensor
3

h (X, x) periodic on ω,

u1(x, X) =
3

h (X, x) : [εX (u0(X)) + dµ(X)] ∈ UPBC(ω) . (C.16)

Equation (C.15) thus becomes

0 =
{

cel
m (X, x) : [I + h (X, x)] : εX (u0(X)) +

cel
m (X, x) : h (X, x) : dµ(X)− cel

m (X, x) : µ0 (X, x)
}
·∇x

∀X × x ∈ Ω× ω , (C.17)

with the fourth-order tensor h (X, x) such that hijkl = 1
2
∂
∂xj

3

hikl + 1
2
∂
∂xi

3

hjkl. Since this

equation should be satisfied for arbitrary elastic responses, this equation can be split into

0 = ∇x ·2
{

cel
m(X, x) : [I + h(X, x)]

}
: εX (u0(X)) ∀X × x ∈ Ω× ω ; (C.18)

0 = ∇x ·2
{

cel
m(X, x) : h(X, x)

}
: dµ(X)−∇x ·2

{
cel

m(X, x) : µ0 (X, x)
}

∀X × x ∈ Ω× ω , (C.19)

where ·2 means a contraction on the second index of the right hand side.
Equation (C.18) is the same as in the linear case and, after multiplying by a test function,

integrating by parts and accounting for periodicity, yields Eq. (182). The resolution of this

system in terms of
3

h (X, x) is detailed in Appendix C.2.1. This results in the apparent
elastic properties cel

M(X) defined by either Eq. (184) or Eq. (186).

From the knowledge of
3

h (X, x), Eq. (C.19) can now be solved. To this end, Eq. (C.19)

is multiplied by
3

h (X, x), integrated by parts over ω, which, because of the periodicity of
3

h (x), results in

1

V (ω)

∫
ω

hT (X, x) : cel
m(X, x) : h(X, x)dx : dµ(X) =

1

V (ω)

∫
ω

hT (x) : cel
m(X, x) : µ0 (X, x) dx , (C.20)

170



where (hT )ijkl = hklij. Substituting h(X, x) by I + h(X, x) − I in the left hand side, and
using both Eq. (184) and Eq. (186) result in

dµ(X) =
1

V (ω)

[
cVoigt(X)− cel

M(X)
]−1

:

∫
ω

hT (X, x) : cel
m(X, x) : µ0 (X, x) dx . (C.21)

This system can be solved using a ROM, see Appendix C.2.3.
Using this expression, the strain at zero order ε0 (X, x) is evaluated using Eq. (C.16)

as

ε0 (X, x) = εX (u0(X))+εx (u1(X, x)) = [I + h(X, x)] : εX (u0(X))+h(X, x) : dµ(X) .
(C.22)

The homogenised stress tensor (179) then follows as

σM (X) =
1

V (ω)

∫
ω

σ0(X, x)dx =
1

V (ω)

∫
ω

cel
m(X, x) : [ε0 (X, x)− µ0(X, x)] dx

=
1

V (ω)

∫
ω

cel
m(X, x) : [I + h(X, x)] dx : εX (u0(X)) +

1

V (ω)

∫
ω

cel
m(X, x) : h(X, x)dx : dµ(X)− 1

V (ω)

∫
ω

cel
m(X, x) : µ0(X, x)dx .

(C.23)

The overall eigen-strain tensor µM(X) is defined such that

−cel
M(X) : µM(X) =

1

V (ω)

∫
ω

cel
m(X, x) : h(X, x)dx : dµ(X)−

1

V (ω)

∫
ω

cel
m(X, x) : µ0(X, x)dx

=
1

V (ω)

∫
ω

cel
m(X, x) : [h(X, x) + I] dx : dµ(X)−

1

V (ω)

∫
ω

cel
m(X, x)dx : dµ(X)−

1

V (ω)

∫
ω

cel
m(X, x) : µ0(X, x)dx

=
[
cel

M(X)− cVoigt(X)
]

: dµ(X)− 1

V (ω)

∫
ω

cel
m(X, x) : µ0(X, x)dx ,

(C.24)

where we have used Eq. (184). Using Eq. (C.21), this last result reads

µM(X) = cel
M

−1
(X) :

1

V (ω)

∫
ω

[
hT (X, x) + I

]
: cel

m(X, x) : µ0(X, x)dx , (C.25)

and the homogenised stress tensor (C.23) reads

σM (X) = cel
M(X) : [εX (u0(X))− µM(X)] , (C.26)

with εX (u0(X)) = εM(X).

171



Appendix C.2.3. Reduced Order Modelling within AH

The eigen-strains µ0 (X, x) are approximated using the separation of variables (192).
Equation (C.21) thus becomes

h(X, x) : dµ(X) =
∑
k

d(k)(X, x) : µ(k) (X) . (C.27)

with

d(k)(X, x) =
1

V (ω)
h(X, x) :

[
cVoigt(X)− cel

M(X)
]−1

:∫
ω

hT (X, x) : cel
m(X, x)h(k)(x)dx . (C.28)

Assuming piece-wise constant functions for h(k)(x) on the partition δω(k) of ω, the func-
tions h(k)(x) correspond to the spatial indicators (60), repeated here below

h(k)(x) = χδω(k) (x) =

{
1 if x ∈ δω(k) ;

0 if not ;
(C.29)

with 1

V (δω(j))

∫
ω
χδω(j) (x)χδω(k) (x) dx = δjk. In that case, in order to unify the notations,

the separation of variables (192) is rewritten

µ0 (X, x) =
∑
k

χδω(k) (x)µδω
(k)

(X) , (C.30)

with

µδω
(k)

(X) =
1

V (δω(k))

∫
δω(k)

µ0 (X, x) dx =
1

V (δω(k))

∫
ω

µ0 (X, x)χδω(k) (x) dx , (C.31)

and Eq. (C.27) is rewritten

h(X, x) : dµ(X) =
∑
k

dδω
(k)

(X, x) : µδω
(k)

(X) , (C.32)

with

dδω
(k)

(X, x) =
V
(
δω(k)

)
V (ω)

h(X, x) :
[
cVoigt(X)− cel

M(X)
]−1

:

1

V (δω(k))

∫
δω(k)

hT (X, x) : cel
m(X, x)dx . (C.33)

Equation (C.17) is then used to deduce the micro-scale stress tensor, which, using Eq.
(C.30) and Eq. (C.32), reads

σ0 (X, x) = cel
m :

{
[I + h(X, x)] : εX (u0(X)) +

∑
k

sδω
(k)

(X, x) : µδω
(k)

(X)

}
, (C.34)
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with the fourth-order tensors

sδω
(k)

(X, x) = dδω
(k)

(X, x)− Iδω(k)(x) and Iδω(k)(x) =

{
I if x ∈ δω(k)

0 if x /∈ δω(k)
. (C.35)

Similarly, the strain at zero order ε0 (X, x) (C.22) is rewritten as

ε0 (X, x) = [I + h(X, x)] : εX (u0(X)) +
∑
k

dδω
(k)

(X, x) : µδω
(k)

(X) . (C.36)

The average strain on cluster δω(l) results from the volume averaging of Eq. (C.36), yielding

εδω
(l)

0 (X) =
1

V (δω(l))

∫
δω(l)

ε0 (X, x) dx

= aδω
(l)

(X) : εX (u0(X)) +
∑
k

dδω
(l) δω(k)

(X) : µδω
(k)

(X) . (C.37)

with

aδω
(l)

(X) =
1

V (δω(l))

∫
δω(l)

[I + h(X, x)] dx

=
1

V (δω(l))

∫
ω

[I + h(X, x)]χδω(l) (x) dx , and (C.38)

dδω
(l) δω(k)

(X) =
1

V (δω(l))

∫
δω(l)

dδω
(k)

(X, x)dx

=
1

V (δω(l))

∫
ω

dδω
(k)

(X, x)χδω(l) (x) dx . (C.39)

Considering the constitutive law (116) written for each cluster δω(l), with the internal

variables µδω
(l)

(X), i.e.

σδω
(l)

m = σδω
(l)

m

(
εδω

(l)

0 (X) ; µδω
(l)

(X; τ ∈ [0, t])
)
, (C.40)

in combination with Eq. (C.37) constitutes a set of 6 × N δω equations in εδω
(l)

0 (X), with
N δω the number of clusters δω(k).

The homogenised stress tensor (179) then follows from Eq. (C.23) using Eqs. (C.32) and
(C.30) as

σM (X) =
1

V (ω)

∫
ω

cel
m(X, x) : [I + h(X, x)] dx : εX (u0(X)) +

1

V (ω)

∫
ω

cel
m(X, x) : h(X, x)dx : dµ(X)− 1

V (ω)

∫
ω

cel
m(X, x) : µ0(X, x)dx

= cel
M (X) : εX (u0(X)) +

∑
k

1

V (ω)

∫
ω

cel
m(X, x) : dδω

(k)

(X, x)dx : µδω
(k)

(X)−

∑
k

1

V (ω)

∫
ω

cel
m(X, x) : Iδω(k) (X, x) dx : µδω

(k)

(X) , (C.41)
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or using Eq. (C.35) as

σM (X) = cel
M (X) : εX (u0(X)) +

∑
k

sδω
(k)

M (X) : µδω
(k)

(X) . (C.42)

with sδω
(k)

M (X) = 1
V (ω)

∫
ω

cel
m(X, x) : sδω

(k)
(X, x)dx.
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Experimental Mechanics 53, 635–648. doi:10.1007/s11340-012-9671-8.

Goldsmith, M.B., Sankar, B.V., Haftka, R.T., Goldberg, R.K., 2015. Effects of microstructural variability
on thermo-mechanical properties of a woven ceramic matrix composite. Journal of Composite Materials
49, 335–350. doi:10.1177/0021998313519151.

Gorji, M.B., Mozaffar, M., Heidenreich, J.N., Cao, J., Mohr, D., 2020. On the potential of recurrent neural
networks for modeling path dependent plasticity. Journal of the Mechanics and Physics of Solids 143,
103972. doi:https://doi.org/10.1016/j.jmps.2020.103972.

Goury, O., Amsallem, D., Bordas, S.P.A., Liu, W.K., Kerfriden, P., 2016. Automatised selection of load
paths to construct reduced-order models in computational damage micromechanics: from dissipation-
driven random selection to bayesian optimization. Computational Mechanics 58, 213–234. URL: https:
//doi.org/10.1007/s00466-016-1290-2, doi:10.1007/s00466-016-1290-2.

Graham-Brady, L.L., Arwade, S., Corr, D., Gutiérrez, M.A., Breysse, D., Grigoriu, M., Zabaras, N., 2006.
Probability and materials: from nano- to macro-scale: A summary. Probabilistic Engineering Mechanics
21, 193 – 199. doi:10.1016/j.probengmech.2005.10.005. probability and Materials: from Nano- to
Macro-Scale.

178

http://dx.doi.org/10.1002/nme.5188
http://dx.doi.org/10.1016/j.cma.2013.03.007
http://dx.doi.org/10.1016/j.pmatsci.2009.08.002
http://dx.doi.org/10.1016/j.pmatsci.2009.08.002
http://dx.doi.org/10.1016/j.jmps.2020.103984
http://dx.doi.org/10.1007/BF02586212
http://dx.doi.org/10.1016/j.cam.2009.08.077
http://dx.doi.org/10.1016/j.cam.2009.08.077
http://dx.doi.org/10.1016/j.probengmech.2014.06.006
http://dx.doi.org/10.1016/j.probengmech.2014.06.006
https://www.sciencedirect.com/science/article/pii/S0266353821002013
http://dx.doi.org/https://doi.org/10.1016/j.compscitech.2021.108845
http://dx.doi.org/10.1016/S0045-7825(98)00106-6
http://dx.doi.org/10.1061/(ASCE)0733-9399(1996)122:4(361)
http://dx.doi.org/10.1016/0045-7825(95)00909-4
http://dx.doi.org/10.1016/0045-7825(95)00909-4
http://dx.doi.org/10.1016/j.cma.2019.112594
http://dx.doi.org/10.1007/s11340-012-9671-8
http://dx.doi.org/10.1177/0021998313519151
http://dx.doi.org/https://doi.org/10.1016/j.jmps.2020.103972
https://doi.org/10.1007/s00466-016-1290-2
https://doi.org/10.1007/s00466-016-1290-2
http://dx.doi.org/10.1007/s00466-016-1290-2
http://dx.doi.org/10.1016/j.probengmech.2005.10.005


Grimmett, G., Stirzaker, D., 2001. Probability and random processes. Oxford university press. doi:10.
1016/B978-0-12-172651-5.X5000-3.

Guilleminot, J., Noshadravan, A., Soize, C., Ghanem, R.G., 2011. A probabilistic model for bounded
elasticity tensor random fields with application to polycrystalline microstructures. Computer Methods in
Applied Mechanics and Engineering 200, 1637 – 1648. doi:10.1016/j.cma.2011.01.016.

Gupta, A., Cecen, A., Goyal, S., Singh, A.K., Kalidinhi, S.R., 2015. Structure-property linkages using a
data science approach: Application to a non-metallic inclusion/steel composite system. Acta Materialia
91, 239 – 254. doi:10.1016/j.actamat.2015.02.045.

Gupta, M., Wang, K.K., 1993. Fiber orientation and mechanical properties of short-fiber-reinforced injection-
molded composites: Simulated and experimental results. Polymer Composites 14, 367–382. doi:10.1002/
pc.750140503.

Haario, H., Saksman, E., Tamminen, J., 1999. Adaptive proposal distribution for random walk metropolis
algorithm. Computational Statistics 14, 375–395. doi:10.1007/s001800050022.
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Ponte Castañeda, P., 2002b. Second-order homogenization estimates for nonlinear composites incorporating
field fluctuations: II - applications. Journal of the Mechanics and Physics of Solids 50, 759 – 782.
doi:10.1016/S0022-5096(01)00098-9.
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Figure 35: Extraction and pseudo-samples generation using the high-number of parameters approach com-
bined with a spectral generator for non-Gaussian random field of thermo-mechanical properties by Wu et al.
(2016); The micro structure consists in a columnar poly-silicon of average grain size of about lmicro ' 200 nm:
(a) and (b) Comparison of the distribution of respectively an elasticity tensor cel

M component (1 1) and a ther-
mal conductivity tensor κM component (3 3) extracted from the observations wl ∈W with l = 1..nobservation

obtained by the window technique with an SVE size lSVE = 0.5µm and from the generated pseudo-samples;
(c) and (d) Comparison of the cross correlation of the random field {QM(X, w) : X ∈ Ω, w ∈ W} (295)
obtained by, respectively, the window technique and the pseudo-samples generator; and (e) and (f) Illus-
trations of a random field realisation of an elasticity tensor cel

M component (1 2) obtained by, respectively,
the window technique and the pseudo-samples generator; Modified from Computer Methods in Applied
Mechanics and Engineering 310, Wu, L., Lucas, V., Nguyen, V.D., Golinval, J.C., Paquay, S., Noels, L.,
A stochastic multi-scale approach for the modeling of thermo-elastic damping in micro-resonators, 802-839.
Copyright (2016).
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Figure 36: Generation by Hoang et al. (2017) of stochastic adhesive contact forces accounting for the
roughness of the surface: (a) Identification of adhesive force features; (b) 200 observations {FM(dM; X, wk) :
wk ∈ W} obtained by MC of the micro-mechanics model, 10 of which are highlighted; and (c) 200 pseudo-
samples {fpM(dM; X) : p = 1, 2, ...} obtained by the PCE, 10 of which are highlighted; Modified from
Tribology International 110, Hoang, T.V., Wu, L., Paquay, S., Golinval, J.C., Arnst, M., Noels, L., A
computational stochastic multiscale methodology for mems structures involving adhesive contact, 401-425.
Copyright (2017).
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Figure 37: MFH-based multi-fidelity: Extraction of stochastic equivalent MFH problems ω(X; wk) from
direct computational homogenisation performed on virtual SVEs.
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Figure 38: Equivalent MFH problem defintion for each SVE realisation ω(X; wk): (a) Identification of the
equivalent inclusion of equivalent semi-axes ã and b̃ and equivalent orientation θ̃ and of the equivalent elastic
matrix of equivalent elastic tensor c̃el

0 ; (b) Case of elastic inclusions embedded in an elasto-plastic matrix
with the identification of the equivalent matrix yield stress σ̃Y 0 and equivalent matrix hardening law r̃0(p̃0);
(c) Case of elastic inclusions embedded in a damage-enhanced elasto-plastic matrix with the identification
of the equivalent damage law d̃0(p̃0) during a virtual elastic unloading; and (d) Case of elastic inclusions
embedded in a damage-enhanced elasto-plastic matrix with the identification of the equivalent matrix yield
stress σ̃Y 0 and equivalent matrix hardening law r̃0(p̃0) upon reloading.
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Figure 39: Equivalent parameters distributions and dependencies for the different SVE realisations ω(X; wk)
with wk ∈ W as identified by Wu et al. (2019) in the case of elastic inclusion of volume fraction vI

embedded either in an elasto-plastic matrix or in a damage-enhanced elasto-plastic matrix: equivalent
inclusion of equivalent semi-axes ã and b̃ and equivalent orientation θ̃; equivalent matrix Young’s mod-
ulus Ẽ0 and Poisson ratio ν̃0; equivalent matrix yield stress σ̃Y 0 and equivalent matrix hardening law
r̃0(p̃0) = k̃10

p̃0 + k̃20

(
1− e−m̃0p̃0

)
; equivalent damage parameters not shown for conciseness; Modified from

Computer Methods in Applied Mechanics and Engineering 348, Wu, L., Nguyen, V.D., Adam, L., Noels, L.,
An inverse micro-mechanical analysis toward the stochastic homogenization of nonlinear random composites,
97-138. Copyright (2019).
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Figure 40: Generation of the identified parameters distributions and dependencies by Wu et al. (2019) of
the stochastic MFH described in Section 5.4.2 and illustrated in Fig. 39 in the case of elastic inclusion
of volume fraction vI embedded in an elasto-plastic matrix: equivalent inclusion of equivalent semi-axes ã
and b̃ and equivalent orientation θ̃; equivalent matrix Young’s modulus Ẽ0 and Poisson ratio ν̃0; equivalent
matrix yield stress σ̃Y 0 and equivalent matrix hardening law r̃0(p̃0) = k̃10 p̃0 + k̃20

(
1− e−m̃0p̃0

)
; Modified

from Computer Methods in Applied Mechanics and Engineering 348, Wu, L., Nguyen, V.D., Adam, L.,
Noels, L., An inverse micro-mechanical analysis toward the stochastic homogenization of nonlinear random
composites, 97-138. Copyright (2019).
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