Efficient and flexible implementation of an interfacing Python-based tool for numerical simulations of fluid-structure interaction problems

David THOMAS

Introduction

Introduction

Introduction

Fluid-structure interaction (FSI) := structure interacting with a surrounding fluid

Garden hose instability

credit Atmosphere

credit ESA – D. Ducros (illustration)

credit ESA – D. Ducros (illustration)

redit Donaldytong

credit Hans Hillewaert

credit ESA – D. Ducros (illustration)

credit ESA – D. Ducros (illustration)

credit Hans Hillewaert

credit A. Marsden, Stanford University

credit Gerrit Vyn

FSI in engineering design and research

- Current design trend towards larger, slender, lighter structure (e.g. aircraft wings, wind turbine blades)
 - → FSI becomes more critical for safe design
- New research topics such as MAV* design, flapping flight and aeroelastic energy harvesting
 - → understanding of complex physics

Numerical/computational model

credit Aerosoft inc

Experimental model

credit aerolab

*MAV: Micro Air Vehicles

FSI in engineering design and research

- Current design trend towards larger, slender, lighter structure (e.g. aircraft wings, wind turbine blades)
 - → FSI becomes more critical for safe design
- New research topics such as MAV* design, flapping flight and aeroelastic energy harvesting
 - → understanding of complex physics

Model with coupled physics required

Experimental model

*MAV: Micro Air Vehicles

Objectives

*API : Application Programming Interface

Objectives

*API : Application Programming Interface

Outline

PART I: The FSI problem

- Overview
- Mathematical description and numerical formulation

PART II: CUPyDO

Data structure and numerical models

PART III: Verification and applications

- Verification test cases
- Aeroelastic study of a thin flat plate wing

CONCLUSION

Outline

PART I: The FSI problem

- Overview
- Mathematical description and numerical formulation

PART II: CUPyDO

• Data structure and numerical models

PART III: Verification and applications

- Verification test cases
- Aeroelastic study of a thin flat plate wing

CONCLUSION

Static FSI (mechanical)

B-787 during take-off, wing tip deflection

Vortex-induced vibrations (VIV)

- Vortex shedding
 → Harmonic fluid loads at f_v
- Structure natural frequency f_s
- Critical conditions : $f_v \rightarrow f_s$
- Self-limited resonance

Examples: marine structures, bridges suspenders, towers, industrials chimneys

Experimental VIV of a cylinder in cross-flow credit Dr Gabriel Weymouth, University of Southampton, 2018

- No vortex shedding
- Negative damping of the coupled system above critical flow conditions
 - → Instability (1 mode)

Examples: power lines (transverse galloping) and bridge decks (torsional galloping)

Tacomas Narrows Bridge (WA), 7th Nov 1940

- Two structural modes interacting with each other due to the aerodynamics
- Negative damping of the coupled system above critical flow conditions
 - → Instability

Examples: aircraft lifting structures

Piper PA-30 Twin Comanche during flight flutter test (NASA, 1966)

Thermal coupling: conjugate heat transfer (CHT)

Outline

PART I: The FSI problem

- Overview
- Mathematical description and numerical formulation

PART II: CUPyDO

• Data structure and numerical models

PART III: Verification and applications

- Verification test cases
- Aeroelastic study of a thin flat plate wing

CONCLUSION

Partitioned model

Interface $\frac{\text{loads}: t^{\Gamma}}{\text{displacements}: d^{\Gamma}}$

Partitioned two-way coupling

Fluid loads transfered to the solid surface as structural loads

Outline

PART I: The FSI problem

- Overview
- Mathematical description and numerical formulation

PART II: CUPyDO

• Data structure and numerical models

PART III: Verification and applications

- Verification test cases
- Aeroelastic study of a thin flat plate wing

CONCLUSION

Development of a coupling framework

Key requirements

Coupling tool - WANTED

- Coupling flexibility
- Minimal intrusiveness
- Usability
- Numerical stability
- Minimize CPU cost overhead
- Do not degrade parallel scalability

Coupled solvers – MUST HAVE

- Re-compute the same time step(s) with different interface conditions
- Interface data must be exposed and editable
- Dynamic mesh treatment

Development of a coupling framework

Key requirements

Coupling tool - WANTED

- Coupling flexibility
- Minimal intrusiveness
- Usability
- Numerical stability
- Minimize CPU cost overhead
- Do not degrade parallel scalability

Coupled solvers – MUST HAVE

- Re-compute the same time step(s) with different interface conditions
- Interface data must be exposed and editable
- Dynamic mesh treatment

There is no magic, code adaption is still required... but can be minimized with no drastic change of the native data structure and architecture

CUPyDO architecture

CUPyDO architecture

Python wrapper

Solver interfacing

Compatibility chain

Solver interfacing

Compatibility chain

CUPyDO architecture

Strong coupling algorithm

Block Gauss-Seidel with relaxation

Stability of the mechanical coupling

Added-mass

- Fluid-solid interaction with strong feedback
 numerical instability of the iterative coupling
- Usually referred to as added-mass effect

Added mass \approx inertia of the fluid that has to be displaced by the solid

After stability analysis on simple FSI systems, instability appears when $Ma \ \rightarrow 1^+$

$$Ma = \frac{\rho_s}{\rho_f}$$

Stability of the mechanical coupling

Stabilization techniques

CUPyDO architecture

Coupling partitioned (MPI) solvers

- Distinct communicators could be created
- The coupled solvers must accept to run on **dedicated communicators** (not available !)
- Currently, MPI_COMM_WORLD is used for inter- and intra-communications

*MPI : Message Passing Interface

CUPyDO architecture

Interface treatment

Interface tracking

- Interface data exchange at the interface nodes of each mesh
- Interpolation of interface data for non-matching discretization
- **Dynamic fluid mesh** that tracks the solid motion

Interface treatment Interface tracking

Fluid mesh deformation

+ Arbitrary Lagrangian-Eulerian (ALE)

Interface mesh treatment

Non-matching interface discretization

48

Interface mesh treatment

Mapping with Radial Basis Functions (RBF)

Only node coordinates and distance computation

0.2

0

0.4

0.6

ξ

$$w(x) = \sum_{k=1}^{N} \alpha_k \phi(||x - x_k||) + p(x)$$
Global support $||x||^2 \log ||x||$ (TPS)
Local support $(1 - \xi)^4_+ (4\xi + 1)$ with $\xi = \frac{||x||}{r}$ (CPC2)

0.8

Interface mesh treatment

Mapping with Radial Basis Functions (RBF)

Only node coordinates and distance computation

$$w(x) = \sum_{k=1}^{N} \alpha_k \phi(||x - x_k||) + p(x)$$

Global support $||x||^2 \log ||x||$ (TPS)
Local support $(1 - \xi)^4_+ (4\xi + 1)$ with $\xi = \frac{||x||}{r}$ (CPC2)

Step 1: compute α_k and β_i

- Impose exact recovery at donor nodes
- Linear system to solve

Step 2: interpolate on target

• Use the computed coefficients

$$\begin{bmatrix} \boldsymbol{a} \\ \boldsymbol{\beta} \end{bmatrix} = \mathbf{A}^{-1} \begin{bmatrix} \boldsymbol{a}_{S} \\ \mathbf{0} \end{bmatrix}$$

 $d_f^{\Gamma} = \mathbf{B}\begin{bmatrix} \boldsymbol{\alpha} \\ \boldsymbol{\beta} \end{bmatrix}$

- M-

г лГл

Donor (size N_s)

Step 1 + step 2: $BA^{-1} \rightarrow H$

Target

(size N_f)

Interface data structure

Interface data

Interface matrix

- Generic partitioned **data container**
- Used to store interface physical quantities or coupling residuals
- Parallel algebraic operations

- Typically used to store and compute **A** and **B** in parallel
- Parallel matrix-vector operations with Interface
 Data

CUPyDO architecture

Coupled solvers In this thesis

Coupled solvers

Beyond this thesis

Outline

PART I: The FSI problem

- Overview
- Mathematical description and numerical formulation

PART II: CUPyDO

• Data structure and numerical models

PART III: Verification and applications

- Verification test cases
- Aeroelastic study of a thin flat plate wing

CONCLUSION

Overview

2D pitch-plunge airfoil

3D wing model

VIV of a rigid cylinder - 1D oscillator

$$Re_{D} = \frac{UD}{v} = 90 \text{ to } 120$$
$$Ma = 148$$

Fluid: viscous laminar flow **Solid:** oscillator equation $m\ddot{h} + c\dot{h} + kh = L$ **Initial conditions**: $\ddot{h} = \dot{h} = h = 0$ \rightarrow until solid motion reaches an established regime

VIV of a rigid cylinder

SU2×RBM

VIV of a rigid cylinder

- Inside lock-in region: strong feedback between coupled physics
- Outside lock-in region: marginal effect of solid motion
- **Good match** with numerical references

SUZXRBM

VIV of a rigid cylinder

Uncoupled model misses important physics

SU2*RBM

Flutter – Isogai wing section

 $Re_c = 12.56 \ 10^6$ $M = \frac{U}{a} = 0.75 \ to \ 0.895$ Ma = 60

Initial condition: $\alpha = 1^{\circ}$

Damping extracted from the aeroelastic response and used for **flutter inception**

Fluid: transonic inviscid flow solved with Euler equations **Solid**: 2-DoF oscillator equation for h and α

Flutter - Isogai wing section

SU2×RBN1

Flutter boundary

Flutter - Isogai wing section

Flutter boundary

SU2×RBM

Flutter - Isogai wing section

SU2*RBNA

Flutter boundary

65

Pitch-plunge in phase

Pitch-plunge in opposite phase

VIV of a flexible cantilever Coupled model

H = 1 cm $Re_{H} = 333$

Ma = 84.7 to 0.8

Fluid: viscous laminar flow **Solid** (cantilever): nonlinear FE, elastic material

Interface: matching discretization

VIV of a flexible cantilever

Tip displacement and frequency

- SU2×NIetafor
- Laminar vortex shedding in the wake of the square
 - ➔ harmonic loads on the cantilever
 - ➔ harmonic response
- The case is setup to have $f_v \approx f_0$

	max d_y [cm]	<i>f</i> [Hz]
CUPyDO	1.14	3.20
Sanchez <i>et al.</i>	1.05-1.15	3.05-3.15
Habchi <i>et al.</i>	1.02	3.25
Kassiotis <i>et al.</i>	1.05	2.98
Wood <i>et al.</i>	1.15	2.94
Olivier <i>et al</i> .	0.95	3.17

VIV of a flexible cantilever Added-mass effect

||U|| [m/s]: 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Aeroelastic model y (

flow

Λ

 $z \odot$

AGARD 445.6

Flow: transonic inviscid flow (Euler eqn.)

 c_r

Solid: nonlinear FE, elastic material

Interface: non-matching discretization \rightarrow use of RBF interpolator (TPS)

 c_t

 b_s

x

flow

SU2×Metafor

AGARD 445.6

Aeroelastic model

Interface: non-matching discretization → use of RBF interpolator (TPS)

Initial perturbation (load) to trigger the aeroelastic response

Damping extracted from the aeroelastic response and used for **flutter inception**

AGARD 445.6

SU2×Meraror Aeroelastic response speed index Mach = 0.96 0.06 r $V^* = 0.218$ [•] = 0.281 0.04 $V^* = 0.300$ 0.02 $d_z/b_r \,\, \mathrm{[m]}$ 0 -0.02 h -0.04 -0.06 $\begin{array}{c} 0.6 \\ t \ [s] \end{array}$ 0.2 0.4 0.8 1.2 0
AGARD 445.6

Aeroelastic response

Post-critical conditions, speed index = 0.3 Mach = 0.96

AGARD 445.6 Flutter boundary

SU2×Metafor

AGARD 445.6 Flutter boundary

- Good agreement in the transonic regime (+ transonic dip)
- Increased spread of the results in the supersonic regime

Outline

PART I: The FSI problem

- Overview
- Mathematical description and numerical formulation

PART II: CUPyDO

• Data structure and numerical models

PART III: Verification and applications

- Verification test cases
- Aeroelastic study of a thin flat plate wing

CONCLUSION

Thin flat plate wing

Aeroelastic model

Geometry $s = 0.8 \, {\rm m}$ $c = 0.2 \, {\rm m}$ t = 1 mm(thickness) $\Lambda = 0^{\circ} | 20^{\circ} | 45^{\circ}$

Numerical model

SUSXMETAFOR Wind tunnel experimental model flow

 $Re_c^{max} = 2.6 \ 10^5$

Flow: turbulent flow (URANS) **Solid**: nonlinear FE model, elastic material (aluminum)

Interface: non-matching discretization \rightarrow use of RBF interpolator (CPC2)

Thin flat plate wing

Aeroelastic model

Geometry

- $s = 0.8 \, {\rm m}$
- c = 0.2 m
- t = 1 mm (thickness) $\Lambda = 0^{\circ} \mid 20^{\circ} \mid 45^{\circ}$

- Initial perturbation (load) to trigger the aeroelastic response
- Controlled by perturbation duration t*

 $Re_c^{max} = 2.6 \ 10^5$

Wind tunnel experimental model

SU2+Metafor

Thin flat plate wing Flutter speed and frequency

Computation time VLM : a few seconds CUPyDO: 12h for one cycle SU2+Metaror

Thin flat plate wing

Post-critical aeroelastic response

Low frequency LCO Dominated by **bending**

High frequency LCO Dominated by **torsion**

Thin flat plate wing

supercritical bifurcation

Not observed experimentally

81

Thin flat plate wing LCO flow characteristics

- Periodic formation of a leading edge recirculation bubble
 → locally increases the suction
- Spanwise increase of the size then collapses due to tip vortices
- Relates occurrence of **high-frequency LCO** with the occurrence of the LE recirculation

Thin flat plate wing

Aeroelastic response – swept wing

- Significant spanwise flow component
- Large tip vortices
- No LE recirculation detected
 - → Only one LCO branch

Thin flat plate wing

Aeroelastic response – swept wing

 $\Lambda = 45^{\circ}$

Qualitative comparison with the experimental model

Outline

PART I: The FSI problem

- Overview
- Mathematical description and numerical formulation

PART II: CUPyDO

• Data structure and numerical models

PART III: Verification and applications

- Verification test cases
- Aeroelastic study of a thin flat plate wing

CONCLUSION

Concluding words

Development of CUPyDO

- Innovative implementation of state-of-the-art coupling algos
- Coupling based on Python wrapping
- Maximizes flexibility and modularity
- Minimally intrusive

Application of CUPyDO...

... in this thesis

• Demonstrated the accuracy, flexibility and efficiency

... in other research projects

- FSI with free-surface flows and strong added-mass effect
- Steady aeroelasticity of composite wings in transonic regime
- Validation of lower-fidelity method for flutter calculation
- Adjoint formulation for steady FSI (unsteady is ongoing)

Dam break against elasto-plastic obstacle (PFEM+Metafor) M.L. Cerquaglia

Aeroelastic study of the EBW (FLOW+Modali) A. Crovato

Future perspectives

Development

- Extend the list of coupled solvers (e.g. OpenFOAM, TACS)
- Vectorial coupling (>< staggered)
- Improve/extend non-matching mesh interpolation
- Scalability on massively distributed resources

Applications

- More general **multiphysics** applications (e.g. add electro-magnetic field)
- Unsteady adjoint FSI using harmonic balance
- FSI with very large solid motion

Acknowledgements

Computational resources

Research stay + SU2

Additional support

Thermal coupling: conjugate heat transfer (CHT)

Multi-code coupling architectures

Development of a coupling framework Review of existing software

	API level	HPC	Legal	Coup. schemes	Communication	Intrusive
ADVENTURE	med	yes	in-house	yes	TCP/IP	yes
EMPIRE	med	no	open	yes	MPI	yes
MpCCI	med	no	commercial	yes	TCP/IP	yes
OpenPALM	high	yes	open	no	MPI	yes
OASIS	low	yes	open	no	MPI	yes
preCICE	high	yes	open	yes	TCP/IP/MPI	yes
FUNtoFEM	high	yes	open	yes	TCP/IP/MPI	no
CUPyDO	high	yes	open	yes	Direct	no

Development of a coupling framework Review of existing software

	API level	HPC	Legal	Coup. schemes	Communication	Intrusive
ADVENTURE	med	yes	in-house	yes	TCP/IP	yes
EMPIRE	med	no	open	yes	MPI	yes
MpCCI	med	no	commercial	yes	TCP/IP	yes
OpenPALM	high	yes	open	no	MPI	yes
OASIS	low	yes	open	no	MPI	yes
preCICE	high	yes	open	yes	TCP/IP/MPI	yes
FUNtoFEM	high	yes	open	yes	TCP/IP/MPI	no
CUPyDO	high	yes	open	yes	Direct	no

Python wrapper generation

Class architecture

Weak coupling algorithm

Thermal coupling schemes

$$\mathrm{Bi} = \frac{hL}{\lambda}$$

Use of **numerical heat transfer coefficient** to stabilize or accelerate the convergence (hFFB, hFTB)

Stability based on numerical vs physical Bi

Partitioned solver distribution

Interface date structure

Used in inter-communications

Interface data structure

Interface mesh treatment

Parallel mapping

- Mapping performed in parallel through successive MPI communication rounds (donor → target)
- Use of non-blocking communications
- Each pair of donor-target fills the corresponding entries of the **matrices**

Interface data structure

Interface matrix

VIV of a rigid cylinder

Flutter - Isogai wing section

104

Flutter - Isogai wing section

Limit cycle aeroelastic response

Oscillating shock

SUZXRBM

Isogai wing section Weak vs strong coupling

Weak coupling provides numerically stable solution,
but physically unstable response
→ flutter point is under-predicted compared to strong coupling

AGARD 445.6 Performance measurement

→ typical computing time: **12h for one cycle of the response**

Heated hollow cylinder in cross-flow Coupled model

Flow: viscous laminar flow **Solid**: linear FE model (heat equation)

Interface: matching discretization

Re = 40M = 0.38 Pr = $\frac{v}{\alpha}$ = 0.72

Case A:
$$\frac{\lambda_s}{\lambda_f} = 4 \Rightarrow \overline{Bi} < 1$$

Case B: $\frac{\lambda_s}{\lambda_f} = \frac{1}{4} \Rightarrow \overline{Bi} > 1$

• The steady state thermal equilibrium is sought

• Assessment of the available coupling schemes

SU2xGetDs
Heated hollow cylinder in cross-flow Temperature field – $\overline{Bi} < 1$

SU2xGetDp

Heated hollow cylinder in cross-flow Temperature distribution – $\overline{Bi} < 1$

SU2+GetDp

Heated hollow cylinder in cross-flow

Performance of coupling schemes

	$\overline{\mathrm{Bi}} < 1$	$\overline{\mathrm{Bi}} > 1$
FFTB	8	Unstable
TFFB	Unstable	8
hFTB	8	Unstable
hFFB	33	11

- Expected behavior for FFTB and TFFB (cf. 1D stability analysis)
- Numerical h.t.c. can stabilize the FB scheme for $\overline{\text{Bi}} < 1$, requires more iterations
- Numerical h.t.c. cannot stabilize the TB scheme for $\overline{\mathrm{Bi}} > 1$
- Using numerical h.t.c. does not improve the convergence rate for stable cases

SUZIGETDD

Thin flat plate wing Flutter speed and frequency

Experimental model ($\Lambda = 0^{\circ}$) at flutter speed Snapchot of the mean deflection

G. Dimitriadis

mean deflection \rightarrow stiffening \rightarrow increased frequency

Computation time VLM : a few seconds CUPyDO: 12h for one cycle SUZXANIEtafor

Thin flat plate wing LCO flow characteristics

117

SU2×Meraror