Improving BEL1D accuracy for geophysical imaging of the subsurface

Hadrien MICHEL^(1,2,3), Thomas HERMANS⁽²⁾,

Thomas KREMER⁽⁴⁾, Frédéric NGUYEN⁽¹⁾

- (1) ULiège Liège, Belgium
 - (2) UGent Gent, Belgium
- (3) F.R.S.-FNRS Brussels, Belgium
 - (4) UNantes Nantes, France

Table of content

- Basics:
 - sNMR detecting water from the surface
 - BEL1D (Michel et al., 2020, Computers & Geoscience)
- Numerical benchmark:
 - Applying BEL1D
 - Improving with Iterative Prior Resampling (IPR)
 - Comparison with McMC
- Case study: Mont Rigi
- Conclusion and perspectives

sNMR

- sNMR = surface Nuclear Magnetic Resonance
- Detecting groundwater from the surface
- After inversion:
 - Water content distribution
 - Relaxation time distribution

BEL₁D

- Adaptation from BEL
 (Schiedt et al., Quantifying
 Uncertainty in Subsurface Systems, 2018)
- Building a relationship between:
 - Synthetic models
 - The associated datasets
- Extracting the posterior from this relationship

Sampling models and forward modelling

Improving BEL1D accuracy

5

Reducing dimensionality (PCA)

- From 10,000 dimensions in the dataset to around 10
 - Keeping 90% variability
- Not applied to the models
 - Uncorrelated prior
 - Poor performances

Canonical correlation analysis

 Linking the models parameters to the reduced datasets → CCA

Extracting the posterior in reduced space

- Transform the field dataset (PCA and CCA)
- Report in the CCA space
- Extract the obtained distribution (Kernel Density Estimation)

Back-transform into original space

 Apply the inverse transform (CCA) to sampled models in reduced space

BEL₁D

Improving with IPR, the concept

- IPR = Iterative Prior Resampling
- Inspired by Iterative Spatial Resampling (Mariethoz et al., 2010, Water Resour. Res.) and Sampling Importance Resampling (Dosne et al., 2016, J PHARMACOKINET PHAR)
- Process:
 - Adding the sampled models to the prior
 - Re-running the BEL1D operations
 - Repeat until convergence:
 - Threshold on the difference between the obtained distributions (Wasserstein distance in normalized space)

Numerical benchmark

- Simple 3-layer model
- Experimental design:
 - Same transmitter/receiver loop
 - 50 m diameter → penetration depth about 50 meters
 - Noise = 10nV (Gaussian)
- Prior defined accordingly but still large

Layer #	Thickness e [m]			Water content W [%]			Decay time T ₂ * [ms]		
	Min	True	Max	Min	True	Max	Min	True	Max
1	0	25	50	0	5	15	0	100	500
2	0	25	50	15	25	50	0	200	500
Half-space	/	Inf	/	0	10	15	0	50	500

Numerical benchmark Applying BEL1D

Building the CCA space relationship

Numerical benchmark Applying BEL1D

- Reduced uncertainty
- Still very large!
- RMSE above noise level
 - →Room for improvement

Numerical benchmark Improving with IPR

1st iteration

Dimension 3 3 2 1 1 -1 -2 -3 -4 0.0 0.5 P(/)

Last iteration

Numerical benchmark

Improving with IPR

- Narrow uncertainty
- Sensitivity lower in depth
 - From experimental design

Numerical benchmark

Comparing with McMC

- Using DREAM_(zs) (e.g., Vrugt, 2016, ENVIRON MODELL SOFTW and Laloy et al., 2018, Water Resour. Res.)
- Tuned to convergence:
 - Number sequences: 20
 - Samples per chain: 10,000
 - Jump rate: 0.1

Numerical benchmark Comparing with McMC

- The last iteration coincide with results from DREAM
- However:
 - CPU time is lower (250 seconds for BEL1D vs 500 for DREAM_(zs))
 - Difficulty to tune to convergence in DREAM

Case study: Mont Rigi

- Natural reserve in the Eastern part of Belgium
- Metric peat above Cambrian bedrock
- Experiment:
 - Single transmitter/receiver
 - 20 meters in diameter
 - Noise ~ 18 nV

Case study: Mont Rigi

First iteration

- Significant reduction of uncertainty
- Still an observable (W₁, e₁) link
- Trend for the relaxation time
- CPU time = 30 sec

Last (6th) iteration

Conclusion and perspectives

- BEL1D combined with IPR is:
 - Accurate (comparison with McMC)
 - Efficient (CPU time)
 - Easy to tune to convergence
- Significant improvement over BEL1D without iterations
- Currently developing other use case (MASW, EM)
- Near future: Smooth models, 2D, etc.

Conclusion and perspectives 2D case - Time-Lapse ERT

- Time-lapse ERT (Hermans et al., 2016, Water Resour. Res.)
- Heat tracer experiment
- Captures the behavior of the heat tracer.

Conclusion and perspectives Work in progress – Surface waves preview

- Mirandola (Italy) case study from INTERPacific (Garofalo et al., 2016, SOIL DYN EARTHQ ENG)
- Comparison of the results with IPR with the different experts curves

Conclusion and perspectives Work in progress – Surface waves preview

- Efficient reduction of the dataspace from the prior (gray) to the posterior at the last (15th) iteration
- The error model fits nicely the posterior dataspace
 - The noise is not of the same kind as the one in sNMR

Conclusion and perspectives Work in progress – Surface waves preview

Field benchmark available:
 Depth to the bedrock = 118m
 (Garofalo et al., 2016, SOIL DYN EARTHQ ENG)

Accurately reproduced by BEL1D

Publication

Computers & Geosciences 138 (2020) 104456

Contents lists available at ScienceDirect

Computers and Geosciences

journal homepage: www.elsevier.com/locate/cageo

1D geological imaging of the subsurface from geophysical data with Bayesian Evidential Learning

Hadrien Michel a,b,c,*, Frédéric Nguyen a,d, Thomas Kremer Ann Elen d, Thomas Hermans b

https://doi.org/10.1016/j.cageo.2020.104456

^a University of Liège, Urban and Environmental Engineering Department, Faculty of Applied Sciences, Liège, Belgium

^b Ghent University, Department of Geology, Ghent, Belgium

^c F.R.S.-FNRS (Fonds de la Recherche Scientifique), Brussels, Belgium

^d KU Leuven, Department of Earth and Environmental Sciences, Leuven, Belgium

Thanks for your attention!

Improving BEL1D accuracy

Conclusion and perspectives

- BEL1D combined with IPR is:
 - Accurate (comparison with McMC)
 - Efficient (CPU time)
 - Easy to tune to convergence
- Significant improvement over BEL1D without iterations
- Currently developing other use case (MASW, EM)
- Near future: Smooth models, 2D, etc.

