# InnovationS in near-surface geophysics: going beyond state-of-the-art imaging

Frédéric Nguyen, University of Liège

January 20th 2020

METIS scientific day



## Acknowledgements

- Thomas Hermans
- Sarah Garré
- Jorge Alvis Lopez
- Sien Benoit
- Kevin Gommers
- Tamara Pilawski
- Frank Delvigne
- Tanguy Robert
- David Caterina

...







Horizon 2020 European Union Funding for Research & Innovation



## Near-surface geophysics: twisting reality?



Binley et al., 2015, WRR

## A revolution in space

## A historical perspective in images



Geonics ®



CHAR project, ULiege

## A historical perspective in images





CHAR project, ULiege

Nguyen, 2005

# Advances in modeling physical phenomena to improve imaging

120



Klotzsche, et al., 2010

### Full waveform inversion brings high resolution



Klotzsche, et al., 2010





## Mapping surveys



Auken et al., 2019



Challenges: maintaining the depth of investigation while reducing the loop

## Mapping surveys: 2 days to image 1.6 km<sup>2</sup> down to 70 m with a 25 m resolution



## Then in time...

## Data processing: making sense out of noise



## Data processing: making sense out of noise



Voisin et al., 2017, JWARP

## 4D imaging at Hanford, WA



Paleochannels incised into the Ringold unit suspected to channel flow towards the river

Courtesy of Prof. Lee Slater



## ERT 3D + time



## Relation to state variables...

## Petrophysics: the power to quantify...or not

![](_page_16_Figure_1.jpeg)

Jougnot et al., 2018

### Petrophysics: testing hypothesis

![](_page_17_Figure_1.jpeg)

Jougnot et al., 2018

## And understanding field limitations

![](_page_18_Figure_1.jpeg)

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 Chargeability [mV/V]

![](_page_18_Figure_3.jpeg)

Benoit et al., 2019

## Biogeosystems: the next frontier...

![](_page_19_Picture_1.jpeg)

Treated water + nutrients (= nitrogen and oxygen sources) Pumping of contaminated water

#### Biological treatment in the bioremediation unit

Reinjection of the treated water amended with nutrients (nitrogen (b) source) and electron acceptors  $(O_2)$  in the periphery

Started in mid-2008, ended in mid 2011

![](_page_19_Figure_6.jpeg)

Fuel Tank 12000 L

Fuel Tank 42000 L

Euel Tank 20000 L

Road

Sidewalk Parking

📖 Hangar

Parcel

![](_page_19_Figure_7.jpeg)

![](_page_19_Figure_8.jpeg)

## ...but requires fundamental studies

![](_page_20_Figure_1.jpeg)

![](_page_20_Picture_2.jpeg)

Bacillus subtilis RL5260

![](_page_20_Picture_4.jpeg)

## Tackling biogeosystems...

![](_page_21_Figure_1.jpeg)

![](_page_21_Picture_2.jpeg)

![](_page_21_Picture_3.jpeg)

## Process oriented imaging

Water conductivity increases with temperature...2% changes per °C

![](_page_22_Figure_2.jpeg)

### Process oriented

![](_page_23_Figure_1.jpeg)

![](_page_23_Figure_2.jpeg)

Wildermeersch et al., 2014

### Process oriented imaging

![](_page_24_Figure_1.jpeg)

Hermans et al., 2015

## Data integration

# Earth Sciences modeling = dealing with uncertainty

We can rely on stochastic modeling based on a prior distribution of geological model parameters to generate realistic subsurface models.

![](_page_26_Figure_2.jpeg)

# Geophysics provide dense information but indirect and uncertain information

![](_page_27_Figure_1.jpeg)

Global comparison of all the models Not necessary to match any data

## Inversion introduce a strong bias (smoothing), so what could we do ?

![](_page_28_Figure_1.jpeg)

# Instead, we could define features of geophysical data f(d) that inform on the prior

![](_page_29_Figure_1.jpeg)

![](_page_29_Picture_2.jpeg)

200 samples from s  $\in$  (0;  $\pi$ )

50 samples

Channel orientation

![](_page_29_Picture_5.jpeg)

![](_page_29_Picture_6.jpeg)

![](_page_29_Picture_7.jpeg)

3 scenarios

50 samples

50 samples

## Approach to test the features

- Uniform sampling of a structural prior, e.g. orientation s = 0.5  $\pi$
- Realization of a facies distribution, e.g.
- From facies to geophysical data

![](_page_30_Figure_4.jpeg)

![](_page_30_Figure_5.jpeg)

## Exploring the prior falsification potential of:

![](_page_31_Picture_1.jpeg)

Histogram of travel times

![](_page_31_Figure_3.jpeg)

![](_page_31_Figure_4.jpeg)

![](_page_31_Figure_5.jpeg)

![](_page_31_Figure_6.jpeg)

![](_page_31_Figure_7.jpeg)

## Joint probability distribution for discrete s with + = s1 along with posterior

![](_page_32_Figure_1.jpeg)

## Data integration: geophysics as a fully integrated dataset

![](_page_33_Figure_1.jpeg)

## Data integration

![](_page_34_Figure_1.jpeg)

![](_page_34_Figure_2.jpeg)

![](_page_34_Figure_3.jpeg)

![](_page_34_Figure_4.jpeg)

Hermans et al., 2018

## Conclusions and outlook

- Quantitative geophysics in the sense that we will be able to quantify for example a water content is a sweet dream far far away...
- However, qualitative information which is spatiotemporally distributed is probably more important for the studied processes to reduce the inherent subsurface uncertainty...
- In that sense, data density/quality improv't, understanding fundamental "petro"physics, improved physical modeling, imaging and data integration methods lead the way forward.