
Efficient and flexible implementation
of an interfacing Python-based tool

for numerical simulations of
fluid-structure interaction problems

PhD Thesis

submitted in partial fulfillment of the requirements for the degree

of

Doctor of Philosophy in Engineering Sciences

by David Thomas
Supervisor : Professor V.E. Terrapon

2020





Abstract

Applications involving a solid structure actively interacting with a surrounding fluid, referred to
as fluid-structure interaction (FSI), are constantly gaining interest in fundamental or industrial
research and development. Such a multi-physics system is characterized by a complex dynamics
which requires technically advanced methods to be studied. An accurate understanding of
FSI systems becomes a key factor in the current trend of producing lighter and more flexible
industrial designs. Nowadays, numerical simulations are extensively used to produce high-fidelity
FSI models for various engineering applications. The typical approach considered in this thesis
performs the coupling between two independent solvers, each of them being specifically designed
to solve the governing equations for one particular physics. In this context, this thesis presents
the development of an original coupling environment called CUPyDO. It is designed for the
coupling of independent single-physics solvers within a unified architecture based on a Python
wrapping methodology.

The development of CUPyDO has been conducted with the aim of producing a tool that
leverages computing efficiency and accuracy, coupling flexibility and user-friendliness while cir-
cumventing some limitations and improving some other aspects of the existing solutions. The
tool gathers state-of-the-art coupling methods which are deeply reviewed in this work. This
includes major capabilities such as under-relaxed coupling algorithms, non-matching interface
meshes and multi-core parallelization. The modern Python wrapping technology used in CU-
PyDO provides easy access to all the features through a high-level API which can be further
customized and extended with minimal effort. Furthermore, the same wrapping technology
provides a flexible black-box coupling with various existing standalone solvers without any ar-
chitectural or algorithmic adaptation to be performed in the coupling environment.

The implementation and the capabilities of CUPyDO are demonstrated and verified by
simulating several FSI test cases for transonic aeroelastic flutter, vortex-induced vibrations and
conjugate heat transfer. The test cases are also used to assess the coupling tool in terms of
robustness, efficiency and accuracy. The results are successfully validated against experimental
and numerical reference data found in the literature, and some usability guidelines are drawn.
Furthermore, the coupling flexibility is highlighted by using various structural solvers through
the different test cases.

The coupling tool is used for the aeroelastic study of a very flexible flat plate wing with
various geometrical configurations. In a first step, the linear flutter velocity and frequency
are sought and compared with experimental data with good agreement. In a second step,
the post-flutter aeroelastic response is simulated for some configurations of the plate and it is
found that the system is characterized by a supercritical Hopf bifurcation. For one particular
plate configuration, two distinct post-flutter limit cycle oscillations are observed depending on
the initial structural perturbation and on the occurrence of aerodynamic nonlinearities. This
further highlights the importance of using high-fidelity coupled models for representing nonlinear
aeroelastic solution that reduced-order linear models are not able to predict.

i



Acknowledgements

It would have not been possible to push this thesis to its end without the help and the support
of many kind people. This work owes a part of itself to each of them.

I would first like to express my gratitude to my advisor Prof. Vincent E. Terrapon and
my co-advisor Prof. Grigorios Dimitriadis for giving me the opportunity to perform my PhD
in the fields of computational aeroelasticity. I sincerely thank them for their valuable support
and advice, and for helping me exceeding my own limits. I would also like to thank the other
members of the jury, Prof. Christophe Geuzaine, Prof. Rafael Palacios, Prof. Joris Degroote, Dr.
Romain Boman and Dr. Thomas Andrianne, for their time spent reading and evaluating this
work.

I gratefully acknowledge Dr. Romain Boman for teaching me the basis of code wrapping,
which is the founding element of this thesis, and for his work on the Metafor interface. I thank
him and Dr. Luc Papeleux for their incredibly efficient technical advice. I also acknowledge
Dr. Marco Lucio Cerquaglia for his valuable collaboration on improving and extending the
capabilities of CUPyDO, and for the memorable time we spent at the Coupled Problems 2017
conference. I thank Prof. Christophe Geuzaine for his valuable contribution to the GetDP
interface.

I would like to sincerely acknowledge Prof. Juan J. Alonso, Dr. Thomas Economon and
all the Aerospace Design Lab at Stanford University for giving me the opportunity to spent a
research stay in their team. The work achieved and the people I met there are now parts of my
best memories. I would also like to thank the SU2team for its technical support and for the
given opportunity to contribute to the development of the solver.

I am very thankful to all my co-workers at MTFC research group, especially Adrien Crovato,
Dr. Hüseyin Güner, Samir Sid and Dr. Amandine Guissart, for the pleasant time we spent
together and their helpful support when things were not going as expected. I also thank my new
colleagues at NUMECA International for their advice and their interest in this work.

Last but not least, I address my heartfelt thanks to my family and my friends. Thank you
for enlightening my path when it was too dark for me to keep going. To my parents and my
brother, thank you for always being so supportive and kind. To my beloved Linh, thank you for
sharing my life, my joy, my grief, and for giving me endless love, care and support. You raised
my head up when everything was about to collapse. I owe you so much. To my baby girl Emi,
who is enlightening my life with new colours and flavours. You gave me the willpower to finish
this work.

ii



Contents

Abstract i

Acknowledgements ii

Contents iii

List of abbreviations vii

Mathematical notations ix

List of symbols xii

Introduction xiv
Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv
Motivation and objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv
Innovation and contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvi
Associated publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii
Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xviii

I The Fluid-Structure Interaction problem 1

1 An overview of the fluid-structure interaction problem 2
1.1 Classification of fluid-structure interaction phenomena . . . . . . . . . . . . . . . 3
1.2 Vortex-induced vibrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3 Galloping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4 Flutter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.5 The fluid-structure interaction problem in the engineering design process . . . . . 11

2 Mathematical model of FSI 14
2.1 The monolithic and the partitioned approaches . . . . . . . . . . . . . . . . . . . 14
2.2 General description of fluid and solid motion . . . . . . . . . . . . . . . . . . . . 15
2.3 Fluid dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3.1 Turbulence modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4 Solid dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.5 Boundary and coupling conditions . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.6 Non-dimensional parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

iii



CONTENTS iv

3 Numerical model of FSI 24
3.1 Introduction to the different methodologies for computing FSI problems . . . . . 24

3.1.1 Low-fidelity versus high-fidelity models . . . . . . . . . . . . . . . . . . . . 24
3.1.2 One-way versus two-way coupling . . . . . . . . . . . . . . . . . . . . . . . 25
3.1.3 Monolithic versus partitioned coupling . . . . . . . . . . . . . . . . . . . . 25

3.2 Mechanical coupling algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2.1 Fixed-point formulation of the coupled problem . . . . . . . . . . . . . . . 27
3.2.2 Loosely-coupled procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2.3 Strongly-coupled procedure . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2.4 Strongly coupled procedure with time step prediction . . . . . . . . . . . 30
3.2.5 Stability of the coupling procedure and Aitken relaxation for the strongly

coupled scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2.6 Newton-based techniques for the strongly coupled problem . . . . . . . . 35

3.3 Thermal coupling schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.3.1 Stability of the thermal coupling schemes . . . . . . . . . . . . . . . . . . 41
3.3.2 Time advancement of the thermal coupling procedure . . . . . . . . . . . 47

3.4 Treatment of the fluid-structure interface . . . . . . . . . . . . . . . . . . . . . . 49
3.4.1 Conforming vs non-conforming meshes . . . . . . . . . . . . . . . . . . . . 49
3.4.2 Interface mesh interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.5 Dynamic mesh treatment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.5.1 Mesh deformation methods . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.5.2 Geometric conservation law . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.6 The fluid solver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.6.1 Spatial integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.6.2 Time integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.6.3 Multigrid acceleration techniques . . . . . . . . . . . . . . . . . . . . . . . 70
3.6.4 Dynamic mesh computation . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.7 Structural solver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
3.7.1 Spatial integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
3.7.2 Time integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.8 Simplified structural models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

II Development and implementation of the coupling environment 79

4 The multi-code coupling 80
4.1 Common considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.2 Multi-code communications methods . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.2.1 File communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.2.2 MPI communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.2.3 Socket communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.3 Multi-code coupling technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.3.1 Manual coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.3.2 Master-slave architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.3.3 Client-server architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.3.4 Unified architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.4 State of the art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.4.1 Review of existing coupling tools . . . . . . . . . . . . . . . . . . . . . . . 86
4.4.2 Motivation for the development of a new coupling framework . . . . . . . 88

4.5 General challenges and basic requirements of the multi-code coupling for fluid-
structure interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89



CONTENTS v

5 The coupling tool CUPyDO 91
5.1 Design strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.2 Multi-language programming and Python-wrapping procedure . . . . . . . . . . . 92

5.2.1 Generating the Python wrapper . . . . . . . . . . . . . . . . . . . . . . . 92
5.2.2 Coupling with the Python wrapper . . . . . . . . . . . . . . . . . . . . . . 95
5.2.3 Development of the SU2 Python wrapper . . . . . . . . . . . . . . . . . . 96

5.3 Architecture of CUPyDO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
5.3.1 C++ kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
5.3.2 Python Utility layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
5.3.3 Python Core layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
5.3.4 Python Interface layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.4 Interface data structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
5.5 Coupling with black-box solvers and compatibility . . . . . . . . . . . . . . . . . 105
5.6 Coupling parallelization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
5.7 Interface mesh interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.7.1 Parallel implementation of the RBF mesh interpolation . . . . . . . . . . 109
5.7.2 Verification of the RBF implementation . . . . . . . . . . . . . . . . . . . 113

5.8 Setting a fluid-structure computation with CUPyDO . . . . . . . . . . . . . . . . 115

III Verification of the CUPyDO coupling environment and application to
an aeroelastic case study 123

6 FSI verification test cases for CUPyDO 124
6.1 Vortex-induced vibration of a circular cylinder with one degree of freedom . . . . 125

6.1.1 Description of the simplified model . . . . . . . . . . . . . . . . . . . . . . 125
6.1.2 Case description and simulation parameters . . . . . . . . . . . . . . . . . 127
6.1.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
6.1.4 Test case summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

6.2 Flutter of an airfoil with pitch and plunge degrees of freedom . . . . . . . . . . . 135
6.2.1 Description of the simplified model . . . . . . . . . . . . . . . . . . . . . . 135
6.2.2 Case description and simulation parameters . . . . . . . . . . . . . . . . . 138
6.2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
6.2.4 Test case summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

6.3 Vortex-induced vibration of a flexible cantilever . . . . . . . . . . . . . . . . . . . 150
6.3.1 Case description and simulation parameters . . . . . . . . . . . . . . . . . 150
6.3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
6.3.3 Test case summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

6.4 Aeroelastic study of the AGARD 445.6 wing . . . . . . . . . . . . . . . . . . . . 159
6.4.1 Case description and simulation parameters . . . . . . . . . . . . . . . . . 159
6.4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
6.4.3 Test case summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

6.5 Conjugate heat transfer with a circular cylinder immersed in cross-flow . . . . . . 168
6.5.1 Case description and simulation parameters . . . . . . . . . . . . . . . . . 168
6.5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
6.5.3 Test case summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

7 Aeroelastic study of a thin flat plate wing 177
7.1 Context and case description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
7.2 Preliminary study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

7.2.1 Fluid simulations and mesh analysis . . . . . . . . . . . . . . . . . . . . . 181
7.2.2 Modal analysis of the structure . . . . . . . . . . . . . . . . . . . . . . . . 182



CONTENTS vi

7.2.3 Free wind-off response of the structure . . . . . . . . . . . . . . . . . . . . 183
7.3 Unsteady aeroelasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

7.3.1 Flutter study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
7.3.2 Study of limit cycle oscillations . . . . . . . . . . . . . . . . . . . . . . . . 188

Conclusion 203
Summary of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
Future perspective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

List of Figures 215

List of Tables 218

Bibliography 238

Appendix A 239

Appendix B 241

Appendix C 242

Appendix D 244

Appendix E 247

Appendix F 249

Appendix G 252



List of abbreviations

AD Algorithmic Differenciation

ADT Alternating Digital Tree

ALE Arbitrary Lagrangian-Eulerian

AoA Angle of Attack

API Application Programming Interface

BEM Boundary Elements Method

BGS Block-Gauss-Seidel

CFD Computational Fluid Dynamics

CFL Courant Friedrichs-Lewy (number)

CHT Conjugate Heat Transfer

CSD Computational Solid Dynamics

DN Dirichlet-Neumann

FEM Finite Elements Method

FFTB Flux Forward Temperature Back

FIV Fluid-Induced Vibrations

FSI Fluid-Structure Interaction

FVM Finite Volume Method

HPC High Performance Computing

IB Immersed Boundary

IBQN Interface Block Quasi-Newton

ILS Inverse Least Square

IP Internet Protocol

IQN Interface Quasi-Newton

MPI Message Passing Interface

ND Neumann-Dirichlet

NN Nearest Neighbor

vii



LIST OF ABBREVIATIONS viii

RBF Radial Basis Function

TCP Transmission Control Protocol

TFFB Temperature Forward Flux Back

(U)RANS (Unsteady) Reynolds-Averaged Navier-Stokes equations

VIV Vortex-Induced Vibrations



Mathematical notations

General notation

Scalar notation uses both lower or uppercase symbols with no other significant font style than
the default mathematical emphasis:

a,A, ω,Ω.

Vector and first-order tensor notation uses bold symbols with mathematical emphasis:

v,V ,γ.

Matrix and second-order tensor notation uses bold symbols with straight font:

v,V,Γ.

Any other specific and non-general notations shall be detailed at occurrence.

Indices and other operators

Indicial notation may be used for vectors, vi and matrices, Vij . The Einstein summation
convention is used when applicable:

aibi =
∑
k

akbk ,

Aijbj =
∑
k

Aikbk .

Total and partial derivatives shall be expressed by the following notation:

dai
dx

= dxai ,

∂ai
∂x

= ∂xai .

and the Einstein convention may be applicable:

∂jAij =
∑
k

∂kAik .

The gradient of a scalar in cartesian coordinates is expressed as

∇a =

 ∂xa
∂ya
∂za

 .
The divergence of a tensor is expressed as

∇ · a = ∂iai

ix



MATHEMATICAL NOTATIONS x

and

∇ ·A =

 ∂jAxj
∂jAyj
∂jAzj


for vectors and matrices, respectively. Finally, the Laplacian operator is expressed as

∇2a = ∂2
i a

and

∇2v =

 ∇2vx
∇2vy
∇2vz


for scalars and vectors, respectively.



xi



LIST OF SYMBOLS xii

List of symbols

Latin symbols

a m s-1 Speed of sound
Bi [-] Biot number
c N s m-1 | m Damping coefficient | Airfoil chord
cp J kg-1 K-1 Specific heat at constant pressure
cv J kg-1 K-1 Specific heat at constant volume
CD N Drag coefficient
CL N Lift coefficient
d m Displacement
D m | N Diameter | Drag force
e J kg-1 Internal energy per unit mass
E J kg-1 | Pa Total energy per unit mass | Young’s modulus
E [-] Strain tensor
f s-1 Frequency

f̃ N kg-1 Force per unit mass

f̂ N m-3 Force per unit volume
F N Force
F [-] Deformation gradient tensor
h W m-2K-1 | m Convective heat transfer coefficient | Plunge displacement
I kg m2 Moment of inertia
I [-] Unity tensor
k N m-1 | m2 s-2 Stiffness | Turbulent kinetic energy
L m | N Characteristic length | Lift force
m kg Mass
M [-] Mach number
Ma [-] Mass ratio
p Pa Pressure
P Pa Characteristic pressure
Pr [-] Prandtl number
q J s m | m Heat generation per unit volume | Generalized displacement
r [-] Residual
R J kg-1 K-1 Specific gas constant
Re [-] Reynolds number
s m Span
Str [-] Strouhal number
t s | m Time | Thickness
t N Surface load
T K Temperature
v m s-1 Velocity
U m s-1 Characteristic velocity
x m Cartesian coordinates



LIST OF SYMBOLS xiii

Greek symbols

α m/s2 | rad Thermal diffusivity | Pitch angle
β K-1 Volumetric thermal expansion coefficient
γ [-] Specific heats ratio
δ [-] Kronecker delta
Γ [-] Fluid-structure interface
∆ [-] Difference operator
ζ [-] Damping ratio
λ W m-1 K-1 Thermal conductivity
Λ .◦ Sweep angle
µ Pa s Dynamic viscosity
ν m2 s-1 | [-] Kinematic viscosity | Poisson coefficient
ρ kg m-3 Density
τ Pa Shear stress tensor
σ Pa Cauchy stress tensor
ω rad/s | s-1 | [-] Frequency | Specific energy dissipation rate | Relaxation parameter
Ω [-] Spatial domain
∇ m-1 Nabla operator



Introduction

Context

Fluid-structure interaction (FSI) refers to phenomena that involve a structure interacting with
a surrounding fluid. A wide range of fields and applications, such as aerospace, civil engineering
or biomedical are concerned by FSI problems. FSI systems have gained increasing interest from
engineers and scientists because they usually involve very complex dynamics that are still not
fully understood, making efficient designs even more challenging. In this particular context,
history has taught us that FSI can lead to disastrous consequences if not properly integrated in
the design process. One of the most cited disaster directly linked to FSI problem is the collapse
of the Tacoma Narrow bridge in 1940. In the aerospace industry, we observe a clear trend
towards larger (see Fig. 1), lighter and more flexible (e.g., B787 and A350 in Fig. 1 are mostly
based on composites) designs over the years. For such designs, FSI dynamics of the wings may
strongly impact the global performance of an aircraft.

Figure 1: Illustration of the continuous increase in aircraft take-off weight over the century.
Taken from Bejan et al. [1]. On the right extremity of the graph, we note the presence of the
B787 and A350 models which are known to integrate a significant part of lighter and more
flexible composite materials.

Research study or design of FSI systems usually leverages two main approaches. On the one
hand, valuable real-life data can be acquired by experimental investigations. Although their use
tends to be minimized because of their relatively high cost, experimental models and prototyping
remain truly necessary in some phases of the design process (e.g. during certification). On the

xiv



INTRODUCTION xv

other hand, the use of computational models has intensified over the past decades, following the
continuous increase in the average computer power. Nowadays, computational models or solvers
are used on a daily basis as they usually represent a smaller cost compared to experiments.
A wide range of high-fidelity solvers have been developed by industries and research centers,
either on a commercial or open-source basis. Most of the time, these models are able to solve
the governing equations, both spatially and temporally discretized, for one single physics. For
instance, a structural code is used to compute the deformations and the stresses within a solid
subjected to specified loads but has no capabilities to compute a fluid flow. Conversely, fluid
solvers are specifically designed to compute a fluid flow but cannot be used to solve structural
dynamics. For FSI applications, a segregated use of these solvers without considering the effects
of the coupling (or the interaction between the two physics) cannot accurately represent the
complexity of FSI systems, and coupled computational models must then be developed and
considered for reliable designs. This however comes with additional challenges that are related
to the coupling technology and algorithm, the numerical stability of that algorithm, solvers
inter-communication, or the difference in the scaling of the physical characteristics between the
two coupled fields.

In this particular context, this thesis presents the development of an original computational
tool, CUPyDO, designed as a coupling environment of single-physics solvers (fluid and solid)
for FSI applications. A partitioned strategy is selected, where the coupled framework takes di-
rect benefit from the existing technologies that are already implemented in each coupled solver.
CUPyDO is designed based on modern programming techniques, such the Object-Oriented for-
malism, that combines two standard and efficient programming languages that are C++ and
Python. In the development of CUPyDO emphasis is given to computing efficiency, flexibility
and user-friendliness.

Motivation and objectives

The development of CUPyDO is seen as a result of a detailed analysis of what can be found in
the current state-of-the-art to computationally solve coupled problems. While the development
of a new coupling tool cannot be considered as a technological breakthrough, this thesis proposes
a true modern alternative that can circumvent some limitations and improve some other aspects
of the existing solutions. The technological specificity of CUPyDO, based on a Python wrapping
of C++ core codes, significantly improves the interfacing flexibility and the usability without
altering the efficiency.

The main objective followed in this work is to develop a coupling environment that provides
a minimal amount of basic capabilities such as standard state-of-the-art coupling algorithms
and interpolation schemes for non-matching interface meshes. Access to these capabilities must
be given through a high-level user-friendly API while keeping the code as open as possible for
customization, which is truly powered by an efficient wrapping technology. When coupling new
existing codes to a third-party environment, the question of code adaptation also comes rapidly
into play. In this work, emphasis is given to minimizing development effort to couple a given
solver by defining a flexible interfacing procedure, again powered by Python wrapping, that
limits source code invasiveness and increases coupling flexibility and modularity.

The coupling environment is intended to be used by both academic (students and researchers)
and industrial practitioners. The tool must thus allow user customization while hiding the
technical and technological aspects as much as possible for students and scientists conducting
fundamental research. As the average size and complexity of simulated problems is always
increasing, parallelization and HPC-compliance is also a must have for any viable computational
tool.

The development of CUPyDO must be considered with a long-term perspective that surely
goes beyond the time window of this thesis. The use of modern formalisms such as Object-



INTRODUCTION xvi

Oriented Programming (OOP), which maximizes code re-usability, and Pyhon wrapping is mo-
tivated by the need for maintainability and expandability of the code. An open-source license is
also considered as an opportunity to grow the code via contributions of an entire, world-wide,
community.

In addition to the development of the coupling environment, this thesis is dedicated to its
validation and verification. By using different open-source fluid and solid solvers to be coupled,
the different features and capabilities that resulted from the aforementioned strategy must be
demonstrated on representative and documented computational cases involving FSI problems.

Innovation and contributions

Although CUPyDO is based on current state-of-the-art numerical algorithms, the innovative
aspect lies in its implementation and coupling technology. In particular, the Python-wrapping
methodology is leveraged in order to develop a unified coupling framework in which data are
transferred via the memory space and that does not need to rely on TCP/IP. This allows the
user to launch a coupled simulation as it would be a single executable. Furthermore, data and
functionalities are exposed from the coupled solvers to the coupling tool, and not the opposite as
usually encountered in existing coupling software. Hence, there is no specific CUPyDO routines
to be introduced in the coupled code, which truly highlights its minimally intrusive nature. This
also relieves some design constraints regarding the coupled Python wrappers because they do
not need to be FSI-oriented and can be reused for many other applications than only achieving
the coupling with CUPyDO. The original C++/Python dual nature of CUPyDO confines the
set-up and the customization of the coupled simulation at a user-friendly and intuitive high
level (Python) while the computationally intensive tasks are hidden and efficiently executed at
the lower-level (C++). This is particularly leveraged by the OOP architecture of CUPyDO in
which each component is designed for one specific coupling task, such as solver synchronisation,
time marching, interface interpolation and parallel data structure management, to cite the most
important ones. Such framework architecture also contributes to maintain a high level of code
re-usability, maintainability and expandability.

The source code of CUPyDO can be found in the following Github repository: https:

//github.com/ulgltas/CUPyDO, under the Apache 2.0 open-source license. By means of its
intuitive architecture and flexible coupling methodology, the list of the current available com-
patible solvers is already larger than the few solvers mentioned in this work. In addition, because
CUPyDO is implemented with state-of-the-art numerical models, it has already been successfully
used (and still is) in many other research projects:

• Newton-based FSI algorithms have been implemented for FSI applications with strong
added-mass effects. This involves the coupling with a particle finite element (PFEM) code
for the fluid part. The targeted applications were simulations of bird impact and FSI with
free-surface flows [2, 3], as illustrated in Fig. 2(a).

• The FLOW code, a FEM-based steady solver for the full compressible potential flow equa-
tion, has been coupled with CUPyDO for steady aeroelastic analysis of composite wings
in transonic regime [4,5], as depicted in Fig. 2(b).

• The ability of representing the solid structure through a modal decomposition instead of
a full FEM model has been enabled by coupling a modal solver (Modali) with CUPyDO.
The coupling between Modali and SU2 has been used to validate lower-fidelity methods
for flutter calculations of composite wings in transonic regime [6,7].

• The coupling capabilities of CUPyDO have recently been extended towards adjoint formu-
lation for calculation of steady FSI cases. For this purpose, the adjoint structural solver of
the SU2 package has been independently coupled with the adjoint SU2 fluid solver through

https://github.com/ulgltas/CUPyDO
https://github.com/ulgltas/CUPyDO


INTRODUCTION xvii

CUPyDO. This extension of CUPyDO to FSI adjoint calculation is being developed in close
collaboration with the SU2 development team.

• A Vortex Latice Model (VLM) code has also been coupled to CUPyDO for fast, low-fidelity,
FSI computations.

(a) Dam break against an elastic–plastic obstacle.
Free-surface flow simulated with the PFEM code
and coupled with Metafor [2].

(b) Steady aeroelastic simulation of the Embrear
Benchmark Wing. The flow is computed with
FLOW and coupled with Modali [5].

Figure 2: Examples of FSI applications involving the coupling with CUPyDO in other research
projects.

CUPyDO is now regularly used for both steady and unsteady FSI in several research projects
and also in collaboration with a major industrial partner (Embraer). Ongoing research works
mainly focus on extending the FLOW code to perform unsteady FSI (possibly steady adjoint
as well), and extending the steady adjoint calculation capability to unsteady adjoint based on
a harmonic balance approach. In a longer term, the fluid code OpenFOAM and the structural
solver TACS [8] are envisaged for further enlarging the list of coupled solvers, together with
extending the coupling capabilities to true unsteady adjoint.

Associated publications

D. Thomas, M.L. Cerquaglia, R. Boman, T.D. Economon, J.J Alonso, G. Dimitriadis, V.E.
Terrapon. CUPyDO- An integrated Python environment for coupled fluid-structure interaction.
Advances in Engineering Software, 128:69-85, 2019. doi:10.1016/j.advengsoft.2018.05.007

M.L. Cerquaglia, D.Thomas, R.Boman, V.Terrapon, J.-P. Ponthot. A fully partitioned La-
grangian framework for FSI problems characterized by free surfaces, large solid deformations
and displacements, and strong added-mass effects. Computer Methods in Applied Mechanics
and Engineering, 348:409-442, 2019. doi:10.1016/j.cma.2019.01.021

H. Güner, D. Thomas, G. Dimitriadis, V.E. Terrapon. Unsteady aerodynamic modeling method-
ology based on dynamic mode interpolation for transonic flutter calculations. Journal of Fluids
and Structures, 84:218-232, 2019. doi:10.1016/j.jfluidstructs.2018.11.002

D. Thomas, A. Variyar, R. Boman, T.D. Economon, J.J. Alonso, G. Dimitriadis, V.E. Terrapon.
Staggered strong coupling between existing fluid and solid solvers through a Python interface for
fluid-structure interaction problems. Proceedings of the VII International Conference on Com-
putational Methods for Coupled problems in science and engineering, Coupled Problems 2017,

https://doi.org/10.1016/j.advengsoft.2018.05.007
https://doi.org/10.1016/j.cma.2019.01.021
https://doi.org/10.1016/j.jfluidstructs.2018.11.002


INTRODUCTION xviii

12-14 June 2017, Rhodes Island, Greece. Proceedings.

R. Sanchez, H.L. Kline, D. Thomas, A. Variyar, M. Righi, T.D. Economon, R. Sanchez, H.L.
Kline, D. Thomas, A. Variyar, M. Righi, T.D. Economon, J.J. Alonso, R. Palacios, G. Dimitri-
adis, and V. Terrapon. Assessment of the fluid-structure interaction capabilities for aeronautical
applications of the open-source solver SU2. Proceedings of the VII European Congress on Com-
putational Methods in Applied Sciences and Engineering, ECCOMAS 2016, June 2016 Crete
Island, Greece. doi:10.7712/100016.

Outline

This thesis is divided into three parts that are composed of three, two and two chapters, re-
spectively. In the first part, Chapter 1 gives an overview of the FSI problem and introduces the
main phenomenological aspects. Chapter 2 focuses on general mathematical models for FSI, by
describing the governing equations for each coupled physics and then presenting the interface
conditions. Chapter 3 is dedicated to all the numerical aspects of FSI. It presents the different
methodologies for building a FSI model, the coupling algorithms, the specific numerical treat-
ment of the fluid-structure interface, and the different solvers that are used in this work. In the
second part, existing code coupling technologies are reviewed in Chapter 4 and eligibility for
the development of a new coupling framework is established. The detailed implementation of
CUPyDO is given in Chapter 5 by covering all the aspects introduced in the previous chapters.
The last part of this thesis is used to validate the coupling tool, in Chapter 6, by using it to
simulate standard FSI cases referenced in the scientific literature. The last Chapter 7 proposes
an application of CUPyDO for the aeroelastic study of a very flexible thin plate wing. Finally,
the conclusion summarizes the main findings of this work and proposes several avenues for future
work.

http://congress.cimne.com/coupled2017/frontal/Doc/Ebook2017.pdf
https://doi.org/10.7712/100016


Part I

The Fluid-Structure Interaction
problem

1



Chapter 1

An overview of the fluid-structure
interaction problem

This first chapter introduces the fundamental basis for the physical understanding of the fluid-
structure interaction problem, with a focus on phenomenological aspects. A fluid-structure
interaction problem (FSI) refers to the system formed by a solid body in contact with a fluid
where the dynamics of each type of physics is mutually coupled through a common interface.
Studying FSI systems is of major interest for engineers because such systems are present in
many fields of applications such as aerospace, civil engineering, biomedical/biological, electron-
ics, energy or food processing. One can imagine many situations in which a structure in contact
with a fluid will be subjected to fluid-induced loads or fluid-induced thermal constraints.

Hydro- or aeroelasticity studies the action of a fluid (liquid or gas) on a flexible solid structure
that could move or deform under the actions of the fluid loads. The motion or deformation of
the solid has a feedback influence on the fluid, resulting in a change of the loading pattern so
that the dynamics of the coupled system is ruled by this mutual interaction. Aeroelastic systems
are the coupling of the elastic and inertial forces in the solid with the fluid loads, as illustrated
in Fig. 1.1.

Dynamic
aeroelasticity

Aerodynamic

Elastic Inertial

St
at

ic
ae

ro
el

as
ti
ci

ty F
light

m
echanics

Structural
dynamics

Figure 1.1: Collar’s aeroelastic triangle: force interactions in an aeroelastic system.

Conjugate Heat Transfer (CHT) describes the heat transfer occurring between a solid and
a surrounding fluid usually having a significant temperature difference. The heat conduction in
the solid is coupled to the heat convection (convection = combination of conduction by molecular
diffusion and advection by macroscopic transport) in the fluid. Forced convection, as shown in
Fig. 1.2, occurs when the fluid motion is caused by externals means, such as a pump or the
relative motion of the solid. On the other hand, free or natural convection takes place when the
fluid motion is caused by buoyancy forces induced by a density gradient submitted to gravity,

2



CHAPTER 1. AN OVERVIEWOF THE FLUID-STRUCTURE INTERACTION PROBLEM3

i.e., induced by the heat transfer itself.

Convective heat transfer

Airflow

Heat conduction

Figure 1.2: Fan-generated airflow for hot plate cooling by forced convection.

In this thesis, the FSI terminology includes both mechanical and thermal (CHT) inter-
actions, although in the literature this terminology usually refers only to the mechanical
interaction while CHT applies to thermal interaction.

Remark

1.1 Classification of fluid-structure interaction phenomena

There are many ways to classify FSI problems according to the particular dynamics and phe-
nomenology involved in the process. As a start, we could distinguish static from dynamic FSI
problems. Fluid-solid systems whose flow and structural variables (flow velocity field, structural
displacement, etc) do not evolve in time are qualified as static FSI problems. The Collar’s trian-
gle in Fig. 1.1 may represent a static system after removing the inertial forces in the structure. A
typical example can be observed in nature where aquatic river plants are bent by the action of a
stabilized water current, as illustrated in Fig. 1.3(a). If the flow is maintained at a constant speed
and does not feature significant unsteady mechanisms such as vortex shedding, the deflection of
the plants, known as vegetation reconfiguration, will remain constant in time. A change in the
flow rate will bring the system to another configuration through a transition phase but a new
static equilibrium will be reached as long as the flow rate is maintained constant at its new value.
Another example of static FSI is the in-flight deflection of aircraft wings under the action of the
lift force. Recent designs use lighter and more flexible materials for the aircraft structures. The
resulting significant flexibility of large span wings causes larger in-flight lift-induced deflection,
as illustrated in Fig. 1.3(b), whose impact on the flight performance has to be taken into account
during the design process. The design of wind turbine blades may also be strongly impacted
by static aeroelasticity. Note that unsteady effects might also be important to consider but the
initial phase of the design generally focuses on steady loads. Engineers at the design stage are
concerned by the maximal admissible aeroelastic deflection that guarantees structural integrity,
i.e. avoid rupture of the structure, as well as proper aerodynamic performance. However, the
stability of the system must also be of interest. Indeed, for a given wing design under given
flow conditions, the magnitude of the destabilizing static aerodynamic loads can exceed that of



CHAPTER 1. AN OVERVIEWOF THE FLUID-STRUCTURE INTERACTION PROBLEM4

Water current

(a) Reconfiguration of aquatics plants subjected to a steady water flow.
Experimental setup taken from Abdelrhman [9].

(b) Schematic illustration of lift-induced wing deflection on commer-
cial airliner; on-ground configuration is in black, in-flight configura-
tion is in red.

Figure 1.3: Example of static fluid-structure interaction problems.

the structural restoring forces. This can result in unbounded wing deflection and failure. This
instability is called static divergence and has been encountered since the beginning of aviation
by pilots and engineers [10].

Contrary to the static case, dynamic FSI features time-dependent flow and structural behav-
ior. When the structural response is of vibrating nature, which is quite common, the interaction
is referred to as Flow-Induced Vibrations (FIV). In this category of phenomena, the range of vi-
bration mechanisms is wide. Kaneko et al. [11] proposed an interesting classification accounting
for both single-phase and two-phase flows. In order to restrict the analysis to the scope of this
thesis, Fig. 1.4 illustrates the classification of FIV only for single-phase flows. The distinction
is made between steady and unsteady oncoming flows. The link between a vibratory structural
response and unsteady flows is intuitive as we can easily understand that non-stationary flow
phenomena, such as pressure or flow rate pulsations, will induce non-stationary structural de-
formations or displacements. Typical examples can be found in pipes conveying fluids where the
flow rate is maintained by the action of compressors or pumps that may induce flow pulsations at
a specific frequency. If the pulsating flow frequency becomes comparable to the piping system’s
natural frequency, significant vibrations may appear, hence leading to strong noise generation
or even structural failure. Water hammer and valve vibrations are other examples of pulsation-
induced structural responses of piping systems. Pulsating flows in conveying pipes have been
extensively studied for more than 20 years and recent studies may be found in Gorman [12],
Liu [13] and Zhou [14]. Arterial blood flows may also fall in the category of FSI systems with
pulsating flows. For instance, the considerable flexibility of arterial walls coupled with hemody-
namics and heart-induced pulsations is of critical matter for aneurysms. Turbulence is another
source of excitation for flexible structures. Turbulence may be seen as chaotic flow fluctuations
superposed to its mean component. Aircraft wings or civil engineering structures are endlessly



CHAPTER 1. AN OVERVIEWOF THE FLUID-STRUCTURE INTERACTION PROBLEM5

subjected to atmospheric turbulence, resulting in buffeting that usually exhibits small ampli-
tudes and a stochastic character depending on the turbulent intensity level of the wind itself.

Steady flow

Unsteady flow

External flow

Internal flow

Acoustic resonance

Vortex-induced vibrations (VIV)

Fluidelastic vibrations

Surging

Vibration of piping

Pulsating flow

Turbulent flow

Sudden change
in flow

Forced vibration

Acoustically induced vibration

Random vibrations

Pressure pulsations

Figure 1.4: FIV classification for single-phase flows. The red path highlights the mechanisms
that are treated in details in this thesis. Charts taken from [11].

Dynamic FSI involving oncoming steady flows is much less intuitive. The flow is now qualified
as steady because it does not feature any unsteadiness such as those generated by external means
(e.g. a pumping system) before interacting with the flexible structure. Conveying pipes may
undergo vibrations when the flow rate is set beyond a critical value. Vibrations are sustained
for constant values of the fluid velocity above the critical value and are not linked to any
harmonic excitation such as pressure pulsations. Details about conveying pipe dynamics and
instabilities can be found in Päıdoussis [15]. One of the typical examples of pipe instability is
the garden-hose instability. This mechanism was already studied by Bourriéres in 1939 and is
still under investigation today [16]. This instability appears for flexible conveying pipes whose
one extremity is free to move. When the fluid velocity reaches or is set beyond a critical
value, the pipe experiences large and sustained vibratory motions. The garden-hose instability
is schematically depicted in Fig. 1.5. Flexible structures submitted to an external steady flow
may experience large vibrations and unstable modes as well. This particular type of FSI will be
of major interest in this thesis, focusing on three distinct phenomena, namely Vortex-Induced
Vibrations (VIV), galloping and flutter. These phenomena will be discussed in more detail in
the next three sections.

In the case of conjugate heat transfer, the large difference in the time constant between
the fluid and the solid does not usually permit rapid variations of the thermal field within the
solid, even for unsteady flows, so that the thermal coupling is considered as steady or at least
monotonically transient most of the time. Examples of CHT systems involving forced convection
are engines or computer processor cooling. For instance, the Cessna 150 engine is cooled by the
relative airflow generated by the aircraft’s forward motion and the propeller flux, as illustrated in
Fig. 1.6. Cooling fins are usually added on the surface of the cylinder blocks in order to increase
the heat exchange efficiency by increasing the exchange surface area. In turbojet engines, the
turbine blades are in contact with the hot gases exiting from the combustion chamber and thus



CHAPTER 1. AN OVERVIEWOF THE FLUID-STRUCTURE INTERACTION PROBLEM6

U U

Subcritical
mode

Postcritical
mode

Figure 1.5: Illustration of the garden-hose instability. On the left, stable behavior when the fluid
velocity U is under the critical value. On the right, unstable configuration when U is beyond
the critical limit.

submitted to temperatures that can be higher than their melting point [17]. Cooling air from
high- and low-pressure compressors is thus pumped inside internal blade channels and then
blown through small holes drilled at the surface in contact with the hot gas flow. This creates
a thin cooling film that controls the thermal transfer between the hot flow and the blade, as
depicted in Fig. 1.7. Power plant heat exchangers and heat shields used for re-entry vehicles
are other examples of applications for which CHT phenomena significantly impact the design
process.

A
ir

fl
ow

Cylinder blocks
with cooling fins

Figure 1.6: Cessna engine cooled by external airflow.

Mechanical and thermal fluid-structure interactions were introduced separately for clarity
and because usually one of the two interactions is significantly stronger than the other, so that
the latter can be neglected. However, there are also systems for which the two mechanisms have
to be taken into account as they have mutual influence. For example in supersonic/hypersonic
aircraft design, thermal effects induced by high-speed aerodynamic heating may have a significant



CHAPTER 1. AN OVERVIEWOF THE FLUID-STRUCTURE INTERACTION PROBLEM7

Hot flow

Cooling film

Blade structure

Blowing holes

Figure 1.7: Turbine blade submitted to hot gas flow and protected by a fresh air cooling film.

influence on the aeroelastic response of flexible aircraft structures. This phenomenon is referred
to as aero-thermoelasticity.

1.2 Vortex-induced vibrations

Vortex-induced vibrations can affect bluff flexible structures submitted to a steady cross-flow.
This phenomenon has been extensively studied during the past few decades [18–20] and is still
under investigation today [21–23] due to its significant impact on the design of many civil engi-
neering structures: bridges, towers, towed cables, transmission lines, marine cables and offshore
structures are typical examples of situations where VIV matters. VIV can be illustrated by
the canonical case of a circular cylinder subjected to cross-flow. It is well-known that above a
certain flow regime threshold, convective effects in the flow dominate viscous mechanisms and
the vorticity produced at the solid boundary is not dissipated in the vicinity of the body. Two
naturally unstable shear layers of opposite vorticity are generated and the wake behind the cylin-
der becomes unstable, turning into the so-called Von Kármán vortex street [20]. The resulting
wake consists in a periodic vortex shedding that is characterized by a particular frequency over
a large range of supercritical flow regimes. Fig. 1.8 illustrates the Von Kármán street in the
wake of a circular cylinder in laminar flow.

The vortical pattern of the wake results in unsteady aerodynamic loads that may cause vi-
brations of flexible or flexibly mounted structures leading to stresses or fatigue damage [25]. The
structural motion will, in turn, influence the vortex generation mechanism through a feedback
process that may lead to unstable dynamics and large vibratory amplitudes when the shedding
frequency of the vortices is close to the natural frequency of the structure. In practice, the flow
regimes that correspond to this specific condition fall in the so-called lock-in region, in which
the dynamics of the system is locked on a particular behavior involving large, but self-limited,
motion. Structural instabilities or failure are the ultimate consequences of an uncontrolled VIV
mechanism. Maritime structures such as drilling risers and pipelines are particularly concerned
by VIV caused by the water current [25,26]. Particular attention is also paid during the design
process of slender structures submitted to wind such as bridge suspenders [27], towers and in-
dustrial chimneys [28]. When the design does not permit a satisfactory safety margin for the
natural frequency and in order to prevent the full development of a Von Kármán street, VIV
suppression devices such as helical strakes (Fig. 1.9 (e)) or foil-shaped fairings (Fig. 1.9 (h)) [29]



CHAPTER 1. AN OVERVIEWOF THE FLUID-STRUCTURE INTERACTION PROBLEM8

Figure 1.8: Laminar Von Kármán vortex street in the wake of a circular cylinder. Taken
from [24].

can be used.

Figure 1.9: Illustration of typical VIV suppression devices. Taken from Holland et al. [29].

1.3 Galloping

At first sight galloping strongly resembles VIV because both phenomena result in high amplitude
structural vibrations beyond a critical flow regime. However, and in contrast to VIV, galloping
occurs in the absence of vortex formation and does not involve significant wake interaction. In
contrast to VIV, which can be considered as a resonant phenomenon where the vortex shedding
acts as an external excitation for the structure, galloping results from a physical instability of
the coupled fluid-structure system. Considering a flexibly mounted one-degree-of-freedom bluff
body, galloping should be seen as a negatively damped response of the system [30]. As for VIV,
galloping is flow regime dependent, meaning that the instability can only develop above a certain
threshold (e.g. above a critical flow velocity). A significant difference with VIV is that the range
of flow regimes for which unstable dynamics occurs is unbounded above the critical conditions.



CHAPTER 1. AN OVERVIEWOF THE FLUID-STRUCTURE INTERACTION PROBLEM9

Although a perfectly circular cylinder is immune to galloping, comparing this example with a
non-circular cylinder provides a good illustration of the phenomenon. Fig. 1.10 illustrates how
the shape of a solid body could determine the occurrence of galloping. Fig. 1.10 (a) shows
that for a perfectly circular body free to move vertically in a cross-flow of velocity U , the
vertical component of the force caused by the relative motion ẏ (for simplicity, the oscillatory
lift component due to vortex shedding is purposely ignored in this case) will always oppose the
displacement itself, thus preventing any possibility for the system to reach a sustained vibratory
state. However, for a non-circular cylinder as shown in Fig. 1.10 (b) the force might be oriented
in the same direction as the displacement, making an energy transfer from the flow to the
structure possible, as discussed in Paidoussis et al. [30] and previously in Den Hartog [31]. This
would result in an amplified motion of the structure over time. A very practical example of

•U

ẏẏ
Urel

Force
Fy

(a) Perfect circular shape: the restor-
ing force always opposes the struc-
tural motion.

•U

ẏẏ
Urel

Force
Fy

(b) Arbitrary non circular shape: the
force can be oriented in the same di-
rection as the structural motion that
can in turn be amplified.

Figure 1.10: Body shape dependence for galloping to occur.

the occurrence of galloping induced by a shape modification is the accretion of ice on electric
transmission lines due to freezing meteorological conditions. When the wind is sufficiently strong,
iced shape power lines can gallop and may cause conductor clashing, resulting in an interruption
of service [32].

Another famous occurrence of galloping was that resulting in the spectacular oscillation and
collapse of the Tacoma Narrows Bridge (Washington, USA) on November 7th 1940. The bridge
experienced large torsional vibrations (twisting angle up to 35° !) at a low frequency of 0.2 Hz
until it collapsed (Fig. 1.11).

Figure 1.11: Instantaneous photograph of the torsional galloping of the Tacoma Narrows Bridge
before its collapse. Taken from Päıdoussis [30], originally taken from Scruton [33].

Depending on the circumstances, the dynamics of galloping can become quite complex.
Parkinson [34] has already identified the two main classes of galloping which are the trans-
verse galloping, as in the case of the iced power lines, and the torsional galloping of bridge



CHAPTER 1. AN OVERVIEWOF THE FLUID-STRUCTURE INTERACTION PROBLEM10

decks. The complexity of the phenomenon can be further increased in case of interaction with
the reattachment of the separated shear layer and/or vortex shedding. In particular, VIV and
galloping can occur for the same structure at very different flow velocities or can overlap de-
pending on the conditions. For the interested reader, many details can be found in Päıdoussis
et al. [30]

1.4 Flutter

Aeroelastic flutter is an instability similar to galloping in the sense that it occurs at flow regimes
for which the total damping of the fluid-structure system becomes negative and where energy
from the airstream is absorbed by the structure. The basic type of flutter is usually referred to
as coupled-mode flutter, because it involves two structural modes interacting with each other
due to the aerodynamics (only one mode is involved in galloping). The most relevant example of
coupled-mode flutter occurrence is on aircraft wings and stabilizers which usually are the most
flexible parts. Beyond a critical airspeed, vibratory mixed bending-torsion of the wing occurs in
the form of self-feeding, potentially violent and destructive oscillations.

In order to schematically represent coupled-mode flutter, one can describe the resulting
motion of the airfoil located at the wing tip. The motion, as depicted in Fig. 1.12, is the
combination of a vertical translation (wing bending) and a rotation (wing twist) of the airfoil. For
any airspeed beyond the critical threshold, any small perturbation such as turbulent buffeting,
gust or control input, can cause the wing to enter flutter. The amplified vibration of the wing may
lead to a drastic reduction of controls effectiveness (ailerons, elevator, rudder) or a catastrophic
structural failure. It is important to note the significant contribution of the two components to

Figure 1.12: Example of typical motion of wing tip undergoing flutter.

the motion. Flutter occurs due to the dependence on the airspeed of the amplitude ratio and
the phase shift between the two components, defining some conditions under which the structure
can extract energy from the flow [35].

Aviation and aircraft designers have been concerned with flutter phenomena since the early
ages of aviation [10]. Pilots and engineers noticed very early the self-excited behavior of flutter
and the effect of wing rigidity, position of the flexural axis and mass distribution (specially for
flight controls). In modern aircraft design, as the wing flexibility has dramatically increased with
the introduction of composite materials and larger span, aeroelastic analysis is performed at the
early stage of the design process. Aircraft certification also requires a flight flutter test, during
which the boundary of the flight envelop is explored and confirmed to be flutter-free. Fig. 1.13
illustrates an occurrence of tail flutter during a flight flutter test performed by NASA on a Piper
PA-30 Twin Comanche in 1966. Fig. 1.13 (a) and 1.13 (b) shows the significant deformation of
the tail at two different times (separated by barely a few tenths of a second).

Similarly to galloping, flutter is a quite complex phenomenon that can involve a variety of
mechanisms. Stall flutter refers to a particular aspect of flutter that falls under the study of
nonlinear aeroelasticity. While classical flutter occurs in the absence of flow separation, such
nonlinear effects dominate in the case of stall flutter [36]. This type of flutter may appear for
rotorcraft or in rotating machineries where the blades operate at angles of attack that are close
to the static stall limit. Shock dynamics and boundary-layer shock interaction in transonic



CHAPTER 1. AN OVERVIEWOF THE FLUID-STRUCTURE INTERACTION PROBLEM11

(a) Deformation of the tail at time t (b) Deformatin of the tail at time t + ∆t

Figure 1.13: Tail flutter occurring during a flight test on a Piper PA-30 Twin Comanche (NASA,
1966).

flight or the presence of fuel tanks or missile for military aircraft are also examples of factors
impacting the flutter characteristics. The flutter dynamics of a wing might also interact with the
engine mount stiffness and with the combination of the gyroscopic torque of the engine and the
propeller. This leads to a precession-type instability of the engine-propeller called whirl flutter.

1.5 The fluid-structure interaction problem in the engineering
design process

Fluid-structure interaction plays a major role in many engineering applications and understand-
ing the phenomena at play is key to elaborate safe designs. Ignoring the important role of FSI
may lead to a drastic reduction in efficiency (e.g. bad aerodynamic performances or engine
cooling), or may even cause structural failure (e.g. bridge collapse, aircraft crash or melting
of materials). A simple solution to avoid FSI instabilities is to increase the structural weight.
While this approach has been successfully applied in the past, it goes against the current trend
towards lighter, larger and more flexible structures. Debrabandere [37] cited in his thesis the
typical examples of the Millau viaduct in France, that has a length of 2460 m for a maximum
height of 343 m, the Siemens 6 MW wind turbine with a rotor diameter of 154 meter or the
Airbus A380 having a wingspan of 79.75 m. Such spectacular designs would not have been pos-
sible without efficient estimation of FSI dynamics. In research, scientists are also increasingly
interested in FSI behaviour of micro air vehicles [38,39], bird or insect flapping flight [40], aeroe-
lastic energy harvesting systems [41–44], or cardiovascular systems [45, 46], to cite a few. It is
therefore of major importance to develop engineering models that represent coupled fluid-solid
systems with the best accuracy, efficiency and robustness while being sufficiently versatile to be
applied to a wide range of physical configurations.

Experimental investigations, both in situ or in a wind tunnel, allow us to acquire accurate
real-life data and measure phenomena that simplified mathematical models cannot represent.
This makes experimental models truly necessary for the design or the certification process (e.g.
aircraft flight flutter test). Experimental tests can also be used to validate numerical simula-
tions. However, their use in industrial research and development tends to be reduced due to the
significant cost associated with different aspects such as prototype manufacturing, experiment
design and set up, or the need for destructive testing. Difficulties to match testing conditions
with the design operating conditions may also impose the use of similarity laws based on non-
dimensional quantities. These laws and the use of geometrically simplified scaled models could
also introduce uncertainties in the results.

The work presented in this thesis falls into the category of numerical modeling of fluid struc-



CHAPTER 1. AN OVERVIEWOF THE FLUID-STRUCTURE INTERACTION PROBLEM12

ture interaction problems. Nowadays computational models and numerical simulations have
become a tool of choice that is used on a daily basis to help design and predict system response.
This increasing use of numerical simulations in research and industrial R&D has mostly been
driven by the continuous increase in computer power over the past decades. Development of ac-
curate numerical models with increasingly fewer physical simplifications improves the expected
accuracy of the results and broadens the range of complex phenomena that can be represented.
These models are also reproducible and less costly when compared to experimental models. This
allows the industry to reduce its effort invested in experimental investigations or to postpone
them to later in the design process, hence further reducing the development cost. Furthermore,
the amount of numerical data available from simulations is much larger than the amount of mea-
sured data coming from experiments as the capabilities and the number of measuring devices
are usually limited in the experimental set-up. However, numerical models are most of the time
based on discretized physical equations that are solved by means of numerical algorithms. The
discretization process and the implementation of the solvers are significant sources of uncertain-
ties and errors in the results so that experimental validation is still required at some point in
order to gain confidence in the ability of the models to generate reliable solutions. However,
numerical models may require long computational times (from days to months) before providing
exploitable results. Accurate simulations of real-life system configurations usually lead to large
data sets to be computed after spatial dicretization. Modern computing architectures such as
computational clusters allow us to distribute the data set over several computing units to paral-
lelize in space the calculations and thus limit the computing time. Nevertheless, parallelization
in time is not possible and, consequently, time-dependent problems featuring a large range of
time scales still require long simulated time.

In this first chapter, an overview of the FSI problem has been given for both mechanical
and thermal applications. The FSI problem has been defined as the mutual interaction
between two distinct physics that are, on one hand, the fluid flow and on the other hand
the deformation and heat conduction in the solid structure. FSI problems have been
classified into several subcategories that mainly depend on the characteristics of the fluid
flow (for instance pulsating flow vs turbulence buffeting vs steady flow, etc.). In this thesis
the focus is on FSI phenomena involving steady external flows.

In that context, three mechanical FSI phenomena have been introduced. Vortex-
Induced Vibrations (VIV) occur for a slender body when the shedding frequency of the
wake is close to a natural frequency of that body. This results in a resonant, high-
amplitude, response of the structure that can lead to fatigue or even failure. Bridges,
towers and cables have been cited as typical examples of structures concerned by VIV.
Galloping resembles VIV as it also involves large amplitude structural vibrations but does
not result from resonant vortex shedding. Galloping is usually seen as a physical instability
of the coupled system that is triggered beyond a specific flow regime. The Tacoma Narrows
Bridge has been cited as the most famous example of torsional galloping that led to
a catastrophic collapse. Flutter has been introduced as the typical FSI phenomenon
that must be considered for aircraft design. Similarly to galloping, flutter is a physical
instability of the coupled system that is triggered beyond a specific flow regime, but usually
involves the interaction of several structural modes interacting with each other due to the
aerodynamics. For that reason, it is also commonly referred to as coupled-mode flutter.
In aircraft engineering, this phenomenon is accounted for from the early design phase and
is a part of the certification process (flight flutter tests).

Finally, the importance of FSI in the engineering design process has been discussed.
As FSI can be observed in a wide range of applications and can cause failure, its under-
standing is key to the development of safe and efficient designs. Two main approaches

Summary of chapter 1



CHAPTER 1. AN OVERVIEWOF THE FLUID-STRUCTURE INTERACTION PROBLEM13

have been reviewed for the study of FSI problems: the experimental approach and the
computational approach. The former gives valuable real-life data and remains necessary
at some stages of the design process. However, the use of experimental tests tends to be
minimized due to their high operational cost, and because they can be partly replaced
by computational models. Nowadays, efforts are invested by researchers and scientists in
developing numerical models with always higher accuracy, following the increase of the
general computing power. The work presented in this thesis falls into the category of
numerical and computational modelling of FSI problems.



Chapter 2

Mathematical model of FSI

Despite the remarkable diversity of fluid-structure systems (many fields of applications and
many physical phenomena involved), most of them can be represented in a very general way by
the same set of basic equations. Mirroring the fundamental nature of FSI, which couples two
distinct physics, the mathematical models will be described by first focusing on the fluid and
solid dynamics separately, and then by introducing the coupling conditions.

2.1 The monolithic and the partitioned approaches

The mathematical formulation of FSI problems is usually based on one of two possible strategies:
the monolithic or the partitioned approach [47–49]. In the monolithic approach, the structural
and fluid problems are represented within the same mathematical framework where the sub-
domains are treated simultaneously by a single set of governing equations. A unified algorithm
is used to solve the entire system where interfacial conditions are implicit to the procedure.
This can lead to improved stability, convergence and accuracy of the solution. However, the
disadvantage of monolithic methods is that they lead to a large system of equations that is poorly
conditioned due to different orders of magnitude of the physical variables between each sub-
domain. Conversely, the partitioned approach describes the fluid-structure interaction problem
as two distinct mathematical problems that retain separate domains for the fluid and solid.
Distinct sets of equations are developed for each physics, leading to a better-conditioned system
to be solved. Nevertheless, the coupling conditions at the interface between the domains need to
be treated explicitly and are thus a source of error and reduced robustness. The major advantage
of the partitioned approach is that it permits the use of specific algorithms that are tailored to
each sub-system in order to guarantee the accuracy and robustness of each solution procedure
separately. In this thesis, the partitioned approach is chosen as the coupling strategy for its
modularity in the description of each physics.

The physical quantities used to describe each physics are defined on continuous fluid and solid
domains, Ωf ⊂ Rnd and Ωs ⊂ Rnd , respectively, where nd is the number of physical dimensions
(usually two or three). The subscripts f and s are used when a clear distinction between fluid
and solid quantities is required. As illustrated in Fig. 2.1 for the generic case of a clamped
solid beam immersed in a fluid, it is assumed that the two domains do not overlap but share a
common boundary Γ =

⋃
i Γi which is defined as the fluid-structure interface. The remaining

boundaries of the fluid and solid domains are denoted as ∂Ωf =
⋃
i ∂Ωi

f and ∂Ωs =
⋃
i ∂Ωi

s,
respectively. In those expressions, Γi and ∂Ωi are piecewise decomposition of the fluid-structure
interface subsets and domain boundaries, respectively.

14



CHAPTER 2. MATHEMATICAL MODEL OF FSI 15

Ωs

Ωf

∂Ω1
f

∂Ω2
f

∂Ω3
f

∂Ω4
f

∂Ω5
f∂Ω1

s

Γ1

Γ2

Γ3

Figure 2.1: Domain separation for a generic fluid-solid system with interface and intrinsic bound-
aries.

2.2 General description of fluid and solid motion

The study of continuum mechanics is usually based on two main approaches for the description
of motion: the Lagrangian and Eulerian approaches. In the Lagrangian formalism, the spatial
points follow the motion of the material particles. A Lagrangian description is usually chosen for
the motion of solids for which two neighbor material points remain neighbor over time. Engineers
are also mostly interested in the loads resulting from the motion. In the solid, the loads depend
on the displacements. That makes the Lagrangian description, in which the relative position
of points matters, a natural choice. On the contrary, this approach is usually inappropriate for
the description of fluid motion for which the relative position of material points is not relevant
due to their significant relative displacements (fluids do no conserve their shape). The Eulerian
approach is then used to describe fluids motion. In this case, the velocity of material particles
is tracked at specific locations of the domain and the loads depend on this velocity. However,
and for some cases such as flows in a closed domain (i.e. without inflow and outflow) or free-
surface flows, the position of particles can be meaningful and the Lagrangian approach might
be preferred.

The coupling of two distinct fluid and solid domains through a common boundary raises the
problem of interface tracking. For the solid part, the displacement of the interface is directly
obtained from the Lagrangian description. This is not the case for the fluid part in which the
standard Eulerian approach does not provide an explicit description of the boundary motion.
Consequently, a representation that combines the advantages of each description is developed in
the fluid domain. Such a representation is known as the arbitrary Lagrangian-Eulerian (ALE)
method [50, 51]. It is a generalization of the Lagrangian (reference moving with the material
point) and Eulerian (reference fixed) descriptions which allows the reference domain to move in
some arbitrarily specified way and independently of the motion of the material particles. The
description of boundary motion in the fluid domain Ωf is thus enabled by the ALE description.
However, the ALE also introduces additional complexity. First, the arbitrary motion of the fluid
spatial domain has to be specified or inferred as part of the solution procedure. Moreover, the
governing equations describing the fluid dynamics have to be adapted to take into account the
effect of the domain motion (see next Section).



CHAPTER 2. MATHEMATICAL MODEL OF FSI 16

2.3 Fluid dynamics

The basic equations governing the motion of a compressible fluid invoke the three fundamental
physical principles, namely the conservation of mass, momentum and energy. These principles
are expressed in the form of a system of partial differential equations (PDE) on Ωf, following an
ALE description of the domain in Cartesian coordinates:

∂ρ

∂t
+∇ · (ρ(v − vΩ)) = 0,

∂(ρv)

∂t
+∇ · (ρv(v − vΩ)) = ρf −∇p+∇ · τ ,

∂(ρE)

∂t
+∇ · (ρE(v − vΩ)) = ∇ · (λ∇T )−∇ · (pv) +∇ · (τv) + ρf · v + q.

(2.1)

In these equations ρ is the fluid density, v the velocity, f some volume force per unit mass (e.g.
gravity), τ the shear stress tensor, E the total energy per unit mass, λ the thermal conductivity,
T the temperature, q some volume heat source and vΩ the velocity field of the ALE fluid
domain. Note that for clarity the subscript ”f” for all fluid quantities has been discarded. The
arbitrary motion of the fluid domain, with respect to the distinct motion of the fluid particles,
will be generally expressed by the fact that vΩ 6= v 6= 0. From the general ALE description, a
purely Lagrangian description is recovered when vΩ = v, which is the case at the fluid-structure
interface in presence of a viscous flow and where the velocity is imposed by the solid motion. A
purely Eulerian description is recovered when vΩ = 0, i.e. at locations where the fluid domain
is kept fixed.

Equations (2.1) define the dynamics of a compressible fluid but additional equations are
required in order to close the system. A constitutive equation is used to express the shear stress
tensor in terms of the velocity field. For a Newtonian fluid, the viscous stress is given by

τ = µ

(
∇v +∇vT − 2

3
I (∇ · v)

)
, (2.2)

where µ is the dynamic viscosity of the fluid. Combining this expression with the above conser-
vation laws leads to the compressible Navier-Stokes equations. Only Newtonian fluids will be
considered in this thesis. The incompressible form of the Navier-Stokes equations is obtained by
treating the density as a constant in space and time.

On the other hand, if the fluid is considered inviscid, i.e., if molecular processes such as
viscous and thermal diffusion can be neglected (µ = λ = 0), the compressible Navier-Stokes
equations reduce to the Euler equations.

Liquids and low Mach gas flows are usually treated as incompressible. For compressible gas
flows, additional state equations are used to further close the system of conservation equations.
In the following only a calorically perfect gas assumption will be considered, but more complex
fluid models could be considered. More specifically, the equation-of-state for a calorically perfect
gas reads

p = ρRT, (2.3)

where R is the specific gas constant. Additionally, the specific internal energy e = E − ||v||2/2
is expressed as

e = cvT , (2.4)

where the specific heat at constant volume cv is considered constant. Similarly, the specific
enthalpy h = e+RT is given by

h = cpT , (2.5)

where the specific heat at constant pressure cp is also constant. The two specific heats are related
by

cp − cv = R , (2.6)



CHAPTER 2. MATHEMATICAL MODEL OF FSI 17

and their ratio is defined as
γ =

cp
cv
. (2.7)

The temperature dependence of the viscosity can be modeled through Sutherland’s law

µ = µ0

(
T

T0

)3/2 T0 + S

T + S
, (2.8)

where µ0 is the viscosity at temperature T0 and S is a constant. Additionally, the elementary
kinetic theory of perfect gases [52] shows that λ ∝ µcp, so that the Prandtl number

Pr =
µcp
λ

(2.9)

can be considered constant. Tab. 2.1 summarizes key material properties for dry air (at standard
conditions), that is most of the time well approximated by the calorically perfect gas assumption.

R [J kg-1 K-1] 287.058
µ0 [Pa s] 1.72 · 10−5

T0 [K] 273.15
Pr [-] 0.7
cv [J kg-1 K-1] 717.6
cp [J kg-1 K-1] 1004.7
γ [-] 1.4

Table 2.1: Typical material properties of dry air at standard conditions under the calorically
perfect gas assumption.

Finally, note that the ALE form of the conservative equations requires an expression for the
domain velocity vΩ in order to obtain a fully closed system. The arbitrary motion of the fluid
domain is usually computed by independent additional equations, as discussed further below.

2.3.1 Turbulence modeling

Turbulence is a consequence of the nonlinear character of the advection term in the Navier-
Stokes equations (Eqs. (2.1)). A complete representation of turbulent flows based on a direct
solution of those equations would require a very fine discretization of the fluid domain in order
to capture the smallest flow scales. From a computational point of view, such an approach called
Direct Numerical Simulation (DNS) is most of the time unfeasible because of its excessive com-
putational cost (memory and CPU time requirements). DNS are thus usually limited to simple
geometries such as channel flows for instance and low to moderate Reynolds number. Conse-
quently, turbulence models have been developed in order to obtain an affordable computational
representation of a mean or filtered component of the flow by modeling a part of the turbulent
spectrum. The Large Eddy Simulation (LES) method decomposes the flow field into large and
small turbulent scales by applying a spatial filter [53, 54]. In LES, the largest flow scales are
directly resolved while the smallest are taken into account through the use of turbulence, or
subgrid-scale, models. Even if a LES is computationally less expensive than DNS, the resolution
of the dynamically relevant scales is usually still very demanding, especially in the near-wall
region.

The alternative approach used in this work, which is more affordable, is based on the
Reynolds-Averaged Navier-Stokes (RANS) equations [55]. In this approach, the flow variables
are decomposed into a mean component and turbulent fluctuations, such that

v = v̄ + v′ (2.10)



CHAPTER 2. MATHEMATICAL MODEL OF FSI 18

where v̄ is the mean component and v′ is the turbulent component. The mean flow quantities
can be obtained by solving the RANS equations. In this approach, the entire turbulence spec-
trum is modeled. Hence a statistical representation of the averaged flow is obtained at reduced
computational cost. For statistically unsteady flows, unsteady-RANS (URANS) equations can
be written to account for time dependence that are characterized by the separation of time scales
between the unsteadiness of the mean flow and the unsteadiness of turbulent fluctuations. Intro-
ducing the decomposition 2.10 into the Navier-Stokes equations and averaging these equations1

leads to the same set of equations for the mean flow up to an additional unclosed stress-like term
referred to as the Reynolds stress Rij = ρv′ ⊗ v′. Following the Boussinesq approximation [55],
the Reynolds stress is very often modeled in a similar fashion to the viscous stress by introducing
an eddy, or turbulent, viscosity µt. In this case, the RANS equations are also given by Eqs. (2.1)
but with the flow variables representing averaged quantities. Furthermore, Eq. (2.2) is replaced
by

τ = µ∗
(
∇v +∇vT − 2

3
I (∇ · v)

)
, (2.11)

where the viscosity is the sum of the dynamic molecular viscosity µ and the eddy (turbulent)
viscosity µt:

µ∗ = µ+ µt . (2.12)

The thermal conductivity in the energy transport equation is also decomposed into an intrinsic
molecular part λ and a turbulent contribution λt such that the resulting conductivity is given
by

λ∗ = λ+ λt . (2.13)

The eddy conductivity is generally expressed as a function of the eddy viscosity µt by means of
a turbulent Prandtl number Prt whose value is usually imposed as an external parameter:

λt =
µtcp
Prt

. (2.14)

The eddy viscosity itself is calculated by suitable turbulence models. A large range of tur-
bulence models have been developed, each having slightly different properties, advantages and
shortcomings and targeted applications. A complete description of each turbulence model is
beyond the scope of this thesis but the Spalart-Allmaras [56] and the Shear Stress Transport
k−ω [57] models can be cited as two of the most common and widely used models for engineer-
ing fluid (and by extension FSI) applications. The descriptions of these two turbulence models
can be found in Appendix A. The models compute the eddy viscosity by means of additional
transport equations for turbulent-related variables such as the turbulent kinetic energy and the
specific turbulent dissipation rate.

2.4 Solid dynamics

The dynamic behavior of a deformable solid results from Newton’s second law of motion and
the balance between inertial, internal and external forces. This equilibrium is usually developed
on a Lagrangian deformable solid domain. Under this assumption, it is common to describe
the motion of the solid in time by the mapping between a reference configuration, where the
positions of the material particles are denoted by X, and the current configuration where the
positions of the same material particles are denoted by x. Note that the reference configuration
is not necessarily the initial configuration of the solid. At any time, the mapping between the
reference and the current configuration can be defined as

x = x(X, t) . (2.15)

1Note that for the compressible equations, Favre averaging is usually used.



CHAPTER 2. MATHEMATICAL MODEL OF FSI 19

The displacement of the material points from the reference to the current configuration is given
by

d = x−X , (2.16)

and the deformation gradient is defined by the tensor

F =
∂x

∂X
. (2.17)

The equilibrium equation within a solid domain Ωs considered in its current configuration
reads

ρ
∂2d

∂t2
−∇ · σ = b , (2.18)

where ρ, σ and b are the solid density, the Cauchy stress tensor and the external body forces,
respectively. Kinematic and constitutive laws are used to close the system. A kinematic equation
is used to define the strain tensor E as a function of the displacement field. In a general
representation of solid dynamics, the kinematic relation is a nonlinear equation for representing
finite strains and potentially large displacements. The usual Green strain tensor is defined by
the relation

EG =
1

2

(
FTF− I

)
=

1

2

(
∇d+∇dT +∇dT∇d

)
, (2.19)

which is invariant under rigid-body motion. Another common choice is to measure deformation
with the natural strain tensor [58]:

EN =
1

2
ln
(
FTF

)
, (2.20)

which is also invariant under rigid-body motion. In the case of the linear theory for infinitesimal
strain, the Cauchy strain tensor

EC =
1

2

(
∇d+∇dT

)
, (2.21)

is usually used as a linearization of the Green tensor, but its linear formulation breaks the
invariance of the strain with respect to rigid-body motion and is thus only valid under the
assumption of small displacements.

The constitutive equation expresses the stress tensor as a function of the strain tensor. For
an elastic material, the current stress state depends only on the current strain:

σ = CE , (2.22)

where C is the fourth-order stiffness tensor, generally nonlinear. For an isotropic linear elastic
material, this tensor becomes the well-known Hooke’s tensor, written in indicial notation as

Cijkl = Hijkl =
E

1 + ν

[
1

2
(δikδjl + δjkδil) +

ν

1− 2ν
δijδkl

]
, (2.23)

where E and ν are the Young’s modulus and the poisson coefficient of the material, respectively.
For a more general representation of the material behavior, for instance involving plasticity, the
constitutive law may be written in a differential form (time derivative) where the current stress
state also depends on the history of the deformation:

σ̇ = MĖ .

In this expression M is a general nonlinear fourth-order elasto-plastic tensor. A detailed de-
scription of elasto-plasticity models is beyond the scope of this thesis that only deals with



CHAPTER 2. MATHEMATICAL MODEL OF FSI 20

purely elastic materials, but interested readers may find additional background in Bertram and
Glüge [59], Ibrahimbegovic [60] or Ponthot [58].

The thermo-mechanical behavior of a deformable solid is obtained when the temperature field
is considered in addition to the deformation. The temperature field obeys the heat equation in
the current configuration of Ωs,

ρc
∂T

∂t
−∇ · (λ∇T ) = q , (2.24)

where c is the specific heat capacity and q is some possible volume heat source, that may come
from external and independent thermal loads or may be coupled to the solid motion for which
irreversible (plastic) deformations or friction forces due to contacts will produce additional heat
sources. Thermal effects on the dynamics of the solid can be expressed by the multiplicative
decomposition of the thermomechanics deformation gradient F̃ into its mechanical part F and
a thermal part FT related to the thermal expansion as

F̃ = FTF , (2.25)

with
FT = (1 + β(T − T0)) I , (2.26)

where β is the thermal expansion coefficient of the material, and T and T0 the current and
reference temperatures, respectively.

2.5 Boundary and coupling conditions

The set of partial differential equations representing the dynamics of both fluid and solid can
be solved as a well-posed problem only if they are complemented by a set of boundary con-
ditions that must be satisfied at any time. Boundary conditions are expressed as constraints
imposed on the physical variables at the boundary of the finite domains ∂Ωf and ∂Ωs. Dirichlet
type boundary conditions explicitly impose the value of a physical quantity. Typical examples
of Dirichlet boundary conditions are freestream flow conditions, clamped structural surfaces or
isothermal walls. On the other hand, Neumann type boundary conditions impose the value of
the spatial derivative of a physical quantity. Typical examples of Neumann boundary conditions
are boundary layer pressure gradients, structural external loads or heat fluxes at heat exchange
boundaries. For a given problem, Dirichlet and Neumann boundary conditions can be combined
on non-intersecting subsets of ∂Ωf and ∂Ωs. A special weighted combination of Neumann and
Dirichlet boundary conditions on the same subset of ∂Ω, called Robin type boundary condition,
can also be used under some circumstances. For time dependent problems, the governing equa-
tions can be integrated in time provided that initial conditions, describing the initial state of
the problem, are also specified.

Boundary and initial conditions play a major role in the definition of the physical problems
and are directly related to the final solution. In the case of fluid-structure interaction problems,
the distinct fluid and solid domains are connected through a common subset, Γ, of ∂Ωf and ∂Ωs,
in which fluid and solid boundary conditions will depend on each other. The resulting coupling
conditions express the continuity of certain physical quantities through Γ. In particular, the
mechanical coupling condition expresses the continuity of the displacement dΓ and load tΓ on
Γ,

dΓ
f = dΓ

s ,

tΓf = tΓs ,
(2.27)

where the load on the fluid side is given by tf = −pn + τn and the load on the solid side by
ts = σn, n being the unit normal to the interface pointing outwards of the solid domain. The



CHAPTER 2. MATHEMATICAL MODEL OF FSI 21

continuity of the velocity can be naturally derived by taking the first derivative of the continuity
for the displacement,

vΓ
f = ḋΓ

s , (2.28)

that is a natural expression of the no-slip condition for viscous flows. In the case of inviscid
flows based on Euler equations, only the normal component of the velocity with respect to the
interface is continuous:

(v · n)Γ
f =

(
ḋ · n

)Γ

s
, (2.29)

and expresses the impermeability condition. On the other hand, the continuity of the tempera-
ture and heat flux is expressed by the thermal coupling condition as

TΓ
f = TΓ

s ,

(λ∇T · n)Γ
f = (λ∇T · n)Γ

s .
(2.30)

The coupling conditions presented above are crucial in the definition of the coupled fluid-solid
problem because they mathematically represent the mutual influence that each physics imposes
on the other through constraints on their respective boundary conditions. Hence, the solution
within one domain is directly dependent on the solution within the other domain.

2.6 Non-dimensional parameters

Non-dimensional parameters are defined by the combination of different physical quantities.
They are widely used to quantify the relative importance of the underlying mechanisms involved
in the physical system. This section briefly introduces the relevant non-dimensional numbers
related to fluid-structure interaction problems that are frequently used throughout this work.

Mach number The Mach number M is defined as the ratio between a reference fluid flow
velocity U and the speed of sound a:

M =
U

a
. (2.31)

The speed of sound is defined as the speed of a sound wave as it propagates, by successive
molecular collisions, through a fluid. The formal definition of the speed of sound is

a =
∂p

∂ρ

∣∣∣∣
s

, (2.32)

where s is the entropy. Under the calorically perfect gas assumption, the speed of sound reduces
to

a =
√
γRT , (2.33)

a function of temperature only. The Mach number expresses the importance of compressibility
effects, such as the occurrence of shock waves, in a fluid flow and separates the flow regimes
between subsonic (M < 1) and supersonic (M > 1). For gas flows at low Mach number, con-
ventionally M< 0.3, density variations can be neglected and the flow can be considered as
incompressible.

Reynolds number The Reynolds number Re expresses the ratio between inertial (advective)
and viscous effects in a fluid flow:

Re =
UL

ν
, (2.34)

where L is a characteristic length and ν = µ/ρ the kinematic fluid viscosity. The Reynolds
number is used to characterize the turbulence level, from smooth laminar flows (low Re) to
highly turbulent flows (large Re), and the size of the viscous boundary layer.



CHAPTER 2. MATHEMATICAL MODEL OF FSI 22

Strouhal number The Strouhal number Str is a normalization of the dominant frequency
that may appear for unsteady flows:

Str =
fL

U
, (2.35)

where f is the main flow frequency. For instance, in the case of bluff body aerodynamics,
experimental measurements have shown that the Strouhal number based on the vortex shedding
frequency can be expressed as a function of the Reynolds number.

Prandtl number The Prandtl number Pr expresses the ratio between the momentum dif-
fusivity and thermal diffusivity of a fluid. It was already defined in Eq. (2.9) but can also be
expressed as

Pr =
ν

α
, (2.36)

where α = λ/ρcp is the thermal diffusivity. Small values of the Prandtl number (Pr << 1)
indicate that thermal diffusivity dominates, or that the heat conduction is relatively more im-
portant compared to advection. The thickness of the thermal boundary layer is thus larger than
the thickness of the momentum boundary layer. Conversely, large values of the Prandtl number
(Pr >> 1) indicate the dominance of momentum diffusivity and advective heat transfer.

Biot number The Biot number represents a comparative measure between conduction within
a solid and convection at its surface:

Bi =
hL

λ
, (2.37)

where h is a convective heat transfer coefficient depending on the flow conditions. Low values of
the Biot number (Bi << 1) indicate rapid adaptation of the temperature field inside the solid
against external thermal constraints.

Mass number The mass number Ma simply expresses the relative importance of the ratio
between the fluid and solid densities:

Ma =
ρs

ρf
. (2.38)

This number is usually of great importance in fluid-structure interaction problems, especially
because it is related to the added-mass effect. Added-mass can be seen as the inertia added to
the structure as a consequence of the acceleration given to a certain volume of surrounding fluid
during the motion. The fluid forces resulting from the motion of the solid are associated with
an inertia force, where the coefficient of inertia is called the added mass. Significant added-mass
effects are known to appear when Ma ≤ 1, and are usually a cause of numerical instability in
computational models.

Reduced velocity The reduced velocity Ur is the ratio between the reference flow velocity
and a characteristic propagation speed of elastic waves through the solid, c:

Ur =
U

c
, (2.39)

where c =
√
Es/ρs depends on the Young modulus and the solid density.

Cauchy number The Cauchy number Cy expresses the ratio between the flow dynamic pres-
sure and the elasticity of the solid:

Cy =
ρfU

2

Es
. (2.40)

The Cauchy number usually measures the amount of elastic deformation of a solid submitted to
a fluid flow. For high values of Cy, large structural deformations are usually expected.



CHAPTER 2. MATHEMATICAL MODEL OF FSI 23

The mathematical modelling of FSI problems has been introduced in this chapter. The two
common strategies for the mathematical formulation have been reviewed. The monolithic
approach embeds the coupled system into the same algorithmic framework which brings
accuracy, stability and implicit treatment of the interface conditions. However, it leads
to a large, complex and poorly scaled system of equations. Conversely, the partitioned
approach, which is followed in this work, considers the coupled problem as an assembly of
sub-modules (one per coupled physics). Dedicated and optimized algorithms can thus be
used in each domain, but the interface conditions have to be treated explicitly.

The general formalism for the description of fluid and solid motion has been reviewed.
Usually the Lagrangian formalism is used for solids while the Eulerian formalism is most of
the time better suited for fluids. However, the problem of interface tracking raised by the
coupling of a fluid and solid domain cannot be naturally tackled by using a pure Eulerian
approach within the fluid domain. Consequently an arbitrary Lagrangian-Eulerian (ALE)
formalism is usually developed. By combining advantages from both formalisms, the ALE
approach allows an Eulerian description of the fluid motion within an arbitrary moving
fluid domain. This adds complexity to the model, as the motion of the fluid domain has
to be described and the fluid governing equations have to be extended.

The governing equations for the fluid and solid dynamics have been presented. The
ALE form of the compressible Navier-Stokes equations are considered in the fluid domain
(accounting for both mechanical and thermal aspects). They reduce to the Euler equa-
tions in the inviscid limit. The state of the fluid is supposed to follow the perfect gas
law. Turbulence is treated by introducing Reynolds decomposition of the fluid variables
and averaging the transport equations. This leads to the (unsteady) Reynolds-Averaged
form of the governing equations that are complemented with a turbulence model such as
the one-equation Spalart-Allmaras or the two-equation SST k − ω. In the solid domain,
the mechanical part is governed by the classical equilibrium equation in a Lagragian for-
malism. A nonlinear description of the deformations is considered to account for large
displacements, but only pure elastic materials are considered. The solid heat equation has
been introduced separately to cover the thermo-mechanical aspects.

In addition to the intrinsic boundary conditions for each physics, the interface or
coupling conditions have been introduced. These conditions simply express the continuity
of the displacements (or velocity), loads, temperature and heat fluxes across the fluid-solid
interface. They are the central point of the coupling process as they explicitly state that
the solution within one domain is directly dependent on the solution within the other
domain.

Finally, the most common non-dimensional parameters governing the coupled physics
have been recalled. In a coupled FSI problem, the mass ratio, Ma, and the Biot number,
Bi, are the most important ones as they combine physical quantities from both physics.

Summary of chapter 2



Chapter 3

Numerical model of FSI

In the previous chapter, the mathematical formulation of FSI systems was introduced. Unfor-
tunately, no analytical solution is available for such a complex model. Hence, computational
models are required to numerically solve the coupled problem. This chapter deals with such
numerical models.

The problem is thus discretized in space and integrated in time. The fluid and solid do-
mains are discretized into computational meshes whose nodes contain the variable solutions of
the physics. The resulting numerical problem can be treated and solved on a computing unit
with the help of specialized solvers. This chapter covers the major aspects of the numerical
treatment of FSI problems. In Section 3.1, general aspects of the numerical methods are in-
troduced. Specifically, a comparison between monolithic and partitioned approaches is carried
out. The latter, in which each domain is solved by dedicated solvers, is then developed in more
detail. Sections 3.2 and 3.3 introduce the mechanical and thermal coupling algorithms, respec-
tively, that are designed to ensure continuity of the boundary conditions at the interface. This
procedure requires information transfer at the interface, but meshes might not feature match-
ing discretization and interpolation is consequently required. This is addressed in Section 3.4.
Each domain is discretized independently and, as the domains deform, mesh deformation is also
required, particularly for the fluid part. Mesh dynamics are detailed in Section 3.5. Finally,
Sections 3.6, 3.7 and 3.8 introduce the numerical models used for each physics and implemented
in the fluid and solid solvers, respectively, that will be used later as black-box tools.

3.1 Introduction to the different methodologies for computing
FSI problems

This section introduces general aspects of numerical models for FSI systems. Firstly, one may
distinguish low-fidelity models from high-fidelity models. The former usually give fast results
but are limited in the range of physics they can represent, as opposed to the latter. Secondly, the
difference between a one-way coupling, in which the motion of the solid is directly imposed, and
a two-way coupling is detailed. Finally, the concepts of monolithic and partitioned approaches
are extended from the mathematical formulation, as described in the previous chapter, to a
numerical formulation.

3.1.1 Low-fidelity versus high-fidelity models

Simple fluid-structure models can be established for specific configurations. For instance, VIV
of circular cylinders and two-mode flutter of airfoils can be represented by simplified numerical
models involving rigid body motion described by Lagrange’s equations (Appendix B) into which
the aerodynamic forces have been introduced. The determination of these aerodynamic forces is

24



CHAPTER 3. NUMERICAL MODEL OF FSI 25

then the main difficulty. The simplest solutions estimate these forces based on empirical aerody-
namic coefficients. Low-fidelity aerodynamic models, for instance based on linearized potential
flows and panels methods, are suitable for preliminary parametric studies because they provide
fast results. They are extensively used in linear aeroelastic design. However, they are still
limited in the representation of the complete physics of the problem. High-fidelity models are
established based on nonlinear fluid/solid governing equations such as those introduced in the
previous chapter. Such models are more costly but required when complex, usually nonlinear,
phenomena play a significant role. The governing equations are discretized on computational
meshes, which are the discrete version of the support domain Ω, by means of Finite Difference
(FD), Finite Volume (FV) or Finite Element (FE) methods, to cite the most common ones. So-
phisticated integration schemes and algorithms are used to solve the dynamics of the discretized
system. Such high-fidelity methods, falling in the field of Computational Fluid Dynamics (CFD)
and Computational Solid Mechanics (CSM), are used in this thesis. A mixed approach using
both low- and high-fidelity models can also be envisaged. A typical example, also commonly
used in linear aeroelasticity, is the coupling between a CFD solver and a linear structural model
based on a modal approach [37]. In this context, the motion of the solid is decomposed into the
weighted sum of the natural mode shapes φ. In practice, only a restricted number, M , of modes
is retained for the computation, which gives

ds =

M∑
m=1

qmφm. (3.1)

The mode shapes are then computed only once, with any CSD solver, and the generalized
displacements qm become the new unknowns which are obtained by solving an oscillator equation
where the forcing term corresponds to the fluid loads projected on the mode shapes.

3.1.2 One-way versus two-way coupling

The most basic coupling approach is obtained when the fluid response to a prescribed motion
of the structural part is calculated (note that it could also be the opposite, where the fluid
loads are applied to a structure). The flow field then depends on the motion of the solid while
the structural dynamics is not affected by the fluid loads. This approach may be called a
one-way coupling. Most of the time, the prescribed motion of the solid is generated by the
combination of several modes. In this case, the real-time coupling with a solid solver is not
required, since only a modal analysis has to be performed prior to the FSI simulation. This
approach has been applied for a long time due to its low computational cost. It is particularly
suitable for the assessment of flutter stability in turbo-machinery applications, for which only
small displacements around a (linear or nonlinear) fixed point are considered and for which the
structural motion is usually well defined (shape, frequency and amplitude). The flow response
is then analysed in order to estimate a flutter stability criterion in these particular conditions.
The major inconvenience of the one-way coupling method is the assumption to be made for
the vibration response of the structure which can be a significant source of errors in case of
complex motion. Furthermore, flutter stability analysis through one-way coupling neglects the
counteracting effect of the structure, which results in a too conservative prediction.

In the presence of strongly interacting (nonlinear) physics a two-way coupling is generally
required. In this case, the calculated flow field is influenced by the response of the structure to
the fluid flow, and conversely.

3.1.3 Monolithic versus partitioned coupling

The distinction established in the previous chapter between the partitioned and monolithic
approaches for describing FSI problems can be extended to their numerical implementation. In



CHAPTER 3. NUMERICAL MODEL OF FSI 26

the monolithic approach, the equations governing each coupled physics are solved simultaneously,
possibly by using a unified mesh for the entire fluid-solid domain Ωf ∪ Ωs. This brings the
challenge of generating a high quality mesh for both the fluid and solid parts at the same time.
The resulting unified framework, as depicted in Fig. 3.1, leads to the development of a specific
solver with significant complexity [61]. Such a specialized code is most of the time developed to
accommodate a particular case of interest, thereby often suffering some lack of generality and
versatility. Also, the resulting system of equations to be solved is usually ill-conditioned due to
the different orders of magnitude of the physical quantities in the coupled domains. However, the
main advantage of the monolithic approach is its low sensitivity to possible numerical instabilities
related to the coupling.

Fluid

Solid

Unified solverUnified mesh

Figure 3.1: Illustration of the monolithic coupling architecture.

On the contrary, the partitioned approach, that is investigated in this thesis, allows us to solve
each physics by using specialized and dedicated solvers on separate meshes with optimized and
independent refinement. Existing codes that are already validated can be used as black-box tools,
which significantly eases the access to all their capabilities and increases the generality of the
approach. Furthermore, separate solvers are usually developed and maintained independently
by different teams of experts. The partitioned approach becomes even more appealing when it
allows the coupling of a large set of compatible codes that are based on well distinct physical
and/or numerical models. However, in this approach the coupling conditions at the interface
have to be explicitly treated by communicating information between the fluid and structure
solvers. The development of interfacing tools and synchronization algorithms, as illustrated in
Fig. 3.2, is still a challenging task. This difficulty is further compounded when, from a software
design point of view, the two solvers were not developed to support this kind of communication
with the external environment.

Fluid solver

Solid solver

Data exchange

Solid meshFluid mesh

Figure 3.2: Illustration of the partitioned coupling architecture.



CHAPTER 3. NUMERICAL MODEL OF FSI 27

3.2 Mechanical coupling algorithm

The following section introduces the coupling algorithms that are developed for a partitioned
two-way approach, assuming a body-fitted fluid mesh and a fluid solution computed with the
ALE formalism1. Mechanical and thermal coupling are described separately for the sake of
clarity. This separation allows us to develop all the relevant methodologies that are specific to
each physics. The coupling algorithms for mechanical FSI are first introduced as a common
basis and then are extended, in Section 3.3, to methodologies used for CHT.

3.2.1 Fixed-point formulation of the coupled problem

In the most general case, the formulation of the numerical model for mechanical fluid-structure
interaction problems can be described by a three-field problem [62]: the fluid, the structure and
the dynamical mesh resulting from the ALE description of the fluid problem. This formulation
is written in the following general form,

F (u, z) = 0

S (u,d) = 0 ,

M (d, z) = 0

(3.2)

where F, S and M represent the set of governing equations for the fluid, solid and mesh dynamics,
respectively, or the associated solvers at the discrete level. In this system of equation, u =
[ρ, ρv, ρE]T is the vector of the fluid conservative variables, d the displacement vector of the
structure and z the displacement vector of the fluid mesh. An iterative procedure to solve
system (3.2) can be developed by writing the linearized form of the system:

F

S

M


+



∂F

∂u
0

∂F

∂z

∂S

∂u

∂S

∂d
0

0
∂M

∂d

∂M

∂z





∆u

∆d

∆dΩ


=



0

0

0


, (3.3)

that can be solved by a Newton-Raphson procedure, for instance. However, in practice, an exact
calculation of the tangent matrix in Eq. (3.3) would require the computation and the access to
all Jacobians, which is highly cumbersome and almost impossible in the case of a partitioned
framework with independent solvers. Consequently, the coupling is reformulated as a Dirichlet-
Neumann partitioning. In order to represent the fluid side of the coupling, it is usual to define
a nonlinear Dirichlet operator Df that computes the fluid loads at the interface Γ from a given
fluid interface displacement,

tΓf = Df(d
Γ
f ) . (3.4)

This nonlinear operator may be seen as a black-box abstraction of a generic fluid solver. Anal-
ogously, a nonlinear Neumann operator Ds that computes the solid interface displacement as a
function of the solid loads is defined by

dΓ
s = Ds(t

Γ
s ) , (3.5)

as a black-box abstraction of a generic solid solver. Combining the definition of these two
operators with the continuity conditions defined in Eqs. (2.27), the coupling can be reformulated
as the fixed-point problem

dΓ = Ds ◦Df

(
dΓ
)
, (3.6)

1The use of non-conforming fluid mesh such as in the Immersed Boundary method is discussed further in this
chapter.



CHAPTER 3. NUMERICAL MODEL OF FSI 28

where dΓ is the displacement of the fluid-solid interface. It is important to note that the dynamic
fluid mesh operator does not appear explicitly in the fixed-point equation because it is implicitly
included in the definition of Df as an intrinsic task of the fluid computation. The fixed-point
equation leads to a more intuitive way of representing the partitioned coupling. It is also well
suited for the description of partitioned problems since it focuses only on interface variables by
embedding the treatment of the domain (fluid or solid) variables into the black-box operators
Df or Ds. The fixed-point equation is solved by a sequential iterative procedure that can be
described as follows: for a given displacement of the fluid-structure interface, a fluid computation
is first performed to obtain the fluid loads. These loads are then transferred as inputs to the
structural solver for the computation of a new interface position, that is then used as new fluid
boundary conditions for the next coupling iteration. One can distinguish between two main
procedures to solve the resulting coupled problem: the weak, or loose, coupling and the strong
coupling. Explicit weak coupling, as described in Section 3.2.2, is obtained when only one
coupling iteration is performed at each time step. In other words, the fluid and solid solvers
compute their solutions and exchange their boundary conditions only once per time step, with
no corrective feedback to ensure the coupling conditions. A strongly-coupled implicit scheme
is obtained when the coupling conditions on the fluid-structure interface at each time step are
met by iterating between the fluid (Df) and solid (Ds) computations and by exchanging their
boundary conditions until the interfacial conditions are converged. Strongly coupled procedures
are detailed in Sections 3.2.3 and 3.2.4.

3.2.2 Loosely-coupled procedure

The loosely-coupled approach is illustrated in Fig. 3.3 for a time-marched computation and
formally described by Alg. 1:

Algorithm 1 Loosely-coupled algorithm

1: Enter time step n and advance the fluid-mesh position based on
the last calculated solid displacement, M

(
zn−1,dn−1, zn

)
= 0 and

compute grid velocity żn = żn
(
zn, zn−1

)
2: Set the grid velocity in the fluid solver, M

żn

−→ F

3: Advance the fluid solution with the fluid solver,
F
(
un−1, żn, zn,un

)
= 0

4: Communicate the fluid interface loads to the solid solver, F
tΓ,n

−−→ S

5: Advance the solid solution with the solid solver, S
(
dn−1,un,dn

)
= 0

6: Communicate the solid interface displacement to the mesh dynamic

module, S
dΓ,n

−−−→M

7: Go to the next time step with n := n+ 1

In this approach, the fluid and solid solvers exchange their interface data only once per time
step with no guarantee that these data satisfy the coupling conditions. The absence of iterative
correction minimizes the amount of fluid, mesh and solid computations that have to be performed
at each time step, thus reducing the computation time. However, since the solutions are advanced
in a time-lagged fashion, the forces induced by the fluid on the structure are computed from
displacements and velocities obtained at the previous time step. This results in an energy non-
conserving coupling that is more prone to numerical instabilities, as detailed further in this
chapter. Nevertheless, weak coupling can be efficiently applied when only a steady state coupled
solution is sought.



CHAPTER 3. NUMERICAL MODEL OF FSI 29

•

•

•

un−1

zn−1

dn−1

un

zn

dn

•

•

•

tn−1 tn

(1)

(2)

(3)

(4) (5)
(6)

Figure 3.3: Time step advancement procedure for a loosely-coupled scheme. Black: time ad-
vancement steps, red: communication steps. The order of the different operations is indicated
by the number in parenthesis next to each arrow.

A link between the general operators (F,M, S) and the restricted Dirichlet-Neumann oper-
ators (Df,Ds) can be established. More specifically, the sequence that computes the fluid
loads from a given displacement of the interface in Alg. 1 corresponds to (1)→(3) and thus
represents Df, in which the fluid mesh dynamic is implicitly embedded. The operator Ds

is then simply associated with the sequence (5) of Alg. 1.

Remark

3.2.3 Strongly-coupled procedure

The strongly-coupled scheme is illustrated in Fig. 3.4 for a time-marched computation. The
time advancement of the three-field system is described by Alg. 2.

Algorithm 2 Strongly-coupled algorithm

1: Enter time step n with j = 0
2: Set dn0 = dn−1

3: repeat
4: Set j := j + 1
5: Advance the fluid-mesh position based on the last calculated solid displacement,

M
(
zn−1,dnj−1, z

n
j

)
= 0

6: Compute grid velocity żnj = żnj

(
znj , z

n−1
)

7: Set grid velocity in the fluid solver, M
żn
j−→ F

8: Advance the fluid solution with the fluid solver, F
(
un−1, żnj ,u

n
j

)
= 0

9: Communicate the fluid interface loads to the solid solver, F
tΓ,n
j−−→ S

10: Advance the solid solution with the solid solver, S
(
dn−1,unj ,d

n
j

)
= 0

11: Communicate the solid interface displacement to the mesh dynamic solver, S
dΓ,n
j−−−→M

12: Compute coupling residual rΓ
j = dΓ,n

j − dΓ,n
j−1

13: until ||rj || < ε
14: Set dn = dnj
15: Go to the next time step with n := n+ 1



CHAPTER 3. NUMERICAL MODEL OF FSI 30

•

•

•

un−1

zn−1

dn−1

un

zn

dn

•

•

•

tn−1 tn

(1)

(2)

(3)

(4) (5)
(6)

Figure 3.4: Time step advancement procedure for a strongly coupled scheme. Black: time
advancement steps, red: communication steps. The order of the different operations is indicated
by the number in parenthesis next to each arrow.

In the strongly-coupled approach, the fluid and solid solvers exchange their interface data
several times per time step within a iterative coupling procedure, represented here by the iterator
j, in order to guarantee the convergence of the interfacial conditions. The iterative procedure is
stopped as soon as the convergence criterion is met. In this case, convergence is assessed based
on a residual vector that is defined as the difference between the computed solid displacement
at the current iteration and the last computed displacement from the previous iteration:

rΓ
j = dΓ,n

j − dΓ,n
j−1 . (3.7)

At the first iteration of each time step (j = 0), the residual is evaluated based on the last
converged displacement from the previous time step:

rΓ
0 = dΓ,n

0 − dΓ,n−1 . (3.8)

The convergence criterion is satisfied if

||rΓ
j || < ε , (3.9)

where ε is a case-dependent dimensional tolerance that is set for a given problem. The described
iterative procedure corresponds to a strongly-coupled block-Gauss-Seidel (BGS) method [63],
where the fluid, fluid-mesh and structural problems are solved sequentially, which is equivalent
to neglecting the off-diagonal terms in the tangent matrix of Eq. (3.3). Since the solution in
each domain has be to computed several times per time step, the computational cost of strong
coupling is higher compared to weak coupling. However the strongly-coupled approach is more
robust and provides the same level of accuracy as monolithic coupling [47].

3.2.4 Strongly coupled procedure with time step prediction

A variant of the strongly-coupled BGS method is introduced in order to improve the convergence
of the iterative coupling at each time step and thus reduce the number of coupling iterations
required to reach a given tolerance. This is illustrated in Fig. 3.5. At the end of a converged
time step, the solid interface position at the next time step is first predicted and used as a guess
for the first fluid computation. The efficiency of the predictor step in reducing the number of
coupling iterations usually depends on the quality of the prediction. The predicted displacement
dΓ

pred,n+1 at time step n+1 is computed based on converged interface displacements and velocities
obtained at previous time steps:

dΓ
pred,n+1 = dΓ

n + α0 ∆t ḋΓ
n + α1 ∆t

(
ḋΓ
n − ḋΓ

n−1

)
, (3.10)



CHAPTER 3. NUMERICAL MODEL OF FSI 31

in which α0 = 1 and ∆t is the time step of the temporal discretization. A second- or first-
order prediction is obtained by setting α1 = 0.5 or α1 = 0, respectively. Eq. (3.10) is obtained
by a simple Taylor expansion truncated at order two and where the second derivative of the
interface displacement (or interface acceleration) is approximated by finite differences. The time
advancement procedure taking into account the prediction step is described by Alg. 3.

Algorithm 3 Strongly-coupled algorithm with prediction

1: Enter time step n with j = 0
2: Set dn0 = dnpred

3: repeat
4: Set j := j + 1
5: Advance the fluid-mesh position based on the last calculated solid displacement,

M
(
zn−1,dnj−1, z

n
j

)
= 0

6: Compute grid velocity żnj = żnj

(
znj , z

n−1
)

7: Set grid velocity in the fluid solver, M
żn
j−→ F

8: Advance the fluid solution with the fluid solver, F
(
un−1, żnj ,u

n
j

)
= 0

9: Communicate the fluid interface loads to the solid solver, F
tΓ,n
j−−→ S

10: Advance the solid solution with the solid solver, S
(
dn−1,unj ,d

n
j

)
= 0

11: Communicate the solid interface displacement to the mesh dynamic solver, S
dΓ,n
j−−−→M

12: Compute coupling residual rΓ
j = dΓ,n

j − dΓ,n
j−1

13: until ||rj || < ε
14: Set dn = dnj
15: Predict interface displacement dnpred using Eq. (3.10).
16: Go to the next time step with n := n+ 1

•

•

•

un−1

zn−1

dn−1

un

zn

dn

•

•

•

tn−1 tn

(1)

(2)

(3)

(4)

(5)

(6) (7)

Figure 3.5: Time step advancement procedure for a predictive strongly coupled scheme. Black:
time advancement steps, red: communication steps, blue: prediction step.

3.2.5 Stability of the coupling procedure and Aitken relaxation for the strongly
coupled scheme

One of the major drawbacks of partitioned methods is their relative sensitivity to numerical in-
stabilities induced by the coupling. These instabilities are a consequence of the iterative coupling



CHAPTER 3. NUMERICAL MODEL OF FSI 32

procedure and are encountered when the interaction between the fluid and the solid features a
significant feedback effect (i.e. a change in the solution of one physics has a strong impact
on the solution of the other physics). For loosely coupled solutions, instabilities will cause an
unbounded increase of the structural displacement in time while strongly coupled solutions will
require a significantly higher number of coupling iterations or even diverge in the most severe
cases. If not properly identified, these numerical instabilities might be erroneously taken for
physical instabilities such as flutter, hence potentially altering the engineering design. Histori-
cally, partitioned coupling instabilities have usually been referred to as added-mass effect [47].
The added-mass effect can be understood as additional structural inertia resulting from the
displacement of a surrounding fluid when the solid is moving. In other words, the added mass
represents the inertia of the fluid that has to be displaced by the solid. In order to illustrate the
added-mass effect, let us consider a simplified fluid-structure model. A rigid body of mass m
attached to a spring of stiffness k is immersed in a still fluid, as illustrated in Fig. 3.6, where the
fluid domain is supposed to extend to infinity. It is assumed that the solid rigid displacement
η takes the form η = q(t)φ, where q is an unknown function of time only and φ = ey a well
defined modal shape corresponding here to a vertical rigid displacement. A simple application
of Lagrange’s equation [64] leads to a standard oscillator equation,

mq̈ + kq = ζ (3.11)

where ζ is the resultant aerodynamic force applied by the fluid projected along the solid motion.
Assuming small amplitudes of the solid motion a linearization of this fluid-structure system
(details can be found in Appendix C) leads to a modified structural equation under the form,

(m+ma) q̈ + kq = 0 , (3.12)

where ma is the added mass that mainly depends on the fluid pressure field. In other words,
Equation (3.12) demonstrates that the motion of the solid in the fluid corresponds to its free
motion in vacuum (i.e. without a surrounding medium) but with an increased inertia term
that accounts for fluid-solid interaction, as illustrated in Fig. 3.6. In this simple case, a direct
consequence of the presence of the fluid on the free response of the solid is a modification of the
natural frequency of the oscillator.

k

m

k

m m
a

Figure 3.6: Illustration of the added-mass effect for the simplified fluid-solid coupled problem.

A characterization of the added-mass effect is much less straightforward to obtain for more re-
alistic fluid-structure systems due to the geometrical complexity and nonlinear physics involved,
but simplified approaches still provide a means to highlight the main features of the added-mass
effect. Causin et al. [65] describe a simplified fluid-structure problem involving inviscid incom-
pressible flows in order to show that, similarly to what was done earlier, the resulting structure
equation is modified by the introduction of an added-mass operator representing the effect of



CHAPTER 3. NUMERICAL MODEL OF FSI 33

the fluid. After a spectrum analysis of the added-mass operator and a stability analysis of the
chosen time discretization scheme, they show that a loosely coupled algorithm is unconditionally
unstable if

ρs Ls

ρf µ̂max
< 1 , (3.13)

where Ls is a parameter related to the geometry of the solid and µ̂max is the largest eigenvalue
of the added-mass operator. The stability criterion shows an explicit dependence on the mass
number Ma. When the solid density is much higher than the fluid density (Ma � 1), a stable
explicit coupling scheme can be performed. This is for instance typically the case for aeronautical
applications. For biological flows, such as arterial blood flows, where the fluid density approaches
the solid density, coupling instabilities are more likely to appear. Furthermore, it should be noted
that the stability criterion (3.13) of the coupled procedure does not depend on the time step size:
reducing the time step does not stabilize the solution as it is usually the case for common explicit
procedures. On the contrary, numerical observations [65, 66] show that the instability appears
sooner in the simulated time as the time step decreases. Analogously, increasing the temporal
accuracy by using predictors or higher order time schemes (e.g. for the fluid solution) [66, 67]
has also a destabilizing effect. Numerical observations also show that fluid viscosity has a
destabilizing effect whereas the structural stiffness has a stabilizing influence, as indicated by
Förster et al. [66].

The implicit strongly coupled BGS procedure is used to guarantee accuracy in the solution
of the coupled system and to stabilize computations where weak coupling suffers from numerical
instabilities. However, it has been found that the BGS procedure does not always ensure un-
conditional stability. In the most severe cases, the coupling residual increases at each iteration
and the solution diverges. A standard method to stabilize the iterative procedure is to introduce
numerical relaxation when updating the interface displacement dΓ after the solid computation
and the evaluation of the coupling residual (3.7). Specifically, the relaxed displacement at a
coupling iteration j is calculated as:

dΓ
j = dΓ

j−1 + ωjr
Γ
j , (3.14)

with ω being the relaxation parameter such that 0 < ω ≤ 1. This includes the particular case
ω = 1 where no relaxation is applied. Note that the expression for the residual is slightly
modified such that

rΓ
j = d̃Γ

j − dΓ
j−1 , (3.15)

where d̃Γ represents the displacement actually computed by the solid solver and dΓ the relaxed
displacement. Causin et al. [65] also performed a stability analysis of the strong Dirichlet-
Neumann coupling scheme for a simplified system and developed the following stability criterion
for the relaxation parameter:

0 < ω <
2
(
ρs Ls + C∆t2

)
ρs Ls + ρf µmax + C∆t2

, (3.16)

where C is a constant related to the solid stiffness. This criterion highlights the effect of the time
step, the mass ratio and the stiffness on the stability. An increase of the mass ratio (ρs � ρf)
or an increase of the solid stiffness and/or time step are all stabilizing effects in a sense that
they increase the upper limit of the relaxation parameter. Conversely, the stability range for ω
shortens when the fluid density becomes comparable to or larger than the solid density or when
the solid stiffness and the time step decreases. As stated in Causin et al. [65], it is interesting
to note that for a time step approaching zero (∆t→ 0),

0 < ω <
2

1 + ρf µmax

ρs Ls

, (3.17)



CHAPTER 3. NUMERICAL MODEL OF FSI 34

and thus whenever the explicit scheme diverges (ρf µmax > ρs Ls), the implicit relaxed BGS will
only converge if ω is below a threshold value that is strictly smaller than one.

The stability criteria (3.13) for explicit and (3.16) for implicit schemes provide good insight
into the stability problem induced by added-mass effects. However, they were derived for a
strongly simplified case and their generalization to more complex FSI problems involving highly
nonlinear viscous flows and complex geometries is not feasible. Whereas this simplified analysis
suggests that explicit schemes should not be used when strong added-mass effects are expected,
it does not provide the optimal value of the relaxation parameter ω, which is clearly problem-
specific. If the chosen value of ω falls beyond the stability limit, the iterative scheme diverges.
Conversely, if the chosen value is much below the limit, the iterative procedure remains stable
but converges very slowly, which is computationally very inefficient. A good trade-off between
stability and convergence rate can be achieved by adapting dynamically the value of the re-
laxation parameter at each iteration. The most common and efficient method to compute ω
dynamically is Aitken’s ∆2 method [63, 68]. The central idea of the method is to use values
from two previous FSI iterations in order to improve the solution of the coupled procedure.
Assuming a scalar interface displacemnt dΓ, the iterative procedure can be expressed as finding
the root dΓ

j of f(dΓ
j ) = d̃Γ

j+1 − dΓ
j = 0. Dropping momentarily the superscript Γ for simplicity,

the application of the recursive secant method leads to

dj =
dj−2 f(dj−1)− dj−1 f(dj−2)

f(dj−1)− f(dj−2)

=
dj−2 (d̃j − dj−1)− dj−1 (d̃j−1 − dj−2)

(d̃j − dj−1)− (d̃j−1 − dj−2)

=
dj−2 d̃j − dj−1 d̃j−1

rj − rj−1

(3.18)

where the scalar residual has been defined as rj = d̃j − dj−1. From Eq. (3.14) the relaxation
parameter can be written as

ωj =
dj − dj−1

rj
, (3.19)

and replacing dj by Eq. (3.18), we obtain, after few simplifications,

ωj =
dj−2 − dj−1

rj − rj−1
. (3.20)

The next step consists in replacing dj−1 in this last expression using again Eq. (3.14) with
j := j − 1. After a few more simplifications, one finally obtains the recursive formula

ωj = −ωj−1
rj−1

rj − rj−1
. (3.21)

For the more general vector case, a simple division cannot be defined. It is thus suggested by
Irons and Tuck [68] to project rj−1 on the normalized vector rj − rj−1, leading to the final and
general expression:

ωj = −ωj−1

(rΓ
j−1)T (rΓ

j − rΓ
j−1)

||rΓ
j − rΓ

j−1||2
, (3.22)

in which the superscript Γ has been reintroduced for sake of completeness in the notation. Since
the recursive formula (3.22) requires the value of the relaxation parameter ωj−1 at the previous
iteration, it cannot be applied to the first iteration of a time step. The first relaxation step is
thus computed with a fixed value ω0. The last ωn obtained at the previous time step can be
used, but it is usually better to constrain it with an upper or lower bound such that

ωi0 = min(ωi−1
n , ω̄) or max(ωi−1

n , ω̄) , (3.23)



CHAPTER 3. NUMERICAL MODEL OF FSI 35

where ω̄ is a problem-specific fixed parameter. Typically, the choice of an upper bound (by
using the min criterion) is more conservative from a stability point of view but can lead to a
higher number of coupling iterations and thus slower convergence of the iterative procedure. The
coupling algorithm using Aitken’s relaxation in combination with a prediction step is described
by Alg. 4 for one time step. In order to highlight the relaxation procedure, Alg. 4 uses the
simplified description of the fluid and solid operators based on the fixed-point problem (3.6).

Algorithm 4 Aitken’s ∆2 relaxation algorithm

1: Enter time step with predicted value dpred,0

2: Call fluid solver to compute t̃0 = Df(dpred,0)
3: Call solid solver to compute d̃0 = Ds(t̃0)
4: Compute residual r0 = d̃0 − dpred,0

5: Choose ω0 with Eq. (3.23)
6: Perform static relaxation d0 = dpred,0 + ω0 r0

7: j = 1
8: while ||rj−1|| > ε do
9: Call fluid solver t̃j = Df(dj−1)

10: Call solid solver d̃j = Ds(t̃j)
11: Compute residual rj = d̃j − dj−1

12: Compute ωj using Eq. (3.22)
13: Perform relaxation dj = dj−1 + ωjrj
14: j = j + 1
15: end while
16: Predict the value of the displacement and go to next time step

The use of Aitken’s ∆2 accelerator is appealing because it is relatively simple to implement.
The update of the relaxation parameter only requires the evaluation of residuals based on data
that are easily available from the solid solver.

Another interesting accelerator is described by Küttler et al. [63] and called the steepest de-
scent relaxation. A minimization problem is posed in order to finally approximate the relaxation
parameter with

ωj = −

(
rΓ
j

)T
rΓ
j(

rΓ
j

)T
JΓ rΓ

j

, (3.24)

with the interface Jacobian given by

JΓ =
∂r

∂d
. (3.25)

The calculation of the relaxation parameter by the steepest descent requires now a matrix vector
product JΓ rΓ

i and the evaluation of the interface Jacobian which is not explicitly available in
the procedure. Küttler et a. [63] propose two calculation methods for the matrix vector product,
either via finite difference or via approximated fluid derivative, but in both cases the complexity
of the procedure increases.

3.2.6 Newton-based techniques for the strongly coupled problem

The relaxation with Aitken’s ∆2 acceleration is the most widely used method because it is fast
and cheap to implement and because it provides good performance for otherwise unstable cases.
However, a Newton-based family of coupling techniques has been developed over the past few
years in order to further improve the convergence of the iterative procedure. For the standard
solution of nonlinear systems, Newton techniques have been shown to provide better convergence



CHAPTER 3. NUMERICAL MODEL OF FSI 36

rate than the Gauss-Seidel approach. Their application to FSI systems has been driven by the
recent gain in popularity of coupled simulations in the biomedical/biological field where added-
mass effects are prominent due to the presence of denser fluids and/or softer solids. Assuming a
constant cost associated with one call of each of the coupled solvers, one can easily understand
that reducing the number of coupling iterations per time step leads to a considerable decrease
of the overall simulation cost.

An alternative to the fixed-point equation (3.6) is first obtained by combining the fluid and
solid operators, defined by Eqs. (3.4) and (3.5) respectively, with the continuity conditions (2.27)
into the problem of finding the root of the system

rf = Df(d)− t = 0 ,

rs = Ds(t)− d = 0 .
(3.26)

This system can be solved by a standard Newton-Raphson iterative procedure,
∂rf

∂d

∂rf

∂t

∂rs

∂d

∂rs

∂t


[

∆d

∆t

]
= −

[
rf

rs

]
, (3.27)

where the updated value of the displacements and loads at iteration k+ 1 is obtained from their
previous value at iteration k and the solution of the above system:[

d
t

]
k+1

=

[
d
t

]
k

+

[
∆d
∆t

]
k

. (3.28)

A full description of the Jacobian in Eq. (3.27) is given by Bogaers et al. [69]:

Jr =


∂Df

∂d

∂Df

∂d

∂d

∂t
− I

∂Ds

∂t

∂t

∂d
− I

∂Ds

∂t

 . (3.29)

Recalling Eq. (3.26) and introducing the Jacobians of the fluid and solid solvers that satisfy
Jf = ∂Df

∂d = ∂t
∂d and Js = ∂Ds

∂t = ∂d
∂t respectively, the final expression for the overall Jacobian is

Jr =

[
Jf JfJs − I

JsJf − I Js

]
. (3.30)

In a partitioned framework where the fluid and solid solvers are executed in a staggered fashion,
the system of linear equations is solved in a block-Newton way [70]. The full Newton method can
be applied only if the Jacobians of the fluid/solid solvers Jf and Js are known. In a partitioned
approach using black-box solvers, these Jacobians are almost impossible to determine or would
need specifically enhanced differentiated solvers. Instead, Vierendeels et al. [71] adopted a quasi-
Newton approach where these Jacobians, and more exactly the product between Jacobians and
vectors, are only approximated by reduced order models based on the resolution of a least
square problem that combines input/output variables of each coupled solver. This leads to
the so-called interface block quasi-Newton with approximation of the Jacobian from least square
(IBQN-LS)2 method. The full description of the approximation of the Jacobians can be found in
Vierendeels et al. [71] and Degroote et al. [70]. The central idea behind reduced order modeling is

2In the denomination IBQN (interface block quasi-Newton), the term interface means that the Newton proce-
dure is applied only on variables defined at the fluid-structure interface, the term block means that the Jacobian
is made of distinct blocks related to the coupled solvers and finally the term quasi is applied when the Jacobian
is approximated instead of calculated exactly.



CHAPTER 3. NUMERICAL MODEL OF FSI 37

to accumulate and store information coming from the inputs/outputs of the solvers over coupling
iterations. This information is used to build an approximation of the Jacobians that increases
the convergence of the iterative procedure when compared to the standard Aitken’s ∆2 method.
However, and because the IBQN-LS method needs at least two coupling iterations to create the
reduced order models, an Aitken relaxation, usually performed with ω small enough to avoid
rapid divergence, is used at the first iteration. Degroote et al. [67] compared IBQN-LS and
the Aitken relaxation and showed that, unlike Aitken’s method, IBQN provides a monotonic
convergence once the reduced order models are available. They also found that, for cases with
poor stability, the number of coupling iterations increases when the stiffness of the structure or
the time step are reduced, irrespective of the method used. However, IBQN performs significantly
better than Aitken in limiting this increase of iterations.

The IBQN-LS, although improving the convergence of the coupling procedure, has two major
drawbacks. First, the block root finding form of the coupled problem is still solved in a staggered
way where (reduced order) models have to be developed for each block. Then, two linear
systems have to be solved at each coupling iteration. Even if these systems have a size that is
directly proportional to the number of points at the fluid-structure interface, which is always
much smaller than the total number of points of the fluid and solid domains, they are usually
dense [67, 72] and are thus an inevitable source of complexity and computing cost. One can
easily get around the first drawback by rewriting the same fixed-point equation (3.6) under a
root-finding equation for the interface only:

Ds ◦Df(d
Γ)− d = r(dΓ) = 0 . (3.31)

Unlike the root-finding system (3.26), this equation only involves the interface displacements so
that an iterative Newton procedure can be developed for the update ∆d:[

∂r

∂d

]
k

∆dk = −rk , (3.32)

with
dk+1 = dk + ∆dk . (3.33)

Nevertheless, a linear system has still to be solved at each coupling iteration. The Jacobian
matrix ∂r/∂d has to be known explicitly if a direct solver is used for this linear system or it has
to be possible to calculate the product of the Jacobian matrix with a vector if this linear system
is solved iteratively [73]. As already mentioned, an explicit calculation of the Jacobian is not
feasible for a black-box partitioned coupling since it would require the access to the Jacobian of
each coupled solver. On the other hand, the matrix-vector product can be approximated using
finite-differences but this requires an evaluation of the residual operator at every iteration of the
iterative solver [73]. Following the same methodology as the IBQN-LS approach, Degroote et
al. [70,73] suggested a technique to approximate the Jacobian of a function based on inputs and
outputs of that function. They show that, with a special choice of the inputs and outputs, an
approximation of the inverse of the Jacobian ∂r/d can be obtained. The second drawback of
IBQN-LS is thus also removed since no linear system has to be solved anymore for the Newton
procedure. The approximation of the Jacobian (for quasi-Newton approaches) is motivated by
the fact that only certain components of the error on the interface position become unstable
or are badly damped during Gauss–Seidel iterations [67, 74]. Consequently, the approximate
Jacobian only has to describe the reaction to those unstable or badly damped components,
the other components being damped anyhow. The full Jacobian is thus not required for fast
convergence of the coupled problem and an approximation can be used instead [70].

The approximation of the Jacobian is constructed as follows [73]. During each coupling
iteration, the two vectors

∆rl = rl − rj ,
∆d̃l = d̃l − d̃j ,

(3.34)



CHAPTER 3. NUMERICAL MODEL OF FSI 38

with l = 0, . . . , j − 1, are built based on the previous values (subscript l) and the last value
(subscript j). These vectors are accumulated and stored as columns of two matrices

Vj =
[
∆rj−1 ∆rj−2 . . . ∆r1 ∆r0

]
,

Wj =
[
∆d̃j−1 ∆d̃j−2 . . . ∆d̃1 ∆d̃0

]
,

(3.35)

of size ns×q where ns is the number of points at the solid interface and q is related to the number
of coupling iterations at the current time step. Usually, in practice, it is found that q � ns.
If the number of coupling iterations exceeded the number of points at the solid interface, the
number of columns q could be limited to ns by simply discarding the rightmost columns. At
convergence the residual r should by definition vanish. The current deviation from this target
value, ∆r = 0− rj , is then expressed as a linear combination of all known ∆rl,

∆r ≈
j−1∑
l=0

al ∆rl = Vjaj , (3.36)

where the vector a of unknown coefficients is a column vector of size q. This problem of
determining aj is typically over-determined since q � ns and must therefore be solved in a
least-square sense. A QR-decomposition of V is performed

Vj = Qj Rj , (3.37)

where Q is an orthogonal matrix of size ns× q and R is an upper triangular matrix of size q× q.
The coefficient vector is then obtained by solving the relatively small triangular system

Rj aj = QT
j ∆rj (3.38)

through back substitution. Although a linear system must also be solved here, the cost associated
with the solution of a triangular system of size q << ns is mush smaller than that of solving a
dense system of size ns. Finally, the corresponding vector ∆d̃ is written using the same linear
combination as Eq. (3.36),

∆d̃ ≈
j−1∑
l=0

al ∆dl = Wjaj , (3.39)

and, since ∆r = ∆d̃−∆d by definition of the residual, one has

∆d = Wj aj −∆r = Wj aj + rj . (3.40)

The approximate inverse of the Jacobian is consequently never explicitly calculated and must
not be stored. Instead the product between the inverse Jacobian and a vector is approximated
in a matrix-free form such that the update ∆dj is given by

∆dj = Wj aj + rj . (3.41)

The resulting coupling procedure is referred to as interface quasi-Newton with approximation of
the inverse Jacobian from least-square (IQN-ILS). Similarly to IBQN-LS, the Newton procedure
cannot be applied at the first iteration, so that a static relaxation is used. The algorithm is
illustrated in Alg. 5 for one time step.



CHAPTER 3. NUMERICAL MODEL OF FSI 39

Algorithm 5 IQN-ILS algorithm as described by Degroote et al. [73]

1: Enter time step with predicted value dpred,0

2: Call fluid solver to compute t̃0 = Df(dpred,0)
3: Call solid solver to compute d̃0 = Ds(t̃0)
4: Compute residual r0 = d̃0 − dpred,0

5: Perform static relaxation d0 = dpred,0 + ω r0

6: j = 1
7: while ||rj−1|| > ε do
8: Call fluid solver t̃j = Df(dj−1)
9: Call solid solver d̃j = Ds(t̃j)

10: Compute residual rj = d̃j − dj−1

11: Update Vj =
[
∆rj−1 . . . ∆r0

]
with ∆rl = rl − rj

12: Update Wj =
[
∆d̃j−1 . . . ∆d̃0

]
with ∆d̃l = d̃l − d̃j

13: Perform QR-decomposition Vj = Qj Rj

14: Solve triangular system Rj aj = QT
j (−rj)

15: Compute the update ∆dj = Wj aj + rj
16: Update the solution dj = dj−1 + ∆dj
17: j = j + 1
18: end while
19: Predict the value of the displacement and go to next time step

If a residual vector ∆rl is identical to another one or to a linear combination of other
residual vectors, one of the diagonal elements of Rj will be zero. Consequently, the
equation related to that row of Rj cannot be solved during the back substitution and the
corresponding element of aj is set to zero [73].

Remark

Taking advantage of the low computational cost associated with the quasi-Newton method, it
is possible to further improve the convergence of the procedure by including the contribution
of previous time steps. This is performed by combining the matrices Vj and Wj with those
coming from the r previous time steps, as suggested by Degroote et al. [73],

V′j =
[
Vn
j Vn−1

j . . . Vn−r
j

]
,

W′
j =

[
Wn

j Wn−1
j . . . Wn−r

j

]
,

(3.42)

where the current time step is denoted by superscript n. When information from the history
of the computation is reused, the relaxation step at the beginning of each time step becomes
unnecessary and the Newton procedure can directly be applied; only the first time step of the
computation requires a preliminary relaxation.

The IQN-ILS method can be seen as a reduction of the IBQN-LS in the sense that a block
description of the root-finding problem is reduced to a single formulation. In IBQN-LS, the same
matrices V and W are constructed to accumulate information along the coupling iterations,
but the block procedure requires models for both the fluid and the solid part and thus four
matrices, (V, W)f and (V, W)s, have to be built. The use of information from previous time
steps when building the matrices is also possible. Degroote et al. [70] compare the performance
(mainly the mean number of coupling iterations per time step) of IBQN-LS and IQN-ILS with
the performance of the standard Aitken relaxation. They show that IBQN-LS performs very
similarly to IQN-ILS, and that both perform much better than Aitken by typically reducing the



CHAPTER 3. NUMERICAL MODEL OF FSI 40

number of iterations by a factor 4 for cases with poor stability. It is interesting to note that the
Aitken relaxation could also be seen as an IQN technique. If the inverse Jacobian in Eq. (3.32) is
approximated by −ω I, the Aitken formulation is recovered. This clearly illustrates the fact that
the central improvement of I(B)QN-(I)LS is the possibility to store information from previous
iterations, and potentially time steps, in order to enhance the convergence. However, when using
information from previous time steps, it is not a priori clear how many past instances should be
retained, i.e. how long old data is representative of the problem at the current time level [75].
Moreover, as the number r of retained time steps increases, the probability of columns in the
matrices being nearly linearly dependent also increases. This may cause numerical issues in
the computation of the (inverse) Jacobian so that convergence not only stalls, but the iterative
procedure might even diverge. Haelterman et al. [75] have proposed filtering techniques that
identify and remove columns that are (nearly) linearly dependent, thus further improving the
performance of IQN-ILS. Another method was proposed by Bogaers et al. [72] as the multi-vector
interface quasi-Newton technique (MV-IQN). The main difference with respect to IQN-ILS is
that MV-IQN is based on an iteratively updated approximation of the inverse Jacobian that
removes the need to explicitly define user parameters to control the amount of computation
history that is retained. The methodology is still based on information accumulation through
V and W matrices for a current time step but the time history is automatically taken into
account by updating the inverse Jacobian from the last time iteration only with the current V
and W, i.e. without combining with those from the past. However the principal limitation of
this method is that the full approximated inverse Jacobian has to be stored in order to apply
the iteratively updated formulation [72,76].

3.3 Thermal coupling schemes

In general, thermally coupled problems can be solved with the exact same approach as mechan-
ically coupled problems. By analogy to Eq. (3.2), the thermally coupled problem can be written
in the general form {

F (u,w) = 0 ,

S (u,w) = 0 ,
(3.43)

where the mesh operator is not required here because there is no fluid mesh motion. In this
system, w represents the structural temperature field. The problem can be expressed as a fixed-
point problem similar to Eq. (3.6) for thermal interface quantities, but instead of exchanging
structural displacements and fluid loads at the interface, the coupled procedure exchanges heat
fluxes, through Neumann boundary conditions, and temperatures, through Dirichlet boundary
conditions. In mechanical coupling, a Dirichlet-Neumann (DN) coupling was introduced: the
displacement of the interface is imposed to the fluid solver (Dirichlet BC) and, in return, the
interface fluid loads are imposed to the solid solver (Neumann BC). The DN procedure is, from
both the physical and numerical points of view the most intuitive way to exchange interface
mechanical data. Neumann-Dirichlet (ND) or even Neumann-Neumann are rarely used and have
enjoyed little success in terms of coupling stability, especially for high added-mass cases [77].
In the case of thermal coupling, both DN and ND coupling seem to be intuitively acceptable
and have been successfully applied to numerous CHT applications [78]. In thermal coupling,
DN and ND schemes are usually referred to as Flux Forward Temperature Back (FFTB) and
Temperature Forward Flux Back (TFFB), respectively [79–81]. These two schemes are depicted
in Fig. 3.7. In FFTB, the fluid interface heat flux is transferred to the solid as a Neumann BC,
and the solid interface temperature is transferred to the fluid as a Dirichlet BC. Conversely, in
TFFB the Dirichlet fluid temperature is applied to the solid and the Neumann solid heat flux is
applied to the fluid, as discussed below. The choice for a particular scheme is mainly dictated
by the stability of the coupling procedure.



CHAPTER 3. NUMERICAL MODEL OF FSI 41

Fluid solver

Solid solver

qΓTΓ

(a) FFTB

Fluid solver

Solid solver

qΓ TΓ

(b) TFFB

Figure 3.7: Standard thermal coupling schemes.

3.3.1 Stability of the thermal coupling schemes

A pioneering study on the stability of CHT coupling was carried out by Giles [82]. He applied
the stability theory of Godunov and Ryabenkii [83] to a discretized simplified 1D model. Several
simplifications were made, such as a uniform grid on both sides of the interface and the omission
of the convection terms in the fluid domain. Giles concluded that numerical stability is achieved
by using Neuman boundary conditions (heat flux) for the structural calculation and Dirichlet
boundary conditions (temperature) for the fluid calculations, i.e. a FFTB scheme. However, this
might not irrevocably correspond to the stability behavior found in practice on more complex
CHT cases [80, 81]. Verstraete et al. [81] introduced and developed stability criteria based
on physical considerations, similarly to the added-mass effect based on the mass ratio for the
mechanical coupling. Again a simplified 1D CHT problem was considered for the stability
analysis: a steady-state boundary layer flow at temperature T∞f over a bottom-heated flat
plate at temperature Ts, as illustrated in Fig. 3.8. At this stage, it is interesting to note that

•
Ts

U∞, T∞f

Ωs

Ωf

l

Γ

Figure 3.8: Flat plate flow for 1D CHT problem. Analysis is performed in the normal direction
to the plate.

while the unstable behavior of the mechanical coupling is related to inertia involving dynamic
(time-dependent) quantities, the instabilities arising in the thermal coupling can appear even for
steady-state coupling. Under these considerations, Verstraete et al. [81] demonstrated that the
FFTB scheme is unconditionally stable if and only if the Biot number Bi < 1. On the contrary,
the TFFB scheme is unconditionally stable if and only if Bi > 1. This shows that the stability
of the thermal coupling is directly related to the physics of the thermal exchange between the
fluid and the solid, through the Biot number,

Bi =
h l

λs
. (3.44)

For low Biot number (Bi � 1), the temperature at the fluid-solid interface TΓ will be close to
Ts and the convergence of the FFTB scheme will be as fast as Bi is low. For high Biot number



CHAPTER 3. NUMERICAL MODEL OF FSI 42

(Bi � 1), TΓ will be close to the fluid temperature and this time the TFFB will converge as
fast as Bi is high.

Convergence with the FFTB or TFFB schemes can still be achieved outside of their respective
stability limits by using a relaxation procedure such as Aitken’s relaxation that was introduced
with, but was not restricted to, mechanical coupling in the previous section. However, for the
thermal coupling, another stabilization method is usually used that is based on Newton’s law of
cooling at the fluid-structure interface Γ,

qΓ · n = h
(
TΓ − T∞f

)
, (3.45)

where q is the heat flux and h a convective heat transfer coefficient that depends on the flow
conditions. At the discrete level of the coupled problem, a convective heat transfer relation can
be imposed through a Robin type boundary condition that combines heat flux and temperature:

qΓ · n− hTΓ = cst . (3.46)

In practice, the condition imposed to the solid side (i.e. the solid solver input at each coupling
step) is given by

qΓ · n = h̃
(
TΓ − T̂

)
, (3.47)

where h̃ is a numerical heat transfer coefficient and T̂ is an equivalent temperature. At each
coupling step, these two parameters need to be calculated on one side of the interface, typically
the fluid side, and then are transferred to the solid side in order to compute the resulting heat
flux. The most intuitive way to define h̃ and T̂ is by using the fluid results in the first cells normal
to the interface. However, this again requires deeper access to data in the fluid solver which is
not always possible and therefore leads to a loss in the general applicability of the approach. A
simpler and more stable method imposes a constant positive value of h̃. Although the heat flux
is not directly exchanged at the interface, the method results in a continuous temperature and
heat flux field across the domains. The value of h̃ only influences the convergence rate and does
not affect the final result [81]. The Robin boundary condition in Eq. (3.47) is thus used not only
to stabilize the coupling procedure but also to increase the rate of convergence. The equivalent
temperature is then calculated by expressing Eq. (3.47) on the fluid side of the interface, where
the fluid interface heat flux is the direct output of the fluid solver:

T̂ = TΓ
f −

qΓ
f · n
h̃

. (3.48)

The same relation expressed on the structural side of the interface will give a new heat flux as
an input to the solid solver:

qΓ
s · n = h̃

(
TΓ

s − T̂
)
. (3.49)

The resulting new coupling scheme is either called Heat Transfer Coefficient Forward Flux Back
(hFTB) or Heat Transfer Coefficient Forward Temperature Back (hFTB) depending on the
quantity returned by the solid solver and given as input to the fluid solver. These two schemes
are illustrated in Fig. 3.9. The stabilizing effect of the Robin transmission (fluid to solid) by
the use of a numerical heat transfer coefficient comes from the fact that it introduces a certain
amount of interface stiffness that forces the boundary condition on one domain to behave in the
same way as the boundary of the opposite domain [84,85].

Similarly to any kind of relaxation parameter, the value for the numerical heat transfer
coefficient that leads to stable and fast convergence can be established by a stability analysis.
For the hFTB scheme, it can be demonstrated that convergence is ensured if the amplification
factor G̃ satisfies the following condition [81,86]:∣∣∣G̃∣∣∣ =

∣∣∣∣∣ B̃i− Bi

B̃i + 1

∣∣∣∣∣ < 1 , (3.50)



CHAPTER 3. NUMERICAL MODEL OF FSI 43

Fluid solver

Solid solver

TΓ h̃, T̂

(a) hFTB

Fluid solver

Solid solver

qΓ h̃, T̂

(b) hFFB

Figure 3.9: Thermal coupling schemes with stabilizing Robin boundary condition and numerical
heat transfer coefficient.

where B̃i is the numerical Biot number associated with h̃. When B̃i ≥ Bi, the condition (3.50) is
always satisfied and thus a sufficiently high value of h̃ will always lead to convergence. Besides,
the convergence rate will be as fast as B̃i is close to Bi. When B̃i < Bi the condition (3.50)
becomes

B̃i >
Bi− 1

2
(3.51)

which is always satisfied for Bi < 1. Thus, the hFTB method remains unconditionally stable
for a physical Biot number below one. The dependence of the amplification factor |G̃| on
h̃ is illustrated in Fig. 3.10 for two different Biot numbers. Two distinct branches can be
identified on either side of the optimal value of the numerical heat transfer coefficient h̃opt,
for which G̃ = 0 (i.e. convergence is theoretically reached in 0 iteration). The left branch
corresponds to cases where B̃i < Bi and stability is limited by condition (3.51). The left branch
of Fig. 3.10(a) shows that this condition is always met when Bi < 1. The right branch is
obtained for B̃i > Bi and is always stable but the rate of convergence decreases as h̃ increases.
The stability analysis of the hFTB scheme shows that a stable and optimal (i.e. leading to the
highest rate of convergence) numerical heat transfer coefficient exists and is such that B̃i = Bi.
Similar conclusions can be found in the works of Errera et al. [85,87,88] in which a more detailed
and complex stability analysis is performed on a discretized 1D model where a time-marching
procedure is used to converge a steady-state solution. Their analysis also shows that the optimal
heat transfer coefficient depends on the fluid time step and the fluid mesh discretization normal
to the interface. Although they provide a complete local and dynamic expression for the optimal
heat transfer coefficient, the approach cannot be readily applied without deep access to the fluid
and solid solvers, which goes against the black-box approach followed here. Corral et al. [89] have
proposed a simplified method to approximate the optimal value for h̃. The optimal condition
is obtained when B̃i = Bi, which simply implies h̃ = h. Using this relation, the numerical heat
transfer coefficient is locally approximated by

h̃opt,l = hl =

(
∂(q · n)Γ

∂TΓ

)
l

=

∣∣∣∣∣(q · n)Γ
j − (q · n)Γ

j−1

TΓ
j − TΓ

j−1

∣∣∣∣∣
l

, (3.52)

at each fluid grid point l and between two coupling iteration j. This expression only requires
interface data that are already available in the coupling procedure. The use of such a local
numerical heat transfer coefficient is advantageous as it takes into account the non-homogeneous
distribution of the physical Biot number along the fluid-structure interface and, thus, provides
better stability and convergence. A simpler but widely used approach is to consider a constant
coupling coefficient over the interface. Because the stability and convergence rate are in this
case determined by the worst local conditions, other parts of the interface experience stable but
very slow convergence.

The same analysis can be applied to the hFFB method. For this scheme, the amplification
factor and the conditions that have to be fulfilled to guarantee stability are given by the following



CHAPTER 3. NUMERICAL MODEL OF FSI 44

0 100 200 300 400 500 600 700 800 900 1,000
0

0.2

0.4

0.6

0.8

1

1.2

h̃ [W/m2K]

∣ ∣ ∣G̃∣ ∣ ∣[
-]

unstable

stable

G̃ = 1

h̃opt

G̃→ 1

(a) Bi = 0.8

0 100 200 300 400 500 600 700 800 900 1,000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

h̃ [W/m2K]

∣ ∣ ∣G̃∣ ∣ ∣[
-]

unstable

stable

G̃ = 1

h̃opt

G̃→ 1

(b) Bi = 1.5

Figure 3.10: Absolute value of the amplification factor of the hFTB scheme as a function of
the numerical convective heat transfer coefficient h̃ for a Biot number smaller (a) and larger (b)
than one.



CHAPTER 3. NUMERICAL MODEL OF FSI 45

expression ( [81,86]): ∣∣∣G̃∣∣∣ =

∣∣∣∣∣ 1

Bi

B̃i− Bi

B̃i + 1

∣∣∣∣∣ < 1 . (3.53)

When B̃i ≤ Bi this condition is always satisfied and a sufficiently low value of h̃ will always lead
to convergence. Again, the convergence rate will be as fast as B̃i is close to Bi (or h̃ is close to
h). When B̃i > Bi, the condition (3.53) becomes

B̃i <
2Bi

1− Bi
. (3.54)

Note that for cases where Bi > 1, the hFFB method remains unconditionally stable. Fig. 3.11
illustrates the typical dependence of |G̃| on h̃ for two different Biot numbers. Again two branches
can be identified on either side of the optimal heat transfer coefficient, where the left branch
(B̃i < Bi) is this time always stable and the stability of the right branch is limited by condition
(3.54) if Bi < 1 (unconditionnally stable otherwise). However, it is important to note that
the optimal heat transfer coefficient does not depend on the scheme (hFTB or hFFB) since it
corresponds to B̃i = Bi in both cases. Hence, the relation (3.52) could be used for both thermal
coupling schemes.

Tab. 3.1 summarizes the most important trends in terms of stability for the two heat transfer
coupling schemes. For each of them, the optimal (stable) rate of convergence is obtained for
B̃i = Bi, i.e. h̃opt = h. It is also worth noting that the FFTB scheme is only a particular case
of hFTB for which h̃→ 0. Analogously, the TFFB scheme is the particular case of hFFB when
h̃ → ∞. It is also important to keep in mind that these trends have been established for a

Bi < 1 Bi > 1

hFTB
B̃i ≥ Bi

stable
stable

B̃i < Bi stable if B̃i >
Bi− 1

2

hFFB
B̃i > Bi stable if B̃i <

2Bi

1− Bi stable
B̃i ≤ Bi stable

Table 3.1: Stability conditions on the numerical heat transfer coefficient (through the numerical
Biot number) for different numerical schemes as a function of the physical Biot number. The
particular value of Bi = 1 leads to a stable coupling, whichever the scheme is applied.

simple analytic 1D case. More details about the effect of the discretization procedure on the
stability and the optimal value of h̃ can be found in the work of Errera et al. [87]. However,
several authors have observed that these trends are also valid and that an optimal numerical
heat transfer coefficient exists for more complex 2D/3D cases [89–91]. Furthermore, Gimenez et
al. [86] have concluded that the steady stability theory based on the Biot number can be extended
at least to weakly transient CHT problems using a quasi-dynamic coupling approach, which is
described in the next section.

A similar approach to the numerical heat transfer coefficient method (hFTB and hFFB)
has also been proposed for mechanical coupling and consists in using an Interface Artificial
Compressibility (IAC). Details about this method can be found in Degroote et al. [92].

Remark



CHAPTER 3. NUMERICAL MODEL OF FSI 46

0 100 200 300 400 500 600 700 800 900 1,000
0

0.2

0.4

0.6

0.8

1

1.2

h̃ [W/m2K]

∣ ∣ ∣G̃∣ ∣ ∣[
-]

unstable

stable

G̃ = 1

h̃opt

G̃→ 1/Bi

(a) Bi = 0.8

0 100 200 300 400 500 600 700 800 900 1,000
0

0.2

0.4

0.6

0.8

1

1.2

h̃ [W/m2K]

∣ ∣ ∣G̃∣ ∣ ∣[
-]

unstable

stable

G̃ = 1

h̃opt

G̃→ 1/Bi

(b) Bi = 1.5

Figure 3.11: Absolute value of the amplification factor of the hFFB scheme as a function of
the numerical convective heat transfer coefficient h̃ for a Biot number smaller (a) and larger (b)
then one.



CHAPTER 3. NUMERICAL MODEL OF FSI 47

3.3.2 Time advancement of the thermal coupling procedure

The time advancement procedure of problems involving thermal coupling can be built in the same
way as that developed for mechanical coupling: the two solvers are advanced in physical time
with the same time step using either a weakly-coupled or a strongly-coupled approach such as
illustrated in Fig. 3.12. The thermal fluid (u) and solid (w) states are communicated according to
the different schemes previously described (TFFB, hFTB, ...). However, the generally significant

•

•

un

wn

un+1

wn+1

•

•

tn tn+1

(1)

(2)

(3)

(4)

(a) Weak coupling, one (1)-(4) se-
quence per time step.

•

•

un

wn

un+1

wn+1

•

•

tn tn+1

(1)

(2)

(3)

(4)

(b) Strong coupling, repeated (1)-(4)
sequences until convergence at cur-
rent time step.

Figure 3.12: Time step advancement for a loosely- or strongly-coupled scheme for thermal
interaction. Black: time advancement steps, red: communication steps.

difference in time scales controling the thermal physics of the fluid and solid domains has led to
the development of other strategies. The fluid (convective) time scale can be approximated as

τf =
L

U
, (3.55)

where L and U are a characteristic length and velocity, respectively, while the solid (conduction)
time scale is approximated as

τs =
L2

αs
, (3.56)

where αs is the solid thermal diffusivity. In engineering CHT problems, for instance in turbo-
machinery design, the ratio τs/τf is typically very large so that it usually takes a considerable
amount of time for the solid to adapt its thermal state to a change in the fluid domain. The
thermal penetration depth within the solid in response to a fluid harmonic excitation at fre-
quency f is proportional to

√
αs/f [93]. Consequently, the higher the frequency of the thermal

perturbation caused by the fluid, the lower the impact on the thermal state of the solid. In
these conditions, a fully synchronized coupling scheme may lead to an unnecessarily high com-
puting cost due to the long integration time required. The absence of inner iterations in the
loosely-coupled approach already leads to a reduction in computation time when compared to
a strongly-coupled approach. However, the two solvers are still synchronized in physical time
and they exchange their interface data at each time step ∆t = ∆tf = ∆ts. Better efficiency
can be achieved by considering the difference in physical time scales, as illustrated in Fig. 3.13,
and by reducing the frequency of exchange between the two solvers so that the interface data
are exchanged only at every coupling time step ∆tc with ∆tc = N∆t [91, 94, 95]. Although
this contributes to lowering the time associated to the interface data treatment, a sufficiently
high coupling frequency is still necessary to guarantee an acceptable accuracy of the coupled
solution [93] as well as a stable procedure [91]. Finally, the difference in the time scales may lead
to different stability requirements in the fluid and solid domains. Therefore, different time step
sizes can even be used for each coupled solver to advance its own solution between two coupling
steps. Usually the time step size in the solid domain will be larger than the time step size in the
fluid (∆ts > ∆tf), but since the solvers are kept synchronized in time, the coupling time step



CHAPTER 3. NUMERICAL MODEL OF FSI 48

•

•

•

•

• • • • •

• • • • •

un

wn

un+1

wn+1

tn tn+1 = tn + ∆tc

∆t

(1)

(2)

(3)

(4)

Figure 3.13: Time step advancement of a very loose coupled scheme for CHT, the data ex-
change is performed after several physical time steps. Black: time advancement steps, red:
communication steps.

must satisfy ∆tc = Nf∆tf = Ns∆ts, where Nf and Ns are integers. This coupling procedure is
depicted in Fig. 3.14.

•

•

•

•

• • • • •

• • •

un

wn

un+1

wn+1

tn tn+1 = tn + ∆tc

∆ts

∆tf (1)

(2)

(3)

(4)

Figure 3.14: Time step advancement of a very loose coupled scheme for CHT, the data exchange
is performed after several physical time steps which are not the same between the fluid and solid
domains. Black: time advancement steps, red: communication steps.

For weakly transient CHT coupling, if the influence of unsteadiness in the fluid domain
remains negligible, the flow field may be considered as a sequence of steady-states. In this case, it
seems legitimate to couple steady fluid calculations with relatively large-time-step transient solid
calculations at a coupling period ∆tc that corresponds to several solid time steps ∆ts [85,86,96].
This approach, referred to as quasi-dynamic, can be applied either with a loose coupling, where
the solvers exchange their interface data after a certain number of solid time steps, or strong
coupling, where the same transient solid calculation is repeated between two exchanges until
convergence, as illustrated in Fig. 3.15. This last choice usually depends on the required level
of accuracy on the time evolution of the thermal state. Note that for the strongly coupled
approach, the boundary conditions applied on the solid interface at intermediate steps can be
interpolated between two known fluid computations [85]. Unlike the fully transient coupling,
the quasi-dynamic procedure reduces the time associated with the computation of the fluid
flow, since only a steady-state solution is required instead of a full time-dependent response
with potentially low time step size. The steady flow solution is usually obtained by solving
the Navier-Stokes equations with a time-marching procedure involving a numerical, i.e. non
physical, time step.

Finally, a coupled steady-state solution is also often sought in practice, where the Laplace or
Poisson equation (i.e. Eq. (2.24) without the time derivative term) is solved in the solid domain.
A steady flow solution is still usually obtained by a time-marching procedure [81, 89, 90]. As
any physical time-dependence is removed, physical time scales have no effect on the steady-state
coupling procedure and this approach is obviously the fastest way to obtain a coupled stationary
solution.



CHAPTER 3. NUMERICAL MODEL OF FSI 49

•

•

•

(3)

usteady

• • • • •wn wn+1

tn tn+1 = tn + ∆tc
∆ts

(4)

(1)
(2)

Figure 3.15: Time step advancement of the quasi-dynamic coupling scheme for CHT. Black:
time advancement steps, red: communication steps.

3.4 Treatment of the fluid-structure interface

The solid-fluid interface is critical in FSI problems as the coupling between the two physics takes
place across it. As such, the communication of interface data between the solvers is one of the
key steps in all coupling algorithms, as described above. By definition the interface belongs
simultaneously to both domains. Because in a partitioned coupling approach each domain is
treated with its own numerical approach, the numerical description of the interface might differ
on the solid and fluid side. These differences are directly related to the respective domain meshes.

This section focuses thus on the characterization of the interface from a numerical point
of view. It first discusses the two main approaches in mesh treatment, differentiating between
conforming and non-conforming meshes. Then, in the context of conforming meshes that are
used in the present work, it describes several interpolation techniques that are typically used
when the interface nodes on the fluid and solid sides do not coincide.

3.4.1 Conforming vs non-conforming meshes

FSI procedures can be divided into two main approaches depending on whether conforming or
non-conforming meshes are used [49], as depicted in Fig. 3.16. In conforming mesh methods, the
meshes conform with the interface boundary Γ, as illustrated in Fig. 3.16(a), with no overlap
between fluid and solid meshes. Boundary and coupling conditions are thus explicitly enforced
as physical conditions. Because the interface generally moves and/or deforms as part of the
solution, the domain mesh itself must also adapt dynamically to the interface changes. This
is typically achieved on the fluid side through a mesh deformation algorithm in conjunction
with an ALE approach. The main drawbacks of the conforming approach are the cost overhead
brought by the dynamic fluid mesh treatment and the difficulty of keeping a high mesh quality
when deformations are large. When the deformation algorithm cannot generate a valid mesh,
remeshing (full or partial) must be applied, thus further increasing the complexity and the cost
of the procedure.

On the other hand, the non-conforming mesh method treats the solid boundary and the
interface as constraints imposed on the governing equations so that very distinct meshes that do
not conform at the interface can be used. Non-conforming mesh methods are commonly devel-
oped with fluid solvers based on the immersed boundary (IB) method. A detailed description of
this method is beyond the scope of this thesis but interested readers may find many references
on this subject, e.g. [40, 49, 97–102]. The principal advantage of the IB method is its simplified
fluid mesh treatment. The fluid dynamics is solved using a pure Eulerian formalism (no need
for ALE in this case), on a Cartesian mesh in which the structural mesh is embedded, as il-
lustrated in Fig. 3.16(b), while the structural motion is still tracked in a Lagrangian way. Due
to the non-conformity of the fluid mesh, boundary conditions such as those required to enforce



CHAPTER 3. NUMERICAL MODEL OF FSI 50

(a) Conforming mesh method. (b) Non-conforming mesh method.

Figure 3.16: Mesh treatment methods for the characterization of the fluid-structure interface.

interface continuity cannot be imposed directly on Γ but must be imposed indirectly. Several
methods have been developed in order to link the fluid Eulerian to the solid Lagrangian variables
at the interface [99,103,104]. The continuous or discrete forcing approach spreads the influence
of the immersed solid boundary through forcing terms in the Navier-Stokes equations (2.1).
The spreading is performed by means of a smooth distribution function that leads to a diffuse
representation of the boundary. Other discrete approaches retain the immersed boundary as
sharp interface with no diffuse spreading. The computational stencils are locally modified in the
vicinity of the immersed boundary by ghost-cell or cut-cell approaches in order to enforce the
boundary conditions.

The main advantage of IB methods is the simplified Cartesian mesh generation procedure,
in contrast to the complex unstructured grids usually needed to accommodate complex 3D ge-
ometries. The use of Cartesian meshes is also particularly well suited for acceleration techniques
such as geometric multi-grids or for parallel partitioning. However another significant drawback,
in addition to the complex enforcement of the interface boundary conditions, is the difficulty
to locally control mesh refinement in the vicinity of solid boundaries, especially in boundary
layer regions for large Reynolds number flows. In particular, a Reynolds number increase leads
to a much faster increase of the mesh size (number of points) in the case of IB methods when
compared to standard conforming methods. Nonetheless, fluid IB methods have recently gained
popularity for FSI [40,49,101,102] due to their ability to treat very large solid motions without
the need to deform or regenerate the computational mesh. Consequently, there is no additional
cost associated with a mesh dynamics component in the coupled problem, and the severe mesh
distorsion that may arise after deformation of body-conforming meshes are circumvented.

In this thesis, the conforming mesh approach is retained. As the interface conditions are
naturally enforced as boundary conditions, data communication between the coupled solvers is
much easier. However, an overview of immersed boundary methods has been provided for the
sake of completeness. Moreover, the partitioned coupling algorithms in section 3.2 do not actu-
ally depend on the choice of the interface treatment approach, except in that the mesh dynamic
solver is not required anymore for IB (i.e. the operator M and the fluid mesh displacement z
can be discarded from Eq. (3.2)). This means that a coupling architecture based on black-box
solvers could be used with either an ALE solver or an IB solver without any loss of generality.
This actually highlights one of the significant advantages of the partitioned coupling approach.

3.4.2 Interface mesh interpolation

In a partitioned coupling approach, no matter the interface mesh treatment method chosen, fluid
and solid meshes are likely to be generated independently of each other by distinct engineering
teams [105]. This way each mesh can be optimized for the respective physics to model and
corresponding constraints. More specifically, mesh resolution, element types and topology can



CHAPTER 3. NUMERICAL MODEL OF FSI 51

widely differ between the different domains [106]. Consequently, the meshes at the interface are
usually non-matching, i.e., the nodes of the solid and fluid meshes on the interface boundary
do not coincide, as illustrated in Fig. 3.17. An interpolation of the data transferred from the
other domain is thus required. For non-conforming mesh methods, particularly IB methods, the
interpolation is implicit to the interface capturing procedure. However, for conforming mesh
methods, an explicit interpolation procedure has to be added to the coupling algorithm.

Structured solid mesh

Unstructured fluid mesh

Γ

Figure 3.17: Illustration of a non-matching mesh discretization at the fluid-structure interface.

Mathematically, the solid-to-fluid mesh interpolation procedure can be represented by an
operator If

s that maps the displacement of the solid interface onto the fluid interface:

dΓ
f = If

s(d
Γ
s ) . (3.57)

Analogously, the fluid-to-solid mesh interpolation procedure can be represented by an operator
Is
f that maps the fluid interface loads onto the solid interface:

tΓs = Is
f(t

Γ
f ) . (3.58)

The same operators can be defined for the interpolation of temperature and heat flux in case of
thermal coupling. These interpolation operators can be considered as the discrete version of the
coupling conditions, Eq. (2.27) (mechanical) and Eq. (2.30) (thermal). Note that for the sake of
clarity and conciseness, the coupling algorithms described in section 3.2 were developed assuming
perfect equality in the coupling conditions at the discrete level, i.e., assuming perfectly matching
fluid and solid meshes at the interface. For a non-matching interface, the operators (3.57)
and (3.58) can simply be added when solid-fluid and fluid-solid communications, respectively,
have to be performed, i.e. typically between two solver calls.

The central aspect of mesh interpolation is then the numerical description of the interpolation
operator. Many methods have been developed to map non-matching interface nodes for the
transfer of structural displacement to the fluid and fluid loads to the solid. In the following, the
direct pairing method introduced by Farhat et al. [61] is first described. Then, a more generic
mapping method involving an interpolation matrix is presented, where several approaches to
compute this matrix, such as the finite element interpolation, the Mortar method or the use of
radial basis functions, are presented.

Direct pairing method

In the context of a finite element discretization for the solid problem, Farhat et al. [61] developed
a methodology based on a direct pairing between interface fluid cells and Gauss points of interface
structural elements, as illustrated in Fig. 3.18. Every Gauss point is directly associated with a
fluid cell, in which pressure and shear stress are computed by the fluid discretization method,



CHAPTER 3. NUMERICAL MODEL OF FSI 52

e.g. finite volume, so that structural nodal loads can be computed by finite element quadrature
rules using the appropriate solid shape functions. However, this approach suffers from two

Gauss points

(c1) (c2)

(e)

s1

s2

s3

s4

Figure 3.18: Pairing between fluid cells (cl) and Gauss points of structural elements (e) for the
evaluation of fluid loads at nodes sm.

significant disadvantages. First, it does not guarantee energy conservation at the interface.
Energy conservation implies that the energy released or absorbed by the structure is equal to
the energy gained or released by the fluid. Energy conservation thus requires that the sum of
the discrete fluid loads,

ttot
f =

nf∑
i=1

tif , (3.59)

nf being the number of grid points on Γf, is equal to the sum of the discrete solid loads ttot
s on

Γs.

Although Farhat et al. [61] have demonstrated that a strictly speaking non-conservative
mapping method can be reliable and accurate, one can still expect numerical energy pro-
duction or dissipation to have consequences for particular problems such as aeroelastic
systems near the flutter point, where spurious energy transfer could alter the prediction
of the flutter threshold.

Remark

The second drawback of the direct pairing method arises from more practical considerations.
Although the fluid and solid domains have been described as sharing a common geometric
support for their interface Γ, this is not always true in practice. For instance, in an aeroelastic
analysis (see Fig. 3.19), a wing might be represented by its exact airfoil geometry in the fluid
domain so that the loads are correctly predicted, but this same wing could be represented as
an equivalent structural box in the solid domain. Consequently, the geometric discrepancies
between Γf and Γs are rather large and the mapping method may fail to properly represent the
aerodynamic loads on the structural model [61].

Conservative and consistent interpolation

Farhat et al. [61] have suggested another approach that can ensure the conservation of energy
at the interface and the exact equilibrium between the fluid tractions computed on Γf and the



CHAPTER 3. NUMERICAL MODEL OF FSI 53

Γs

Γf

Wing box model

Figure 3.19: Large geometric discrepancies between the fluid interface Γf and the solid interface
Γs due to a simple wing-box geometry description of the solid problem.

solid tractions computed on Γs, independently of any discretization issue. The loads on both
sides of the interface are computed using the discretization methods and mesh of the same field.
For example, if the fluid grid is finer than the structural grid, the forces induced by the fluid on
the structure are computed by using the discretization method of the fluid on the geometrical
support Γf.

The idea consists then in applying the interface continuity conditions on the virtual dis-
placement of the interface. Whichever approximation method is chosen for enforcing compati-
bility [61,105–107], this leads to the discrete version

δdΓ
f = H δdΓ

s , (3.60)

where δdΓ is the virtual displacement vector on the discrete fluid or solid interface and H is
the mapping matrix that depends on the chosen mapping method (as described below). The
discrete virtual work of the fluid loads acting on Γf is written as

δWf = (tΓf )T δdΓ
f , (3.61)

where tΓf is the discrete fluid loads computed on Γf using the fluid discretization. Analogously,
the discrete virtual work of the solid acting on Γs is given by

δWs = (tΓs )T δdΓ
s , (3.62)

and, since energy is conserved if δWf = δWs for any arbitrary virtual displacement, it can be
concluded that

tΓs = HT tΓf . (3.63)

This leads to a very simple condition for energy conservation at the interface: the mapping of
the fluid loads on the structure should correspond to the transpose of the mapping matrix used
for the displacement. In other words, only a one-way mapping, where the solid mesh is the
source mesh and the fluid mesh is the target, is required to generate H and HT. Moreover,
Eq. (3.63) shows that the structural loads tΓs do not depend on the discretization method of the
structure, but only on the discretization method of the fluid problem and the chosen mapping
method used to transfer the displacement.

A general condition for the conservation of the total load across the interface can be derived



CHAPTER 3. NUMERICAL MODEL OF FSI 54

as follows (for each physical dimension):

ttot
s =

ns∑
m=1

tΓs,m

=

ns∑
m=1

nf∑
l=1

HT
ml t

Γ
f,l

=

nf∑
l=1

ns∑
m=1

HT
ml t

Γ
f,l

=

nf∑
l=1

tΓf,l

ns∑
m=1

HT
ml

= ttot
f

ns∑
m=1

HT
ml ,

(3.64)

from which we conclude that the strict equality ttot
s = ttot

f holds only if the column-sum of HT

is equal to one,
ns∑
m=1

HT
ml = 1 for all l , (3.65)

or, equivalently, if the row-sum of H is equal to one. This condition ensures that a rigid body
solid translation dΓ

s = d0, d0 being a uniform vector, is exactly interpolated on the fluid mesh
since

dΓ
f,l =

ns∑
m=1

Hlm d0,m = d0 for all l. (3.66)

Although Eq. (3.65) ensures consistency of the displacement interpolation, requiring additionally
energy conservation does not guarantee consistency of the load interpolation, for which the
column-sum of H should be equal to one. Consequently, the conservative approach is, in general,
only partially consistent. A fully consistent interpolation may be obtained if the mapping matrix
for the loads is independently generated rather than obtained as the transposed of the mapping
for displacements. In this case, two matrices H and G are generated for the mapping of the
displacements and loads, respectively, which requires a two-way mapping. For the construction
of H, the mapping method is first applied with the solid mesh being the source and the fluid mesh
being the target. Then, the reverse mapping is applied (fluid as source and solid as target) for
the construction of G. Because in general G 6= HT, the fully consistent mapping may not ensure
the conservation of energy. Typically, a conservative approach is preferred for the interpolation
of interface mechanical quantities, such as displacement and traction, while the interpolation of
thermal quantities, such as temperature and heat flux, often relies on a consistent approach.

In the following, different mapping methods are described assuming that interface quantities
are interpolated from the solid mesh (source) to the fluid mesh (target). This is associated
with the construction of the matrix H. The interpolation of fluid quantities back onto the solid
interface is achieved through either a conservative interpolation based directly on HT or a fully
consistent interpolation by constructing G with the reverse mapping.

Mapping methods

The coefficients of the interpolation matrices are computed according to the chosen mapping
method for pairing nodes or elements of Γf with those on Γs, as discussed in the following. It
is important to note that relations such as Eqs. (3.60) and (3.63) are still valid for a perfectly
matching interface (Γf = Γs at the discrete level). In this particular case, H (and potentially
G) is simply a boolean matrix. The mapping for a matching mesh is thus by construction
simultaneously conservative and consistent.



CHAPTER 3. NUMERICAL MODEL OF FSI 55

Nearest neighbor The easiest way to map non-matching interfaces is based on a naive nearest
neighbor (NN) approach. In the situation where a fine fluid mesh is defined as target and a
coarser solid mesh as source, the NN mapping proceeds as follows: for each fluid nodes on Γf,
the nearest structural nodes on Γs is determined and the corresponding entry of H is set to one.
This leads to a very poor interface interpolation since several fluid nodes will be associated with
the same structural quantities, as shown in Fig. 3.20. For instance, the interpolation of the solid

Γf

Γs

f1 f2 f3 f4 f5 f6 f7 f8

s1 s2

Figure 3.20: Illustration of the nearest neighbor mapping. Fluid nodes f1 to f4 will be assigned
the same value from structural node s1, f5 to f8 will be assigned data of s2.

displacement field with the NN approach results in a non-acceptable stair-shape fluid interface
reconstruction, as shown in Fig. 3.21. The NN method performs well only in the specific case of
a rigid body translation of the solid interface. When interpolating fluid quantities onto the solid
side (reverse mapping) in a fully consistent approach, the solid nodes would receive information
only from a subset of fluid nodes.

−0.2 −0.1 0 0.1 0.2 0.3 0.4
0

0.1

0.2

0.3

0.4

0.5

x [m]

y
[m

]

Exact displacement
Inteprolated displacement

Figure 3.21: Illustration of the nearest neighbor interpolation leading to a stair-shape interface.
Case of the bending of a vertically clamped beam.

Finite element interpolation A better mapping method can be developed based on a finite
elements (FE) interpolation [61, 106] as depicted in Fig. 3.22. Considering again a fluid target
and a solid source, the approach consists in projecting (with orthogonal projection as suggested
by Beckert [106]) each fluid node fl of Γf onto its closest structural element (e) of Γs. The natural
coordinates (η, ξ) of the resulting projected point χl within the elements are then computed and



CHAPTER 3. NUMERICAL MODEL OF FSI 56

the interpolation is thus performed using the shape functions Nm of (e),

dΓ
fl

= dΓ
χl

=

ne∑
m=1

Nm(χl)d
Γ
sm , (3.67)

and thus the coefficient of the matrix H are directly given by Hlm = Nm(χl). Because the

(e)

χl

fl

s1

s2

s3

s4

η
ξ

Figure 3.22: Orthogonal projection of a fluid node fl onto its closest structural element (e) for
interface mapping using element shape functions.

shape functions form a partition of unity on each structural element,
∑ne

m=1Nm(χl) = 1, the
resulting interpolation is consistent (the row-sum of H is equal to one).

Mortar method Another interface mapping approach is obtained by a weighted residual
method, where the continuity conditions are imposed in a weak fashion by introducing the
Lagrange multiplier λ. For instance, the compatibility conditions for the displacement (same
expression for the other quantities) can be written at the continuous level as∫

Γ
λT (dΓ

f − dΓ
s ) dΓ = 0 . (3.68)

The discrete version of this expression implies that the field of the Lagrange multiplier (some-
times referred to as the fourth field of the problem [108]) has to be discretized as well. The
mortar method [49, 61, 105, 108–111] usually discretizes λ with the trace on Γf or Γs of the
discretization space of the fluid or solid quantities. For instance, when interpolating the dis-
placement, the fluid target side is chosen as the discretization space on the support Γf. The
resulting discretized version of Eq. (3.68) thus writes [61,108]

DdΓ
f −MdΓ

s = 0 , (3.69)

which gives
dΓ

f = D−1 MdΓ
s . (3.70)

In this expression, D is a square matrix whose coefficients are defined by integrals on Γf com-
bining shape functions of the fluid N f

l and Lagrange multiplier φk spaces. M is a rectangular
matrix whose coefficients are defined by integrals, also on Γf, combining shape functions of the
solid N f

m and Lagrange multiplier spaces:

Dkl =

∫
Γf

φkN
f
l dΓ =

∫
Γf

N f
kN

f
l dΓ ,

Mkm =

∫
Γf

φkN
s
m dΓ =

∫
Γf

N f
kN

s
m dΓ .

(3.71)



CHAPTER 3. NUMERICAL MODEL OF FSI 57

From Eq. (3.70), the identification of the mapping matrix H is straightforward, H = D−1 M
and the interpolation is consistent given the property of shape functions to be a partition of
unity [105]. The computation of D can be naturally performed since both shape function and
support for the λ field and the fluid problem coincide. However, the computation of M is less
direct since it mixes shape functions that are initially not defined on the same side (one on
Γf and the other on Γs) and projection steps are required in order to express Ns in terms of
coordinates underlying Γf [105,112]. More details on methods to compute D and M can be found
in Heinstein et al. [112], for example. De Boer et al. [105] also reviewed a few methods based on
Gauss point projection and element intersections. Several authors propose methods based on the
construction of a common refinement of Γf and Γs [113,114] or supermesh [115,116]. Jaiman et
al. [113,117] also compare the common-refinement method with node-projection based methods
and highlight the better accuracy of the former as well as its intrinsic conservation property.
Although the weighted residual/mortar method is mathematically more optimal than the FE
interpolation [61], it requires computing the inverse of the matrix D or, in practice, solving
the associated linear system, which might be a costly operation. Although Klöppel et al. [108]
propose a dual variant of the mortar method leading to a diagonal form of D that reduces the
cost associated to the computation of its inverse or to the solution of the linear system, the FE
interpolation method has the advantage of explicitly computing the mapping matrix.

Boundary element interpolation The boundary element method (BEM) fills the space
between fluid and structural interface grids with a fictitious and homogeneous elastic mate-
rial [118–121]. The boundary elements relate the fluid interface nodal quantities and the struc-
tural quantities to the equations governing the behavior of the filling material described by a
boundary integral equation [119, 120]. The BEM provides a consistent linear transformation
between dΓ

s and dΓ
f that can be transposed to obtain a conservative approach. However the

computation of the mapping matrix is quite complex since it is based on the solution of an
additional fictitious physics.

Constant-Volume Tetrahedron method In the Constant Volume Tetrahedron (CVT)
method [120], each fluid interface node is mapped with the three nearest structural neighbors.
The triangles formed by the three structural nodes and the fluid node are combined in order to
form a tetrahedron. The resulting relation between the fluid node and the three nearest struc-
tural nodes is that the projection of the fluid point onto the solid triangle moves linearly with the
structural points whereas the out-of-plane component is chosen to conserve the volume of the
tetrahedron. This method ensures correct mapping of rigid body motions but its formulation is
intrinsically nonlinear so that a global matrix representation is not possible. Consequently, a lin-
earization must be performed about a given structural position to obtain a suitable matrix [121]
but the consistency of the mapping is then lost [119].

All the aforementioned mapping methods share a significant drawback: they are based on a
mesh topology (node connectivity) representation. At the discrete level, the projection of source
mesh nodes onto the target mesh elements depends on the definition of the interface normal.
The normal and area discrepancies occurring for non-matching interface meshes, especially for
curved interfaces and large grid-spacing mismatching, make the procedure less accurate and less
robust [105, 113, 122]. In the case of the common refinement approach for the mortar method,
an additional topology has even to be generated. In practice, these methods require access
to the mesh topology through the individual solvers. Although topological information is well
defined inside each coupled solver, it is not guaranteed that this information can be accessed
and manipulated by an external coupling environment. For large problems requiring parallel
partitioning, the management of interface topology becomes even more challenging due to the
overlap of elements and the presence of ghost elements at the boundaries of each partition.



CHAPTER 3. NUMERICAL MODEL OF FSI 58

A very interesting alternative approach for the mapping of fluid-structure interfaces is the use
of meshless methods. These methods are said to be meshless because no topological information
or node connectivity is required to compute the mapping matrix; the procedure is only based on
arbitrary point clouds and is thus free of any mesh projection/intersection procedure. Smith et
al. [123] performed a significant litterature survey on several spline-based interpolation methods
used for aeroelastic computations. In particular, they assessed different spline mapping functions
in terms of accuracy, ease-of-use, robustness and cost-effectiveness. However, at the time of the
survey, the methods were often limited to simplified geometries for which, typically, a wing was
represented by a flat plate in both the structural and aerodynamical models with non-matching
discretization. A small perturbation theory was used to model the flow so that only normal (out-
of-plane) displacements are sufficient to describe both bending and torsion of the wing [119].
A recent extension to general three-dimensional (non-planar) interface interpolation has been
developed through the use of radial basis functions.

Interface mapping with radial basis functions (RBF)

General theory of RBF can be found in Buhmann [124] and Wendland [125]. Interpolation with
RBF has become a very powerful tool in multivariate approximation theory through scattered
data because of its excellent approximation properties. They have been successfully applied to
areas as diverse as computer graphics, geophysics, error estimation, the numerical solution of
partial differential equations and even mesh deformation [107]. Their ability to treat arbitrarily
scattered or gridded data makes them a perfect candidate for fluid-structure interface mapping
based on general black-box solvers and modular coupling, and they have been successfully ap-
plied to fluid-structure interface mapping for aeroelastic simulations, from wing to full aircraft
configurations [121,126–128]. The resulting coupling method thus keeps the dependence between
the coupled solvers at its lowest level. Moreover, it is applicable to any kind of grids (structured
and unstructured) and its parallel implementation is straightforward.

The basic principle of RBF interpolation is to transfer a field from a given set of points called
centers to another set of evaluation nodes. In the context of fluid-structure interaction, when a
quantity (the displacement is kept as an example) has to be interpolated from the solid to the
fluid, the centers are the nodes located on the solid source interface mesh and the evaluation
nodes are located on the target fluid mesh. The interpolated quantity is written as the weighted
sum of basis functions [107,126,127]:

w(x) =

n∑
k=1

αk φ (||x− xk||) + p(x) , (3.72)

where n is the number of source nodes, x the spatial coordinates, xk the coordinates of the
sources (centres), p(x) a polynomial and φ the basis functions of the Euclidian distance || · ||.
The coefficients αk and the coefficients of the polynomial are determined by requiring an exact
recovery of the interpolated function at the centres xm,

w(xm) = wm , (3.73)

and the additional requirements,
n∑
k=1

αk q(xk) = 0 , (3.74)

for any polynomial q with a degree less than or equal to that of polynomial p. The minimal
degree of the polynomial depends on the choice of the basis function φ. A unique interpolant
is given if the basis function φ is a conditionally positive definite function. A typical choice for
the basis function is made by using functions that are conditionally definite positive of order



CHAPTER 3. NUMERICAL MODEL OF FSI 59

less than or equal to two so that an interpolant can always be formed using linear polynomials
p [126]:

p(x) = β0 + βxx+ βyy + βzz . (3.75)

The choice of a linear polynomial has a significant consequence on fluid-structure interaction
mapping because it guarantees a consistent mapping (exact recovery of constant function, such
as rigid body translation).

The application of RBF interpolation for the mapping of the structural interface displacement
dΓ
s allows us to express the mapping matrix H. When dealing with a discrete number of points,

Eqs. (3.73) and (3.74) are written for the structural displacements in a matrix form as (for the
x-direction, similar expressions in the other directions)[

dΓ
s

0

]
x

=

[
Css Ps

PT
s 0

] [
α
β

]
x

, (3.76)

where the α and β vectors contain the unknown coefficients αk and the coefficients of the
polynomial p, respectively. The matrix Css is a ns × ns (ns being the number of points on
Γs) matrix containing all the evaluations of the basis functions for distances between pairs of
interface solid nodes such as Css(l,m) = φ (||xsl − xsm ||) and the matrix Ps is a ns × 4 matrix
whose rows are defined by the solid interface node coordinates

[
1 xsm ysm zsm

]
. Similarly,

the same expression can be written for the fluid interface displacements using Eq. (3.72):

dΓ
f,x =

[
Cfs Pf

] [α
β

]
x

, (3.77)

where, in this case, Cfs is a nf × ns (nf being the number of fluid points on Γf) matrix that
contains the evaluation of the basis functions for distances between fluid and solid interface
nodes such as Cfs(l,m) = φ (||xfl − xsm ||) and Pf is a nf × 4 matrix whose rows are defined by
the fluid node coordinates

[
1 xfm yfm zfm

]
. A simple combination of Eqs. (3.76) and (3.77)

allows us to write the linear relation between dΓ
f and dΓ

s (for each spatial dimension):

dΓ
f =

[
Cfs Pf

] [Css Ps

PT
s 0

]−1

︸ ︷︷ ︸
H̃

[
dΓ

s

0

]
, (3.78)

from which the mapping matrix H can be identified as the first nf×ns block of H̃. Obtaining the
mapping matrix requires the inversion of a relatively small system. For a solid-to-fluid mapping,
this matrix is of size (ns + 4) × (ns + 4) which is most of the time much smaller than the size
of the systems involved in the computation of the solution for each physics. For a conservative
approach, the transpose of the mapping matrix used to transfer the fluid loads to the structural
interface is directly obtained as being the first ns × nf block of

H̃T =

[
Css Ps

PT
s 0

]−T [
Cfs Pf

]T
. (3.79)

For a fully consistent approach, the fluid-to-solid mapping G matrix is independently built by
using the same procedure as for H but with a fluid donor and a solid target mesh. Thus, the
matrix G is given by the first ns × nf block of

G̃ =
[
Csf Ps

] [Cff Pf

PT
f 0

]−1

, (3.80)

which requires now the inversion of a larger nf × nf system.



CHAPTER 3. NUMERICAL MODEL OF FSI 60

Globally supported

Volume spline (VS) ||x||
Multi-quadric biharmonic (MQ)

√
||x||+ a2

Thin Plate Spline (TPS) ||x||2 log ||x||
Locally supported

Compact C0 (CPC0) (1− ξ)2
+

Compact C2 (CPC2) (1− ξ)4
+ (4ξ + 1)

Table 3.2: Examples of basis functions frequently used for fluid-structure interface mapping.
For locally supported functions, ξ = ||x||

r where r is the compact radius. The subscript + means
that only positive contributions are considered (zero otherwise).

The RBF fluid-structure mapping is fully dependent on the choice of the basis function to
compute the C block matrices. Many basis functions have been assessed by several authors for
fluid-structure interface mapping [105, 107, 121, 126, 127] and especially for aeroelastic applica-
tions. The most frequent basis functions are summarized in Tab. 3.2, where a major distinction
is made between globally and locally supported functions. Globally supported functions consider
the contribution of every node, leading to a dense block matrix C. Conversely, locally supported
functions introduce a fixed radius r that scales the distance between nodes,

ξ =
||x||
r

, (3.81)

and thus localize the interpolation by only considering the contributions of nodes that are located
within a sphere of radius r with respect to the centers. Locally supported functions provide a
sparse interpolation system for which the sparsity level is dictated by the value of the radius
r. A large value of the radius yields a more accurate interpolation but also a denser system to
store in memory and to solve. Moreover, excessively large radii lead to nearly singular matrices,
because then all the entries of C are approximately equal to one. Conversely, small values of the
radius imply sparse and light systems with lower accuracy. There is no clear rule for choosing
the best value of the radius since its size might be problem-dependent. In practice, a reasonable
fixed support radius for the fluid-structure-interaction problem has to guarantee a full coverage
of the interpolation space. Each sphere with radius r should include at least all nearest neighbors
of the considered centers. It would be very useful if we could vary the radius from center to
center, but the theory only guarantees solvability for a fixed radius [126]. The dependence on
the value of the support radius for locally supported functions can be rendered less important
(and almost removed) by performing localized interpolations wp on small overlapping patches
of donor centers of size np. The union of all the patches covers all the donor interface nodes.
The global interpolation w is then computed based on a partition of unity involving the local
interpolations wp over P patches,

w(x) =
P∑
p=1

ηp(x)wp(x) , (3.82)

where the coefficients ηp are constrained to form a partition of unity (PoU)

P∑
p=1

ηp(x) = 1 . (3.83)



CHAPTER 3. NUMERICAL MODEL OF FSI 61

A way to satisfy this last relation is to compute the coefficients as

ηp =
Ψp(x)
P∑
k=1

Ψk(x)

, (3.84)

where the function Ψ(x) may be freely defined as long as it is smooth [129]. A fair choice would
be to use one of the functions listed in Tab. 3.2. Rendall et al. [129] propose a method to define
the patches of centers. For instance, when the solid is the donor side, for each fluid nodes a
patch containing the nsp nearest solid interface neighbors will be used to compute a local Cp

ss.
By analogy, the nfp nearest fluid interface neighbors are used to compute a local Cp

fs. Then, the

corresponding row of H̃ is assembled with the local matrices using the PoU and Eq. (3.82). The
advantage of the localization is that the size associated to each local C matrix is reduced since
the typical size of a patch is usually limited (20 to 50 points). Under these conditions, a direct
inversion of the system formed with Cp

ss can be affordable, leading to an explicit computation
of the sparse mapping matrix H, and G in the case of a fully consistent mapping.

3.5 Dynamic mesh treatment

As described in the previous section, a direct consequence of adopting a conforming mesh ap-
proach is the need for a dynamic adaptation of the fluid mesh to accommodate the displacement
of the fluid-structure interface as the solid domain moves or deforms. Two main approaches can
be considered. The first approach consists in performing a remeshing of the fluid domain: each
time the fluid-solid interface deforms, a new fluid mesh is generated. For large three-dimensional
meshes, the cost associated with a complete remeshing is obviously unacceptable, especially if
the grid generator has to be called several times per time step in the case of a strongly coupled
procedure. Additionally, mesh topology and connectivity are never conserved from one mesh to
the other and thus the numerical errors introduced by interpolating the solution from the old
mesh to the new one might become prohibitive. A second approach is to directly adapt the fluid
mesh to the displacement of Γf by deforming the mesh, i.e., by continuously moving the grid
nodes from the imposed displacement of the interface boundary to the inner volume mesh, and
thus solve the fluid flow with the ALE formalism as introduced in Chapter 2. This approach
fully preserves mesh topology and connectivity. However, mesh deformation can significantly
degrade the mesh quality (degenerated cells, cells with negative volume, highly skewed cells, ...),
with a major impact on the accuracy of the fluid solution or even on the convergence of the
algorithm. This problem is even more acute for hybrid structured-unstructured meshes. Such
meshes are typically used for viscous flows at high Reynolds number in the vicinity of solid
surfaces to ensure a good resolution of the boundary layer. The grid cells close to the surface
are usually rectangular (2D) or hexahedral (3D) with a very high aspect ratio and a strong
stretching in the wall-normal direction, as shown in Fig. 3.23. The mesh deformation algorithm
should ensure that the boundary layer cells keep their shape, size and orthogonality to preserve
solution accuracy.

The quality and validity of the deformed mesh directly depend on the particular mesh defor-
mation method considered. However, the numerical method must fulfill additional requirements
linked to the ALE formalism when computing geometric parameters of the moving mesh, such
as the node velocity vΩ. This section first presents several mesh deformation techniques and
their corresponding characteristics, and then introduces the concept of geometric conservation
law.

3.5.1 Mesh deformation methods

Usual mesh deformation methods can be classified into two main classes [130]: physical analogy
or interpolation. In the former category, the deformed mesh is obtained by solving a fictitious



CHAPTER 3. NUMERICAL MODEL OF FSI 62

Figure 3.23: Unstructured two-dimensional fluid mesh with prismatic boundary layer mesh in
the vicinity of the body surface.

physical problem governed by PDE’s, where the displacement of the interface is represented by
the boundary conditions. In the later category, the displacement of the interface is interpolated
inside the domain mesh. Another particular category is the submesh method that combines
physical analogy and interpolation. Physical analogy is used to deform a coarser version of the
mesh and the resulting displacement field is then interpolated onto the initial finer level.

Physical-analogy-based methods

The physical analogy approaches the mesh deformation as a physical process governed by PDE’s.
Typically, the mesh is cast as a physical medium, such as a network of springs or a pseudo-elastic
solid, on which governing equilibrium equations are solved to obtain the deformation field of that
medium.

Spring analogy The simplest method is the spring analogy [131], where each edge connecting
two adjacent nodes i and j is associated to a spring of stiffness kij , as illustrated in Fig. 3.24. In

ji

lij

kij

Figure 3.24: Illustration of the spring analogy method for deforming an unstructured fluid mesh
in 2D.

order to prevent the nodes from collapsing into each other during the deformation, the stiffness



CHAPTER 3. NUMERICAL MODEL OF FSI 63

is chosen to be inversely proportional to the length lij of the supporting edge,

kij ∝
1

lij
, (3.85)

with lij = ||xΩ,i−xΩ,j ||. Equilibrium of forces is then imposed at each node i of the fluid mesh,
which leads to the system

K(δX)Ω = 0 on Ωf ,

X = X on Γf ,
(3.86)

where δX is the vector of unknown mesh node displacements, K the stiffness matrix containing
the kij values and X the displacement of the interface boundary. This standard spring analogy
method has been shown to work well for 2D triangular meshes with a relatively small motion
amplitude. For larger displacements, the method is not able to avoid grid line crossovers, because
the definition (3.85) of the edge stiffness only prevents node collapsing. An improvement of the
method consists in adding torsional springs with stiffness Cij at each mesh node [132]. This
additional stiffness can be explicitly related to the area Aijk of the associated mesh triangles as

Cijki =
l2ijl

2
ik

4A2
ijk

, (3.87)

which provides additional rigidity to each element and prevents them to become flat during the
deformation. This approach can be extended to three-dimensional unstructured meshes either
by cutting each tetrahedron with triangles containing one of the associated nodes and then
applying the 2D methodology to these triangles [133], or by adding a linear spring that connects
each tetrahedron node to its opposite face [134], as illustrated in Fig. 3.25. Unlike some other
mesh deformation methods, the spring analogy method is free of external parameter. It can
be extended to other types of elements for structured meshes as well. However, despite the
improvements, the method may fail to produce valid meshes for large interface displacements,
especially in the presence of a fine boundary layer mesh in the vicinity of the solid interface.

i

j

k

lp

Figure 3.25: Spring analogy for 3D unstructured meshes. Additional linear spring connecting
each vertex i with the opposite face in a tetrahedron. The edge springs are not represented but
are part of the method as well.

Laplacian smoothing Another approach for deforming the fluid mesh by physical analogy
is the Laplacian smoothing [135]. The grid nodes are relocated according to the simple Laplace
equation

∇ · (λ∇xΩ) = 0 (3.88)



CHAPTER 3. NUMERICAL MODEL OF FSI 64

with the displacement of the fluid-structure interface Γf imposed as Dirichlet boundary condition.
The parameter λ is here an arbitrary diffusion coefficient. A subsequent discretization of this
Laplace equation leads to a system of equations similar to (3.86). A parameter λ that varies as a
function of the local cell size or the distance from the solid interface can be used to better control
the displacement of the grid nodes throughout the entire fluid domain. A very similar method
is obtained by solving a fourth-order biharmonic equation [136] that extends the second-order
Laplacian to control not only the mesh position but also the mesh spacing. Nonetheless, the
extension to fourth-order has encountered only limited success due to a severe increase in cost
and complexity compared to the standard second-order Laplacian. The principal advantage of
Laplacian smoothing is that it is relatively simple to implement. However, the final mesh quality
after deformation is still limited in case of large mesh motion [137,138].

Pseudo-elasticity analogy The last widely used physical-analogy-based method is obtained
by casting the fluid domain as an equivalent elastic solid [139–141]. The mesh deformation is
then computed by solving the steady linear elasticity equation:

∇ · σ = 0 on Ωf ,

δxΩ = δxΩ on Γf ,
(3.89)

where the Cauchy stress tensor is computed by the same Eqs. (2.22) and (2.23) as for a solid,
and by using the Cauchy strain tensor defined on the mesh nodes displacement:

ε =
1

2

(
∇δxΩ +∇δxT

Ω

)
. (3.90)

The mesh displacement on Γf is again imposed as Dirichlet boundary condition. The solution
of Eq. (3.89) can be computed by a Finite Element (FE) formulation (see Section 3.7 for more
details) leading again to an equation similar to Eq. (3.86) to be solved. Although the FE
formulation used to solve the mesh deformation is an additional source of complexity, it can be
limited to the linear case even in presence of large mesh motion. The rational is that no physical
solution is sought but only a solution that preserves the mesh quality after deformation. For this
purpose, an artificial Young’s modulus (EΩ) and Poisson coefficient (νΩ) are used to control the
amount of deformation throughout the mesh. A variable Young’s modulus is used to produce
the desired effect in terms of stiffening the mesh against volume or shape changes. Local values
of EΩ can be set according to the volume or the Jacobian of the elements [139], or to the distance
from a specified solid boundary. This can be used in particular to guarantee quasi-rigid motion
of cells near the deforming solid interface. This preserves the boundary layer mesh where the
local displacement may be much larger than the typical cell size. The pseudo-elastic casting
method is therefore more efficient for relatively large mesh deformations and is applicable to
any kind of grid (two- or three-dimensional, structured, unstructured, hybrid) provided that the
underlying FE formulation is not restricted to any specific type of elements.

Interpolation-based methods

All the methods described above and based on physical analogies share the same drawback: a
system of the size of the fluid domain has to be solved. Although the solution does not have to be
physically accurate, this is obviously a significant additional cost that can become prohibitive for
large problems, even if the methods can be parallelized. On the other hand, the second category
of mesh deformation techniques is based on interpolation and tends to reduce the cost associated
with the mesh dynamics. Interpolation schemes treat the fluid volume mesh as a problem of
interpolating displacements from boundary points to other points inside the volume mesh. A
significant advantage of this approach is that it does not require connectivity information and
thus can be, in general, robustly applied to arbitrary mesh types, viscous boundary layer meshes
or even meshes that contain general polyhedral elements or hanging nodes [130].



CHAPTER 3. NUMERICAL MODEL OF FSI 65

In the following, the inverse distance weighting, radial basis functions and sphere relaxation
methods are described. The transfinite interpolation method, as described by Gaitonde et.
al. [142], is a simple and robust mesh deformation method that is restricted to structured grids
only and will therefore not be detailed in this work.

Inverse distance weighting (IDW) The IDW method is an explicit interpolation method [130,
143] where the displacement of the volume mesh nodes is described through a weighted average
of all boundary node displacements as (the subscript Ω has been dropped for clarity)

δx(x) =

nb∑
j=1

wj(x)δxj

nb∑
j=1

wj(x)

, (3.91)

where nb is the number of boundary nodes (including those on Γf) and δxj their displacement.
The weights wj are given by a function of the inverse of the distance between a volume mesh
node and a boundary node:

wj = w

(
1

||x− xj ||

)
. (3.92)

Witteveen [143] proposed the simple expression

wj =
1

||x− xj ||c
, (3.93)

with c being a constant. Luke et al. [130] introduced the extended expression

wj = Aj ·

[(
Ldef

||x− xj ||

)a
+

(
αLdef

||x− xj ||

)b]
, (3.94)

where Aj is the area weight assigned to node j, Ldef is an estimated length of the deformation
region, α is an estimated size of the near body influence region expressed as a fraction of Ldef, and
a and b are user-defined exponents. Details about how to choose these parameters can be found
in the work of Luke et al. [130]. This extended version of the IDW interpolation was shown to
perform well on three-dimensional hybrid meshes undergoing large boundary deformation. Due
to its point-to-point explicit formulation, the associated cost is kept relatively low. Additionally,
it is relatively easy to parallelize.

Radial basis functions Interpolation for fluid mesh deformation can also be performed using
radial basis functions [144]. Following the discussion of Section 3.4.2, the node displacements in
the volume are interpolated from the boundary with Eq. (3.72). The source centers are the nodes
on the boundaries of the fluid domain and the interpolation nodes are the volume mesh nodes.
For mesh deformation, it is usually recommended to discard the polynomial term of the RBF
formulation to avoid its undesirable global coverage, which can cause the whole domain to move
rather than deform [145]. RBF mesh deformation has demonstrated good performance for large
boundary motion on hybrid meshes. However, this implicit method still requires the solution of
a linear system. Although its size corresponds only to the number of boundary points instead
of the entire volume mesh as in the case of physical-analogy-based methods, the associated cost
might still become prohibitive. Moreover, the partition of unity approach is less desirable for
mesh deformation because discontinuities or a loss of smoothness may appear in regions where
interpolations overlap. In order to reduce the cost associated with the RBF mesh deformation,
Rendall and Allen [146,147] have developed another procedure that aims at reducing the number
of boundary points that are effectively considered to define the motion. A suitable reduced set of



CHAPTER 3. NUMERICAL MODEL OF FSI 66

interface nodes that represents a pre-defined deformed geometry to a good degree of accuracy is
selected by a greedy algorithm. This data reduction approach has recently gained much interest
and some further improvements have been proposed such as a dynamic adaptive selection of the
reduced set based on the current solid deformation [148–150] or a multiscale method that is not
error-based and only depends on the initial geometry (not in the current deformation) [151].

Sphere relaxation A special kind of interpolation method can be found in the works of Zhou
and Li [137, 152]. The mesh deformation is decomposed into several steps. First each volume
node is given a layer index which is used to directly sort the nodes into different layers according
to their distance from the boundaries. Each node has at least two layer indices corresponding
to the deformed boundary and the fixed outer boundary, respectively. The nodes are then
submitted to a pre-displacement by using the IDW approach as described by Eq. (3.91) with
a weight being inversely proportional to the layer index. The next step consists in correcting
locally the node positions by applying sphere (in 3D, disk in 2D) relaxation. Before the pre-
displacement, a network of spheres, each centered at the nodes, is created in such a way that
initially maximizes the tangencies and minimizes overlaps, as illustrated in Fig. 3.26. After the

CiC1

C2 C3

C4

C5C6

Figure 3.26: Sphere relaxation. Two-dimensional representation of spheres centered at the nodes
and used for mesh deformation [152].

pre-displacement of the mesh nodes, attractive and repulsive interactions between spheres are
computed according to the amount of overlap and deviation that has resulted from the pre-
displacement. These interactions are used to smoothly relocate the nodes (sphere relaxation)
in order to recover a configuration that maximizes tangencies and minimizes overlaps. The last
step is a post-smoothing procedure that applies an additional node relocation so as to ensure
good mesh quality and avoid negative cells.

Submesh methods

Finally, a special category of methods is obtained by mixing the physical analogy and interpo-
lation in one single approach. Typical examples are mesh deformation methods that are based
on a submesh approach. A coarser mesh that is easier to deform is first generated from the
volume mesh. This coarse mesh can be obtained by standard triangulation [153–155] or can be
defined as a Cartesian background mesh [156] which is more robust with respect to complex
geometries. The nodes of the computational mesh are first simply mapped onto the submesh.
Then, the submesh is deformed according to the motion of the boundary with the help of one
of the aforementioned methods (e.g. pseudo-elasticity or RBF) and finally the displacement of
the submesh nodes are interpolated back to the computational support. This interpolation can



CHAPTER 3. NUMERICAL MODEL OF FSI 67

be performed using FE shape functions or, again, radial basis functions. The submesh method
has been shown to preserve the quality of arbitrary two- and three-dimensional meshes at lower
cost since only a coarse mesh has to be effectively deformed. The mapping procedure is robust
even in presence of highly refined viscous boundary layer grids, since the relative position of
a grid point in the corresponding submesh element is maintained. However, the interpolation
procedure makes the topology characteristics of the coarse submesh visible in the computational
mesh in case of large rigid-body movements [154].

3.5.2 Geometric conservation law

When selecting a method for integrating the fluid equations on a arbitrarily moving mesh, such
as the ALE scheme, it is usually preferable that this scheme preserves the trivial solution of a
uniform flow field. This basic requirement translates into a specific condition on the numerical
scheme and on the procedure for updating the mesh position and velocity. This condition is
usually referred to as the Geometric Conservation Law (GCL) [157–164]. For a general three-
dimensional mesh, this law states that the change in volume (area in 2D) of each control volume
between tn and tn+1 must be equal to the volume swept by the cell boundary during ∆t =
tn+1− tn. Consequently, xΩ and vΩ cannot be updated solely based on mesh displacement when
using the ALE formalism. When the fluid domain and equations are discretized using the Finite
Volume Method (see Section 3.6 for more details), the GCL takes the form:

|Ωn+1
i | − |Ωn

i | =
∫ tn+1

tn

∫
∂Ωi

vΩ · n dS dt =
∑
j∈V (i)

∫ tn+1

tn

∫
∂Ωij

vΩ · n dS dt , (3.95)

where |Ωn
i | is the volume of cell i at time tn, ∂Ωi is its boundary, V (i) is the set of neighbor

cells and ∂Ωij is the common face between cells i and j. The fully discrete version of the
geometric conservation law (DGCL) is obtained when associated with a time integration scheme.
In a series of papers by Farhat and coworkers [157–160], efforts were invested in generating
first and second-order integration schemes, and particularly the related way of computing grid
velocity, that satisfy the DGCL. It was shown that the DGCL not only preserves the state of a
uniform flow, but also ensures that the order of accuracy of the time-integration scheme originally
developed for a fixed grid is also achieved on the moving grid. For a time integration scheme
of order p on a fixed mesh, satisfying the corresponding p-order DGCL would be a sufficient
condition for this scheme to be at least first-order time accurate on a moving mesh [159, 160].
Consequently, a numerical scheme that satisfies the DGCL provides in general a higher accuracy
than its counterpart violating the DGCL. It is important to note that the conservation of the
temporal accuracy on moving grids has considerable consequences in aeroelastic problems where
the energy exchange between the fluid and solid domains, e.g. for flutter assessment, is highly
sensitive to time-accuracy. Additionally, unless restricted by numerical stability, a scheme that
is DGCL-compliant allows larger time steps.

The (D)GCL has also been related to the stability of the corresponding numerical method.
Lesoinne et al. [157] have shown that potential spurious oscillations may occur on the solu-
tion when violating the GCL. Later, Farhat et al. [160] demonstrated for several ALE schemes
that satisfying the corresponding DGCL is a necessary and sufficient condition for a numerical
scheme to preserve the stability of its fixed grid counterpart. They also confirmed that an ALE
scheme violating the DGCL is bound to exhibit spurious oscillations and overshoots for practical
computational time steps. Occasionally, such a non GCL-compliant scheme can also exhibit an
unbounded behavior. For these reasons, and because the computational overhead associated
with enforcing a DGCL is minimal, they finally recommended numerical methods to satisfy the
DGCL when considering CFD applications on moving grids, such as fluid-structure interactions.

However, the implications of the (D)GCL have received controversial considerations [50,
161–163]. Geuzaine et al. [161], after further characterizing the DGCL, finally showed that it



CHAPTER 3. NUMERICAL MODEL OF FSI 68

is neither a necessary nor a sufficient condition for an ALE numerical scheme to preserve on
moving grids the order of accuracy of its time integration established on fixed grids. Boffi et
al. [162] also provided opposite conclusions regarding the stability, stating that the DGCL is
neither a necessary nor sufficient condition for stability (except for some particular schemes).
Nevertheless, they still recognized that GCL-compliance is likely to improve accuracy of the
numerical scheme and enhance its stability in some cases. Finally, although violating the GCL
may not degrade the original time-accuracy of the numerical scheme, it may introduce extra
artificial errors [164] so that the use of GCL-compliant ALE scheme are still encouraged in
general. Considering the development of GCL-compliant numerical methods as a purely fluid
solver requirement, a deep study of such schemes falls beyond the scope of this thesis and the
interested reader can find many details in the aforementioned references.

3.6 The fluid solver

The numerical model representing the black-box fluid operator F is now detailed in the context
of the SU2 solver that is used in this work. The SU23 solver is an open-source code originally
developed at the Aerospace Design Lab of Stanford University [165–171] as a computational
analysis and design package for solving partial differential equation and constrained optimization
problems on general unstructured meshes. Although the framework is extensible to arbitrary
sets of governing equations the core of the suite is a Reynolds-averaged Navier–Stokes (RANS)
solver capable of simulating compressible and turbulent flows on dynamic meshes using ALE
formalism. Available turbulence models are the Spalart-Allmaras [56] and the Shear Stress
Transport k − ω [57] models whose detailed description can be found in Appendix A.

3.6.1 Spatial integration

In SU2, the unsteady ALE-RANS equations are spatially discretized using the Finite Volume
Method (FVM) with a standard edge-based structure on a dual grid with control volumes con-
structed using a median-dual, vertex-based scheme as shown in Fig. 3.27. Median-dual control
volumes are formed by connecting the centroids, face, and edge-midpoints of all cells sharing
the particular node. The semi-discretized integral form of the RANS equations is given by

=

=

Ωi i j

nij

Dual cell

Primal grid

Figure 3.27: Schematic of the definition of a control volume on the dual mesh based on the
primal mesh.

∫
Ωi

∂U

∂t
dΩ +

∑
j∈V (i)

(
F̃ c
ij + F̃ v

ij

)
∆Sij −Q|Ωi| =

∫
Ωi

∂U

∂t
dΩ +Ri(U) = 0 , (3.96)

3Stanford University Unstructured



CHAPTER 3. NUMERICAL MODEL OF FSI 69

where U is a vector of conservative variables [ρ, ρv, ρE]T, and Ri(U) is the residual. The
quantities F̃ c

ij and F̃ v
ij are the projected numerical approximations of the convective and viscous

fluxes, respectively, and Q is identified as the source term. The quantity ∆Sij is the area of the
face associated with the edge connecting node i and j, Ωi is the volume of the control volume i
and V (i) is the set of neighboring nodes to node i. The convective fluxes, that include the mesh
velocity for the ALE formulation, are evaluated by either central or upwind schemes. The Roe
flux-difference-splitting scheme [172] evaluates the convective fluxes based on flow quantities
reconstructed separately on both sides of the face of the control volume from values at the
surrounding nodes:

F̃ c
ij =

(
F c
i + F c

j

2

)
· nij −

1

2
PΛP−1(Ui −Uj) . (3.97)

In this expression, nij is the outward unit normal associated with the face between nodes i
and j, P is the matrix of eigenvectors of the flux Jacobian matrix constructed using the Roe
averaged variables and projected in the nij direction, and Λ is a diagonal matrix with en-
tries corresponding to the absolute value of the eigenvalues of the flux Jacobian matrix. The
discretization is first-order accurate in space but second-order accuracy is obtained via recon-
struction of variables on the cell interfaces by using a Monotone Upstream-centered Scheme for
Conservation Laws (MUSCL) approach [173] with gradient limitation. Slope limiting is achieved
through the Venkatarkishnan limiter [174] to preserve monotonicity in the solution by limiting
the gradients during higher-order reconstruction. Another standard spatial scheme available in
SU2 for evaluating the convective flux is the JST (Jameson-Schmidt-Turkel) scheme [175]. It
uses a blend of two types of artificial dissipation which are computed using the difference in
the undivided Laplacians (higher-order) of connecting nodes and the difference in the conserved
variables (lower-order) on the connecting nodes. These two levels of dissipation are blended by
using a pressure switch that triggers lower-order dissipation in the vicinity of shock waves. The
final expression for the numerical flux using the JST method is

F̃ c
ij = F c

(
Ui +Uj

2

)
· nij − dij , (3.98)

where the artificial dissipation along the edge ij is given by

dij =
(
ε(2)(Uj −Ui)− ε(4)(∇2Uj −∇2Ui)

)
φijλij , (3.99)

in which λ and φ are a local spectral radius and a grid stretching parameter, respectively.
Further details on the way these variables are computed can be found in Palacios et al. [165].
The convective terms for the turbulence models is discretized using a first-order upwind scheme.

In order to evaluate the viscous fluxes using the FVM, flow quantities and their derivatives
are required at each face of the control volume. The values of the flow variables are thus averaged
at the cell faces. The gradients of the flow variables are first calculated using either a Green-
Gauss or a least-squares method at all grid nodes and then averaged to obtain the gradients at
the cell faces. Source terms are simply approximated using piecewise constant reconstruction
within each of the dual control volumes.

3.6.2 Time integration

Equation (3.96) is integrated in time using either an explicit or implicit Euler scheme (the explicit
Runge-Kutta method is also available). For the implicit Euler scheme, the fully discretized
version of Eq. (3.96) reads

|Ωn
i |

∆tni
∆Un

i = −Ri(U
n+1) , (3.100)



CHAPTER 3. NUMERICAL MODEL OF FSI 70

where ∆Un
i = Un+1

i −Un
i . Since the residual at time n+1 is unknown, a first-order linearization

has to be performed such that

Ri(U
n+1) = Ri(U

n) +
∂Ri(U

n)

∂t
∆tni = Ri(U

n) +
∑
j∈V (i)

∂Ri(U
n)

∂Uj
∆Un

j , (3.101)

and the following linear system is solved to find the solution update:(
|Ωn
i |

∆tni
δij +

∂Ri(U
n)

∂Uj

)
∆Un

j = −Ri(U
n) . (3.102)

A steady-state solution is obtained by a time-marching procedure using a specific numerical
time step ∆tni . A local-time-stepping approach, that allows each cell in the mesh to advance at its
own maximum time step, is used to accelerate the convergence to steady state. The evaluation
of the local time step is based on the solution within the associated cell and a user-defined
Courant-Friedrichs-Lewy (CFL) number [165].

For unsteady simulations, a second-order accurate dual time-stepping strategy [176, 177] is
used. The unsteady problem is transformed into a steady problem at each physical time step,
which is solved with the aforementioned time-marching procedure using convergence acceleration
techniques. The following problem

∂U

∂τ
+R∗(U) = 0 , (3.103)

is then solved, where the dual time residual is given by

R∗(U) =
3

2∆t
U +

1

|Ω|n+1

(
R(U)− 2

∆t
Un|Ω|n +

1

2∆t
Un−1|Ω|n−1

)
. (3.104)

In these expressions, ∆t is now the physical time step, τ is a fictitious numerical time to converge
the steady state problem, R(U) still denotes the residual of the governing equations and U =
Un+1 once the steady state problem is solved.

3.6.3 Multigrid acceleration techniques

In order to speed up the damping of spatial low-frequency errors, SU2 relies on an agglomeration
multigrid implementation that generates effective convergence at all length scales of a problem.
It employs a sequence of grids of varying resolution that accelerates the convergence of the
numerical solution of a set of equations by computing corrections to the finer-grid solutions
on coarser grids recursively [178, 179]. A specific runtime agglomeration technique is used so
that it is not necessary to manually create independent meshes for the coarse level; this task is
completely automated in SU2 [165,169].

3.6.4 Dynamic mesh computation

SU2 features a mesh deformation algorithm that is based on the pseudo-elasticity analogy as
described in Section 3.5. The fictitious Young’s modulus can be set as constant, inversely pro-
portional to the cell volume or inversely proportional to the distance from the moving boundary.
An adequate mesh quality is usually obtained with one of the last two options, even for relatively
large mesh deformation, as illustrated in Fig. 3.28 for the 2D case of a pitching NACA 0012 air-
foil. The mesh deformation is computed incrementally at each time step and can be subdivided
into smaller deformation increments to gain robustness in case of large motion. The cost of the
mesh deformation procedure can also be reduced by limiting the area of the fluid mesh that
is allowed to deform. Usually a mesh region extending from the moving boundaries to a user
defined limit is defined as the moving part and its outer region is considered fixed. This might



CHAPTER 3. NUMERICAL MODEL OF FSI 71

(a) Initial mesh.

(b) Deformed mesh.

Figure 3.28: Two-dimensional mesh deformation after a 45◦ rotation of a NACA 0012 airfoil
using the elastic analogy implemented in SU2. This example uses a fictitious Young’s modulus
that is inversely proportional to the distance from the airfoil (moving boundary).



CHAPTER 3. NUMERICAL MODEL OF FSI 72

drastically decrease the cost associated with the mesh deformation by reducing the size of the
linear system to be solved by the procedure. The SU2 solver also directly provides capabilities
to describe the motion of the moving boundary that is limited to simple rigid body motion. This
is typically used for one-way aeroelastic study in which the translation and rotation of the rigid
boundary is controlled by a sine function with determined amplitude and frequency. For more
complex rigid motion or when deformable solid boundaries are considered, an external coupling
framework is needed.

The local grid velocity vΩ, that is required for solving the ALE form of the governing equa-
tions, is computed based on node locations at prior time instances and using a finite differencing
approximation that is consistent with the chosen dual time-stepping scheme [165]. For second-
order accuracy in time, the mesh velocity is given by:

vΩ =
3xn+1

Ω − 4xnΩ + xn−1

2∆t
, (3.105)

in which ∆t is the physical time step. Finally, the numerical implementation of the GCL has
been included as part of the dual-time stepping approach [170,180].

3.7 Structural solver

The numerical models used to represent the black-box solid operator S are implemented in two
in-house solvers: Metafor [58, 181–184] and GetDP [185, 186]. Both codes solve the governing
equations for the structure in a Lagrangian formalism using the Finite Element Method (FEM).
Metafor is designed to solve nonlinear thermo-mechanical problems involving large displacements
and deformations of material, complex constitutive laws accounting for plastic and visco-plastic
behavior and contact problems. GetDP is an open-source linear Finite Element software and a
general environment for the treatment of discrete PDE-based problems including linear elasticity,
heat conduction or electromagnetism, to cite a few.

3.7.1 Spatial integration

The governing equation (2.18) is discretized using the Finite Element Method. On each element
e of the computational grid the displacement can be written as a combination of the nodal
displacement dI ,

de =

N∑
I=1

φIdI , (3.106)

where N is the number of nodes associated with the element and φI the associated shape
functions that depends on the type of the element. In order to improve the behavior of low-order
elements for nonlinear problems, e.g to avoid shear locking for bending dominated problems, the
Enhanced Assumed Strain (EAS) technique is implemented in Metafor [181, 187, 188]. This
approach requires more computational effort but offers in return a better accuracy on coarse
meshes.

Defining the vector of nodal displacements of the element as

qe = [dT
1 . . . dT

N ]T (3.107)

and the matrix of shape functions as

Qe = [φ1I . . . φNI] , (3.108)

the displacement within the element takes the following discretized form:

de = Qeqe . (3.109)



CHAPTER 3. NUMERICAL MODEL OF FSI 73

The spatially discretized form of the governing equations are derived from the principle of virtual
work (PVW) which is locally written as

δMe + δWint
e = δWext

e , (3.110)

by assuming no structural damping. The virtual work of the inertia force is

δMe =

∫
Ωe

δdρd̈ dΩ = δqT
e Meq̈e , (3.111)

where δd is a virtual kinematically admissible displacement and Me the constant mass matrix,

Me =

∫
Ωe

ρQT
e Qe dΩ . (3.112)

If b and t are the body forces and surface loads respectively, the virtual work of the external
forces is

δWext
e =

∫
Ωe

δdTb dΩ +

∫
∂Ωe

δdTt dS = δqT
e f

ext
e (3.113)

with the energy-consistent vector of external forces

f ext
e =

∫
Ωe

QT
e b dΩ +

∫
∂Ωe

QT
e t dS . (3.114)

The virtual work of internal forces is expressed as

δWint
e =

∫
Ωe

δETσ dΩ , (3.115)

where the Voigt notation is used to express the strain E and stress σ tensors.

The Voigt notation allows us to express a second-order symmetric tensor as a vector. In
general if

A =

a11 a12 a13

a21 a22 a23

a31 a32 a33

 , (3.116)

then the corresponding Voigt notation is

A =



a11

a22

a33

a12

a13

a23

 . (3.117)

Remark

Generally, δE is related to δqe through the relation

δE = B(qe)δqe , (3.118)

where B(qe) is the nonlinear strain matrix depending on the definition of the strain-displacement
kinematic law. Hence, Eq. (3.115) becomes

δWint
e = δqT

e f
int
e (3.119)



CHAPTER 3. NUMERICAL MODEL OF FSI 74

where the vector of internal forces can be defined as

f int
e =

∫
Ωe

BTσ dΩ . (3.120)

The stress tensor can be expressed according to a constitutive law. Although Metafor provides a
wide range of constitutive models for nonlinear elasticity and plasticity [58,181,189], this thesis
focuses only on purely elastic materials whose behavior is governed by Hooke’s law as stated in
Eqs. (2.22) and (2.23).

The discrete form of the PVW is valid for any arbitrary but kinematically admissible virtual
displacement δqe and is expressed on the current, i.e. deformed, configuration of the problem at
any time. By assembling the contribution of inertia, internal and external forces of each finite
element, the global nonlinear equation of motion can be expressed as:

Mq̈ + f int(q) = f ext(q) . (3.121)

The nonlinear equation of motion is solved using a Newton-Raphson procedure at each time
increment,

Mq̈ + Kt(q
k)∆qk = f ext − f int(qk) ,

qk+1 = qk + ∆qk ,
(3.122)

in which Kt is the tangent stiffness matrix defined as the derivative of f int with respect to q. For
a linear approach assuming small displacements and deformations, as it is the case in GetDP,
the strain is described using the Cauchy strain tensor and the discrete equation of motion simply
becomes

Mq̈ + Kq = f ext , (3.123)

with the constant stiffness matrix assembled from the elementary matrices

Ke =

∫
Ωe

BTHB dΩ . (3.124)

In this expression, H is Hooke’s matrix for a linear elastic material.
Similarly to the mechanical part, the Finite Element Method is also used to discretize the

thermal part. If T expresses the vector of nodal temperatures, the resulting discretized heat
equation can be written as

CṪ + KTT = QT , (3.125)

where C is the assembled heat capacity matrix, KT is the conductivity matrix and QT is the
vector of generalized heat sources that carries the coupling with the mechanical part (e.g. heat
generation due to plastic deformation) when applicable. As stated in Section 2.4 the total
deformation is also split into a mechanical part and a thermal part. In Metafor, the thermo-
mechanical coupling is directly implemented and thus available without any additional coding
effort. This is not the case for GetDP. Since it is designed to handle PDE’s at a very general
level, the coupling between momentum and heat equations has to be explicitly coded by the
user.

3.7.2 Time integration

The time advancement of the thermo-mechanical system is performed in a staggered fashion [181,
188]. In contrast to monolithic schemes, which solve all the mechanical and thermal equations
simultaneously, staggered schemes solve the mechanical and thermal equations sequentially in
order to lower the CPU cost. Thus, the resolution of the coupled problem is achieved in two steps:
first the mechanical problem is solved with isothermal or adiabatic thermal state which is then



CHAPTER 3. NUMERICAL MODEL OF FSI 75

followed by the solution of the heat equation. In Metafor, the re-evaluation of internal stresses
after the thermal step is possible for problems that are highly driven by thermal effects. For the
resolution of the mechanical problem, algorithms of the Newmark family (see Appendix D) are
usually selected and in particular the Chung-Hulbert algorithm. The thermal equation is solved
at each time step by a midpoint generalized or trapezoidal numerical scheme. In GetDP, the
mechanical problem is integrated in time using a Newmark method while the thermal problem
is solved using a θ-scheme.

3.8 Simplified structural models

In many simplified FSI problems, the structure can be represented by dynamically-constrained
rigid bodies (e.g., 2D pitching and plunging airfoil). In this case, the dynamics of the solid can
be described by a small number of degrees of freedom, which greatly simplifies the structural
computation. In particular, a complex computation of the solid deformation is not required and
a much simpler algorithm can be used to compute the rigid body dynamics.

Such simplified problems are also considered in this work. Problems that can be described
by a one or two degree-of-freedom rigid motion model are solved with a in-house integrator code
based on either a generalized-α or a Runge-Kutta method (see Appendix D). In this case, a
simplified spatial coupling is performed between the FVM fluid solver SU2 and the rigid body
motion integrator. The discretized interface between the fluid domain and the rigid body is
defined based on the fluid mesh only. At each coupling iteration, the interface nodal fluid loads
are communicated to the rigid body integrator in order to compute the generalized forces and
moments required for solving the equations of motion. The displacement of the fluid interface
nodes are then obtained based on the computed rigid degrees of freedom. The rigid body motion
is decomposed into the translation of a body-attached reference center O and the rotation around
this point. The interface fluid node displacement between two time steps is then

xΓ
n+1 − xΓ

n = ∆xΓ
n+1 = ∆xOn+1 + (R− I)rn , (3.126)

where ∆xO is the translation of the center, which is also the translation of any points within
the body, and rn = xΓ

n − xOn . This typical rigid motion formulation is illustrated in Fig. 3.29.
The matrix R,

Step n

Step n+ 1

On

∆xOn+1

On+1

∆α

xΓ
n

rn

xΓ
n+1

rn+1

Figure 3.29: Rigid body kinematics for the simplified structural models.

R(∆α) =

[
cos ∆α sin ∆α
− sin ∆α cos ∆α

]
, (3.127)



CHAPTER 3. NUMERICAL MODEL OF FSI 76

is the classical rotation matrix for an incremental 2D rotation of angle ∆α (positive clockwise)
between two time steps around the center O.

In this chapter, the mathematical model has been extended to the numerical model. First,
an introduction to the different levels of fidelity for computing FSI problems has been
provided. The FSI model considered in this thesis is based on a high-fidelity approach, in
which the nonlinear governing equations for each physics are discretized by, typically, the
Finite Volume or Finite Element methods. An accurate representation of the interaction
between the two physics can only be obtained by using a two-way coupling. A simplified,
but obviously less accurate, coupling can still be performed with a one-way approach
for which the structural motion is simply imposed in the fluid domain. For the numerical
formulation, the distinction between the monolithic and the partitioned approach has been
considered. While being accurate and numerically more stable, the monolithic approach
usually requires the development of a specialized and complex code with limited flexibility
and requires the mesh to be optimized for both physics at the same time. The partitioned
approach is considered in this work because it provides more flexibility by using specialized
solvers and fully independent meshes for each physics. However, the interface conditions
have to be explicitly treated, which requires the development of an efficient communication
framework for exchanging interface data between the two coupled modules.

The fixed point formulation for a mechanical coupling has been presented by introduc-
ing the Dirichlet-Neumann partitioning of the coupled problem. These operators are seen
as an abstraction of the coupled solvers (Dirichlet for fluid and Neumann for solid). The
partitioned coupling algorithm is obtained by calling these operators in a staggered fash-
ion. A weak coupling is obtained when each operator is called once per time step which
leads to a time-lagged advancement of the solutions, which is more prone to numerical in-
stabilities. Conversely, a strong coupling procedure (block-Gauss-Seidel method) ensures
the convergence of the interface data by evaluating the operators and exchanging their
solutions several times per time step. This improves both the stability and the accuracy of
the coupling procedure. Time step predictor can be used to further improve the coupling
convergence rate.

Details on the numerical stability of the coupling procedure have been provided. For
mechanical coupling, instabilities have been related to the added-mass effect which has
been illustrated on a simplified FSI system. The impact of added-mass can be measured
by the mass ratio as instabilities typically appear when the solid density approaches or
falls below the fluid density. For cases with severe added-mass effect, it has been stated
that even the BGS procedure cannot provide a converging coupling process. Thus, relax-
ation of the interface structural displacement has been introduced. A constant relaxation
parameter can be provided, or a more efficient dynamic parameter can be computed using
the Aitken’s ∆2 method. Newton-based coupling algorithms have been presented as a
mean to further improve the coupling convergence. This method relies on first writing
the coupled problem in a root finding form for the interface that can then be solved with
a Newton-Raphson technique where the Jacobian (or its inverse) can be approximated
based on the accumulation of the successive outputs from the coupled subsystems.

The review of the coupling algorithms has been extended to the thermal coupling.
Unlike the mechanical coupling where a Dirichlet-Neumann partitioning is used most of
the time, both Dirichlet-Neumann and Neumann-Dirichlet can be used for the thermal
coupling. They have been referred to as the Flux Forward Temperature Back (FFTB)
and the Temparature Forward Flux Back (TFFB) schemes, respectively, for which the
fluid solver is taken as the reference for the direction of exchange. The stability of the
thermal coupling schemes has also been reviewed and illustrated with a simple 1D CHT

Summary of chapter 3



CHAPTER 3. NUMERICAL MODEL OF FSI 77

problem. Stability and convergence rate are related to the Biot number. It has been
shown that FFTB is stable for Bi < 1 while TFFB is stable for Bi > 1. To improve the
stability of these thermal schemes, relaxation can also be introduced through a numerical
heat transfer coefficient that extends the stability margin. Optimal convergence rate is
obtained when the numerical Biot number equals its physical counterpart, but the corre-
sponding optimal numerical heat transfer coefficient cannot be known a priori in practice.
Some relations have been proposed to compute the local optimal value, but their com-
plexity requires further implementation effort. Specific time advancement procedures for
thermal coupling have also been discussed. As the physical time scales of the fluid and
solid domains usually significantly differ, efficient coupling can be obtained by reducing
the data exchange frequency and by using different physical time steps within the coupled
domains. When the unsteadiness of the fluid can be neglected in weakly transient prob-
lems, the advancement of the fluid solution can be reduced to a succession of steady-state
computations (quasidynamic approach).

The treatment of the fluid-structure interface has been discussed as it is a key ingredient
of any partitioned coupling procedure. Two main approaches have first been reviewed. The
non-conforming interface meshes approach is often used in conjunction with a fluid solver
based on the immersed-boundary method. In this case, the solid domain is embedded
into a Cartesian fluid mesh that drastically simplifies the mesh generation procedure and
alleviate the need for a dynamic mesh, but conversely adds complexity to the treatment of
the boundary conditions to enforce continuity at the interface. Another drawback of the
non-conforming IB approach is the difficulty to locally control the mesh refinement around
the body while keeping the Cartersian structure, which leads to a mush faster increase
of the mesh size for high Re cases. In this work, the conforming mesh approach is used.
With this method, the fluid mesh conforms with the interface boundary which allows an
explicit treatment of the interface conditions and eases local mesh refinement around the
body, thus providing a locally accurate solution. However, the conforming mesh has to
accommodate the motion of the solid boundary through a mesh deformation algorithm in
conjunction with the ALE formulation of the governing equations. The mesh deformation
process usually brings additional computational cost and its ability to generate valid or
good quality mesh remains limited for large solid displacement.

In a partitioned approach using conforming body-fitted meshes, it is likely that the
fluid and solid domains do not have a matching discretization at their interface. Sev-
eral interpolation methods have been presented and discussed for both conservative and
consistent solution transfer. Conservative interpolation ensures the conservation of the
mechanical energy at the interface and is thus preferred for mechanical coupling. Consis-
tent interpolation ensures the exact interpolation of a uniform field and is thus preferred
for thermal coupling. Usually, the interpolation operator is expressed by an interpolation
matrix which can then be constructed according to several mapping methods such as the
Nearest-Neighbor, the Finite Element mapping, the Mortar method or the Radial Basis
Function (RBF) interpolation. This last, considered in this thesis, has the advantage of
not being based on mesh projection or node connectivity (meshless approach), but only
relies on point clouds. This makes the RBF interpolation very suited for partitioned cou-
pling of black-box solvers and eases the management of partitioned interface meshes (i.e.
distributed for parallel computations). Setting up the RBF interpolation only requires
computing distances and evaluating the basis functions. When interpolating data from a
donor set of points to a target set of points, the mapping matrix is constructed by the
evaluation of the basis function for the different pairs of donor and target nodes.

The ALE formalism used in the fluid domain for FSI is performed in conjunction with
a dynamically deforming mesh, as a complete remeshing is too prohibitive (computation-
ally costly, leading to topology changes). Several mesh deformation methods have been



CHAPTER 3. NUMERICAL MODEL OF FSI 78

reviewed. Methods based on physical analogy such as the spring analogy, the Laplacian
smoothing or the pseudo-elasticity analogy, are governed by PDE’s or similar equilibrium
equations. The first two methods are relatively easy to implement but remain limited in
the quality of the resulting deformed mesh. The pseudo-elasticity analogy is more efficient
but requires a full finite element implementation. Interpolation methods have also been
considered because they tend to reduce the cost associated with mesh dynamics. Also,
because the mesh deformation is reduced to the problem of interpolating displacements
from boundary points to volume mesh points, they do not require connectivity informa-
tion. Inverse distance weighting (IDW), RBF and sphere relaxation are typical examples
of interpolation-based deformation methods. The IDW method is easier to implement and
usually provides a reduced cost compared to RBF and sphere relaxation.

The importance of the Geometric Conservation Law (GCL) for ALE schemes has been
briefly discussed. Despite contradicting results and claims, the development of GCL-
compliant ALE schemes is still encouraged. GCL was originally introduced with the aim
of preserving a uniform flow and preserving the order of accuracy of the time-scheme for
moving grids. A direct consequence is that the grid velocity of the ALE formalism cannot
be arbitrarily computed but must conforms to a specific GCL-compliant scheme. GCL
was also related to the stability of the numerical schemes.

The fluid solver SU2 considered in this thesis has been briefly introduced. It is designed
to solve the compressible unsteady RANS or Euler equations on a potentially deforming
unstructured grid using the ALE formalism. Both Roe upwind and centered Jameson-
Schmidt-Turkel schemes are available for the spatial discretization. Implicit Euler scheme
is typically used for time-integration using a dual time-stepping approach for unsteady
simulations. SU2 also features multi-grid acceleration techniques and a 3D mesh defor-
mation capability based on the pseudo-elasticity analogy method. The dynamic mesh
capability is implemented to be GCL-compliant.

Several structural solvers are considered in this work and have also been briefly de-
scribed. Metafor is a nonlinear Finite Element code for thermo-mechanical problems
involving large solid displacements and deformations. It uses the Enhanced Assumed
Strain (EAS) technique to improve the behavior of low-order elements. The nonlinear
part of the discretized equations of motion is solved by a Newton-Raphson procedure.
Time-integration is performed via the Chung-Hilbert algorithm (Newmark family). For
thermo-mechnical applications, thermal and mechanical problems are solved in staggered
manner. The GetDP code is the second FE solver used in this thesis. It is designed to
be a general environment for the treatment of discrete PDE-based problems. Only linear
elastic materials can be treated with GetDP. Time integration of the mechanical problem
is achieved by a Newmark method while the thermal problem is solved using a θ-scheme.
Finally, one and two degree-of-freedom rigid motions, typically used for simplified VIV
and aeroelastic models, can be solved by an in-house rigid body integrator code using
either a generalized-α or a Runge-Kutta time integration method.



Part II

Development and implementation of
the coupling environment

79



Chapter 4

The multi-code coupling

This chapter is dedicated to the transposition of the numerical models, algorithms and proce-
dures into a partitioned computational framework in which independent fluid and solid solvers
are coupled. In particular, it addresses how the black-box flexibility of the partitioned approach
can be translated into a computational environment, where each code is specifically designed for
the computation of a particular physics, and that makes efficient usage of modern and massively
parallel programming architectures.

Some common considerations related to the development of coupling environments are first
introduced in Section 4.1. Then, in Section 4.2, the most common methods used to communicate
data between the solvers are presented. This is followed by the description, in Section 4.3, of
the possible coupling technology that can be applied to bind and synchronize the solvers within
a single framework. Finally, Section 4.4 provides a review of existing state-of-the-art coupling
software or packages, and concludes about the rational for the development of a new coupling
environment.

4.1 Common considerations

The practical application of the coupling algorithms requires the development of an efficient
communication and synchronization environment that is superposed to the execution of each
solver. In the partitioned approach, this coupling environment is referred to as the coupler. It
is usually designed with the aim of managing all the coupling tasks such as solver calls, data
exchange or mesh interpolation. The development of an efficient, robust and viable coupling
tool should at least satisfy the following requirements:

• Efficiency The efficiency of the coupler can be related to minimizing the extra cost in CPU
time introduced by the coupling tasks to reach a given accuracy in the coupled solution.
Acceptable coupling efficiency can only be reached with proper formatting of exchanged
data, usage of integrated solver calls and usage of efficient underlying linear algebra solu-
tions for the interface treatment. When the coupled solvers are parallelized, the parallel
scalability of the coupling should also be conserved and not be altered by the coupling
environment.

• Flexibility The flexibility of the coupling tool is its capability to ensure compatibility with a
wide range of different solvers (both fluid and solid). Hence, the substitution of one cou-
pled solver by another should be done as transparently as possible without affecting the
structure of the coupling layer. It means that, as soon as the compatibility is guaranteed,
the same functionalities of the coupling tool can be accessed and reused regardless of the
internal structure of the coupled code currently in use. However, a certain level of adaptiv-
ity should always be permitted in order to make possible the definition of user-customized

80



CHAPTER 4. THE MULTI-CODE COUPLING 81

algorithms or communication schemes. Flexibility is a key factor in the development of
generic multi-physics applications.

• Usability The standard execution of the coupling framework and the definition of customized
features should be performed with minimal effort from the user. This cannot be achieved
without a clear and robust code structure whose accessible parts are provided by high-
level code layers or APIs (Application Programming Interface). These APIs simplify the
programming and facilitate the communication with other components by exposing deeply-
coded objects or actions.

In the following sections, these three requirements are considered as a basis for the evaluation
of the general performances of a coupling environment or of a particular technology used in that
environment.

4.2 Multi-code communications methods

As opposed to algorithmic problems such as equation coupling or data interpolation, inter-code
communication is ruled by technological and technical aspects. These aspects are of major
importance since the efficiency of the coupling environment mostly depends on the chosen data
transfer method. In particular, the chosen method impacts the data rate transfer and hardware
usage, which are two critical factors for High Performance Computing (HPC) architectures.
Several methods of communication are described hereafter and their advantage and limitations
are discussed.

4.2.1 File communication

Using files as communication support is the simplest method to transfer data between inde-
pendent software. Data to be exchanged are stored in files located on the hard-disk. At each
communication, the sender solver first writes its interface solution as output in a file which is
then read by the other (receiver) solver as input. This communication method is relatively slow
in terms of data transfer speed due to limited access rate of the support medium. In a parallel
approach, file I/O is usually a delicate task that requires blocking synchronization between the
processes or the use of a dedicated parallel I/O library that still limits the parallel scalability.
However, and when other communication methods are not possible for whatever reason, the file
communication is still considered as an acceptable fall-back alternative.

4.2.2 MPI communication

The Message Passing Interface is the standard protocol used in parallelized software for dis-
tributed memory systems. When the execution of a single software is distributed among several
processes (or ranks), each of them runs the same code that can be differentiated according to
its process index. The processes of the distributed application are also capable of exchang-
ing data using global (involving all the ranks) or point-to-point (from one rank to another)
communications directly through the dynamic memory space and the hardware network. MPI
communication can be either blocking or non-blocking. In the latter case, the execution of the
code is continued even if the communication between two processes is not fully terminated. In
the framework of multi-code coupling, MPI can be used to transfer data between distinct solvers
if each of them is associated to one or several MPI processes. MPI processes are gathered into
communicators which are distinct groups of processes sharing the same indexing and which are
allowed to exchange data. Several communicators can share the same process. Rapid random
memory access and high network transfer rates make this approach more efficient than the file-
based communication. Additionally, as addressed in more details in the next section, it allows
a more flexible and transparent data exchange within the coupling procedure.



CHAPTER 4. THE MULTI-CODE COUPLING 82

4.2.3 Socket communication

Data exchange between solver instances can be performed via a Transfer Control Protocol (TCP)
or Internet Protocol (IP) which are socket-based data transfers through a network. The data
transfer speed thus depends on the hardware technology of the network. A socket is a software
endpoint used to perform bidirectional communication between a server instance and a client
instance. Sockets are associated with specific hardware ports on the computing unit to establish
client-server communications. The TCP/IP communication protocol is not typical for massively
parallel architectures, as opposed to MPI, since it requires the synchronization of the sender and
receiver, among other prohibitive overheads such as port availability issues or network address
identification. Although MPI outperforms TCP/IP for data exchange [190], the latter approach
is still widely used for multi-code coupling.

4.3 Multi-code coupling technology

The means of coupling and exchanging data between distinct codes is not unique. Not only
the support for the communication may differ, as addressed in the previous section, but also
the way the communication and solver synchronization is managed varies. Several multi-code
coupling procedures or technologies with different levels of complexity can be used. Advantages
and limitations of the most common coupling technologies are described in the following.

4.3.1 Manual coupling

In this simplest approach, the coupling is not managed by a dedicated environment per se. The
synchronization and the communication between the solvers are manually handled by the user
and the file method is used as support for the communication. The scenario is illustrated in
Fig. 4.1 and may be described as follows. The user first performs one computation with one

Solver A Solver B

solverA.output

solverB.output

write read

read write

Figure 4.1: Illustation of the manual coupling based on files for data exchange.

of the coupled solvers, solver A, that stores the interface solution in an output file at the end
of its computation. Then the user performs the computation with the other solver B using
the interface data written by solver A as input. Another file is needed to store the data to



CHAPTER 4. THE MULTI-CODE COUPLING 83

be sent back as input to A for a new coupling cycle. In this approach, the solvers are usually
not kept instantiated in the memory of the computing unit. Consequently, the computation
at each solver call is fully restarted from the previous calculated solution. This implies the
destruction of the computational data (mesh structure, solution field, simulation parameters)
that needs to be re-generated at each coupling cycle1, which is obviously highly inefficient and
cumbersome. Furthermore, interface data treatment such as non-matching mesh interpolation
has to be performed by an independent third party tool driven by the user as well. As an explicit
action of the user is required at each cycle, the practical application of the manual coupling is
usually limited to steady FSI computations where only a few coupling cycles are required to
obtain a converged solution. For unsteady computations where several cycles are performed at
each time step, this methodology is clearly impractical. Although the method can be applied
with distributed solvers, the non-autonomous characteristic of the manual coupling completely
cancels the benefit of the parallelization, especially if the costly parallel partitioning has to be
re-generated at each cycle. Note that the coupling procedure could be automatized by scripting
the coupling cycle. Nonetheless, although further limiting the manual intervention of the user,
scripting does not remove the problem of restarting computations and does not increase the
parallel efficiency. Given its low efficiency and many disadvantages, manual coupling is not
further considered in this thesis.

4.3.2 Master-slave architecture

The master-slave architecture corresponds to the situation where the coupling is driven by one of
the coupled solver which is then designated as the master. Any other coupled solver is seen as a
slave component. This is depicted in Fig. 4.2. The master solver takes care of the coupling tasks
and manages the computations to be performed by the slave solver. The control of the slave

Slave solverCoupling layer

Master solver

Figure 4.2: Illustration of the master-slave coupling methodology.

is handled by specific routines implemented inside the master. These specific routines actually
play the role of the coupling environment. The link with the slave solver can be performed either
by using sub-processing or a plug-in methodology. In the former approach, a child process is
directly generated at runtime from the master instance to host and launch the slave solver.
Pipes can be used to exchange data between master and child instances but the procedure is not
straightforward to apply for the transfer of interface data. The plug-in methodology is designed
to integrate the slave solver as a library in the framework of the master. This usually allows
a better management of the coupled solvers and the possibility to use efficient communication
methods such as MPI or TCP/IP. Because the synchronization of the solvers is dynamically
handled by the master, no manual action from the user is required. However, as the coupling
environment is embedded into one of the coupled solvers, the flexibility of this approach is
limited. The coupling and the management of the parallel distribution when applicable, are
intrinsically accommodated2 to the master solver. Additionally, depending on the original code

1This presupposes that the coupled solver has the ability to restart from a stored solution, which is not always
possible.

2The coupling layer is part of the code structure of the master, and cannot be transposed or reused for other
codes.



CHAPTER 4. THE MULTI-CODE COUPLING 84

design of the master, introducing coupling and communication routines at a relatively deep code
level while conserving the backward structure might requires considerable development efforts.
Due to its significant lack of flexibility, the master-slave coupling architecture is not further
considered in this thesis.

4.3.3 Client-server architecture

One of the most common coupling technologies is based on a client-server architecture. In this
case, each client solver is coupled with a central and independent server instance that gathers all
the coupling tasks. All communications between the coupled solvers are run through the server
which holds all the coupling data as well. Coupling algorithms and mesh interface treatment are
executed at the server level. In this approach, only the compatibility with the server must be
ensured for each candidate solver. The client-server coupling technology is depicted in Fig. 4.3.
In order to communicate with the server, each coupled solver must use a client that is embedded

Solver A Solver B

Client adapter Client adapter

Coupling server

Figure 4.3: Client-server architecture with central coupling instance.

into a code adapter, and the client-server communication is usually based on TCP/IP or MPI.
The adapter is composed of some specific coupling routines that have to be introduced into
the coupled code, which requires additional development. Although being to a certain extent
intrusive, this interfacing methodology provides a satisfying level of flexibility. Setting up the
simulation is performed in several steps. First, the server is started. Then, the coupled solvers
are launched and, finally, the communication network is established. The procedure is generally
fully compatible with a parallel execution of the coupled solvers where each thread can be
identified as a client for the server. However, and as the server is usually executed on one
thread, the coupling tasks are serialized by the central instance, which significantly limits the
parallel scalability of the coupled framework.

4.3.4 Unified architecture

The coupling within a unified architecture is the main focus of this work. It is at first sight similar
to the client-server approach in a sense that the coupled solvers are bound to a third-party cou-
pling tool. However, the basic idea of the unification is to replace the central server instance by
a more efficient coupling environment which embeds the different codes into a single framework,
as illustrated in Fig. 4.4. The main advantage of the unified methodology over the client-server
approach is the possibility to manage direct peer-to-peer communication between solvers. For
parallel execution of the solvers, the unified architecture also offers a proper parallelization of the
coupling tasks, thus avoiding the typical serialization bottleneck of the conventional client-server
coupling. Code adaption is still required in order to ensure compatibility between solvers that



CHAPTER 4. THE MULTI-CODE COUPLING 85

Coupling framework

Solver A Solver B

Figure 4.4: Unified coupling architecture. The coupling framework embeds the coupled solvers.

are usually compiled as libraries rather than executables. The direct integration of the solvers
into the coupling environment allows an efficient management of the coupling procedures and
the use of TCP/IP or MPI inter-communication methods. The computation can also be started
as a whole, as opposed to the individual start of each component. Finally, the parallel structure
of the coupled solvers (when applicable) can be exploited more efficiently to parallelize the data
exchange.

4.4 State of the art

Although developing a partitioned coupling framework is far from being a trivial task, there is
a vast amount of available multi-code coupling software. Section 4.4.1 reviews the most well-
known and recent architectures, either commercial or open-source. This review is based on the
one proposed by Uekermann in his thesis [190], who compared several coupling software based
on the following characteristics:

• API level The API level goes from the low level which operates with explicit sending and
receiving inter-communication routines (e.g. similarly to MPI), to the high level that pro-
vides complete coupling functionalities with a transparent user access against underlying
low-level instructions. This criterion can be related to the ease of use and the flexibility of
the coupling tool.

• Coupling schemes available The availability of built-in and ready-to-use coupling schemes,
such as BGS or IQN for instance, is assessed.

• HPC compatibility The HPC character of a coupling software is directly related to the
presence of a central serial instance that limits the parallel scalability as opposed to software
with a full parallel communication layout.

• Legal situation This distinguishes commercial, in-house and open-source software.

The same classification criteria are used here except that two additional aspects, that are also
considered by the author as important for multi-code coupling environment, are introduced in
this work:

• Communication protocol This is related to one of the aforementioned communication
methods which can be either files, TCP/IP or MPI.

• Intrusive character This aspect is related to introducing routines from the coupling envi-
ronment into the source code of the coupled components. Depending on the intrinsic code
structure of the component and the level of complexity of these coupling routines, the
adaptation of the source code can be achieved with more or less development effort.

The review serves as a basis for defining the characteristics of the new coupling architecture, as
further discussed and rationalized in Section 4.4.2.



CHAPTER 4. THE MULTI-CODE COUPLING 86

4.4.1 Review of existing coupling tools

The following seven existing solutions are evaluated.

ADVENTURE Coupler The ADVanced ENgineering analysis Tool for Ultra large REal
world (ADVENTURE) [191,192] is an open-source project that gathers several tools and solvers
for the analysis of different physics. The ADVENTURE Coupler module was originally devel-
oped with the purpose of coupling other ADVENTURE fluid and solid solvers. Although many
modules of the ADVENTURE project are open-source, it might not be the case for the cou-
pler module, as already stated in Uekermann [190], since no clear access seems to be provided
through the project web page. The coupling library is server-based but claims a high parallel
efficiency as the server itself can be parallelized. The architecture is such that if N and M are
the number of threads of the coupled solvers, the parallel server will need to be run on M +N
additional processes in order to establish the socket-based communications with each coupled
rank. This actually doubles the total number of required cores to run a coupled computation,
which might become significantly prohibitive for computing units with limited resource budget.
The ADVENTURE Coupler provides a coupling scheme based on the Broyden method, that
belongs to the Newton family as IQN-ILS [192]. To perform coupling analysis, only a few com-
munication libraries from the coupler have to be integrated into the solvers. Non-matching mesh
treatment is performed using shape functions of elements. Examples of FSI coupling performed
with ADVENTURE can be found in Yamada et al. [192] and Kataoka et al. [191].

EMPIRE Enhanced Multi Physics Interface Research Engine (EMPIRE) [193] is an open-
source coupling software which is based on a client-server approach. The central server instance
is not parallelized, which limits its HPC capabilities, but claims to be unlimited in the number
of simultaneous codes that can be coupled. EMPIRE is divided into two components: the
coupling server instance and an API library, acting as a client, that has to be implemented in
the client codes. The communication between the clients and the server is supported by the MPI
protocol. EMPIRE provides coupling schemes such as the relaxed BGS, as well as non-matching
mesh interpolation capabilities based on the mortar method or the simplest nearest neighbor
projection. A wind turbine aeroelastic study based on EMPIRE can be found in Sayed et
al. [194].

MpCCI The Mesh-based parallel Code Coupling Interface (MpCCI) [195, 196] is the stan-
dard commercial software for code coupling. It is based on a client-server architecture and
gathers many ready-to-use adapters for commercial solvers but also provides API which can be
included in other codes. The code adapter consists of three distinct components: the coupling
manager that controls the boundary values to be exchanged, the client that implements these
intercommunications via TCP/IP sockets, and the code driver which is the code-specific part of
the adapter and provides the access to the solver data structure. For this data access, specific
coupling routines have to be implemented in the coupled solvers. Although being compatible
with parallel code execution, the central instance is not parallelized, which limits its HPC ca-
pabilities. Non-matching mesh interpolation is performed with shape functions or projection.
Coupling schemes are available but remain limited in terms of acceleration techniques [190].
However, and unlike most open-source solutions, MpCCI features a graphical user interface that
helps the user setting up the coupled simulation. Typical applications of coupling between CFD
and CSM commercial solvers with MpCCI can be found in the work of Debrabandere [37].

OpenPALM It is a generic open-source coupling framework designed for massively parallel
applications [197,198]. OpenPALM can be considered as a unified architecture combining three
main components: the PALM library that provides general management of the coupled appli-
cations and exchanged data, the CWIPI library for the treatment of data based on distributed



CHAPTER 4. THE MULTI-CODE COUPLING 87

(non-matching) meshes, and the PrePALM graphical user interface that helps setting up the
coupled simulation and monitoring it at runtime. The scheduling and the communication be-
tween the different solvers are achieved by high-level primitives that have to be included in
the coupled codes. The communication between the coupled solvers is performed by MPI. To
the best knowledge of the author, OpenPALM provides non-matching mesh interpolation using
projection schemes but no clear built-in coupling algorithm seems to be directly available. An
example of application of the OpenPALM coupler to CHT in an industrial combustion chamber
can be found in Duchaine et al. [197].

OASIS This is an open-source coupling tool originally designed for climate modeling applica-
tions but its development has been redirected towards more generic coupled applications [199,
200]. The recent versions of OASIS are HPC compliant due to its unified architecture. The cou-
pling tasks are not performed by a centralized instance running on its own processes. Instead,
library components are linked to each coupled codes to generate a fully parallel communica-
tion layer based on MPI. Coupling routines are introduced into the coupled codes via a rather
low-level API. OASIS provides non-matching grid treatment through nearest-neighbor, bilin-
ear or bicubic interpolation. There is no built-in coupling schemes available for fluid-structure
interactions. Recent examples of climate coupling applications using OASIS can be found in
Sanchez-Gomez et al. [201] and Ličer et al. [202].

preCICE The preCICE coupling framework is an open-source library-based coupling architec-
ture which has been specifically designed to maintain an efficient parallel scalability by avoiding
the use of a server instance [203, 204]. It is a unified architecture that can be used with black-
box commercial solvers as well as open-source and in-house solvers. Parallel solvers are fully
supported and the data exchanged layout is based on efficient point-to-point communication via
MPI or TCP/IP. In order to couple solvers with preCICE, high-level API routines have to be
integrated into the solver code. Non-matching mesh interpolation are based on nearest neigh-
bor mapping or Radial Basis Functions. preCICE also provides built-in coupling schemes with
convergence acceleration techniques such as Aitken’s relaxation and IQN. Coupled applications
using preCICE framework can be found in the paper of Mehl et al. [203] or in the thesis of
Uekermann [190].

FUNtoFEM This a Python-based framework developed for both high-fidelity aeroelastic
analysis and adjoint-based aeroelastic optimization [205, 206]. It has been used to couple
the adjoint-enabled fluid solver FUN3D [207, 208] with the adjoint-enabled structural solver
TACS [8]. The framework provides a high-level API which abstracts the aeroelastic analysis
and design into two concepts, the model and the driver. The former stores the data-structure
required for the computation, while the latter implements the coupling algorithm and orches-
trates the data transfer between the components. The coupled solvers interact with the coupling
framework using Python wrappers generated with Cython. The architecture is based on a paral-
lel client-server approach which avoids serialization bottleneck when transferring interface data,
but requires network communication (such as TCP/IP) to proceed.

A synthetic summary of the coupling software review can be found in Tab. 4.1, where the
evaluation criteria of Uekermann [190] are used in addition to those proposed in this work. The
criteria used to compare the coupling software are considered by the author as the most relevant
in the particular field of multi-code applications. However, the list is not exhaustive and more
common, but not less important, aspects such as portability, maintainability and expandability
must also be considered as general requirements for the development of any kind of software.



CHAPTER 4. THE MULTI-CODE COUPLING 88

API level HPC Legal Coup. schemes Communication Intrusive

ADVENTURE [192] med yes in-house yes TCP/IP yes
EMPIRE [193] med no open yes MPI yes

MpCCI [196] med no comm. yes TCP/IP yes
OpenPALM [198] high yes open no MPI yes

OASIS [200] low yes open no MPI yes
preCICE [204] high yes open yes TCP/IP/MPI yes

FUNtoFEM [205] high yes open yes TCP/IP/MPI no

Table 4.1: Summary of existing coupling software evaluated according to selected criteria.

4.4.2 Motivation for the development of a new coupling framework

The review performed in the previous section clearly shows that the development of a new
coupling software is not a technological breakthrough. All the existing architectures listed in
Tab. 4.1 perform well in almost every assessed criterion. However, several specific aspects for
which there is room for improvement still deserve to be investigated. This justifies the presence of
the last two columns in Tab. 4.1. Firstly, it shows that every coupling software depends on either
TCP/IP or MPI protocols to perform inter-code communication. This means that somehow the
data exchange is reduced to formal send/receive actions performed by the solvers and by the
server instances (for server-based approaches), even if these actions are hidden behind high-
level APIs. Thus, the achievement of the coupling fully depends on the availability of specific
technologies and software libraries that are not fail-proof or that could introduce compatibility
issues. Secondly, it is obvious that all, except FUNtoFEM, coupling packages are based on
specific coupler-related routines to be introduced into the solver codes. Usually these routines
are specifically developed under the form of APIs that minimize the invasiveness, but that do
not avoid the need for a certain amount of specific accommodation of a part of the coupled
solver source code.

In this thesis, the ambition is not to develop and provide the ultimate solution in terms of
coupling software that could surpass all other existing tools. However, the objective is to propose,
evaluate and develop an alternative which circumvents the two aforementioned drawbacks by:

1. not relying on any communication protocol such as TCP or MPI for performing inter-code
data exchange, and

2. excluding any coupling-related routines to be introduced into the solver codes,

while maintaining the accessibility to all coupling functionalities through a high-level unified
environment. A higher level of flexibility and usability can thus be reached, without altering the
efficiency. This motivates the development of the coupling environment CUPyDO, which is a
multi-languages coupling environment based on a Python wrapping approach. The strength of
CUPyDO is its capacity to unify the coupled solvers into one single object-oriented framework
in which they are not considered as independent executables but are treated and manipulated
as simple programming objects. The detailed implementation of CUPyDO is presented in the
next chapter.

The rational for developing a new FSI coupling tool can also be put under the light of the
general development of the scientific research at the University of Liège. The purpose is then to
provide a new tool to students and scientists for conducting fundamental research with minimal
focus on technical or technological aspects. This can be achieved by providing not only the
most accessible, ready-to-use and flexible tool but also by allowing the user to customize the
underlying algorithms and the coupling schemes in an intuitive fashion. Many single-physics
computational codes are today under intensive development at ULiège, and of course in other



CHAPTER 4. THE MULTI-CODE COUPLING 89

world-wide institutions, for design and research. This also calls for the development of a new
modern and generic multi-physics platform that could allow these models to communicate and
interact with minimal technical effort.

4.5 General challenges and basic requirements of the multi-code
coupling for fluid-structure interaction

The development of an efficient coupling tool, either server-based or unified, faces several chal-
lenges. These can be either technical, e.g. the management of parallel communication, or purely
numerical, such as the presence of added-mass coupling instabilities. In addition, the coupling
between independent solvers cannot be achieved if these solvers do not satisfy some minimal
requirements or do not provide some flexibility within their executions.

The first basic requirement is the capability of the coupled codes to restart the same time
step several times with different boundary conditions and to be controlled while keeping their
own data structure instantiated. Usually, the standard standalone execution of the code only
permits a complete restart, i.e. with a re-generation of the data structure, from a previously
computed solution. Depending on the structure of the coupled solver, this requirement may be
considered as prohibitive and may demand considerable development effort.

As the coupling is based on the exchange of solver data, this data has to be exposed and
made accessible from the outside of the code. This is not always easy depending on how deep the
transferred data is defined in the overall code data structure. As interface data is defined through
boundary conditions, accessibility and flexibility in the definition of these boundary conditions
are required. When the meshes are not matching, additional data are needed. Meshless map-
pings (e.g., RBF-based) only require node coordinates while other mappings need additional
topological information to perform mesh projection. As already mentioned in the previous
chapter, access to solution derivatives and Jacobians is even more complicated to obtain in a
black-box coupling fashion.

Assuming a conformal mesh treatment (see Section 3.4.1), the fluid solver must feature
dynamic mesh capability and ALE formalism. This is again not always part of the standard
requirement in the design of standalone fluid solver codes. The mesh dynamics could be handled
by the coupling tool, but it would require access to the entire fluid domain topology instead of just
the part belonging to the interface. Besides, the constraints on the numerical flow integration
schemes inherited from the ALE formalism cannot really be managed by the coupling tool.
Consequently, the ALE formalism should be part of the fluid solver capabilities.

Flexibility of the partitioned coupling approach cannot be achieved without a perfect inde-
pendence between the coupled solvers, i.e., none of the solvers needs to know anything about
the other one. Although this solver independence seems intuitive in the case of a server-client
coupling due to the presence of the central instance in the role of the separator, it is less clear
for unified architectures. In this case, the success of the coupling is ensured through a proper
management of the inter-code communication via high-level API adapters and coupling rou-
tines. There is thus no direct knowledge, at the solver level, of what takes places below the API
(abstraction principle). This becomes even more important for distributed execution involving
parallel inter-communication.

Finally, all the aforementioned requirements show that, irrespective of the coupling archi-
tecture considered, minimal amount of code adaptation is always needed. When the original
design of the code is not perfectly aligned with the structure of the coupling environment, a link
to support inter-communication and execution control has to be added. Consequently, a fully
non-intrusive coupling is inconceivable. However, the way this accommodation is performed is
still open for consideration and improvement. This is the central point of this work, addressed
through the development of CUPyDO, whose implementation is detailed in the next chapter.



CHAPTER 4. THE MULTI-CODE COUPLING 90

In this chapter, multi-code communication methods and coupling technologies have been
reviewed. First some common considerations, such as efficiency, flexibility and usability,
have been highlighted as basic requirements for the tool used to couple independent solvers.

Data communication between codes can be typically based on files, MPI exchanges
or TCP/IP socket communications. MPI communications are expected to be the most
efficient, especially for HPC-compliant architectures. Four coupling methodologies have
been considered. The manual coupling is a non-autonomous approach that has limited
efficiency and usability due to the explicit action required by the user at each coupling step.
In the master-slave architecture, the coupling is driven by one of the coupled solvers. The
coupling process becomes then autonomous and efficient communication methods can be
used. However, the coupling is usually accommodated to the master solver which creates
a serious lack of coupling flexibility. The client-server architecture can improve this lack
of flexibility. Different solvers can be coupled through specific code adapters to a central
server that gathers all the coupling tasks and the communication of data. However,
the parallel scalability of the coupled framework is limited, as the server is usually not
parallelized itself. The unified architecture, followed in this thesis, is similar to the serve-
client approach, but gathers the coupled solvers into one single framework which improves
the communication between the solvers as well as the parallel scalability by offering direct
peer-to-peer communication.

Several state-of-the-art existing coupling software have been reviewed and compared
based on relevant characteristics such as their API level, the availability of coupling
schemes, the HPC-compliance, or the intrusive character. By considering this review,
it has been emphasized that, far from the idea of developing the ultimate solution, there is
still room for improvements. This has motivated the development of CUPyDO, which is a
multi-languages coupling environment based on a Python wrapping approach. The speci-
ficity of CUPyDO lies in the idea of turning the coupled solvers into black-box modules
that are integrated into a unified environment.

Finally, some general challenges and requirements for multi-code coupling technologies
in FSI have been discussed. Particularly, the flexibility in the control of the solvers, the
data accessibility, the ALE formalism, the abstraction principle and the adaption of the
coupled codes have been discussed.

Summary of chapter 4



Chapter 5

The coupling tool CUPyDO

This chapter describes the implementation of the coupling environment CUPyDO1. It is a multi-
language C++/Python environment for coupling two existing and independent solvers into a
unified architecture, i.e. with no central server instance. The particularity of CUPyDO is that
the coupled codes are considered as libraries instead of executables and can thus be manipulated
as simple programming objects. The main purpose is to leverage the coupling flexibility of the
partitioned approach and the usability of the coupling tasks through the use of a Python wrap-
ping approach as coupling mechanism. The coupler provides ready-to-use coupling algorithms
as well as interpolation capabilities for non-matching fluid-structure interface meshes. Parallel
functionalities are also available, based on communication (collective or peer-to-peer) between
the processes of each solver involved in the computation. Python bindings for the Message
Passing Interface (MPI) protocol as well as Python bindings for the PETSc library, used for all
parallel linear algebra operations (mainly required for the mesh interpolation step), are avail-
able. Point searches and filtering are performed using binary trees for efficient computation of
nearest neighbors during the mesh mapping.

5.1 Design strategy

In this thesis an open-source coupling environment based on the Python wrapping methodology
is proposed as an alternative that does not fully rely on MPI or TCP/IP protocol for com-
munication between the coupled modules. Emphasis is put on the modularity of the coupling
mechanism with no explicit coupler-specific routines to be introduced into the coupled codes,
thus minimizing intrusive code modification. User-friendliness is also ensured by providing ready-
to-use coupling functionalities, such as interpolation methods for non-matching grids or iterative
coupling algorithms, but also by limiting the amount of actions required by the user to set up
and launch a coupled simulation. HPC-compliance is also part of the development chart by
allowing the use of distributed solvers, parallel inter-communication and parallel management
of the coupling tasks.

The main design drivers of CUPyDO can be formulated as follows, in order of priority:

1. minimize development effort to couple a given solver and limit source code invasiveness,

2. guarantee coupling flexibility and modularity,

3. maximize code reusability,

1CUPyDO is not an acronym but simply a reference to the antique god Cupid (latin Cupido), in the roman
mythology, who is the symbol of love. With his bow and arrows, he had the power to make people fall in love
with each other and to bring them together. The metaphor is then created with CUPyDO which is designed to
couple codes in a unified framework. Since it is based on the Python language, the letter i was replaced by y in
order to form the Py syllable as a reference to this programming language.

91



CHAPTER 5. THE COUPLING TOOL CUPYDO 92

4. provide high-level coupling schemes,

5. provide high-level non-matching mesh interpolation schemes,

6. perform parallel inter-communications and coupling tasks,

7. ensure maintainability and expandability.

These characteristics are supported by the technical implementation based on a Python wrapping
coupling procedure and built-in coupling tasks. These tasks are accessible at a high level to the
user by hiding the complex management of exchanged data between the codes, especially when
it is performed in parallel for distributed applications. The realization of the design objectives
is also supported by the object-oriented (OO) structure of CUPyDO. This is a key point for
establishing compatibility with each coupled solver while keeping their software independence.
Furthermore, maintainability and expandability rely on the use of modern programming concepts
implemented in CUPyDO. Finally, the development is conducted in such a way that external
and powerful libraries can be integrated for the treatment of low-level functionalities such as
basic linear algebra and MPI communications (mainly used for the treatment of non-matching
meshes). The use of established libraries is obviously an additional guarantee of computational
efficiency. Once again, these functionalities are hidden by the high-level layer accessible to the
user and are thus fully transparent at runtime.

5.2 Multi-language programming and Python-wrapping proce-
dure

The implementation of CUPyDO is based on a multi-language programming approach where
the Python language is used at the highest coding level. It is typically used to interface the inde-
pendent solvers, usually written in a compiled language, in one single and integrated framework.
The flexibility of the Python language thus facilitates the synchronization of the solvers and the
data exchange. With this technology, modules and functionalities of the solvers are wrapped
into a Python layer that behaves as a code driver for CUPyDO.

5.2.1 Generating the Python wrapper

The Python-wrapping procedure can be illustrated as follows. Let us consider a simple C++
toy object that represents a solver to be coupled with CUPyDO:

1 //File: SolverExample.h

2 //C++ code for the definition of SolverExample class

3 #pragma once

4

5 #include <string >

6 //If required , headers from the core code can be used

7 #include "solverFunctions.h"

8

9 class SolverExample{

10 double _data;

11 std:: string _tag;

12 public:

13 SolverExample(std:: string const& valTag);

14 ¬SolverExample ();
15 void setData(double valData);



CHAPTER 5. THE COUPLING TOOL CUPYDO 93

16 double getData () const;

17 void computeOneTimeStep(double timeStepSize);

18 };

This code can be interfaced and exposed to Python by using the Simplified Wrapper and Interface
Generator (SWIG) tool [209]. SWIG takes the declarations found in C/C++ header files and
uses them to generate the wrapper code needed by scripting languages (such as Python) in
order to access the underlying C/C++ code. This is performed by an additional compilation
step. The generated Python wrapper plays the role of a scripting API without using brute
code translation nor interfering with the libraries and executables created during the primal
compilation. The procedure is schematically illustrated in Fig. 5.1 for the simple toy C++ code.
In this case the source code is composed of three files: the header (.h) used for the declaration

solverExample.cpp

solverExample.h

solverExample.so

main.cpp

executable

solverExample.i

solverExample wrap.cxx
solverExample wrap.h

solverModule.so

solverModule.py

primal compilationwrapper generation

Figure 5.1: Compilation steps and generation of the Python wrapper for a simple C++ code.
Grey boxes represent the source files (written by the developer). Dashed arrows are for include,
double arrows are for compilation, simple arrows are for library link and blue arrows are for
SWIG wrapper generation.

of the SolverExample class and two source files (.cpp), one for the class definition and one
containing the main function for the executable. This source code can always be compiled as
a standalone executable, as illustrated in the right part of Fig. 5.1. The generation of the
Python wrapper is shown in the left part of Fig. 5.1. SWIG first takes a specific interface file
(.i) as input. This file typically contains the declaration of the headers of the corresponding
classes or functions to be exposed to Python. SWIG supports many C/C++ features such as
constructor/destructor, virtual and static members, public inheritance, function and operator
overloading, references, (smart) pointers, templates and namespaces, whose interfacing can be
optionally tuned in the SWIG input file. Type mapping is also supported and defined through
the input file. This includes not only basic types such as double, integer or string but also
std::vector, std::map or static arrays that can be mapped into Python list, dic (dictionnary)
or NumPy arrays [210], respectively. From the interface file, SWIG automatically generates a
wrapper source code (.cxx and .h files) and a Python module. The wrapper source code contains
many definitions and declarations used to resolve the interfacing and the type mapping between
the C/C++ and Python languages. This new source code is also compiled into a library which
is finally linked to the Python wrapping module of SolverExample.

The key role of SWIG is to generate the Python wrapper by complex interfacing mechanisms
and, at the same time, to avoid straight code translation. This opens the possibility for the user
to manage the code with the inherent high-level flexibility of the Python language while it is



CHAPTER 5. THE COUPLING TOOL CUPYDO 94

executed under its own compiled language (C/C++). When properly managed, the interfacing
overhead is almost negligible so that the computational efficiency of the original language is
conserved. The Python wrapper of the toy class SolverExample is then used in Python with,
for instance, the following code:

1 #Python code that uses the wrapper of SolverExample

2 import solverModule

3

4 timeStepSize = 0.001

5

6 pysolver = solverModule.SolverExample("Put a tag here")

7 pysolver.setData (100.0)

8 data = pysolver.getData ()

9 pysolver.computeOneTimeStep(timeStepSize)

For more complex codes, the generation of the Python wrapper can be performed in several
manners depending on their inherent structure. The first approach for generating a wrapper,
illustrated in Fig. 5.2(a), is by exposing each class2 individually, resulting in several equivalent
Python modules. Another way, as illustrated in Fig. 5.2(b), is to first develop a driver layer
which includes the functionalities of several classes and then expose this layer to Python. The

Class1.cpp Class3.cpp Class5.cpp

Class2.cpp Class4.cpp

Class1.py Class3.py Class5.py

(a) Wrapper based on multiple classes.

Class1.cpp Class3.cpp Class5.cpp

Class2.cpp Class4.cpp

Driver.cpp

Driver.py

(b) Wrapper based on a driver layer.

Figure 5.2: Illustration of two manners of generating the Python wrapper depending on the
exposed-code structure.

choice of one particular approach is mainly related to the original structure of the code and
to the decisions that have oriented its design throughout its development. The multiple object
approach is a regular choice for codes whose wrapper layer is developed at the same time as
the underlying core structure. This has the advantage of providing higher flexibility to access
the core functionalities. When the wrapper has to be developed on top of an existing and well-
established core code structure, the driver layer approach may be easier to implement but may
also decrease this flexibility. Finally, it is worth noting that only a restricted part of the code
can be exposed if there is no interest for some routines to be accessible from Python.

SWIG can interface C/C++ code with many other scripting languages such as Javascript,
Perl, PHP, Tcl and Ruby. However, there is so far no possibility to directly expose other

Remark

2Objects and classes are usually specific to the C++ language. For the C language, this can be equivalently
seen as group of functions.



CHAPTER 5. THE COUPLING TOOL CUPYDO 95

compiled languages such as Fortran for instance. A typical work-around would be to
generate a C/C++ API of the Fortran code which is then interfaced with Python.

5.2.2 Coupling with the Python wrapper

Python is one of the most used scripting language in the scientific (either academic or industrial)
community and today Python wrappers are most commonly used to create high-level interpreted
programming API, user interfaces, or as a tool for testing and prototyping C/C++ software.
In this work, this technology is used as base technique to couple independent fluid and solid
solvers, perform the synchronization of single-physics computations and exchange the interface
data. The coupling mechanism is schematically represented in Fig. 5.3. In order to call the
related coupling functionalities of each code, CUPyDO directly interacts with them through
their wrappers as if they were simple Python objects. Inter-communication does not require
any file I/O and the wrapped functionalities of each solver can thus be easily and intuitively
managed in Python while the critical and computationally intensive calculations are performed
under their own language. It should be emphasized that the solvers are not driven through basic
OS system calls, although CUPyDO is flexible enough to technically permit such kind of basic
interfacing. The coupling mechanism of CUPyDO is thus based on two principal aspects:

#CouplingEnvironment.py

import fluidSolver

import solidSolver

fluidSolver.computeOneTimeStep ()

interfaceData = fluidSolver.getData ()

solidSolver.setData(interfaceData)

solidSolver.computeOneTimeStep ()

#etc

C++ core code

fluidSolver.py

Fluid solver

C++ core code

solidSolver.py

Solid solver

SWIG SWIG

Figure 5.3: Schematic illustration of a coupling environment and its interaction with the respec-
tive fluid and solid Python wrappers.

1. the coupled codes are directly integrated into the coupling framework as computational
objects or modules and,

2. the Python environment allows the manipulation of these objects and the coupling tasks
in a very intuitive fashion.



CHAPTER 5. THE COUPLING TOOL CUPYDO 96

This use of a Python framework as a coupling environment allows users and developers to reach
the largest level of flexibility for performing top-level coupling tasks such as solver management
and data exchange. First, the exchange data can be expressed under friendly Python-oriented
formats such as lists or dictionaries, or in NumPy arrays for larger data sets on which algebraic
operations have to be performed. This is allowed by the aforementioned type mapping capability
of SWIG. Secondly, using a Python wrapping methodology is less intrusive than compiling the
coupled code with an external API adapter coming from the coupler. Thirdly, the Python
wrapper can be generated as a generic interfacing layer without being restricted to FSI coupling
purposes. For instance, the solver wrapper can be used in a standalone fashion in order to define
user-customized boundary conditions that thus do not require to be hard-coded in the source
code. Finally, the coupling with commercial codes is technically conceivable since several of
them, such as Abaqus [211] for instance, are already designed with a Python interface.

From a standard (i.e. not advanced) usage point of view, the coupling using Python does not
require strong knowledge of the language since high-level functionalities are directly provided to
the user by CUPyDO. However, one advantage of this approach is also to permit full customiza-
tion of the coupling environment for more advanced users. The use of the Python language is
then a reasonable compromise between efficiency and flexibility.

5.2.3 Development of the SU2 Python wrapper

The fluid solver SU2 used in this work has been described in Section 3.6. Under its standalone
form, the source code is not designed to be coupled with CUPyDO and a Python wrapper has
been developed for this purpose. The development of the SU2 Python wrapper is part of this
thesis and is described in the following.

The SU2 Python wrapper is designed based on a driver object, as introduced in Section
5.2.1. A complete description of the structure of SU2 is beyond the scope of this work and many
details can be found in some references such as Economon et al. [168] and Palacios et al. [165].
The general C++ class structure of the code is divided into several main classes:

• CConfig reads and store the problem configuration from input file,

• COutput manages the solution output of the simulation,

• CGeometry reads and processes the mesh input file, manages the dual grid and manages the
multigrid geometry,

• CIntegration contains high-level loop for integrating in space and time general PDE’s and
also manages the multigrid acceleration,

• CSolver contains the solution procedure for particular PDE’s (N-S mean flow, turbulence
models, ...) and manages boundary conditions,

• CNumerics provides a wide range of discretization techniques for fluxes (convective and vis-
cous) and source terms,

• CIteration manages the iterative process such as (pseudo-)time loops,

• CVolumetricMovement manages the mesh deformation.

In order to integrate the Python wrapper while keeping this inherent code structure, a CDriver

class has been first created. The role of the CDriver is dual. On the one hand it defines high-level
management of the aforementioned classes. Child classes of CDriver are defined to accommodate
the underlying functionalities to specific applications such as general fluid flow, turbomachinery,
adjoint, harmonic balance, multi-zone or multi-physics computations. On the other hand the
CDriver provides an interface to specific functionalities and data structures defined at low level.



CHAPTER 5. THE COUPLING TOOL CUPYDO 97

This is typically used to retrieve solution data defined at grid nodes or to define user-customized
boundary conditions (e.g., non-stationary or non-uniform). The CDriver class is then exposed
to Python using SWIG to create the Python wrapper, as depicted in Fig. 5.4. The advantage
of the dual characteristic of the CDriver class is that it is used either by the main function that
generates the SU2 executables or by a Python-based external environment such as CUPyDO.
This minimizes the development overhead associated with the wrapper and maximizes code
re-usability.

CDriverCConfig

COutput

CGeometry

CIntegration CSolver

CNumerics

CIteration

CVolumetricMovement

pysu2.py

Figure 5.4: Generation of the SU2 Python wrapper based on the CDriver class.

The coupling routines of the SU2 Python wrapper are listed in Tab. 5.1. This gives an
overview of the capabilities of SU2 for the interfacing with CUPyDO. Among these routines,
some are mandatory to ensure the compatibility with the coupler. These routines constitute
a common basis of functionalities that each coupled solver, and not only SU2, has to provide.
Conversely, some other wrapper routines are optional and inherent to the structure of the solver
code. In this section, the distinction between mandatory and optional routines is not made
explicit as this will be addressed in the dedicated Section 5.5.

5.3 Architecture of CUPyDO

The Python wrapping methodology previously introduced is the foundation of the implementa-
tion of CUPyDO. Python wrapping is used to couple and interface different solvers but it is also
used in the implementation of the coupler itself. In particular, CUPyDO is also composed of a
low-level C++ kernel which is then wrapped and exposed to Python as high-level coupling func-
tionalities. An overview of the object-oriented architecture of CUPyDO is depicted in Fig. 5.5,
where the C++ code is represented with black boxes and the Python framework is represented
with a larger grey box that includes the main Python classes of CUPyDO. The framework is
also divided into three distinct layers: Utilitiy (U), Core (C) and Interface (I). Each part of the
architecture is briefly introduced in this section, then described with more details in the next
sections.

5.3.1 C++ kernel

The existence of a C++ kernel is justified by the decision of keeping any computationally in-
tensive coupling routine at a low and more efficient language level. Typically, the C++ layer
defines basic classes that handle the following tasks:

• CInterpolator for mesh mapping (including node searching) and mesh interpolation,

• CInterfaceData for management of fluid-structure interface data,



CHAPTER 5. THE COUPLING TOOL CUPYDO 98

CDriver (constructor) Initialize the SU2 computation (configuration,
mesh, solver, ...) by instantiating the underlying
classes.

PostProcessing Exit the SU2 computation.
Update Update the dual-time solution for next time

step.
ResetConvergence Reset the convergence monitoring. This is typ-

ically used when the same time step has to be
restarted several times.

Output Output the current solution to a file.
DynamicMeshUpdate Perform a dynamic mesh deformation with grid

velocity computation (ALE).
StaticMeshUpdate Perform a static mesh deformation without grid

velocity computation.
BoundaryConditionsUpdate Process non-stationary boundary conditions and

update multi-grid structure.
Run Execute the solver for one time step or execute

a steady (time-marched) computation.
GetLift Get the lift force. Other aerodynamic forces and

moments are accessible through similar func-
tions (e.g. GetDrag).

GetLiftCoeff Get the lift coefficient. Other aerodynamic coef-
ficients are accessible through similar functions
(e.g. GetDragCoeff).

GetMovingMarker Get the index of the boundary patch marked as
moving (moving fluid domain boundary).

GetNumberVertices Get the number of vertices for a specified bound-
ary patch.

ComputeVertexData At a specified vertex, compute solution data
which is not computed by the primal solution
procedure of the solver. Data can be either
forces or heat fluxes.

GetVertexData Get data at a specified vertex. Data can be node
index, coordinates, force components, tempera-
ture or heat flux components for instance.

SetVertexData Set data at a specified vertex. Data can be node
index, coordinates, force components, tempera-
ture or heat flux components for instance.

Table 5.1: Main coupling routines of the SU2 Python wrapper.



CHAPTER 5. THE COUPLING TOOL CUPYDO 99

Algorithm

Manager Interpolator

GenericFluid GenericSolid

FluidSolverInterface SolidSolverInterface

InterfaceData

InterfaceMatrixMPI functions

LinearSolver

C
U

P
y
D

O
C

+
+

ke
rn

el

OpenMPI

PETSc

Fluid solver Solid solver

U

C

I

Figure 5.5: Overview of the main architecture of CUPyDO. Black boxes represent C++ code,
blue boxes represent Python classes that inherit from the C++ kernel, white boxes represent
Python-only classes and red boxes represent the interfacing Python layer. All these components
are detailed in the next sections.

• CInterfaceMatrix/CLinearSolver for linear algebra.

Note that every class defined in the C++ kernel begins with the letter C in order to be distin-
guished from those defined in Python. These basic C++ classes are then wrapped and exposed
to Python using SWIG.

The aforementioned tasks can be performed in parallel. Parallel HPC support is provided
by well established external libraries that are OpenMPI and PETSc. These libraries are built
with their corresponding built-in Python wrapper mpi4py [212] and petsc4py [213] and are thus
naturally integrated in the hybrid structure of CUPyDO. A detailed description of the parallel
capabilities of CUPyDO is given in Section 5.6.

As illustrated in Fig. 5.5, the classes defined and exposed from the kernel are used by some
Python classes of the Utility and Core layers. These classes are coloured in light blue. The
other classes are Python-only classes that do not require a computationally efficient C++ core.
The Python kernel-based classes are usually built as children of the corresponding wrapper.
For instance, the Python Interpolator class is a child class of the wrapper of the C++ CIn-

terpolator. This is illustrated in Fig. 5.6 for an arbitrary class. This procedure offers the
possibility to overload the low-level kernel classes to create high-level and more intuitive Python
counterparts that conserve the intrinsic efficiency of the C++ language.

5.3.2 Python Utility layer

The Utility layer defines fundamental functionalities for CUPyDO. This includes MPI commu-
nication functions, interface data and matrix structures, as well as linear solvers.

MPI functions are directly based on the mpi4py wrapping module. The standard MPI
routines for peer-to-peer and collective communications are accommodated to be used with the



CHAPTER 5. THE COUPLING TOOL CUPYDO 100

CExampleClass

CExampleClass wrapper.py

ExampleClass

ExampleClass Child1

ExampleClass Child2

Figure 5.6: Wrapping procedure exposing a C++ kernel class to the Python framework of
CUPyDO. Black box: C++ kernel class, blue arrow : SWIG wrapping action, light blue boxes:
Python classes derived from the wrapper, black arrows indicate inheritance between classes and
are pointing from child to mother classes.

interface data structure of CUPyDO.

The InterfaceData class is a child of the kernel CInterfaceData class which is designed
to encapsulate in parallel the data being exchanged at the fluid-structure interface between
the solvers. The data is stored in vector-like structures for which any standard arithmetical
or algebraic operation is defined. This is supported by the PETSc library and the associated
petsc4py wrapper module. The construction and the management of the interface data structure
is detailed in the dedicated Section 5.4.

The InterfaceMatrix class is a child of the kernel CInterfaceMatrix class. It is designed
to construct in parallel the interpolation matrix used for the mapping of non-matching interface
meshes. Details about non-matching interface mesh capabilities of CUPyDO are developed in
the dedicated Section 5.7.

The LinearSolver class is a child of the kernel CLinearSolver class. It is designed to solve
the linear system involved in non-matching interface mesh interpolation. It is supported by the
PETSc library and its wrapper petsc4py where Krylov-type iterative solvers are accommodated
to be used with the InterfaceData and InterfaceMatrix structures.

5.3.3 Python Core layer

The Core layer is the central part of the coupling environment. In this part, the main classes are
defined according to the different coupling tasks such as the management of the MPI partitioning
and the communication network, the interpolation of the fluid-structure interface meshes, and
the coupling algorithm.

The Manager class is designed to build the network describing the MPI partitioning of each
solver. For example, this identifies the processes on which the fluid and solid solvers are running
and, among all these processes, it distinguishes the subset of processes that effectively own



CHAPTER 5. THE COUPLING TOOL CUPYDO 101

fluid-structure interface grid nodes. Storing the number of interface nodes on each process and
identifying the halo nodes3 are also important tasks dedicated to the Manager.

The Interpolator class is a child of the kernel CInterpolator class. It uses the information
built by Manager to construct the non-matching mesh interpolant that is called each time data
has to be exchanged and interpolated from one interface grid to the other. The different schemes
introduced in Section 3.3 for thermal coupling are also directly defined in the Interpolator class.

The Algorithm class is the central part of the Core layer. It is a Python-only base class
containing the common functionalities for every particular coupling algorithm implemented in
CUPyDO. In the scope of this thesis, the following coupling algorithms, that were formally
described in Section 3.2, have been implemented:

• explicit weak coupling,

• block-Gauss-Seidel strong coupling with static relaxation,

• block-Gauss-Seidel strong coupling with dynamic Aitken’s relaxation,

and they are used for either mechanical or thermal fluid-structure interactions. Note that for
the BGS schemes, a second- or first-order time step predictor is available. Each specific coupling
algorithm is implemented in a child class of Algorithm as illustrated in Fig. 5.7. The time-

Algorithm

AlgorithmExplicit AlgorithmBGSStaticRelax

AlgorithmBGSAitkenRelax

Figure 5.7: Structure of the Algorithm class.

marched strongly-coupled block-Gauss-Seidel algorithm such as implemented in CUPyDO is
illustrated in Fig. 5.8. The corresponding high-level Python code of the inner coupling loop
(BGS loop in Fig. 5.8) can be found in Appendix E for illustration. The algorithm structure
strongly relies on the other classes of the Core layer. These are used by Algorithm in order
to perform all the coupling tasks such as communication, mesh interpolation and sub-system
computation. The object-oriented structure of CUPyDO allows the user to derive new coupling
algorithms without knowing many details about inter-communication or mesh interpolation that
can be used as black-box functionalities. The parallel data structure provided by the Utility layer
allows these coupling tasks to be performed in parallel and thus avoid any serialization overhead
at the coupling level when distributed solvers are used.

It should be mentioned that the IQN-ILS coupling algorithm with filtering is also imple-
mented and available in CUPyDO by instantiating an AlgorithmIQN_ILS object. The
detailed implementation is however not covered in this work as it is not the contribution
of the present author. Details about IQN-ILS in CUPyDO can be found in the works of

Remark

3Halo nodes (or ghost nodes) are used at the boundaries of mesh partitions to support the communication of
the solution in a distributed parallel computation.



CHAPTER 5. THE COUPLING TOOL CUPYDO 102

Initialize t = 0, i = 0, j = 0

Interpolate solid displacements
from solid to fluid interface grids

Deform fluid mesh
Compute grid velocities

Call fluid solver
Compute fluid interface loads

Interpolate fluid loads
from fluid to solid interface grids

Call solid solver
Compute solid interface displacements

Compute solid interface residual
and assess convergence

Compute relaxation parameter
(Aitken)

Relax solid displacement

j+ = 1

Is t the final time?

Exit

Predict solid interface position
at the next time step

i+ = 1
t+ = ∆t
j = 0

BGS loop

Figure 5.8: Time-marching coupling algorithm based on the block-Gauss-Seidel scheme with
Aitken’s ∆2 relaxation as implemented in CUPyDO (i is the time iterator and j is the FSI
iterator).



CHAPTER 5. THE COUPLING TOOL CUPYDO 103

M.L. Cerquaglia [2].

The GenericFluid and GenericSolid classes are used to represent in the Core layer the
coupled fluid and solid solvers, respectively. They are almost pure virtual classes whose purpose
is to ensure the compatibility between the interfaced solvers and the central coupling algorithm.
The coupling methodology of CUPyDO and the role of the generic classes are detailed in the
dedicated Section 5.5.

5.3.4 Python Interface layer

The Interface layer is an important part of the coupling environment since it ensures the flexi-
bility of the coupling and the compatibility between the solvers and the coupling environment.

SolverInterface classes are children interfacing classes (red boxes in Fig. 5.7) that are di-
rectly derived from the generic classes of the Core layer. First, this inheritance ensures the
compatibility between any coupled solver and the central Algorithm class. Then, the interfac-
ing classes are overloaded with the specific wrapped functionalities coming from each coupled
solver so that one interfacing class is required per coupled solver. The interfacing class plays the
role of a plug-in layer and thus ensures the flexibility of the coupling. More details about solver
interfacing are given in Section 5.5.

5.4 Interface data structure

The efficiency of a coupling environment based on a partitioned approach relies on a robust
formatting of the data that is exchanged between the solvers. As this data is processed by
the coupling algorithm, it has to be stored in structures on which algebraic operations can be
applied. In CUPyDO, vector-like structures are defined for this purpose in the kernel CIn-

terfaceData class which is exposed to Python as the InterfaceData class. This class is an
extension of the parallel PETSc vector structure to a general multi-vector container as illustrated
in Fig. 5.9. Each vector of the container is used to store data at the fluid-structure interface and

· · ·

· · ·

· · ·

· · ·

· · ·

...

Proc 0

Proc 1

Proc 2

Proc N

Number of dimensions

N
u
m

b
er

o
f

in
te

rf
ac

e
n
o
d

es

Figure 5.9: Schematic illustration of InterfaceData structure for storing multi-dimensional
interface quantities.



CHAPTER 5. THE COUPLING TOOL CUPYDO 104

its length thus corresponds to the number of nodes at the interface. The container can store as
many vectors as needed in the same object. This is typically used for quantities with several
dimensional components such as force or heat flux. When the coupling is performed in paral-
lel involving distributed solvers (in a MPI sense) and consequently distributed fluid-structure
interface, the InterfaceData container is also distributed and inherits the functionalities of
the parallel PETSc vector structure. Each container is instantiated with three parameters: the
number of interface nodes, the number of dimensions and the MPI communicator. The latter is
the main support for inter-process data distribution. Data can be set to any vector index from
any process, even if the process does not hold the index. For one particular vector index, data
can be set for one particular dimension or for all the dimensions (i.e. all components) at the
same time.

As already mentioned, the InterfaceData structure is designed to store any quantity de-
fined at the fluid-structure interface. This can typically be coordinates, displacements, forces,
heat fluxes, temperatures, or the residuals of the strongly-coupled algorithm as well. One In-

terfaceData object is instantiated per quantity on each side of the interface (fluid or solid).
These objects are used for inter-solver communication, as illustrated in Fig. 5.10. By taking the

F
lu

id
so

lv
er

S
olid

solver

interfaceFluidLoads interfaceSolidLoads

interfaceSolidDispinterfaceFluidDisp

get data set data

get dataset data

process

process

Figure 5.10: Usage of the InterfaceData class for inter-solver communications (example for the
mechanical coupling). Each red box corresponds to one instance of InterfaceData.

example of the mechanical coupling, the procedure is described as follows. First, the physical
interface quantities computed by the solvers (fluid loads and solid displacements) are obtained
via dedicated accessors defined in the wrappers (see for example GetVertexData of the SU2
wrapper in Section 5.2.3). Data are then formatted into instances of InterfaceData and can
be processed by the coupling environment. Formatting the data as vector structures allows
to perform mathematical and algebraic operations (in parallel) on this data. Operators such
as addition, subtraction or scalar multiplication (scaling) are thus defined in the Interface-

Data class, as well as other vectorial operations, such as scalar product and norm computation.
When they are combined with the InterfaceMatrix class (see Section 5.7 for more details),
linear algebraic systems can be defined. A typical example of data processing is the treatment
of interface mesh interpolation. After the processing step, the data is transferred to the solvers
via dedicated modifiers defined in the wrappers as well (see for example SetVertexData in the
SU2 wrapper in Section 5.2.3).



CHAPTER 5. THE COUPLING TOOL CUPYDO 105

5.5 Coupling with black-box solvers and compatibility

The central idea behind the partitioned coupling approach is that the coupled solvers must be
used as independent black-box tools. In CUPyDO, this is achieved by the Python wrapping
methodology such as presented in Section 5.2. However, coupling flexibility cannot be achieved
without a robust interfacing framework. The role of the Utility layer is to provide such robust
and flexible interfacing with the solvers through their Python wrappers. It is a link between the
coupled solvers and the central algorithmic part of the Core layer.

In order to preserve the high-level characteristic of the Algorithm structure, the coupled fluid
and solid solvers are represented by unique generic base classes GenericFluid and Generic-

Solid, respectively. All the functionalities of these generic classes are, by construction, accom-
modated to the coupling algorithm. These abstract solver classes hide the intrinsic structure of
each coupled solver and guarantee that no accommodation to any particular solver is introduced
in the Core layer. This particular accommodation is instead achieved by the SolverInterface

classes of the Interface layer. These specific classes are directly derived from the generic classes
to inherit compatibility. They are then overloaded with the particular wrapper associated to
each coupled solver, hence one interfacing class is required per coupled solver. The following
code example illustrates the methodology for interfacing the SU2 solver, but the exact same
philosophy can be applied with any other coupled solver, either fluid or solid:

1 #File : SU2Interface.py

2

3 #Import SU2 Python wrapper

4 import pysu2

5 #Import generic fluid solver

6 from cupydo.genericSolvers import FluidSolver

7

8 #Create interface class that inherits from generic class

9 #Overload generic class with SU2 Python wrapper

10 class SU2Solver(FluidSolver):

11 def __init__(self , [args]):

12 (...)

13 #Initialize SU2

14 self.SU2 = pysu2.CFluidDriver ()

15 (...)

16

17 def run(self):

18 #Compute one time step

19 self.SU2.run()

20

21 (...)

22

23 def meshUpdate(self , unsteady):

24 #Perform mesh deformaiton

25 if unsteady:

26 self.SU2.DynamicMeshUpdate ()

27 else:

28 self.SU2.StaticMeshUpdate ()

29

30 (...)

In this illustration, __init__, run and meshUpdate are examples of empty members defined



CHAPTER 5. THE COUPLING TOOL CUPYDO 106

in the generic fluid solver class and called by the coupling algorithm. They are filled with
SU2 wrapper functions for accommodation so that for every generic member executed by the
algorithm, the correct solver functionalities are also executed.

The additional code layer composing the interfacing classes offers direct compatibility with
the core of CUPyDO as well as significant coupling flexibility. First, the individual Python
wrappers of the solvers do not have to be designed while seeking direct accommodation with the
coupling environment. The main reason is that, as previously mentioned, Python wrappers are
usually developed for other purposes than FSI coupling. Thus, having the interfacing layer acting
as a buffer relieves the design constraints imposed on the wrappers that are not required to be
intrinsically FSI-oriented. Secondly, modifying the coupling environment, e.g. for maintenance
or improvement, does not affect the individual Python wrappers and, reversely, any deep change
in the core code of the coupled solvers has no direct impact on the central coupler.

The construction of an interfacing class is performed at a very high level, outside of any
source code, hence requiring limited coding effort. Templates of interfacing classes are provided
by CUPyDO to users or developers wishing to couple their solver if this solver provides a Python
wrapper. The wrapper should only have minimal capabilities for controlling the solver execution
and accessing the interface quantities, as listed below:

• Control the solver to compute one time step (potentially restart the same time step) or a
steady-state solution with given boundary conditions,

• Provide identification of interface boundaries, e.g. with a tag or an index, and the number
of vertices on these boundaries,

• Provide access to read or modify the following data at any interface vertex: indices (iden-
tifiers), coordinates, displacements, velocities, force components, temperatures and heat
flux components,

• For the fluid solver only, control the mesh deformation according to the specified motion
of the solid boundary.

5.6 Coupling parallelization

The coupling tool CUPyDO is designed to be HPC-compliant. Distributed simulations can be
run in parallel using the MPI protocol on large computational units such as multi-core work-
stations or clusters. In the framework of a partitioned coupling approach, the parallelization is
not straightforward and keeping a high level of flexibility while conserving good parallel scala-
bility is challenging. When seeking high parallel performance, ensuring compatibility between
the coupling tool and distributed solvers is not sufficient anymore: the coupling algorithm must
also be distributed to avoid any serialization bottleneck. For fully-distributed architectures,
load balancing, CPU idling and communication overhead are all factors influencing the parallel
scalability and thus must be properly assessed.

The parallelization of CUPyDO is based on two types of communication between processes:
intra- and inter-communications. Intra-communication refers to the communication between
the processes inside one of the coupled solvers. This communication usually depends on the
intrinsic parallelization of the solvers. They are used to compute the solution on partitioned
single-physics domains and can be treated as black-box functionalities. This abstracted approach
also allows CUPyDO to use pure serial solvers. Inter-communication refers to the communication
between processes that are not inside the same solver. Such communication is typically used
to exchange data in parallel between the coupled solvers and is related to the partitioning of
the fluid-structure interface only. The parallel implementation of the coupler is developed to
take into account the heterogeneous distribution of each coupled solver. Most of the time, the
fluid domain will require many more processors than the solid domain. Consequently, different



CHAPTER 5. THE COUPLING TOOL CUPYDO 107

numbers of processors should be allocated for the fluid and solid solvers. The unified coupling
architecture used in CUPyDO makes the management of the MPI partitioning more flexible than
a server-client approach. Because CUPyDO couples the solvers as object libraries, it allows one
process to host both fluid and solid solver instances, as they are never computing their solution
at the same time. A coupling architecture requiring a segregated approach in which the solvers
have to be hosted by distinct processes, would increase the total number of processors necessary
for a simulation and the processor idling time. Idling time results from the fact that the coupling
algorithm is executed in a staggered fashion: when a solver A is running, the other solver B
must wait until A finishes computing the interface data required by B to be started. Fig. 5.11
illustrates the difference between segregated and integrated approaches.

Process 0

Process 1

Process 2

Process 3

Process 4

Process 5

Segregated Integrated

Not allocated

Not allocated

Figure 5.11: Segregated vs integrated processes solver distribution. In this example, blue and
gray colors represent fluid and solid solvers, respectively.

The process distribution is based on the definition of several MPI communicators. A com-
municator defines a group of processes which are allowed to communicate between each other
via peer-to-peer or collective communications. MPI_COMM_WORLD is the default communicator
that owns all the processes involved in the coupled simulation. In CUPyDO it was intended
that several communicators could be defined as subsets of MPI_COMM_WORLD to group processes
involved in fluid and solid intra-communications: FluidSolver_Comm and SolidSolver_Comm,
respectively. The process distribution and the number of required cores per domain is first set
by the user, then the communicators are created and used to instantiate each individual solver
in parallel. This also introduces an additional fundamental requirement that the coupled solvers
must satisfy: they must accept to be launched on an arbitrary communicator instead of the
default MPI_COMM_WORLD. If this cannot be fulfilled, as it is the case with the solvers used in this
work, the computation can still be run in parallel but with less flexibility. Indeed, in this case
the solvers are instantiated on the default MPI_COMM_WORLD and each of them are distributed
across all the allocated processors. For example, if six cores are required by the user for the
entire computation, each solver automatically uses these six cores. In other words, every process
hosts both fluid and solid solver partitions. The number of cores to be used is then dictated
by the size of the larger domain. This is most of the time the fluid domain, so that the solid
domain might become over-distributed (e.g. it uses more processes than required for proper
parallel scalability). Finally, it is important to note that CUPyDO enables coupling between
parallel and serial solvers. In this case, the parallel solver is usually launched on the standard
MPI_COMM_WORLD communicator and the serial solver is by default launched on the lowest MPI
rank.

A central problem of the partitioned black-box coupling is that the coupling framework does
not know a priori which solver process requires which coupling data. Consequently, an efficient



CHAPTER 5. THE COUPLING TOOL CUPYDO 108

communication network is created to identify which processes have to communicate between the
solvers during data exchange phases. The Manager class of the Core layer is designed to build
the network describing the MPI partitioning of each solver. Inspection rounds are performed in
order to identify and determine the number of processes on which the fluid and/or solid solver
partitions are running. Since only interface data are concerned with inter-communications, a
subset of processes that effectively own fluid-structure interface nodes is also generated, as illus-
trated in Fig. 5.12. The identification of interface instances is typically achieved by interrogating

fluid intra-comm solid intra-comm

fluid-solid inter-comm

Figure 5.12: Illustration of intra- versus inter-communication. Blocks represent either a fluid
(blue) or solid (grey) instance. Note that both fluid and solid instances can be hosted by the
same MPI rank. Blocks with dashed boundaries represent instances that own fluid-structure
interface nodes and are thus involved in the inter-communication procedure.

each solver partition, through their Python wrappers, for the number of interface nodes that
are locally owned. By default this number is set to zero on partitions that do not own inter-
face nodes. Interface node counting and halo node identification are also performed on each
partition by the Manager during initialization. Interface halo node identification is a crucial
step because halo nodes contain duplicated data that is hence not considered as physical for
interface exchange. Local partitioning information is then gathered across all the processes of
MPI_COMM_WORLD and stored under the form of Python list() or dic() entities in such a way
that all information about interface partitioning and node distribution is accessible to all ranks.

The inter-communication performed between interface solver instances is supported by a
dedicated communicator. This communicator must at least contain all processes owning a fluid
and/or solid interface partition. In CUPyDO the default inter-communicator is the standard
MPI_COMM_WORLD as it owns every solver instance. Defining a communicator to support inter-
communications also allows the coupling tasks to be performed in a distributed fashion. This
is typically the case for mesh interpolation, as it will be addressed in the next section, or
other general tasks such as computing the coupling residual or performing interface relaxation
and interface prediction. The parallel management of exchanged data is supported by the
InterfaceData class as previously detailed in Section 5.6. The MPI communication is handled
with Python and is supported by the mpi4py module. Communication, either peer-to-peer
or collective, is embedded in high-level routines contained in the Interpolator, Manager and
Algorithm classes as well as in the MPI functions of the Utility layer. Communication efficiency
is also optimized through the specific data formatting used in the InterfaceData container
class.



CHAPTER 5. THE COUPLING TOOL CUPYDO 109

5.7 Interface mesh interpolation

Non-matching interface mesh interpolation is one of the most important capabilities of CUPyDO
because it is the most computationally intensive part of the coupling process. Mesh interpolation
is the central task of solver inter-communication. It is designed to work in parallel on distributed
interface meshes while keeping a low computational overhead. The interpolation is based on
Radial Basis Functions (RBF) which are implemented under the standard form (i.e. with no
partition of unity localization). This method is chosen for its significant flexibility and its
meshless characteristic. It is therefore the most appropriate method for coupling based on
a black-box partitioned approach involving arbitrary kinds of interface grids. Finally, both
conservative and fully consistent interpolations are implemented.

5.7.1 Parallel implementation of the RBF mesh interpolation

As described in Section 3.4.2, data interpolation is based on the definition of several matrices
that are obtained by mapping the nodes of an interface donor mesh (subscript d in the following)
onto an interface target mesh (subscript t in the following). For an interface quantity s to be
interpolated from the donor to the target mesh, the mapping matrix H̃ is defined as:

st = BA−1︸ ︷︷ ︸
H̃

[
sd

0

]
. (5.1)

The matrix is constructed from two matrices A and B,

A =

[
Cdd Pd

PT
d 0

]
and B =

[
Ctd Pt

]
, (5.2)

in which the blocks C contain the evaluation of basis functions and the blocks P contain the
interface node coordinates (see Section 3.4.2). The basis functions currently available are the
Thin Plate Spline (TPS) with global support,

φ (|| · ||) = || · ||2 log (|| · ||) , (5.3)

and the Compact C2 (CPC2) with compact support of radius r,

φ (|| · ||) =

(
1− || · ||

r

)4

+

(
4
|| · ||
r

+ 1

)
. (5.4)

These two functions are selected because they proved to provide the most accurate and robust
results. In CUPyDO, interface mesh treatment is achieved in two consecutive steps: the mapping
matrices A and B are first constructed during the pre-processing phase and, then, the actual
interpolation is performed at every solver inter-communication.

Pre-process mapping

The construction of matrices A and B requires the evaluation of distances between interface
nodes on the donor and target meshes. This is achieved only once at the beginning of the
simulation where the two meshes are considered to be in a reference configuration. This means
that the same mapping relation is conserved throughout the entire computation. This is valid,
even for large interface displacement, as long as the relative position between nodes along the
interface does not vary much.

Although there is no technical restriction to re-generate the mapping after each displacement
of the interface, it would introduce a significant computational cost overhead. Each domain (fluid
or solid) can be identified as the donor or the target side. A solid-to-fluid mapping is obtained



CHAPTER 5. THE COUPLING TOOL CUPYDO 110

when the solid side is identified as the donor side and the fluid side is identified as the target
side. In order to build the reverse fluid-to-solid mapping, the procedure depends on the mapping
type. For a conservative mapping, only the transposed matrix H̃T is needed. Hence the A and
B matrices are also simply transposed and no more mapping procedure is required. For a fully
consistent mapping, the mapping procedure is repeated, this time with a fluid donor side and a
solid target side in order to construct the matrix G̃ as detailed in Section 3.4.2. The interface
mapping procedure currently implemented in CUPyDO is performed in parallel according to the
intrinsic partitioning of the fluid-structure interface. The procedure is illustrated in Fig. 5.13
and described in the following.

Target interface Donor interface

Target partitions

Donor partitions

Mapping communication rounds

Figure 5.13: Non-matching mesh mapping for distributed interface partitions. In this simple
example, two communication rounds (red and green arrows) are needed to map two solid interface
partitions (in grey) with three fluid interface partitions (in blue).

The interface partitions are mapped in several communication rounds. The number of rounds
corresponds to the number of interface partitions on the donor side. At each round, the corre-
sponding donor interface partition (node coordinates) is sent to each target interface partition
via peer-to-peer non-blocking communication. Using non-blocking communication allows over-
lapping of communication and computation. This means that the computation can be continued
after a MPI_Send call without waiting for the corresponding MPI_Receive call. Once a target
partition receives a donor partition, node searches and distance computations are performed to
fill the corresponding elements in the blocks C and P of the matrices. When globally-supported
basis functions are used, the search is performed on every node between the received donor and
the local target partitions. Conversely, when locally-supported basis functions are used, the
points on the received partitions are filtered to restrict the search on nodes included in the sup-
port radius, i.e. a sphere of radius r centered at the target nodes. An Alternating Digital Tree
(ADT) [214] is used to perform efficient node search such as nearest neighbor or sphere neighbor
search. Note that one ADT instance is locally created for each received partition. Distributed
(parallel) ADT is not currently implemented in the framework of this thesis and is considered
as part of future development. As an illustration of the multi-language flexibility of CUPyDO
the communication rounds between the partitions are typically managed in Python using the
bindings for MPI but node searches are executed in the C++ kernel to guarantee best efficiency.

The matrices A and B are defined in CUPyDO with the InterfaceMatrix class, which is a
high-level implementation of the parallel capabilities of the PETSc matrix structure. The map-



CHAPTER 5. THE COUPLING TOOL CUPYDO 111

ping matrices are then distributed and supported by the MPI communicator used for inter-solver
communication. As mentioned in Section 5.6, this communicator is currently identified as the
standard MPI_COMM_WORLD. Since the interface partitioning results from the intrinsic distribution
of each coupled solver, heterogeneous interface node distribution is most of the time expected.
In order to ensure a proper load balancing of the interface interpolation, a re-partitioning of
the fluid-structure interface from a local distribution to a global distribution is performed. This
re-partitioning takes place right after the aforementioned mapping procedure and is illustrated
in Fig. 5.14. The matrices are globally assembled in parallel from the processes owning the

Proc 0

Proc 1

Proc 2

...

...

...

...

Proc N

fluidInterfaceData solidInterfaceData

inferfaceMatrix

Fluid solver
instances

Solid solver
instances

Local-global
re-partitioning

Figure 5.14: Parallel re-distribution of the fluid-structure interface for balanced mesh interpo-
lation. Blocks with dashed boundaries represent instances that own fluid-structure interface
nodes.

nodes belonging to the fluid-structure interface (boxes with dashed boundaries in Fig. 5.14),
i.e. the processes that participates in the mapping procedure. This is called local-to-global
re-partitioning. The complete mapping procedure can be formally described by Alg. 6.

Algorithm 6 Parallel non-mathcing mesh mapping sequence.

1: for all Donor interface partitions do
2: Send interface nodes to each target partition
3: for all Target interface partitions do
4: Receive donor interface partition
5: Perform local node mapping (compute elements of blocks C and P)
6: end for
7: end for
8: Perform interface re-partitioning for balanced interface node distribution

In the particular case of matching meshes, interpolation per se is not needed. However, a
correspondence between fluid and solid nodes is still required since it is not expected, in general,
that nodes having the same position own the same index between fluid and solid interfaces.
The same mapping procedure is thus applied during the pre-processing phase, where a standard



CHAPTER 5. THE COUPLING TOOL CUPYDO 112

nearest neighbor search using the ADT is performed in order to pair the nodes at the same
location on each side. In this case the matrix H̃ can be explicitly computed and features a
simple boolean structure.

Inter-communication interpolation

Once the interface mapping is achieved after the pre-processing phase, interface interpolation
based on relation (5.1) can be performed at any inter-communication step. In CUPyDO matrices
A and B are explicitly computed, as previously described, but not matrix H̃. This would require
the explicit inversion of A which might become a costly and inaccurate operation, especially for
large systems. Moreover, a direct inversion of the matrix does not take advantage of its potential
sparsity when locally supported basis functions are used for the interpolation. Consequently,
the interpolation is performed in two sub-steps:

1. The linear system of Eq. (3.76) in Section 3.4.2, defined by matrix A and the donor
interface data, is solved:

Aγ =

[
sd

0

]
⇒ γ = A−1

[
sd

0

]
, (5.5)

2. The result is multiplied by B to get the interpolated data on the target interface:

st = Bγ . (5.6)

These operations are performed in parallel based on the distributed structure of both the Inter-
faceMatrix class, used to represent the interpolation matrices, and the InterfaceData class,
used to store the interface quantities to be exchanged and interpolated. As shown in Fig. 5.14, not
only the InterfaceMatrix instances but also the InterfaceData instances are re-partitioned in
the same fashion. After interpolation, the target interface data is redistributed to the respective
target solver instances using reverse mapping (from global to local). Reverse mapping is per-
formed by first gathering all data on the master MPI thread and then distributing the data with
peer-to-peer communications to solver instances. A direct peer-to-peer communication strategy
that avoids gathering the data is part of ongoing work. The complete inter-communication and
interpolation sequence can be formally described by Alg. 7.

Algorithm 7 Mesh interpolation sequence during solvers inter-communication.

1: Get data from donor solver on local interface distribution
2: Assemble donor interface data in global distribution
3: Solve system Eq. (5.5)
4: Perform multiplication Eq. (5.6)
5: Redistribute target interface data to local target interface distribution
6: Set data to target solver on local interface distribution

The system given by Eq. (5.5) is solved in parallel using the FGMRES iterative solver of the
PETSc library with a standard Jacobi preconditioning. It is managed by the CLinearSolver

class and its Python counterpart LinearSolver in the Utility layer. It makes direct use of
the available Python bindings of PETSc. A Jacobi-FGMRES approach was chosen as default
because it is known to provide good convergence and proved to be robust in most cases, but
any other PETSc solver could otherwise be used. Although a formal investigation of the perfor-
mances of different PETSc solvers for RBF interface interpolation would represent an important
contribution to the development of CUPyDO, this is not addressed in this thesis. Nevertheless,
solver characterization could be envisioned as near future work.



CHAPTER 5. THE COUPLING TOOL CUPYDO 113

Design of the Interpolator class

The aforementioned mapping and interpolation procedures are managed by the Interpolator

class which is derived from the C++ kernel CInterpolator class. As already mentioned, the
kernel mainly defines specific routines for efficient node search and mapping, but the high-level
management is performed at the Python level. The Interpolator class is also a generic class
whose children correspond to each type of interpolation (conservative or consistent) and to each
basis function (CPC2 or TPS). The complete object-oriented structure is illustrated in Fig. 5.15
where boxes with dashed boundaries represent the children classes that can be instantiated.
The base Interpolator class mainly defines the routines which are common to any type of

CInterpolator

Interpolator

MatchingMeshesInterpolator

ConservativenterpolatorConsistentInterpolator

CPCInterpolator

TPSInterpolator

ConsistentCPCInterpolator

ConsistentTPSInterpolator

Figure 5.15: Object-oriented structure of the Interpolator class. Children class to be instan-
tiated are identified with dashed boundaries.

interpolator such as those used to set/get data to/from the solvers. It also handles the re-
partitioning of the interface data. ConsistentInterpolator and ConservativeInterpolator

are directly derived from the base class to define which particular type of mesh mapping is used
for the interpolation. They both handle the parallel mesh mapping during the pre-processing
phase as well as the interpolation during solver communication. The children of these two classes
simply specify which basis function is in use and manage the associated node searches which are
implemented in the kernel. Finally, the MatchingMeshesInterpolator is a special instantiable
class to handle matching meshes.

The Interpolator class is also designed to manage the specific thermal coupling schemes, as
introduced in Section 3.3, and implemented in CUPyDO. The following schemes are available:
TFFB, FFTB, hFTB and hFFB. In contrast to the mechanical coupling, the way by which data
is exchanged in the thermal coupling is not unique and depends on the chosen scheme. In this
context, the Interpolator decides which type of thermal data (e.g. temperature or heat flux)
is sent, interpolated and received by each solver. In the particular cases of hFTB and hFFB
schemes, the Interpolator is also able to compute the specific Robin temperature introduced
as T̂ in Section 3.3 based on a user-defined numerical heat transfer coefficient h̃.

5.7.2 Verification of the RBF implementation

The interface interpolation implemented in the Interpolator of CUPyDO has been verified on
a simple test case. A detailed study about accuracy of RBF methods to interpolate an analytical
function over a 1D interface can be found in the works of de Boer et al. [105,107]. In particular,



CHAPTER 5. THE COUPLING TOOL CUPYDO 114

they concluded that using the globally-supported TPS basis function typically gives a more
accurate interpolation (i.e. it gives a smaller interpolation error) than using the CPC2 basis
function.

In this section, the purpose is to verify the implementation of the RBF interpolation in
CUPyDO without considering the conservative and consistent aspects that will be addressed
further in the next chapter of this thesis. The verification is thus limited to the interpolation
of a two-dimensional displacement field from a source interface mesh to a target interface mesh.
The chosen shape for the interface is a beam with dimension (length × width) L× l = 0.5×0.04
m2. The interface is discretized using four distinct meshes with an increasing number of points
along the length and the width:

• mesh A : 12× 3,

• mesh B : 25× 3,

• mesh C : 50× 5,

• mesh D : 100× 10.

Three displacement fields are used for the verification: a translation with arbitrary components
(0.3, 0.1) (interpolation of a uniform field), a rotation of 90 degrees and a displacement resulting
from the bending of the beam clamped at one of its extremity. In the latter case, the analytical
expression of the displacement field,

dx =
P

6EI

(
3νx2(L− y) + (4 + 5ν)l2

y

4
+ (3L− y)y2

)
,

dy =
−Px
6EI

(
(6L− 3y)y + (2 + ν)(x2 − l2

4
)

)
,

(5.7)

is taken from Augarde et al. [215], where E = 1906651 Pa, I = 6.66 · 10−8 m4, and ν = 0.4
are the arbitrary Young modulus, cross-section inertia and Poisson coefficient, respectively. The
fictitious load P corresponds to a distributed load on the free tip of the beam, with arbitrary
value P = 0.8 N/m.

For each displacement case, several combinations of source-target mesh discretizations are
assessed. The results are summarized in Tab. 5.2. Each combination of interface discretization

Source Target

From coarse to fine interface

12× 3 12× 3
12× 3 25× 3
12× 3 50× 5
12× 3 100× 10

From fine to coarse interface

100× 10 12× 3
100× 10 25× 3
100× 10 50× 5
100× 10 100× 10

Table 5.2: Summary of the different interface discretization combinations used during the veri-
fication tests.

is evaluated using either the TPS or CPC2 basis function (2 × 8 combinations). In the later
case, the radius is chosen to be r = 1/2L. The impact of the CPC2 radius is tested as well with
the values r = {0.25, 0.5, 0.75, 1} × L on a limited set of interface discretizations: 12× 3 to be
interpolated onto 100 × 10 and 100 × 10 to be interpolated onto 12 × 3 (2 mesh combinations
× 4 values of radius). The total number of tests per displacement case is then equal to 24. For



CHAPTER 5. THE COUPLING TOOL CUPYDO 115

each test, the error is measured and defined as a comparison between the interpolated and exact
displacements of the target interface:

e =

√
N∑
i=1
||∆di||2√

N∑
i=1
||dex

i ||2
, (5.8)

where N is the number of points on the target interface and ∆d = dint − dex is the difference
between interpolated and exact displacement of each interface. Finally, note that the tolerance
of the iterative solver used for the interpolation is set to 10−10 so that any error of the same
order or below is considered as marginal and negligible. The detailed results (measured errors)
of the tests can be found in Appendix F.

The pure translation case is typically used to guarantee that the implemented interpolation
is consistent (exact recovery of a uniform field). For pure translation, the maximum measured
error for all the 24 cases is e = 2.56 · 10−10 which is considered as marginal. Therefore, the
consistency of the interpolation is verified.

When applying a pure rigid body rotation, the maximum measured error for all the 24 cases
is e = 4.9 · 10−7. The maximum error is obtained when interpolating the displacement from the
finer mesh to the coarsest mesh using CPC2 with the lowest radius (worst tested case). Although
the error cannot be considered as negligible, it remains far below (6 orders of magnitude) the
maximum local displacement due to rotation. It is then concluded that the interpolation is
extremely accurate for a pure rigid body motion.

The analysis of the errors measured for the case of the bending leads to the following general
conclusion:

• The error usually increases when the discrepancy in the discretization of the interface
between source and target increases.

• When interpolating on matching interfaces, the error has always the same order of mag-
nitude as the linear solver tolerance.

• The error is usually smaller when interpolating from a fine to a coarse interface than
interpolating from a coarse to a fine interface. In practice for FSI, this means that one
could expect a more accurate interpolation of the fluid loads onto the structural mesh
compared to the interpolation of the structural displacement onto the fluid mesh.

• The TPS basis function is typically more accurate (smaller error) than the CPC2 basis
function. This is illustrated in Fig. 5.16 comparing the interpolated displacement field
from the coarsest to the finest mesh obtained with TPS and CPC2 basis functions. The
worst case of intepolation using CPC2 (Fig. 5.16 (b)) is intentionally chosen to highlight
to major discrepancies located near the root and the tip of the beam. This reveals the
effect of interpolating a field on a discontinuous geometrical support (presence of corners
in this case).

• When using CPC2, the error decreases as the radius increases. This is illustrated in
Fig. 5.17 for two coarse-fine mesh interface combinations.

5.8 Setting a fluid-structure computation with CUPyDO

Within the context of a partitioned approach, setting a coupled fluid-structure simulation with
CUPyDO starts with configuring the coupled solvers independently. Typically, mesh, numerical



CHAPTER 5. THE COUPLING TOOL CUPYDO 116

−0.2 −0.1 0 0.1 0.2 0.3 0.4
0

0.1

0.2

0.3

0.4

0.5

x [m]

y
[m

]

Source
Target inteprolated
Target exact

(a) TPS.

−0.2 −0.1 0 0.1 0.2 0.3 0.4
0

0.1

0.2

0.3

0.4

0.5

x [m]

y
[m

]

(b) CPC2 with r = 0.25L (worst case). The largest discrepancy is
observed at the root and the tip of the beam.

Figure 5.16: Interpolation of the displacement field (bending case) from the 12× 3 mesh to the
100× 10 mesh using two different basis functions.



CHAPTER 5. THE COUPLING TOOL CUPYDO 117

−1 −0.9 −0.8 −0.7 −0.6 −0.5 −0.4 −0.3 −0.2
−8

−7

−6

−5

−4

−3

−2

log r

lo
g
ε

12X3 to 100X10
100X10 to 12X3

Figure 5.17: Interpolation error as a function of the radius for a CPC2 basis function used on
two mesh combinations.

and physical parameters as well as initial and boundary conditions (except at the fluid-structure
interface boundary) are set for each solver by using their intrinsic configuration system (i.e.
configuration file). The coupling environment is then configured with a Python script that
directly instantiates some of the classes described in the previous sections. The purpose of this
section is to give an insight into how the modular structure of the coupling environment can be
exploited to run a complete simulation. This is illustrated in the case of an unsteady strongly-
coupled and mechanical only simulation using the block-Gauss-Seidel method with dynamic
Aitken’s ∆2 relaxation. The interface meshes are supposed to be non-matching and the CPC2
conservative interpolation is used. As basic preliminaries to any computation, it is obviously
supposed that the coupled solvers are properly set and installed on the computing unit, that
they are compiled with their respective Python wrapper and finally that an interfacing module
has been implemented in CUPyDO.

Step 1 : import the different modules of CUPyDO The different classes and function-
alities of the coupling tool are grouped into distinct modules. Each module is associated with
a major functionality such as management, interpolation or solver coupling. Importing these
modules is equivalent to associating CUPyDO with the computation and can be performed as
follows:

1 #Import common utilities

2 import cupydo.utilities as cupyutil

3 #Import manager module

4 import cupydo.manager as cupyman

5 #Import interpolation module

6 import cupydo.interpolator as cupyinterp

7 #Import coupling algorithm

8 import cupydo.algorithm as cupyalgo



CHAPTER 5. THE COUPLING TOOL CUPYDO 118

Step 2 : define coupling parameters A small set of coupling parameters have to be defined
by the user to control the simulation and the coupling scheme. The parameters can be directly
defined in the launching script as variables that will be passed as arguments to the different
objects. These parameters are listed and detailed in the following (with arbitrary values):

1 #Number of dimensions

2 nDim = 3

3 #FSI Tolerance for strong coupling

4 tolFSI = 1e-6

5 #Maximum number of coupling iterations

6 nFSIIterMax = 6

7 #Relaxation parameter

8 omega = 0.8

9 #RBF radius [m]

10 RBFRadius = 0.1

11 #Time evolution type

12 timeType = ' unsteady ' #other option ' steady '
13 #Time step size [s]

14 timeStep = 0.001

15 #Physical simulation time [s]

16 timeTot = 2.0

The parameter omega may correspond either to the fixed relaxation parameter in case of static
relaxation or to the parameter ω̄ used for dynamic relaxation and defined by Eq. (3.23) (the max
criterion is chosen as default). The value of omega only depends on the selected type of coupling
algorithm, as detailed further below. Also, it is important to note that the coupling at each time
step is controlled either by the coupling tolerance or by a maximum allowed number of coupling
iterations. This prevents time steps, where convergence cannot be reached but which are not
diverging, from freezing the time-advancement. Note that these parameters are case-dependent
and their optimal values are usually not known a priori.

Step 3 : initialize MPI and the parallel distribution of the solvers Prior to any
computation, MPI has to be initialized (only for parallel simulations). The list of process ranks
is specified for each coupled solver and is used to define the intra-communicator as subset of the
general MPI_COMM_WOLRD communicator. As previously mentioned, this communicator is also
used to parallelize the coupling tasks. In the following example, the fluid solver is instantiated
on all the processors allocated to the computation while the solid solver is instantiated on two
processors:

1 #Initialize MPI

2 from mpi4py import MPI

3 worldComm = MPI.COMM_WORLD

4 worldGroup = worldComm.Get_group ()

5 nProc = worldComm.Get_size ()

6 #Allocate processors to fluid and solid solvers

7 fluidAllocRank = range(0, nProc)

8 solidAllocRank = [0, 1]

9 #Define fluid and solid communicators

10 fluidGroup = MPI.Group.Incl(worldGroup , fluidAllocRank)

11 solidGroup = MPI.Group.Incl(worldGroup , solidAllocRank)

12 fluidComm = comm.Create(fluidGroup)



CHAPTER 5. THE COUPLING TOOL CUPYDO 119

13 solidComm = comm.Create(solidGroup)

Note that for a purely serial computation, an explicit definition of communicators is still required.
In this case, they are simply set to None.

The methodology for defining separate communicators as described here above has been
introduced as it is intended to be used with CUPyDO. However, it is important to note that
it has neither been deployed nor formally tested because the available coupled solvers could
not be launched on other communicators than the default MPI_COMM_WOLRD. As previously
mentioned, parallel simulations are still operational using the default communicator for
each coupled solver.

Remark

Step 4 : initialize the coupled solvers Each solver is individually initialized with its own
set of parameters, typically mesh and configuration files. The initialization for coupling with
CUPyDO is directly handled by the corresponding interface modules of the Interface layer.
Solver initialization is typically managed by the constructor of the interfacing class and thus
includes mesh reading and partitioning as well as any other pre-processing task such as setting
up the numerical methods and integration schemes. After this phase, the solvers are supposed
to be set and ready to compute their own solution. The following example illustrates the
initialization process for arbitrary fluid and solid solvers:

1 #Initialize fluid solver

2 import cupydoInterfaces.fluidSolverInterface

3 #If the process owns a fluid solver instance , instantiate ...

one solver partition

4 if fluidComm:

5 fluidSolver = ...

fluidSolverInterface.fluidSolverConstructor(fluidComm , ...

[fluid parameters ])

6

7 #Initialize solid solver

8 import cupydoInterfaces.solidSolverInterface

9 #If the process owns a solid solver instance , instantiate ...

one solver partition

10 if solidComm:

11 solidSolver = ...

solidSolverInterface.solidSolverConstructor(solidComm , ...

[solid parameters ])

In practice, the interface classes are named according to each compatible solver, e.g. SU2Interface
for SU2 or MtfInterface for Metafor.

Step 5 : instantiate the coupling manager Once the solvers are instantiated, they are
able to communicate with the coupling environment. Then the coupling manager is instantiated
in order to set the distributed communication network and to gather information about fluid-
structure interface node distribution. The manager is called with the following line:

1 manager = cupyman.Manager(fluidSolver , solidSolver , nDim , ...

timeType , worldComm , fluidComm , solidComm)



CHAPTER 5. THE COUPLING TOOL CUPYDO 120

The manager mainly takes as arguments the solver instances as well as the communicators which
are used to build the network. Activation of the thermal coupling (default is mechanical) is also
achieved by setting the thermal boolean attribute to True:

1 manager.thermal = true

Step 6 : instantiate the interpolator By instantiating the interpolator, the mesh mapping
and mapping matrices assembly are automatically launched as they are directly controlled by
the constructor. In the following example, a conservative mapping method with CPC2 basis
function is selected:

1 interpolator = cupyinterp.CPCInterpolator(manager , ...

fluidSolver , solidSolver , RBFradius , worldComm , ...

chtTransferMethod=None , heatTransferCoeff =1.0)

Because the interpolator relies extensively on inter-communication processes, it requires access
to the manager and solver instances, that are passed as arguments. As a locally supported basis
function is considered here, the value of the radius needs also to be specified. When thermal
coupling is activated, the scheme is defined with the chtTransferMethod parameter (e.g. TFFB,
hFTB, ...). In the present example, this parameter is set to None because only a mechanical
coupling is considered. The parameter heatTransferCoeff is used to define the value of the
numerical heat transfer coefficient, if applicable.

Step 7 : instantiate the coupling algorithm and launch the coupled simulation The
final step consists in instantiating the coupling algorithm and then launching the complete
simulation. This is achieved with the following code (block-Gauss-Seidel with dynamic Aitken’s
relaxation):

1 algorithm = cupyalgo.AlgorithmBGSAitkenRelax(manager , ...

fluidSolver , solidSolver , interpolator , nFSIIterMax , ...

timeStep , timeTot , omega , worldComm)

2 algorithm.run()

The algorithm instance depends on all other modules and also requires simulation control param-
eters as arguments. The coupled simulation is launched by simply calling the run() member
which handles both the time-advancement (solver synchronization) and the coupling (solver
communication). During the simulation, each solver independently manages its solution output,
either standard or file outputs. Coupling information monitoring such as interpolation residual,
coupling residual or computed relaxation parameter is also provided by CUPyDO at runtime.
Coupling history is stored in a ASCII file where the number of coupling iterations, the value
of the coupling residual and the dynamic relaxation parameter are written for each time step
and/or for each coupling iteration.

This chapter has described in details the implementation of CUPyDO. First, some design
strategies have been introduced so as to ensure fundamental requirements such as flexibil-
ity, high-level usability and maintainability of the code to be developed. Those strategies
are supported by the technological corner stones on which CUPyDO is based, such as
typically its Oriented-Object structure and the use of the Python-wrapping technique.

The Python-wrapping procedure has been illustrated. It has been shown, with simple

Summary of chapter 5



CHAPTER 5. THE COUPLING TOOL CUPYDO 121

examples, how C++ classes can be exposed to Python with minimal effort using the SWIG
tool. The resulting Python layer consists in a module from which the C++ wrapped
objects can be used in a very intuitive way, while being still executed under their own
compiled language, providing the best efficiency. For complex codes, two manners of
generating an equivalent Python wrapper have been presented. A wrapper layer can be
generated on top of each class (or group of classes), or a core language driver layer can be
first designed, which is then wrapped into Python.

The coupling methodology of CUPyDO using the Python wrapping has been pre-
sented. In order to call the related coupling functionalities of each code, CUPyDO directly
interacts with them through their wrappers as if they were simple Python objects. This
provides a high-level, flexible and intuitive management of the coupling tasks, while the
computationnally intensive calculations are still performed in the compiled core part of
the coupled solvers. Using a coupling Python layer provides several advantages such as a
friendly data formatting (typically for inter-solvers communications), less intrusive code
for the coupled solvers and the fact that the wrapper can still be designed for other general
purpose than FSI coupling.

The development of the Python wrapper of the fluid solver SU2 has been presented.
The wrapper is based on interfacing a C++ driver layer that gathers the functionalities of
the other main C++ classes composing the solver code. The role of the SU2 driver layer
is dual. On the one hand, it accommodates the low-level functionalities to a specific type
of applications (e.g. external flow, turbomachinery flow, adjoint computation, harmonic
balance, etc) and on the other hand it directly exposes low-level functionalities and data
structure, which are typically used for FSI coupling, through the Python wrapper. The
advantage of the dual characteristic of the SU2 driver layer is that it produces code that can
be used by the core executable of the solver or by a Python-based external environment.
This maximizes code re-usability.

The general architecture of CUPyDO has been described. It is composed of a C++
kernel and several Python layers. The C++ kernel gathers all the computatonnally in-
tensive coupling tasks such as mesh interpolation or interface data management. The
functionalities of the C++ kernel are then exposed to Python with the same wrapping
procedure as for the coupled solvers. It is also used to link CUPyDO with external libraries
such as OpenMPI or PETSc, typically for HPC support. The Python Utility layer defines
fundamental functionalities, including MPI exchange functions, interface data and matrix
structures, and linear solver definitions. The Python Core layer is the central part of the
environment as it provides the high-level management of, for instance, the interface mesh
interpolation and the coupling algorithms. The object-oriented structure of CUPyDO also
allows the user to define new coupling algorithms with limited effort. The last Python
Interface layer ensures the flexibility of the coupling by accommodating the wrapper of
each coupled solver to the central algorithmic part of CUPyDO.

The interface data structure management of the Utility layer has been detailed. These
structures are the main support for inter-communication as they are filled with data ex-
posed by each coupled solver. Because they are manipulated by the coupling algorithm,
interface data are stored into structures on which algebraic operations can be applied.
Interface data are thus stored in vector-like structures, that are supported by the PETSc
library if a MPI partitioning of the interface is applied.

The coupling mechanism of the Interface layer has also been detailed. In order to
ensure compatibility between the core of CUPyDO and the coupled solvers, the object-
oriented inheritance mechanism is used between the generic solver classes of the Core layer
and the individual interfacing modules of the Interface layer. These inherited interfacing
modules are filled with the wrappers of the associated coupled solvers, and act as buffers
that reduce the design constraints on the wrappers and leverage modularity. Some minimal



CHAPTER 5. THE COUPLING TOOL CUPYDO 122

functionalities that coupled wrappers should satisfy have also been listed.
The management of parallel coupled computations with CUPyDO has been described.

Assuming that the problem is partitioned with MPI, two types of communication between
processes have been considered. While intra-communication is seen as black-box as they
involve data exchange within the same coupled solver, inter-communication is used to
exchange fluid-structure interface data between processes of distinct coupled solvers. The
heterogeneous partitioning of each solver is taken into account and distinct MPI com-
municators for each coupled solver and for the interface can be defined as a subset of
the general MPI_COMM_WORLD. The distribution of processes is based on an integrated ap-
proach, in which one process can host both a fluid and solid solver instance, as opposed to
the segregated approach. The Manager class is specifically designed to build the network
describing the MPI partitioning of each solver and to identify which processes are involved
in inter-communication.

The implementation of the non-matching interface mesh interpolation of CUPyDO
has been detailed. Interface interpolation is performed using the Radial Basis Function
method. Two basis functions are used: the Thin Plate Spline (TPS) and the Compact C2
(CPC2). Non-matching interpolation is performed in two steps. In the first step, fluid and
solid interface nodes are paired and mapped to construct the interpolation matrices. For
parallel computation, the mapping is achieved through successive communication rounds
from the partitions of the donor side to the partitions of the target side. The parallel
data structure for matrices and vectors is supported by the PETSc library. Also, local-
to-global mapping is used to re-balance the node distribution on the interface. In the
second step, the associated linear system is solved at every inter-communication phase
to achieve data interpolation from one interface to the other. The built-in FGMRES
solver of PETSc is used to that purpose. The Interpolator class is the central class that
implements the RBF interpolation. The object-oriented structure of CUPyDO is used to
derive conservative and consistent interpolators. The different thermal coupling schemes
are implemented in this class as well.

Finally, the detailed procedure for setting up a coupled FSI simulation with CUPyDO
has been described. First, the coupled solvers must be individually configured by using
their own configuration system. Then, the coupling environment is configured with a
Python script that directly instantiates the main classes. The Python script can be built
by following several steps. First, the different components of CUPyDO must be imported.
Then, the coupling parameters can be defined, which is followed by the initialization of
MPI (if applicable) and the definition of the parallel distribution. At that point, the
coupled solvers are instantiated by calling their interfacing modules, and the coupling
network is created by the Manager. Finally, the interface interpolator and the coupling
algorithm are set. The coupled simulation is launched by calling the run function of the
coupling algorithm.



Part III

Verification of the CUPyDO
coupling environment and

application to an aeroelastic case
study

123



Chapter 6

FSI verification test cases for
CUPyDO

This chapter is dedicated to the verification and validation of the CUPyDO coupling environment
for both mechanical and thermal fluid-structure interaction applications. Referenced test cases
are used to cover specific phenomena, such as VIV or flutter, that involve different fluid and
flow conditions (e.g. subsonic vs transonic flows). Thermal applications with CHT are also
considered. Each test case is set up to highlight one or several aspects of the coupling such
as data communication, coupling synchronization, coupling relaxation, coupling versatility of
the Python wrapping or interpolation of non-matching interface meshes. The central idea is to
demonstrate that CUPyDO has all the required capabilities to produce accurate results for a
wide range of physics and numerical models.

The first two test cases involve the coupling between the SU2 fluid solver and simplified rigid
body models. A one degree-of-freedom cylinder immersed in a cross-flow is used to verify the
accuracy of the strong coupling in simulating VIV and predicting the lock-in region. An airfoil
with pitch and plunge degrees of freedom is then used to determine if CUPyDO is accurately
predicting the aeroelastic flutter point. In the next test case, the complexity of the structural
model is increased and a standard FEM model is used to predict the response of a beam attached
in the wake of a rigid square cylinder immersed in a cross-flow. The substitution of the rigid
body solver by Metafor demonstrates the modularity of the coupling environment. The efficiency
and the robustness of Aitken relaxation is also evaluated. The AGARD 445.6 wing is used as
the first three-dimensional aeroelastic test case. It also involves non-matching interface meshes,
which are used to assess the interpolator on a realistic geometry. The last test case is a heated
hollow cylinder immersed in a cross-flow. It is used to illustrate CHT applications and to verify
the implementation of the thermal coupling schemes in CUPyDO.

Although the parallel capabilities of CUPyDO are used and assessed for the three-dimensional
test cases, this thesis does not provide any formal HPC analysis. From a performance point
of view, it is verified that the computing time overhead brought by the coupling tasks remains
extremely limited when compared to the time spent by the solvers for computing their solutions.
However, no parallel scalability tests are performed and this task must therefore be considered
as part of future work in the development of CUPyDO. Moreover, the scalability of the coupled
simulation strongly depends on the scalability of the individual solvers, which is outside the
scope of the present work.

124



CHAPTER 6. FSI VERIFICATION TEST CASES FOR CUPYDO 125

6.1 Vortex-induced vibration of a circular cylinder with one de-
gree of freedom

The first case to be assessed is the response of a circular cylinder with one degree of freedom
immersed in a cross-flow that illustrates the VIV phenomenon. The simplified structural model
of an oscillating body is here considered for the numerical simulations with CUPyDO. The main
reference for this case is the work of Dettmer and Perić [216] whose simulations are reproduced
in this work.

This test case demonstrates that the implemented coupling architecture is able to predict
vortex-induced vibration and, in particular, the lock-in phenomenon. It relies on the strongly
coupled BGS algorithm for mechanical coupling. Matching interface meshes are used to verify
that the energy is exactly conserved through data communication. Considering the absence of
numerical coupling instabilities (Ma = 148.16) and the relatively small size of the time step
compared to the characteristic time scales, a small number of coupling iterations (typically not
higher than 3) is required to reach the given coupling tolerance.

6.1.1 Description of the simplified model

The two-dimensional dynamics of the one-degree-of-freedom oscillating cylinder is usually used
to simplify the study of VIV phenomena. As illustrated in Fig. 6.1, a perfectly rigid circular
cylinder of diameter D and mass m is immersed in a cross-flow of velocity U and is allowed
to move vertically. The motion is constrained by a linear spring of stiffness k and a linear
damper with constant c. The simple application of Lagrange’s equations (Appendix B) gives

m

k c

h(t)

U

Figure 6.1: Oscillating rigid cylinder immersed in a cross flow. The motion is constrained by a
standard spring-damping system.

the equation of motion
mḧ+ cḣ+ kh = L , (6.1)

in which h is the vertical position of the cylinder with respect to a reference position and L(h, ḣ, t)
is the resulting unsteady aerodynamic lift exerted by the flow on the cylinder and that depends
nonlinearly on the solid motion.

From the structural point of view, one can define the natural frequency of the undamped
system as

f0 =
1

2π

√
k

m
, (6.2)

and the damping coefficient

ζ =
c

2
√
km

. (6.3)

The fluid flow is usually characterized by its Reynolds and Mach numbers, while the Strouhal
number is used to define a non-dimensional frequency (either the shedding frequency or the



CHAPTER 6. FSI VERIFICATION TEST CASES FOR CUPYDO 126

oscillation frequency of the cylinder). The coupling between the flow and structural parameters
is quantified by the mass ratio which is expressed, in this particular case, as

Ma =
4m

πρD2l
. (6.4)

The denominator represents the mass of a fluid volume corresponding to the volume (area in
2D) of the cylinder. The out-of-plane length, l, of the cylinder is considered to be 1 m.

The oscillating cylinder is prone to VIV. The vortex shedding pattern that develops in the
wake of the cylinder results in a harmonic lift. If it is assumed that the main frequency of the
shedding is fv, it is expected that the strongest fluid-body interaction takes place when fv ≈ f0,
which can be associated to with resonant behavior. As a first approximation the harmonic lift
can be considered independent of the cylinder motion, so that

L(t) =
1

2
ρDU2CL(t) , (6.5)

where the harmonic lift coefficient is

CL(t) = C0
L sin(2πfvt) . (6.6)

The lift coefficient amplitude C0
L and the shedding frequency fv depend mainly on the Reynolds.

Note that the oscillating lift coefficient also satisfies an oscillator equation:

C̈L + (2πfv)
2CL = 0 . (6.7)

As claimed by Päıdoussis et al. [30], this is the central idea of the wake oscillator model. When
the two oscillators, Eqs. (6.1) and (6.7), are decoupled, the response of the cylinder corresponds
to the response of a system forced at frequency fv,

h = h0 sin(2πfvt) , (6.8)

where the amplitude h0 is illustrated in Fig. 6.2. However, experiments have shown that the

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

1.2

1.4

fv
f0
s

[-]

h
0

Θ
0

[m
]

•

→ 0

1

k

Figure 6.2: Schematic amplitude of the response of the cylinder as a function of the frequency
of the harmonic loading. Numerical values are arbitrary. Θ0 = 1

2ρDU
2C0

L.

displacement of the cylinder can be of the order of a diameter which is large enough to signifi-
cantly impact the vortex dynamics generating the lift. Hence, taking into account the coupling



CHAPTER 6. FSI VERIFICATION TEST CASES FOR CUPYDO 127

with the structure motion is important. This coupling can be achieved by introducing a forcing
term into the oscillating lift equation [30],

C̈L + (2πfv)
2CL = α

ḧ

D
, (6.9)

where α is a constant. A straightforward modal analysis of the set of linear equations formed
by Eqs.(6.1) and (6.9) provides the dependence of the frequencies (shedding frequency and
structural response) on the free-stream velocity, as shown in Fig. 6.3 (a). A critical free-stream
velocity Uc can be defined as the velocity for which the shedding frequency is equal to the natural
frequency of the structural system. This critical value is expressed using the definition of the
Strouhal number Str as

Uc =
f0D

Str
. (6.10)

It is found that in a range of velocities close to the critical velocity Uc, i.e. fv ≈ f0, only
one frequency exists in the system. In this range, there exists a mode with negative damping,
as illustrated in Fig. 6.3 (b), which confirms the presence of coupling instabilities leading to
high-amplitude responses.

6.1.2 Case description and simulation parameters

The purpose of the case is to simulate the response of the cylinder for different laminar flow
Reynolds numbers in the range 90-120. The fluid and solid physical parameters are summarized
in Tab. 6.1. The combination of these parameters gives a mass ratio Ma = 148.16, an undamped
natural frequency f0 = 7.016 Hz and a damping coefficient ζ = 0.0012. The cylinder is immersed

Solid

Cylinder mass [kg] m 0.298
Cylinder diameter [m] D 0.0016
Spring stiffness [N/m] k 579
Damping [Ns/m] c 0.0325
Cylinder out-of-plane length [m] l 1

Fluid
Density [kg m-3] ρ 1000
Dynamics viscosity [Pa s] µ 0.001

Table 6.1: Physical parameters for the one degree-of-freedom cylinder in a cross flow.

in a circular farfield flow domain where the outer boundary is located at 25D, which corresponds
to the common practice for minimizing the effects of boundary conditions. No-slip and adiabatic
conditions are applied to the cylinder walls. The solver SU2 is used for the simulation of the
fluid by solving the laminar Navier-Stokes equations. As depicted in Fig. 6.4, the domain is
discretized with a structured O-mesh containing 25920 grid nodes (81 in the radial direction and
320 in the circumferential direction) with a clustering near the cylinder walls. Convective fluxes
are evaluated with the second-order centered JST scheme. Time integration is performed with
the second-order Euler implicit dual-time stepping scheme of SU2. The rigid body integrator
introduced in Section 3.8 is used to compute the motion of the cylinder that is ruled by Eq. (6.1).
Time integration of this equation is performed with the Runge-Kutta scheme. Initial conditions
are such that the fluid flow is uniform and the cylinder is at rest, h(t = 0) = ḣ(t = 0) = 0.

The coupling is achieved with a strongly coupled BGS scheme. As the problem is charac-
terized by a high mass ratio, no numerical instabilities are expected and, hence, no coupling
under-relaxation is applied. A second-order interface predictor is used. Although the rigid body
integrator only requires integrated fluid loads (in this case the resultant lift) to compute the mo-
tion of the cylinder, an interface mesh is intentionally defined on the solid side in order to receive



CHAPTER 6. FSI VERIFICATION TEST CASES FOR CUPYDO 128

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4
0

0.5

1

1.5

2

2.5

U/Uc [-]

f
/f

0
[-

]

(a)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4
−0.1

−0.05

0

0.05

0.1

U/Uc [-]

ζ
[-

]

(b)

Figure 6.3: Dynamics of the coupled wake-cylinder oscillators. Evolution of the frequency (a)
and damping (b) as a function of the flow velocity.



CHAPTER 6. FSI VERIFICATION TEST CASES FOR CUPYDO 129

Figure 6.4: Illustration of the structured O-mesh mesh in the vicinity of the cylinder.

the nodal fluid loads. Integration is then performed by the rigid body solver. This allows us to
test and verify, on a simplified case, the standard inter-communication procedures as it would be
performed with a standard FEM solid solver. The two interface meshes have, by construction,
matching discretizations so that no interpolation error is introduced in this case. Simulation
parameters are summarized in Tab. 6.2. The value of the time step corresponds to 1/57 of the
period of the free response of the cylinder in vacuum (i.e. in absence of surrounding fluid). The
value of the time step was set according to Dettmer and Perić [216] who chose a small time step
compared to the natural period to rule out significant inaccuracies due to time integration errors.
Note that, for some flow Reynolds numbers, a large simulated time up to 400 s is necessary for
the cylinder response to reach an established regime. The coupling tolerance corresponds to
about 6 · 10−4D.

Time step [s] ∆t 0.0025
Simulated physical time [s] ttot Up to 400
Maximum number of coupling iterations per time step n̂FSI 6
Coupling tolerance [m] ε 10−6

Table 6.2: Simulation parameters for the one degree-of-freedom cylinder in a cross flow.

In order to evaluate the capabilities of the fluid solver for this case, preliminary simulations
involving a fixed cylinder have been performed. The reference of these simulations is the experi-
mental study of Roshko [217] in which Reynolds numbers in the range 50−1400 were considered
for cylinder diameters in the range 0.0235 − 0.635 cm. The fluid results obtained during the
preliminary study are also used to validate the rigid-body integrator. The calculated lift force
is applied on the moving cylinder over time to compute the uncoupled forced response which is
then compared to an analytical solution.



CHAPTER 6. FSI VERIFICATION TEST CASES FOR CUPYDO 130

6.1.3 Results

The results for the uncoupled cases are first presented, starting with the flow around a fixed
cylinder and followed by the forced response of the cylinder to an imposed force. Results for the
fully coupled case are subsequently detailed.

Fluid flow around a fixed cylinder

A first set of simulations are performed for a cylinder that is fixed. As the lock-in phenomenon
is mainly related to the frequency of the vortex shedding fv, this frequency is computed as
a function of the Reynolds number in the range 90-120, for which the flow is laminar. The
frequency of the vortex shedding is simply extracted from the time evolution of the lift coefficient
by means of a Fourier analysis. The results are depicted in Fig. 6.5. The computed normalized
shedding frequency as a function of Re is compared with very good agreement to an empirical
relation based on experiments carried by Roshko [217]. This relation gives the Strouhal number,

Str =
fvD

U
= 0.212

(
1− 21.1

Re

)
, (6.11)

as a function of the Reynolds number in the considered range. The good agreement between the
computed results and the experimental data shows that the fluid solver is correctly set up for
the next simulations with a moving cylinder. The shedding frequency is such that it equals the
natural frequency of the system for Re ≈ 106. Thus, resonance is expected at this flow condition
once the motion of the cylinder is allowed.

85 90 95 100 105 110 115 120 125
0.7

0.8

0.9

1

1.1

1.2

1.3

Re [-]

f v
/f

0
[-

]

Roshko (exp) [217]
Computed

Figure 6.5: Normalized frequency of the vortex shedding as a function of the Reynolds number.
Case of the fixed cylinder. Present results are compared to experimental data coming from
Roshko [217].



CHAPTER 6. FSI VERIFICATION TEST CASES FOR CUPYDO 131

Uncoupled forced response of the moving cylinder

The rigid-body integrator is used to compute the forced response of the moving cylinder based
on the lift force computed with the previous flow simulations. The lift force imposed to the rigid
body is of the form

L = L̂ sin (ωvt) , (6.12)

where ωv = 2πfv and L̂ are taken from the previous computations at different Reynolds numbers.
Analytically, the forced response of the cylinder can be expressed as

h = ĥ sin (ωvt) , (6.13)

in which the amplitude of the response is given as a function of the amplitude of the lift coefficient
and the shedding frequency,

ĥ =

∣∣∣∣∣∣ L̂k · 1

1− ω2
v

ω2
0

+ i2ζ ωv
ω0

∣∣∣∣∣∣ . (6.14)

The cylinder displacement reaches its maximum value for fv → f0
1, as shown in Fig. 6.6 for

different Reynolds numbers. As expected, resonance is reached at Re→ 106 when the frequency
of the vortex shedding and the natural frequency are coincident. A direct comparison with
the analytical expression, Eq. (6.14), is also performed, showing excellent agreement and thus
verifying the rigid-body integrator for this one-degree-of-freedom case.

85 90 95 100 105 110 115 120 125
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Re [-]

ĥ
/D

[-
]

Analytical
Computed

Figure 6.6: Normalized amplitude of the uncoupled forced response of the cylinder as a function
of the flow Reynolds number.

Fully coupled fluid-structure system

Simulations are now performed under the same flow conditions but considering a cylinder free
to move vertically. The BGS coupling procedure is found to be very efficient for every Reynolds

1The maximum is not exactly located at fv = f0 due to the presence of structural damping.



CHAPTER 6. FSI VERIFICATION TEST CASES FOR CUPYDO 132

number tested: only two coupling iterations per time step are required to reach the prescribed
coupling tolerance. The computed normalized shedding frequency as a function of Re is illus-
trated in Fig. 6.7 and compared to the results previously obtained by Dettmer and Perić [216].
Results for the moving cylinder show that the interaction causes the shedding frequency to lock
onto the natural frequency of the cylinder (fv = f0) in the range Re = 100 − 110, which is re-
ferred to as the lock-in region. The lock-in phenomenon can be considered as a form of nonlinear
resonance. When the shedding frequency approaches the natural frequency of the cylinder, the
energy exchange between the flow and the structure increases significantly and locks the sys-
tem on the resonant frequency. Outside the lock-in range, the shedding frequency falls back to
values that correspond to the fixed configuration. We note a shift of the lock-in region towards
higher Reynolds numbers compared to the results of Dettmer and Perić [216]. The difference
in the mesh discretization between this work and the reference could explain the shift. Indeed,
the mesh used in the present computations is much more refined than the finest mesh used by
Dettmer and Perić (25600 cells here against 5374 in their work) and they have already noticed
a clear sensitivity of the limit of the lock-in region to the mesh refinement. In the reference
results, we also note the missing data for Re = 96, for an unknown reason.

0.5 0.56 0.61 0.67 0.72 0.78

U
f0D

[-]

90 100 110 120 130 140
0.7

0.8

0.9

1

1.1

1.2

1.3

Re [-]

f v
/f

0
[-

]

Anagnostopoulos (exp) [218]

Dettmer and Perić [216]
Computed

Figure 6.7: Normalized frequency of the vortex shedding as a function of the Reynolds number
and the normalized velocity. Case of the moving cylinder.

Lock-in can also be observed in the amplitude of the cylinder response. This amplitude,
normalized by the diameter, is shown in Fig. 6.8 as a function of the Reynolds number. The
results computed by CUPyDO are again compared to those obtained by Dettmer and Perić [216]
with good agreement, although we observe the same shift of the lock-in region. Inside the lock-in
region, the amplitude of the response of the cylinder increases significantly up to 0.4D, while it
is nearly negligible outside this region. When increasing the Reynolds number from the lowest
simulated value, the amplitude features a sharp transition between Re = 98 and Re = 100
when entering the lock-in region. Then it monotonically decreases until a second transition



CHAPTER 6. FSI VERIFICATION TEST CASES FOR CUPYDO 133

occurs between Re = 110 and Re = 112 when exiting lock-in region. A comparison between the
response obtained with the fully coupled model and the forced uncoupled response clearly shows
that neglecting the effect of the solid motion on the fluid flow leads to a significant error: the
maximum amplitude obtained by the coupled solution is more than four times higher than the
maximum amplitude of the uncoupled approach. High amplitude response is also maintained
on a much larger range of Reynolds number that corresponds to the entire lock-in region. This
clearly demonstrates the importance of taking into account the coupled effects in the design of
systems potentially subjected to VIV.

0.5 0.56 0.61 0.67 0.72 0.78 0.84

U
f0D

[-]

90 100 110 120 130 140 150
0

0.1

0.2

0.3

0.4

0.5

0.6

Re [-]

ĥ
/D

[-
]

Computed uncoupled

Anagnostopoulos (exp) [218]

Dettmer and Perić [216]
Computed fully coupled

Figure 6.8: Normalized amplitude of the displacement of the cylinder as a function of the
Reynolds number and the normalized velocity.

The computational results are also compared with the results from the experiment carried
by Anagnostopoulos and Bearman [218]. Although the results follow the same qualitative trend,
quantitative discrepancies are observed. The maximum amplitude obtained numerically differs
from the experimental value by 27%. The computed lock-in region is also narrower and shifted
towards smaller Reynolds number. These discrepancies were already addressed in Dettmer and
Perić [216], who pointed out the significant differences between the numerical model and the
experimental model. In the latter, the flow is actually a free-surface water channel (70 cm depth)
in which the submerged (vertical) length of the cylinder is 12 cm [218]. They also highlight that
no horizontal end plate had been fixed at the tip of the cylinder. Therefore, the vortex shedding
at the lower end of the cylinder was in fact three dimensional.

The influence of the Reynolds number on the coupled system can be observed on a detailed
analysis of the response. Fig. 6.9 illustrates the envelope2 of the response for Reynolds numbers
90, 100, 104 and 114. The response for Re = 90 typically corresponds to the behavior obtained
before reaching the lock-in region. Once the vortex shedding is established, the amplitude quickly
stabilizes to a very low value. When entering the lock-in region at Re = 100, the amplitude

2The envelope here corresponds to the curve formed by the local extrema of the response.



CHAPTER 6. FSI VERIFICATION TEST CASES FOR CUPYDO 134

0 5 10 15
t [s]

-4

-2

0

2

4

ĥ
/
D

[-
]

×10-3

(a) Re = 90

0 50 100 150
t [s]

-0.4

-0.2

0

0.2

0.4

ĥ
/
D

[-
]

(b) Re = 100

0 20 40 60 80
t [s]

-0.4

-0.2

0

0.2

0.4

ĥ
/
D

[-
]

(c) Re = 104

0 50 100
t [s]

-0.02

0

0.02

ĥ
/
D

[-
]

(d) Re = 114

Figure 6.9: Envelope of the normalized amplitude of the cylinder response for four representative
Reynolds numbers.



CHAPTER 6. FSI VERIFICATION TEST CASES FOR CUPYDO 135

features a slow increase in time while being modulated by lower frequency waves. This transient
phase is maintained until the amplitude abruptly transitions into a permanent locked-in state.
Note however the long simulation time (more than 80 s) needed to reach this transition. Once
inside the lock-in region, e.g. for Re = 104, the amplitude quickly increases to reach a plateau.
Finally, beyond the lock-in region, e.g. for Re = 114, the amplitude first features a sharp
increase before being damped to reach an established regime with a much lower amplitude than
in the lock-in region. These trends were also observed by Dettmer and Perić [216]. The distinct
patterns that the response of the cylinder features in a narrow range of Reynolds numbers
demonstrate the complexity brought by the coupling of two physics in one single system.

6.1.4 Test case summary

This test case validates the coupling tool CUPyDO for the computation of VIV involving a
simple one-degree-of-freedom rigid structure. Although the structural model remains simple,
this case already clearly shows that the interaction between the two coupled physics can reach
a significant level of complexity. This complexity is highlighted here by the existence of the
lock-in region and the significant impact of the Reynolds number on the cylinder response in the
vicinity of this region. These two key features are very well reproduced by the simulations.

This case also illustrates the significant error that can result from an uncoupled analysis
of the system. By computing the fluid loads on a fixed structure and then simply applying
these loads to the uncoupled rigid body model, the influence of the solid dynamics on the flow
is not represented at all. The amplitude of the response of the cylinder is thus dramatically
underestimated and the lock-in phenomenon cannot be captured. In practice, neglecting such
coupling effects in the design of structures submitted to VIV, such as pipes, cables, towers or
industrial chimneys, may have severe consequences for their long-term integrity.

6.2 Flutter of an airfoil with pitch and plunge degrees of free-
dom

This test case is used to evaluate the capabilities of CUPyDO (and by extension the coupled
solvers) to simulate the coupled mode flutter phenomenon in transonic conditions. The classical
Isogai wing section aeroelastic case (case A) [219,220], whose structural model is an airfoil with
pitch and plunge degrees of freedom, is here used as reference.

The purpose of this test case is to provide a first assessment of the capabilities of CUPyDO
to accurately simulate aeroelastic flutter. The focus here is on the transonic regime because it
represents the typical flight conditions of standard commercial airliners. The aeroelastic study
is also extended by comparing the accuracy of weak and strong coupling schemes implemented
in CUPyDO for the prediction of the flutter inception.

6.2.1 Description of the simplified model

The two-dimensional dynamics of an airfoil with pitch and plunge degrees-of-freedom is intro-
duced to study the coupled mode flutter of typical wing sections. The aeroelastic model is
depicted in Fig. 6.10: a perfectly rigid airfoil with a chord c = 2b is allowed to move vertically
and to rotate around its elastic axis. The positions of the center of gravity and the elastic axis
are respectively denoted by xcg and xea and measured from the leading edge. The displacement
h of the elastic axis is positive downwards and the pitch angle α is positive clockwise. The
static imbalance S is defined as the product of the airfoil mass m with the distance xcg − xea

between the center of gravity and the elastic axis. The structural restoring force is provided by
a spring-damper system with stiffnesses Kh and Kα and damping coefficients Ch and Cα for the
plunging and pitching mode, respectively.



CHAPTER 6. FSI VERIFICATION TEST CASES FOR CUPYDO 136

xea xcg c/2 c

y

x

h(t)

α(t)

Kh Ch

KαCα

U

Figure 6.10: Airfoil with pitch and plunge degree-of-freedom immersed in a cross flow.

The linear equations of motion are obtained from Lagrange’s equations [64]:

mḧ+ Sα̈+ Chḣ+Khh = −L,
Sḧ+ Ieaα̈+ Cαα̇+Kαα = M,

(6.15)

where Iea is the moment of inertia of the airfoil around the elastic axis, L the aerodynamic lift
(positive upwards) and M the aerodynamic moment with respect to the elastic axis (positive
clockwise). The coupled system can be characterized by several non-dimensional parameters
that are the normalized static imbalance χ and inertia rα, the structurally-uncoupled natural
frequency ratio ω̄ and the mass ratio Ma:

χ =
S

mb
, r2

α =
Iea

mb2
, ω̄ =

ωh
ωα

, Ma =
m

πρb2
. (6.16)

In these expressions b is the half-chord, and ωh =
√
Kh/m (ωα =

√
Kα/Iea) is the uncoupled

plunging (pitching) natural frequency.
Solving the coupled problem given by Eq. (6.15) requires the computation of the aerodynamic

lift and moment, which obviously depend on the airfoil motion:

L, M = f(ḣ, α̇, α) . (6.17)

By assuming an incompressible attached flow, thin airfoil theory [52] may be used to express the
aerodynamic loads. The flow dynamics can be modelled by distinct approaches with different
accuracy levels. The simplest quasi-steady approach assumes that the aerodynamic load at time
t only depends on the position and the (relative) velocity of the airfoil at the same instant.
Hence, the effect of the wake, i.e. the flow history, is not taken into account. The effect of
the wake can be considered by decomposing the unsteady motion into a superposition of many
small impulsive changes in pitch and plunge degrees of freedom, each of them generating a
trailing edge vortex whose influence on the aerodynamic loads is represented by the Wagner
function [35]. Theodorsen theory [35, 221] also introduces the dynamic effects of the wake but
supposes a purely sinusoidal response of the airfoil. A modal analysis of the system provides the
damping and frequency as a function of the free-stream velocity, as schematically represented
in Fig. 6.11. The system damping ratio in Fig. 6.11 (a) shows that there exists a mode which
becomes unstable (ζ < 0) beyond a certain velocity identified as the critical flutter velocity Uc.
For all velocities beyond the critical value, the response of the system to any initial perturbation
remains unbounded in time (even in the presence of structural damping). At low flow velocity,
the frequencies of each mode are close to the wind-off natural frequencies. When the fluid velocity
increases, the frequencies typically start to converge towards each other. Negative damping and
coalescence of the frequencies are typical features of the system when it approaches critical
(flutter) conditions.



CHAPTER 6. FSI VERIFICATION TEST CASES FOR CUPYDO 137

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

U/Uc [-]

ζ
[-

]

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1
0

0.2

0.4

0.6

0.8

1

1.2

U/Uc [-]

ω
/ω

α
[-

]

(b)

Figure 6.11: Dynamics of the pitch-and-plunge airfoil immersed in a cross flow. Variation of the
damping (a) and frequency (b) as a function of the flow velocity.



CHAPTER 6. FSI VERIFICATION TEST CASES FOR CUPYDO 138

6.2.2 Case description and simulation parameters

The Isogai wing section represents the dynamics of the outboard portion of a swept-back wing
in the transonic regime. The airfoil is a symmetric NACA 64a010 profile with chord c = 2b.
The elastic axis is placed in front of the airfoil at a distance xf = −b from the leading edge.
By following the definitions introduced in Section 6.2.1, the relevant physical parameters of the
coupled system are listed in Tab. 6.3. The airfoil is immersed in a circular fluid domain with

Normalized static unbalance [-] χ 1.8
Normalized inertia [-] rα 1.865
Natural frequency ratio [-] ω 1
Mass ratio [-] Ma 60
Natural pitching frequency [rad s-1] ωα 100
Mach number [-] M From 0.75 to 0.895
Reynolds number [-] Re 12.56 · 106

Table 6.3: Structural and flow parameters for the Isogai wing section aeroelastic test case.

outer boundary extending to 25c. Farfield flow conditions are imposed on this outer boundary.
As the fluid is here assumed to be inviscid, a slip-wall condition (v · n = 0) is imposed on
the airfoil boundary. The Euler equations are solved with SU2 on the fluid domain which is
discretized by a structured O-mesh of 21760 cells (68× 320 for the radial and circumferential
direction, respectively) with a small stretching from the airfoil surface to the outer boundary.
Convective fluxes are evaluated with the second-order centered JST scheme and time integration
is performed using a second-order Euler implicit dual-time stepping scheme. The simulations are
performed starting from a uniform flow. The rigid body integrator is used to predict the motion
of the airfoil with the generalized-α scheme, starting from an initial pitch angle α0 = 0.0174 rad
(= 1o).

The coupling is here achieved with either an explicit weak coupling or an implicit strong
coupling using the BGS scheme without relaxation. The purpose is to evaluate the impact of this
choice on the computed flutter airspeed. Similarly to the previous test case, matching interface
meshes are used to transfer interface quantities (fluid loads and rigid body displacement). The
parameters for the simulations are summarized in Tab. 6.4. The time step size is such that 39
time steps are needed to cover a period of the uncoupled pitch mode. The value of the coupling
tolerance corresponds approximately to 10−4 times the displacement of the center of gravity
associated with the initial perturbation α0.

Time step [s] ∆t 0.0016
Simulated physical time [s] ttot 2
Maximum number of coupling iteration per time step n̂FSI 6
Coupling tolerance [m] ε 1 · 10−6

Table 6.4: Simulation parameters for the Isogai wing section aeroelastic test case.

In order to evaluate the capabilities of SU2 for simulations of transonic flows around a moving
airfoil, a preliminary computation using the same mesh and numerical methods is performed, in
which the motion of the airfoil is imposed. The conditions of the simulation are taken from the
experimental study conducted by Davis [222]. The imposed motion is a pitching motion around
the quarter-cord with an angle

α(t) = α+ α̂ sin(ω0t) , (6.18)



CHAPTER 6. FSI VERIFICATION TEST CASES FOR CUPYDO 139

where in this case α = 0, α̂ = 1.01 and the reduced frequency

k0 =
ω0c

2U
= 0.202 , (6.19)

based on the free-stream flow velocity U . The Mach and Reynolds numbers are M = 0.796
and Re = 12.56 · 106, respectively. Note that the coupler is intentionally not used for the
one-way coupling between the motion of the airfoil and the flow solver. Instead, and in order
to specifically assess the flow solver, the capability of SU2 to simulate moving rigid bodies is
directly used to impose the motion of the airfoil.

The implementation of the pitch-plunge airfoil structural model is also verified by computing
its uncoupled free response which can be compared to an equivalent model implemented in
Matlab and integrated in time with Matlab built-in Runge-Kutta scheme.

6.2.3 Results

Results are first presented for the preliminary computations: the uncoupled free response of the
structural model and the fluid flow around the airfoil with imposed motion. Then, an extensive
study of the fully coupled system is provided with a specific focus on the flutter phenomenon
and the results are compared with those from the literature.

Free response of the pitch-plunge airfoil model

The pitch-plunge airfoil model implemented in the rigid body integrator is tested and verified for
the computation of the wind-off free response. For this test, the parameters as listed in Tab. 6.5
are taken from the work of Amandolese et al. [223] in which a similar model of a pitching and
plunging flat plate has been studied. The free response of the airfoil is computed by using the

m [kg] 1.3511
Iea [kg m2] 2.0711 · 10−4

S [kg m] 0.0038
Kh [N/m] 2647.1
Ch [Ns/m] 0.2392
Kα [Nm/rad] 0.6622
Cα [Nms/rad] 3.5134 · 10−4

Table 6.5: Structural parameters used for the verification of the pitch-plunge airfoil model
implemented in the rigid body integrator.

different time integrators (RK4 and α-gen) with a time step of ∆t = 0.001 s. A pitch angle
of α0 = 0.174 rad (10◦) is arbitrarily chosen as initial condition. The results, illustrated in
Fig. 6.12, are compared to those obtained from the built-in ode45 integration routine of Matlab
with excellent agreement.

Fluid flow around the airfoil with imposed motion

The results of the preliminary one-way coupled simulations are now presented. The lift and
moment coefficients,

cl =
L

0.5ρcU2
,

cm =
M

0.5ρc2U2
,

(6.20)



CHAPTER 6. FSI VERIFICATION TEST CASES FOR CUPYDO 140

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

t [s]

h
/b

[-
]

Matlab ODE45

RB integrator (RK4)

RB integrator (α-gen)

(a) Plunge.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

t [s]

α
[r

ad
]

(b) Pitch.

Figure 6.12: Free response of the airfoil.



CHAPTER 6. FSI VERIFICATION TEST CASES FOR CUPYDO 141

are shown as a function of the instantaneous angle of attack α in Fig. 6.13. The computed coef-
ficients are compared to the experimental results from Davis [222] and to additional numerical
results from McMullen et al. [224]. These latter authors performed the same numerical study,
using a nonlinear frequency domain solver for the periodic solution of the Euler equations. For
the lift coefficient (Fig. 6.13(a)), results computed with SU2 show good agreement with both
experimental and computational references. Note that the mesh used here is 4 times more re-
fined than the one used by McMullen et al. [224]. For the moment coefficient (Fig. 6.13(b)), the
computational studies are still in good agreement with each other but show larger discrepancies
with the experimental data. In this context, the discrepancy could be attributed to the fact
that viscous effects are neglected. However, this is not confirmed by several viscous simulations
that have been run by McMullen et al. [224] where the viscous results are extremely similar to
the inviscid results. Pierce and Alonso [225] already used this case in the past for the devel-
opment of an implicit preconditioned multigrid algorithm for unsteady turbulent Navier-Stokes
calculations, and they obtained the same qualitative discrepancy compared to the experiment
for the moment coefficient. They discussed the potential limitations of the turbulence model and
also the accuracy of the experimental results by stating that the force coefficients are obtained
by integrating the surface pressure measured on a sparse grid of pressure taps. No further in-
vestigation of the discrepancy could be found in McMullen et al. [224]. Nonetheless, the good
match of computational data allows us to get sufficient confidence in the settings of SU2 for the
simulations of transonic flows around moving airfoils and its applicability to transonic flutter.

Fully coupled aeroelastic analysis

At transonic flight conditions the aerodynamic loads are strongly nonlinear. Consequently, the
expected aeroelastic phenomenon is nonlinear flutter, a generalization of the linearized flutter
described previously. The system becomes unstable when, at its fixed point, the system Jacobian
has at least one pair of complex conjugate eigenvalues with zero real part. At this critical
condition, known as the nonlinear flutter point or the Hopf bifurcation point3, the fixed point
becomes unstable and a stable or unstable limit cycle with infinitesimal amplitude appears
around it. In the supercritical Hopf case, the limit cycle is stable and its amplitude increases
with airspeed. Aeroelastic systems can have more than one Hopf point as different pairs of
eigenvalues can become unstable.

The flutter verification analysis is performed as follows. Several strongly-coupled FSI sim-
ulations at different transonic free-stream Mach numbers (M = 0.7 − 0.9) are performed for
different values of the speed index

V ∗ =
U

bωα
√

Ma
(6.21)

in order to predict the flutter point. As mentioned earlier, flutter occurs when a pair of complex
conjugate eigenvalues becomes purely real or, equivalently, when one damping ratio becomes
equal to zero. As this is a numerical solution we do not have access to the system Jacobian
and hence to the eigenvalues but we can approximate the damping ratio using a simple signal
processing approach. At a given Mach number, the damping coefficient ζ is computed for each
speed index from the logarithmic decrement δ of the time response on the pitch and plunge
degrees of freedom:

ζ =
1√

1 +
(

2π
δ

)2 . (6.22)

For an oscillating response of the system, the logarithmic decrement is computed by taking the
ratio between two peaks of a quantity x separated by a multiple of the period T :

δ =
1

n
ln

x(t)

x(t+ nT )
. (6.23)

3More details about Hopf bifurcation will be given in the next chapter.



CHAPTER 6. FSI VERIFICATION TEST CASES FOR CUPYDO 142

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

α [deg]

c l
[-

]
Davis (exp) [222]

McMullen et al. [224]
Computed

(a) Lift coefficient, positive upwards.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−0.015

−0.010

−0.005

0.000

0.005

0.010

0.015

0.020

0.025

α [deg]

c m
[-

]

(b) Moment coefficient, positive clockwise.

Figure 6.13: Dynamic evolution of the lift and moment coefficient as a function of the angle of
attack for an airfoil with an imposed sinusoidal pitching motion.



CHAPTER 6. FSI VERIFICATION TEST CASES FOR CUPYDO 143

Note that the logarithmic decrement, originally well defined for one-degree-of-freedom system,
works here approximately for the responses of this particular pitch-plunge airfoil system because
one of the modes is highly damped and its effects disappear very quickly, such that the majority
of the time response has a single harmonic component, as shown further below. The computed
damping coefficient and corresponding speed index is plotted on a ζ−V ∗ diagram, as illustrated
in Fig. 6.14. Determining flutter inception is performed by iteratively guessing a new speed
index for which ζ → 0. Each new speed index to be simulated is determined by interpolating or
extrapolating4, from the diagram, the damping coefficients previously computed. The iterative
procedure is continued until convergence up to an absolute tolerance of 10−4 is achieved on ζ,
which corresponds to an absolute margin of error of approximately 0.001 on the flutter speed
index. Note that for each simulation, three BGS iterations per time step are typically required to
achieve the prescribed coupling tolerance. The computed flutter speed indices V ∗f are compared
to values from the literature [226–229], in Fig. 6.15. The best approximation curve (spline

0 0.5 1 1.5 2 2.5 3

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

V ∗f1 = 0.56

V ∗f2 = 1.84

V ∗f3 = 2.645

(a)

(b)

(c)

(d)

V ∗ [-]

ζ h
[-

]

Figure 6.14: Damping coefficient, measured on the plunge degree of freedom, as a function of
the speed index obtained at constant Mach number (M = 0.875). Letters (a) to (d) are used to
identify speed indices that are used in Fig. 6.16.

interpolation) is a representation of the flutter boundary, i.e. the limit between the stable and
unstable regions. It can be seen that the ”transonic dip” and the typical ”S-shape” of the flutter
boundary are both well predicted for M = 0.7 − 0.9. For Mach numbers near the transonic
dip (M = 0.8, 0.85 and 0.875), the agreement with all the references is excellent. An almost
flat transonic dip is here captured that extends up to M = 0.888 which is a bit lower than the
limit value M = 0.9 computed by Biao et al. [228]. Major discrepancies with the results of
Thomas et al. [229] are found around M = 0.89, as they do not predict a flat transonic dip. For
the second speed index at M = 0.875, we obtain a very good agreement with the results from
Liu et al. [226] and Alonso et al. [227], while the value of Biao et al. seems over-predicted. At
the beginning of the third flutter branch, around M = 0.85, the current results provide good
agreement with the available references from Biao et al. and Thomas et al.. Discrepancies

4Interpolation and extrapolation are performed using the Matlab curve fitting built-in tool, based on spline
interpolation.



CHAPTER 6. FSI VERIFICATION TEST CASES FOR CUPYDO 144

appear again on this branch for higher Mach numbers, where the present results fall below the
references. At M ≈ 0.9, the flutter speed indices from all references are scattered. This is also
the only point for which the results obtained by CUPyDO provide a less satisfactory agreement
with the results from Liu et al. and Alonso et al.. We also note that the coupling models used
by Biao et al. and Thomas et al. are different than the approach followed by CUPyDO and
the two other references. Indeed, Biao et al. solved the unsteady Euler equations coupled with
the structural equations by using the first-order approximate boundary conditions [230] on a
computational grid that does not vary in time. The model used by Thomas et al. is even more
different and consists in solving the fluid equations in the frequency domain to generate a set
of shape vectors containing the most dominant unsteady flow characteristics. These vectors are
then used to construct a reduced-order model of the unsteady flow. The resulting reduced-order
representation of the fluid dynamics is then coupled with the pitch-plunge airfoil model to form
a reduced-order aeroelastic model.

The ”S-shape” is a direct consequence of the occurrence of three flutter points after the
transonic dip, for a Mach number in the range 0.85-0.888. Fig. 6.14 illustrates the typical shape
of the damping coefficient, measured on the plunge degree of freedom, as a function of the speed
index at Mach number M = 0.875. The aeroelastic response is characterized by four regions in
the plot. The first region corresponds to stable (damped) responses of the airfoil when ζ > 0.
The end of the first stable region is located at V ∗ = 0.56 and corresponds to the first flutter point.
Note that, for increasing values of V ∗, the damping coefficient typically reaches a maximum value
before decreasing to zero at flutter. The second region corresponds to an unstable time response
of the airfoil when ζ < 0. Again, the damping coefficient reaches an extremum before going back
back to zero at the second flutter point for V ∗ = 1.84. The third region is a new stable region
which is characterized by a significantly higher value of the maximum damping. However, the
point of maximum stability is also much closer to the third flutter point (V ∗ = 2.645) causing a
large drop of the damping coefficient when approaching this third flutter boundary. Such a rapid
transition from highly stable to flutter conditions is referred to as hard flutter. Note that the
same shape is recovered when measuring the damping on the pitch degree of freedom. Fig. 6.16
illustrates some typical aeroelastic responses corresponding to speed indices identified by the
letters (a) to (d) in Fig. 6.14. Examples of decaying responses are depicted in Fig. 6.16(a) and
Fig. 6.16(d), respectively, while unstable conditions are shown in Fig. 6.16(b) and Fig. 6.16(c). It
can be seen from the unstable responses that the system reaches a limit cycle oscillation (LCO).
This LCO is a consequence of nonlinear transonic aerodyanimc effects and, in particular, the
presence of moving shocks along the chord. Fig. 6.17 illustrates this shock motion as the airfoil
moves between two extreme positions during one limit cycle. A clear hysteresis cycle between
the motion of the airfoil and the position of the two shocks on the upper and lower surfaces of
the airfoil can be observed. The amplitude of the shock motion increases with the amplitude of
the airfoil motion (unstable response) until the LCO. As shown in Fig. 6.18, the LCO regime
is reached for any value of the speed index in the postcritical region, but the amplitude of this
LCO varies with the speed index. In the first unstable region, the maximum LCO amplitude
occurs at a velocity index slightly lower than that corresponding to the minimum damping (see
Fig. 6.14). Moreover, a sharper transition between decaying response and LCO is observed at
the flutter boundary corresponding to the lower velocity index. A similar sharp transition is also
observed at the lower bound of the second unstable region. Additional simulations for larger
values of V ∗ would be required to further analyze this region.

The frequency content of the response is analyzed through a Fourier analysis of the pitch and
plunge response. Frequencies with a clear amplitude peak are then plotted as a function of the
velocity index in Fig. 6.19. Note that both degrees of freedom have the same frequency content.
In the first two regions (first stable and first unstable), only one frequency can be detected, as
shown in Fig. 6.20(a). This frequency monotonically increases with the speed index. In the third
region (second stable) a second higher frequency appears which initially decreases with V ∗ until



CHAPTER 6. FSI VERIFICATION TEST CASES FOR CUPYDO 145

0.7 0.72 0.74 0.76 0.78 0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94
0

0.5

1

1.5

2

2.5

3

Stable

Unstable

M∞

V
∗ f

CUPyDO simulations
Spline interpolation

Liu et al. [226]

Alonso et al. [227]

Biao et al. [228]

Thomas et al. [229]

Figure 6.15: Flutter speed index as a function of the free-stream Mach number (flutter bound-
ary). All results from the literature correspond to numerical studies performed with the same
flow conditions as the present work.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−0.02

−0.01

0

0.01

0.02

0.03

t [s]

h
/b
,
α

[-
]

h/b
α

(a) V ∗ = 0.3 - stable response

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

t [s]

h
/
b,
α

[-
]

(b) V ∗ = 1 - unstable response with LCO

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.02

−0.01

0

0.01

0.02

0.03

t [s]

h
/b
,
α

[-
]

(c) V ∗ = 1.84 - unstable response very close
to critical point (nonlinear flutter)

0 5 · 10−2 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
−0.03

−0.02

−0.01

0

0.01

0.02

t [s]

h
/b
,
α

[-
]

(d) V ∗ = 2.5 - highly stable response

Figure 6.16: Aeroelastic response of the airfoil for different speed indices at M = 0.875.



CHAPTER 6. FSI VERIFICATION TEST CASES FOR CUPYDO 146

t = t∗ t = t∗ + T/4

t = t∗ + T/2 t = t∗ + 3T/4

Figure 6.17: Pressure contour around the airfoil during one limit cycle to highlight the motion
of the shocks on both sides of the airfoil. M = 0.875 and V ∗ = 1.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
0

2

4

6

8

10

V ∗ [-]

α
L
C
O

[◦
]

Figure 6.18: Amplitude of the LCO (pitch degree of freedom) as a function of the speed index
for M = 0.875. Zero amplitude means no LCO.



CHAPTER 6. FSI VERIFICATION TEST CASES FOR CUPYDO 147

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
0

20

40

60

80 V ∗f1 V ∗f2 V ∗f3

V ∗ [-]

f
[H

z]

f = fα

Figure 6.19: Main frequencies of the aeroelastic response as a function of the speed index at
M = 0.875.

the third flutter point where it reaches a local minimum. Note that the high and low frequencies
coexist in this region, as depicted in Fig. 6.20(b). Conversely, in the fourth region (second
unstable), the low frequency vanishes and only the high frequency remains in the spectrum.

The aeroelastic response of the airfoil is also characterized by a phase shift between the pitch
and plunge modes. As illustrated in Fig. 6.21, this phase shift between the two modes transitions
from opposite-phase to in-phase as the speed index is increased. However, it is important to
note that the opposite- or in-phase nature of the response depends on the reference for the
orientation of the degrees of freedom. Therefore, one should focus on the existence of a transition
between one state and the other (phase inversion) rather than on the state itself. The phase
inversion tends to occur, in terms of speed indices, between V ∗f2 and V ∗f3. This range typically
also corresponds to the occurrence of the high frequency in the response of the airfoil and the
range of maximum aeroelastic damping.

The weakly coupled scheme is now tested on the Isogai wing section. The main purpose
is to assess the accuracy of explicit coupling schemes in the computation of flutter conditions
compared to strong coupling schemes. In this case, the mass ratio is found to be high enough to
ensure stable simulations with a weak coupling. Fig. 6.22 illustrates the aeroelastic response of
the airfoil at M = 0.875 and V ∗ = 0.56 for both coupling schemes. It can clearly be observed that
the weak coupling, although not altering the frequency of the response, does not provide the same
level of aeroelastic damping. In this particular case, the aeroelastic damping obtained with the
weak coupling is lower than that for the strong coupling so that the response becomes unstable.
Tab. 6.6 summarizes the flutter speed indices obtained by the weak coupling. These results are
compared to those obtained with strong coupling. The first flutter point for weak coupling occurs
at a lower speed index than for the strongly-coupled scheme. Additionally, the two other flutter
points cannot be captured with the weak coupling scheme as the response remains unstable
for any V ∗ > 0.44. This clearly highlights the significant impact of the coupling scheme on
the accuracy of the computed flutter properties of aeroelastic systems, as weak coupling has
effectively linearized the system.



CHAPTER 6. FSI VERIFICATION TEST CASES FOR CUPYDO 148

0 10 20 30 40 50 60 70 80 90 100
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

f [Hz]

h
/b
,α

[-
]

h/b
α

(a) V ∗ = 1.0

0 10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

·10−4

f [Hz]

h
/b
,α

[-
]

(b) V ∗ = 2.5

Figure 6.20: Frequency spectrum of the aeroelastic response for two different speed indices at
M = 0.875.

V ∗f1 V ∗f2 V ∗f3
Weak coupling 0.44 / /
Strong coupling 0.56 1.84 2.645

Table 6.6: Comparison of flutter speed indices computed by strong and weak coupling schemes,
M= 0.875.



CHAPTER 6. FSI VERIFICATION TEST CASES FOR CUPYDO 149

−0.2 0 0.2
−1

−0.5

0

0.5

1
·10−2

h
/
b

[-
]

−0.5 0 0.5
−2

−1

0

1

2
·10−2

−10 0 10

−0.4
−0.2

0
0.2
0.4

−10 0 10

−0.4
−0.2

0
0.2
0.4

h
/b

[-
]

−10 0 10

−0.4
−0.2

0
0.2
0.4

−0.5 0 0.5
−2

−1

0

1

2
·10−2

−0.5 0 0.5 1

·10−5

−4
−2

0
2
4
·10−7

α [deg]

h
/b

[-
]

−5 0 5

·10−4

−1

−0.5

0

0.5

1
·10−5

α [deg]

−0.5 0 0.5
−2

−1

0

1

2
·10−2

α [deg]

V ∗ = 0.2 V ∗ = 0.56 V ∗ = 0.8

V ∗ = 1.2 V ∗ = 1.6 V ∗ = 1.84

V ∗ = 2.1

V ∗ = 2.61 V ∗ = 2.645

Figure 6.21: Phase shift between the pitch and plunge mode of the airfoil for several speed
indices at M = 0.875.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

t [s]

α
[r

a
d
]

Weak coupling
Strong coupling

Figure 6.22: Comparison of the aeroelastic response obtained with weak and strong coupling.
M = 0.875 and V ∗ = 0.56.



CHAPTER 6. FSI VERIFICATION TEST CASES FOR CUPYDO 150

6.2.4 Test case summary

The Isogai wing section test was used to validate the coupling tool CUPyDO for the computation
of aeroelastic flutter based on the simplified pitch-plunge airfoil model. This simple structural
model provides a useful example of the coupled mode flutter mechanism. In particular, the
Isogai wing section features a complex aeroelastic behavior that is characterized by the presence
of several flutter points at transonic Mach numbers. In the unstable region, nonlinearities, such
as the typical interaction between the moving shocks and the motion of the airfoil, lead to limit
cycle oscillations whose amplitude can be related to the speed index.

The analysis of the frequency content of the aeroelastic response has revealed that the airfoil
motion is dominated by a low frequency (comparable to fα) which increases with the speed
index. A higher frequency component only appears and becomes dominant when approaching
the second flutter region. This change of frequency content is also accompanied by a phase
inversion between the plunge mode and the pitch mode of the response.

Finally, it was demonstrated that the use of a weak coupling scheme has a significant influence
on the aeroelastic damping and consequently on the flutter speed indices. The first flutter point
was found to occur at a lower speed index, which corresponds to a conservative error from a design
point of view. However, the weak coupling scheme cannot capture the two other flutter points
present around M = 0.875. This analysis clearly highlights the importance of the correction
brought by the iterative process of the strong coupling to fulfil the continuity conditions at the
fluid-structure interface: a weak coupling is not sufficient for such flutter problems.

6.3 Vortex-induced vibration of a flexible cantilever

The study of the flexible cantilever attached to the downstream side of a perfectly rigid square
cylinder is a classical two-dimensional benchmark test case for numerical simulations of FSI
problems. A reference for this case can be found in the work of Habchi et al. [231]. Compared
to the previous test cases, the following benchmark increases the complexity of the modelling
as it involves a deformable solid instead of a rigid body motion with a very limited number of
degrees of freedom.

This case focuses on the verification of a complete FVM-FEM coupling. It is therefore a
first illustration of the versatility of CUPyDO as, from a software architecture point of view,
the Metafor solver is simply substituted to the rigid-body integrator with no modification of
the interfacing mechanism. High level solver accommodation is performed by calling the proper
interfacing module of the Interface layer. From an algorithmic point of view, this case is used to
evaluate the impact of the predictor order (including zero order i.e., no predictor at all) on the
results and the performances of the coupling scheme. Finally, the test case is extended towards
low mass ratios in order to intentionally introduce severe added-mass effects. The purpose is
then to evaluate the efficiency and the robustness of the under-relaxation capability of the BGS
coupling algorithm, and to highlight its limitations.

6.3.1 Case description and simulation parameters

The geometry of the computational domain and the boundary conditions are described in
Fig. 6.23. In this case the chord of the square cylinder is H = 0.01 m. The physical prop-
erties of the solid and fluid are summarized in Tab. 6.7. The uniform incoming flow velocity is
U = 0.513 m/s, which corresponds to a Reynolds number Re = UH/νf = 333. The top and bot-
tom sides of the domain are modeled as inviscid walls whereas a no-slip condition is imposed on
solid boundaries (square cylinder and cantilever). The velocity and Reynolds number are such
that an unsteady laminar Von Karman vortex street is generated in the wake of the cylinder
with a well-defined shedding frequency. Therefore, the vortical structure of the wake generates
harmonic aerodynamic loads that induce periodic oscillations of the flexible cantilever.



CHAPTER 6. FSI VERIFICATION TEST CASES FOR CUPYDO 151

H

x

y

14H5.5H

12H

4H

0.06H

v = [U , 0]T
v · n = 0

v · n = 0

v = 0
q · n = 0

v = vΓ

q · n = 0

Figure 6.23: Fluid domain geometry and boundary conditions for the flexible cantilever in the
wake of a square cylinder (H = 0.01 m).

Solid
Density [kg m-3] ρs 100
Young’s modulus [Pa] E 2.5 · 105

Poisson’s ratio [-] νs 0.35

Fluid
Density [kg m-3] ρf 1.18
Kinematic viscosity [m2 s-1] νf 1.54 · 10−5

Table 6.7: Flexible cantilever attached to a rigid square cylinder: physical properties of the solid
and fluid.

The SU2 solver is used to solve the compressible laminar Navier-Stokes equations on the fluid
domain which is discretized by a hybrid structured-unstructured grid with 15449 grid points.
As illustrated in Fig. 6.24, the mesh is globally unstructured with a structured layer near the
solid boundary. Convective fluxes are evaluated using the second-order centered JST scheme
and time integration is performed with a second-order Euler implicit dual-time stepping scheme.
The cantilever is modeled as pure elastic material and discretized with 240 × 10 (length ×
thickness) quadrilateral EAS elements. The solid problem is solved with the nonlinear Metafor
solver. In order to eliminate any interpolation error, discretization is performed in both domains
so as to have matching meshes at the fluid-structure interface.

The reference simulation parameters are summarized in Tab. 6.8. The chosen time step size
corresponds to 122 time steps per period for the first bending mode of the beam and the chosen
coupled tolerance represents 10−4 times the expected tip displacement of the cantilever. The
simulation is performed starting from a uniform flow and no initial deformation of the cantilever.

Before computing the fully coupled system as described here above, preliminary studies are
performed for each physics separately. The flow around a square cylinder in the absence of the
cantilever is computed in order to validate the numerical settings of the flow solver. A simulation
with a perfectly rigid cantilever is performed as well to be compared with the flexible (and
coupled) case. The solid solver Metafor is also evaluated by computing the natural frequencies
of the beam and by computing its wind-off free response.



CHAPTER 6. FSI VERIFICATION TEST CASES FOR CUPYDO 152

Figure 6.24: Mesh in the vicinity of the square cylinder with flexible cantilever.

Time step [s] ∆t 0.0025
Simulated physical time [s] ttot 15
Maximum number of coupling iteration per time step n̂FSI 6
Coupling tolerance [m] ε 10−6

Table 6.8: Simulation parameters for the VIV flexible cantilever.

6.3.2 Results

Results for the single physics preliminary computations are first presented in order to validate
the numerical settings and the discretization of each domain. Then the fully coupled study is
presented and reproduced with decreasing mass ratios to assess the performance of the coupling
in presence of high added-mass effects.

Flow around a square cylinder with and without rigid cantilever

The results for the fluid computations involving perfectly rigid bodies are here presented. The
simulation in the absence of the cantilever gives the following values for the RMS lift coefficient,
mean amplitude of the drag coefficient and the Strouhal number: Cl,RMS = 0.82, Cd = 1.94
and Str = 0.13, respectively. The mean drag and the Strouhal number computed in the present
study are compared in Tab. 6.9 to other numerical and experimental data that can be found in
the literature (e.g. [232–235]). The computed Strouhal number is in good agreement with the
available experimental values (no numerical data available in Yuce and Kareem for the Strouhal
number). However, the drag coefficient is over-predicted by the numerical simulations compared
with the experiments. While, Yuce and Kareem did not provide any explanation on the origin of
the over-predicted drag coefficient, the discrepancy can be related to the blockage effect which
is already known to have an impact on the drag coefficient, as stated in Sohankar et al. [236].
The blockage coefficient has been found to be 12.5% in the case of Yuce and Kareem [235]. In



CHAPTER 6. FSI VERIFICATION TEST CASES FOR CUPYDO 153

Str Cd
Present (num. FVM laminar) 0.13 1.9
Yuce and Kareem [235] (num. FVM RANS SST k-ω) / 2.1
Okajima [232,233] (exp.) 0.12 1.6
Yen [234] (exp.) 0.12 1.7

Table 6.9: Flow around a square cylinder: Strouhal number and drag coefficients for a flow
around a square cylinder: comparison between current computed values and various references
(both experimental and numerical).

the present case, the blockage coefficient is 8% while it is reported to be much smaller, less than
4%, for the experiment of Okajima [232,233].

When computing the fluid flow around the cylinder in the presence of the rigid cantilever,
a significant modification of the vortex shedding and of the wake pattern behind the square is
observed. Fig. 6.25 compares the two configurations (with and without cantilever) by showing
the velocity vector field at the time corresponding to maximum lift. In the presence of the

Figure 6.25: Velocity field of the computed flow around the square cylinder, left without rigid
cantilever and right with rigid cantilever. Instantaneous view corresponding to the maximum
lift.

cantilever, the shed vortices can only move horizontally along the cantilever before reaching the
free wake. This decreases the frequency of the shedding from 6.8 to 5.8 Hz. This represents a
decrease of 15% in terms of the Strouhal number, from 0.13 (without cantilever) to 0.11 (with
cantilever).

Frequency analysis of the cantilever and wind-off free response

A linear modal analysis using the frequency analysis module of Metafor is performed on the flex-
ible cantilever. The computed natural frequencies are compared to those given by the analytical



CHAPTER 6. FSI VERIFICATION TEST CASES FOR CUPYDO 154

solution for an equivalent 1D beam model [237],

2πfi = {1.875, 4.694, 7.855, 10.995}2
√

EI

ρsAL4
i = 1, · · · , 4 , (6.24)

for the first four natural frequencies. In this expression, I is the flexural inertia and A the cross-
sectional area (considering an out-of-plane unit length). The computed natural frequencies are
also compared to the results obtained with an equivalent modal analysis in the solver GetDP,
in which the two classical assumptions for 2D problems, i.e. plane-stress (p−σ) or plane-strain
(p−ε), are considered. Computations with Metafor can only be performed with the p−ε as-
sumption, as there is no p−σ formalism directly available. However, both standard (STD) and
enhanced assumed strain (EAS) elements are used in order to assess their impact on the natural
frequencies. The results are compiled in Tab. 6.10 for the first four natural frequencies. The

1D beam model GetDP p− σ GetDP p− ε Metafor p− ε STD Metafor p− ε EAS
3.02 3.07 3.28 3.28 3.23
18.98 19.25 20.55 20.55 20.25
53.15 53.81 57.43 57.43 56.61
104.15 105.19 112.25 112.25 110.64

Table 6.10: Comparison between computed and analytical values for the first four natural fre-
quencies of the cantilever. Frequencies are expressed in Hz.

plane-stress computation with GetDP shows very good agreement with the 1D beam model,
which was established under the same assumption. When using the plane-strain assumption,
the frequencies computed by GetDP and Metafor with standard elements are the same. The
use of EAS elements in Metafor leads to slightly lower frequencies (a decrease of around 1.45%
for all frequencies) as this particular type of elements is known to be less stiff than its stan-
dard counterpart. EAS elements are used for all subsequent computations as they provide an
improved behaviour for bending dominated problems (see discussion in Section 3.7.1).

The free response of the cantilever is computed by an unsteady simulation. The response is
obtained by applying a dead load at the tip of the cantilever during a short period of time (10
time steps) and by releasing it. The cantilever is then free to vibrate. Note that the dead load
has been calibrated to obtain a maximum displacement that is close to the expected maximum
displacement obtained in the coupled system. Fig. 6.26 illustrates the vertical displacement dy
of the cantilever tip as a function of time. The measured frequency of the response is 3.2 Hz
which corresponds to the first natural frequency (first bending) obtained from modal analysis.

Fully coupled analysis

Coupled simulations are performed with the strongly-coupled BGS schemes without relaxation
and with the use of the second-order predictor. Fig. 6.27 shows the computed tip displacement
as a function of time. At the start of the simulation, a transient behavior is observed until the
vortex shedding, and consequently the tip displacement, reaches an established regime where the
displacement amplitude is modulated by lower frequency waves. This stems from the complex
structure of the vortex shedding interacting with the large displacement of the cantilever.

A summary of results from the literature (e.g., [238–240]) is provided by Habchi et al. [231].
The oscillation frequency typically falls in the range 2.94−3.25 Hz, while the maximum amplitude
of the tip displacement is in the range 0.95 − 1.15 cm. Tab. 6.11 compares the present results
with those from the literature. Note that all the authors used a partitioned BGS approach
with a FVM-FEM coupling, except for Olivier et al. [240] who used a FVM-FVM coupling.
The present computation predicts a maximum tip displacement dy = 1.14 cm and a frequency



CHAPTER 6. FSI VERIFICATION TEST CASES FOR CUPYDO 155

0 1 2 3 4 5 6 7 8 9 10
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
·10−2

t [s]

d
y

[m
]

Figure 6.26: Vertical displacement of the cantilever tip as a function of time. Uncoupled free
response.

0 2 4 6 8 10 12 14
−1.5

−1

−0.5

0

0.5

1

1.5
·10−2

t [s]

d
y

[m
]

Figure 6.27: Vertical displacement of the cantilever tip as a function of time. Coupled vortex-
induced response.



CHAPTER 6. FSI VERIFICATION TEST CASES FOR CUPYDO 156

max dy [cm] f [1/s]

CUPyDO 1.14 3.20
Sanchez et al. [241] 1.05-1.15 3.05-3.15
Habchi et al. [231] 1.02 3.25
Kassiotis et al. [238] 1.05 2.98
Wood et al. [239] 1.15 2.94
Olivier et al. [240] 0.95 3.17

Table 6.11: Comparison of the maximum tip displacement and oscillation frequency of the
flexible cantilever between the present computation and results from the literature. The range of
values obtained by Sanchez et al. corresponds to a parametric study on the relaxation parameter
in the BGS algorithm.

f = 3.20 Hz, which falls within the range of results from the literature. The tip displacement
corresponds to 28% of the length of the cantilever, and is thus considered as a large displacement.
Fig. 6.28 shows the velocity magnitude contour at several time steps of a period T . The vortical
flow structures moving along the deforming cantilever are ejected into the wake where they are
slowly dissipated by viscous effects.

t = T/4 t = T/2 t = 3T/4

Figure 6.28: Flexible cantilever attached to a rigid square cylinder: velocity magnitude contour
at three phases of a period.

Simulations under the same conditions are now performed with a first-order predictor and
without predictor. Tab. 6.12 summarizes some general results. As expected, the most noticeable
effect of the use of the predictor is a reduction of the mean number of coupling iterations per
time step, while reaching similar mean values for the final coupling error at every time step.

The test case is now extended to cover lower mass ratios. So far the mass ratio for the
computations was

Ma =
ρs

ρf
= 84.7 , (6.25)

which is sufficiently high to get a numerically stable coupled computation without using under-
relaxation. In this analysis, several additional mass ratios are tested, Ma = 8.5, 4.2, 1.7 and 0.8,
by reducing the solid density (ρs = 10, 5, 2 and 1 kg/m3 respectively) while keeping the ratio



CHAPTER 6. FSI VERIFICATION TEST CASES FOR CUPYDO 157

NFSI ε [m]
second-order 2.75 6.47 · 10−7

first-order 3.72 5.56 · 10−7

no predictor 5.51 6.42 · 10−7

Table 6.12: Summary of results obtained with different prediction orders: mean number of
coupling iterations per time step and mean value of the final coupling error per time step

E/ρs, and thus the natural frequencies of the cantilever, constant. For each mass ratio, the effect
of the predictor, the relaxation method and the relaxation parameter are assessed with respect
to the mean number of FSI coupling iterations per time step. The results are summarized in
Tab. 6.13. As expected, the convergence rate and numerical stability of the coupled simulations

Ma Predictor Relaxation ω NFSI

8.5

Second-order Static 1 X
Second-order Static 0.8 X
Second-order Static 0.5 8.3
Second-order Static 0.2 16.3
Second-order Aitken max 0.5 7.03
Second-order Aitken max 0.1 6.9

No Aitken max 0.1 8.8

4.2

Second-order Static 0.5 X
Second-order Static 0.1 37.8
Second-order Aitken max 0.5 7.6
Second-order Aitken max 0.1 7.2
Second-order Aitken min 0.1 8.4

No Aitken max 0.5 10.5

1.7

Second-order Aitken max 0.5 13.4
Second-order Aitken max 0.1 13.3
Second-order Aitken min 0.1 13.1

No Aitken min 0.1 15.9

0.8
Second-order Aitken min 0.1 X

No Aitken min 0.1 31.9

Table 6.13: Flexible cantilever attached to a rigid square cylinder: analysis of the efficiency of
the coupling algorithm with decreasing density ratio. ω is the value of the relaxation parameter
in case of static relaxation. In the case an Aitken’s relaxation, it corresponds to the fixed value
used in criterion Eq. (3.23). NFSI is the average number of coupling iterations per time step.
The X symbol means that the coupling process diverges.

decrease significantly when reducing the mass ratio. This is clearly highlighted by a general
increase of the mean number of coupling iterations. While no relaxation was used for the initial
mass ratio in this study, stabilization by under-relaxation becomes more and more essential as
Ma decreases. Without any relaxation, the simulation quickly diverges after a few time steps
(denoted by the X symbol in Tab. 6.13).

For Ma = 8.5, the use of a static relaxation is sufficient to stabilize the iterative procedure
if the value of the relaxation constant is below a certain limit (between 0.5 and 0.8). Note that
in this study, the purpose is not to seek the exact limit of the relaxation constant that leads
to convergence, as it would have required a significant number of computations. The purpose
is rather to identify the general performance trends of the coupling algorithm. Low values of



CHAPTER 6. FSI VERIFICATION TEST CASES FOR CUPYDO 158

the relaxation parameter (e.g. ω = 0.2) bring excessive amount of relaxation, and thus lead to
a significant increase in the number of coupling iterations. Using Aitken’s relaxation with the
max criterion leads to a further decrease in the mean number of coupling iterations and, unlike
the static relaxation, the dynamic adaptation of ω performs slightly better with low values of ω.
Finally, and as already observed, the absence of time step prediction slightly increases the mean
number of coupling iterations.

For Ma = 4.2, static relaxation requires lower values of the relaxation parameter (e.g.
ω = 0.1) to provide a convergent coupling, but it also drastically increases the number of cou-
pling iterations. Using Aitken’s relaxation here guarantees a convergent coupling process and
efficiently decreases the number of coupling iterations. However, this number globally increases
compared to the previous mass number using the same values of ω. The use of the min criterion
is introduced, but it does not outperform the max criterion yet for this mass number. The same
trend regarding the absence of time step prediction, i.e. an increase of the mean number of
coupling iterations compared to cases with prediction, is still observed.

For Ma = 1.7, a significant increase in the mean number of iterations is observed for any
relaxation technique and relaxation parameter. In this case, the min criterion provides a sub-
stantial reduction of the number of iterations compared to the max criterion.

Finally, the case Ma = 0.8 is so ill-conditioned because of the strong added-mass effects
that only the min criterion with a low value of the relaxation parameter can provide a stable
iterative coupling process, although the significant mean number of coupling iterations becomes
prohibitive for practical applications. We also note that, in this case, the presence of the predictor
acts as a destabilizing factor. This is most likely due to the higher sensivity of the coupling
process to the guessed position of the solid interface at the beginning of each time step. Thus
only an iterative coupling without time step prediction leads to convergence. However, it is
important to note that the time step has been kept constant during the study and might need to
be adapted to better represent the physics at lower mass ratio. When the flow changes rapidly,
the extrapolation provided by the predictor leads to an overprediction that cannot be stabilized
by the iterative coupling process. It is expected that a lower time step will bring back the benefit
of using the predictor.

Fig. 6.29 shows the fluid velocity magnitude contour and the structural deformation for
different mass ratios (Ma = 42.3, 4.2 and 0.8). The corresponding time for each plot is selected
so as to correspond to the maximum amplitude of the deformation modes. One can clearly
observe that the order of the deformation mode of the cantilever increases as the mass ratio
decreases. However, this behavior is most likely due to increased beam flexibility (the stiffness
has been decreased to maintain the ratio E/ρs constant) than the decreased mass ratio.

6.3.3 Test case summary

This test case was the first for which CUPyDO was used to couple a FVM fluid solver with
a FEM structural solver. The substitution of the simple rigid body integrator by Metafor was
performed in a straightforward fashion by taking advantage of the interfacing flexibility of the
coupling tool.

The coupling was tested on the classical and widely studied case of the cantilever attached
in the wake of a square cylinder. The solution computed for the reference case was shown to be
in good agreement with results found in the literature.

The reference case was then adapted in order to purposely introduce added-mass effects
and numerical instability, so as to assess the performance of the under-relaxation feature of the
coupling algorithm. The different studies with decreasing mass ratios led to the following obser-
vations, that could be seen as best practice when using BGS coupling for cases with significant
added-mass:

• static under-relaxation is the simplest option to use, but may lead to a relatively large



CHAPTER 6. FSI VERIFICATION TEST CASES FOR CUPYDO 159

Ma = 42.3 Ma = 4.2 Ma = 0.8

Figure 6.29: Flexible cantilever attached to a rigid square cylinder: velocity magnitude contour
and deformation mode for three different mass ratios at the time of maximum deformation.

number of coupling iterations if the relaxation parameter is not optimal,

• Aitken’s under-relaxation usually outperforms the static one,

• when using Aitken’s under-relaxation, it is preferable to use the max criterion (provided
it produces a stable coupling) as it leads to a lower number of coupling iterations than the
min criterion,

• when the max criterion of Aitken cannot lead to a convergent coupling process, the min
criterion is used to stabilize it,

• in general, using a (second-order) predictor can reduce the number of coupling iterations,
but the predictor can be disabled to stabilize the coupling process in case of very strong
added-mass effects, as in this situation the predictor acts as a destabilizing effect. However,
a reduction of the time step will probably bring back the improvement of the time predictor.

6.4 Aeroelastic study of the AGARD 445.6 wing

The experimental AGARD 445.6 wing test case of Yates [242] is a frequently used three-
dimensional validation case for transonic flutter simulations. It is therefore used to assess
the three-dimensional coupling capabilities of CUPyDO. As the size of the meshes increases,
parallelization is used to save substantial computational time (particularly for the fluid com-
putation). The parallel coupling capabilities of CUPyDO are thus also evaluated, although no
formal parallel scalability analysis is performed in this work.

Additionally, a non-matching mesh discretization is used at the fluid-structure interface.
Consequently, RBF interpolation is used to transfer displacements and loads between the coupled
solvers. Evaluation of the interpolation accuracy for both TPS and CPC2 basis functions is
performed.

6.4.1 Case description and simulation parameters

The present computational study is based on the weakened model 3 of the wing [242]. This is a
45◦ swept-back wing whose geometry is depicted in Fig. 6.30 and whose geometrical properties



CHAPTER 6. FSI VERIFICATION TEST CASES FOR CUPYDO 160

are summarized in Tab. 6.14. The cross-section is a symmetric NACA 65a004 airfoil and the
wing is clamped at the root. The fluid flow is considered inviscid and the compressible Euler

x

y

z

cr

ct

bs

Λ

Figure 6.30: Geometry of the AGARD 445.6 wing.

Root chord [m] cr 0.559
Taper ratio [-] λ 0.658
Tip chord [m] ct 0.368
Semi-span [m] bs 0.762
Aspect ratio [-] AR 1.644
Sweep at quarter chord [◦] Λ 45
Wing surface [m2] S 0.353
Mean aerodynamic chord [m] c 0.470

Table 6.14: Geometrical properties of the AGARD 445.6 wing.

equations are thus solved. The fluid region of the problem is discretized using a structured O-
mesh with a total number of 257521 grid nodes (a mesh convergence analysis has been performed
to determine the final grid size). The fluid domain extends up to 25 times the root chord cr
from the wing in each direction. Farfield boundary conditions are applied on the outer boundary
while a symmetry boundary condition is imposed on the plane in which the wing is clamped.
The wing surface is discretized with 30, 80 and 20 cells in the spanwise, chordwise and thickness5

direction respectively. The mesh around the wing is illustrated in Fig. 6.31. The SU2 solver
is used to compute the flow: convective fluxes are evaluated using the second-order centered
JST scheme and time integration is performed with the second-order Euler implicit dual-time
stepping scheme.

The solid wing is modeled in Metafor with 8-node continuum EAS elements and an or-
thotropic elastic material whose properties are summarized in Tab. 6.15. It is discretized with
31, 17 and 2 cells in the spanwise, chordwise and thickness direction, respectively. EAS ele-
ments are used to conserve high accuracy in the structural solution while limiting the number
of elements in the thickness of the wing.

5This refers to the number of cells used to discretize the rounded wing tip that is used here.



CHAPTER 6. FSI VERIFICATION TEST CASES FOR CUPYDO 161

-

Figure 6.31: CFD mesh around the AGARD 445.6 wing.

Longitudinal Young’s modulus [GPa] E1 3.151
Transverse Young’s moduli [GPa] E2, E3 0.4162
Shear moduli [GPa] G12, G13, G23 0.4392
Poisson’s ratio [-] ν12, ν13, ν23 0.31
Density [kg m-3] ρs 381.98

Table 6.15: Material properties for the AGARD 445.6 wing.



CHAPTER 6. FSI VERIFICATION TEST CASES FOR CUPYDO 162

Strongly-coupled simulations are used to compute the flutter boundary of the wing. Similarly
to the experimental investigation, a large range of Mach numbers, from M= 0.499 to M= 1.141,
is simulated. Based on experimental conditions, the corresponding Reynolds numbers are in the
range Re = 0.54 · 106 to Re = 1.89 · 106. As for the Isogai wing section test case, computations
are performed at each Mach number for several speed indices and flutter is inferred from the
damping coefficient extracted from the aeroelastic response. The speed index for the AGARD
445.6 wing test case is defined as

V ∗ =
U

0.5crω2

√
Ma

, (6.26)

where cr, ω2 and Ma are the root chord, the natural frequency of the first torsional mode and
the mass ratio, respectively. The mass ratio is given by Ma = m/ρfV , where m = 1.863 kg and
V = 0.130 m3 are directly taken from the work of Yates [242].

As the discretization of the interface is not matching, the mesh interpolator of the coupling
tool is used to map the two interface meshes and to communicate the data. Preliminary steady
FSI simulations are performed for assessing the performance of the different mesh interpolation
methods for this case and in order to select the best-adapted method for the flutter case.

Flutter simulations are performed with a time step of 0.001 s (≈ 105 time steps per period
of the first bending mode) with no relaxation on the BGS coupling (value of Ma is in the range
33-260 depending on the fluid density). In order to limit the computation time of the simulation,
a maximum number of four coupling iterations is imposed which is typically sufficient to reach
a prescribed tolerance of 10−7 m (about 10−5 times the expected displacement amplitude at
flutter). Simulations are performed in parallel on 16 cores (16 fluid instances, 1 solid) of a
computing node with Intel Xeon E5-2650 processor (2 GHz, 16 threads).

Each simulation is initialized with a uniform flow and no deformation of the solid wing.
During the first 0.01 s of simulated time, a vertical load is applied on an upstream portion of
the wing tip in order to induce a small perturbation of a determined amplitude (around 0.66 %
of the span). Then the loading is released and the wing is free to vibrate in the flow.

Preliminary fluid and solid simulations are performed to validate the mesh and the numerical
settings. The steady transonic flow around a perfectly rigid wing at M = 0.96 and ρf = 0.0634
kg/m3 is computed with SU2 on several meshes with varying discretizations, as summarized in
Tab. 6.16, and varying angles of attack (1, 2.5 and 5 degrees.) Then, a linear modal analysis of

Spanwise Chordwise Thickness Total number

Mesh A 15 40 10 46500
Mesh B 30 80 20 248000
Mesh C 45 95 20 410000
Mesh D 60 120 20 679280

Table 6.16: Mesh discretizations used for the preliminary fluid simulations. Number of wing
surface cells and total number of cells (whole mesh).

the wing (solid domain) is performed in Metafor and compared to other numerical data found in
the literature. Finally, as already introduced above, steady FSI computations are also performed
to evaluate the performance of the different interpolation methods. The TPS and CPC2 (with
several radii) basis functions are tested using a conservative approach. The flow conditions
for the steady FSI study are taken from the work of Goura [243]: free-stream Mach number
M= 0.8, angle of attack of 1◦, free-stream velocity U = 247.09 m/s and free-stream fluid density
ρf = 0.09411 kg/m3.



CHAPTER 6. FSI VERIFICATION TEST CASES FOR CUPYDO 163

6.4.2 Results

The results of the preliminary studies (single physics and steady FSI) are first presented. They
are then followed by the results of the flutter analysis.

Fluid simulations with a rigid wing

The results obtained with the single-physics steady fluid computations are depicted in Tab. 6.17
in terms of the lift and moment coefficients as a function of the angle of attack for the four meshes
considered. The force coefficients are not significantly impacted by the mesh discretization for

AoA = 1◦ AoA = 2.5◦ AoA = 5◦

CL CM CL CM CL CM
Mesh A 0.0802 -0.0882 0.2001 -0.2214 0.405 -0.4608
Mesh B 0.0775 -0.0841 0.1981 -0.2176 0.407 -0.4641
Mesh C 0.0806 -0.088 0.199 -0.2195 0.4089 -0.4672
Mesh D 0.081 -0.0892 0.1991 -0.2201 0.4093 -0.4675

Table 6.17: Lift and moment coefficients as functions of the angle of attack for the four fluid
meshes. Preliminary steady fluid simulations with rigid wing.

the inviscid fluid model used in this case. Over all tested angles of attack, the mean differences
between the maximum and minimum values regarding the mesh discretization are only 2.1%
and 2.9% for the lift and moment coefficients, respectively (relative values with respect to the
finest mesh).

Based on the results obtained from these preliminary fluid simulations, mesh B is judged
accurate enough while keeping an affordable CPU cost. This trade-off between accuracy and
computational cost is important because the cost of FSI simulations will be undoubtedly much
higher than that of the present steady simulations. A reasonable mesh is thus necessary to
ensure that unsteady FSI simulations remain feasible. One iteration on mesh B takes about
half the time of an iteration on the finest mesh, mesh D. Therefore, mesh B is retained for all
following computations.

Structural analysis of the wing

In order to asses the validity of the numerical settings of the solid solver, a modal analysis of
the wing is performed in Metafor. The first four computed natural frequencies are compared
with results from the literature in Table 6.18, showing good agreement with models coming from
other references. Note that in these references, the structural model is based on plate elements
instead of the volume elements used in this work.

Evaluation of the RBF interpolation on a steady aeroelastic case

The results for the steady FSI simulations are presented in Tab. 6.19 which shows the z-
displacement (perpendicular to the wing plane) of the wing tip at both leading and trailing
edges. The values of the support radius for the CPC2 function used in the present study are
r = 0.1, 0.2, 0.4 and 0.7 which corresponds to 13.1%, 26.2%, 52.4% and 91.8% of the span,
respectively. The computed values of the displacement of the wing tip are compared with the
results obtained by Goura [243], who introduced the Constant Volume Tetrahedron (CVT) in-
terpolation method, and Melville et al. [246] on the same test case. The results clearly show
that, in this case, the impact of the basis function and the support radius on the displacement is
marginal. The results are also in good agreement with the references, with a maximum discrep-
ancy of 4.1% and 8.5% on the leading and trailing edge displacement, respectively. This can be



CHAPTER 6. FSI VERIFICATION TEST CASES FOR CUPYDO 164

f1 f2 f3 f4

Metafor 9.54 40.35 50.22 97.67
Yates [242] 9.60 38.10 50.70 98.50
Goura [243] 9.67 36.87 50.26 90.00
Beaubien et al. [244] 9.46 39.44 49.71 94.39
Zhanget al. [245] 9.57 38.17 48.35 91.55

Table 6.18: First four natural frequencies of the AGARD 445.6 wing from the present calculation
and the literature (all numerical models). Frequencies are in Hz with f1 and f3 corresponding
to the first and second bending modes, and f2 and f4 to the first and second torsion modes,
respectively.

Interpolation method dz LE [m] dz TE [m] T [s]

Goura [243] CVT 0.0112 0.0127 /

Melville et al. [246] / 0.0112 0.0122 /

Present

TPS 0.01166 0.01324 10.7
CPC2 r = 0.1 0.01164 0.01324 3.8
CPC2 r = 0.2 0.01165 0.01323 6.0
CPC2 r = 0.4 0.01166 0.01324 8.0
CPC2 r = 0.7 0.01166 0.01324 9.8

Table 6.19: Vertical displacement of the wing tip at the leading and trailing edges (respectively
denoted LE and TE). T is the average time spent by the interpolation at each FSI iteration.

explained by the use of different structural models (plate elements in the references vs volume
elements in the present study) and the use of different mesh interpolation methods (such as the
CVT in the work of Goura [243]). Tab. 6.19 also shows the average time, denoted by T , spent
by the interpolation process at each FSI iteration. Note that this includes both fluid-to-solid
and solid-to-fluid data interpolation at each iteration. As expected, this time increases with the
CPC2 radius as the number of non-zero entries in the sparse interpolation matrix increases as
well. This time is therefore maximum when using the TPS interpolation which provides a full
dense interpolation matrix. Considering the low CPU time overhead of the interpolation, which
is for the TPS 3.2% of the total CPU time of the simulation in this case study, the TPS basis
function is kept for the flutter analysis to guarantee the best accuracy.

Flutter analysis of the AGARD wing

The fully coupled aeroelastic response of the AGARD wing is illustrated in Fig. 6.32, which shows
the vertical displacement of the leading edge at the wing tip for three different speed indices
in the vicinity of the flutter boundary at M = 0.96. As the flight condition is transonic, the
aerodynamic loads are again nonlinear. Consequently, the post-critical responses are expected
to converge towards limit cycles if the simulations are long enough. As the simulations are
very computationally expensive, their duration is less than 20 cycles and therefore the full
nature of the aeroelastic behaviour of the system is not captured. Within the simulated time
window, three typical behaviors can be observed: a damped response for V ∗ < V ∗f , a constant
amplitude response for V ∗ = V ∗f = 0.281 and an amplified response for V ∗ > V ∗f , where V ∗f is the
flutter speed index. As previously mentioned, the flutter condition is determined by successive
evaluations of the damping coefficient ζ from the aeroelastic response as a function of the speed
index. Fig. 6.33 shows the damping coefficient as a function of the speed index at M = 0.96. It
first increases starting from low values at low speed indices, then reaches a maximum and finally



CHAPTER 6. FSI VERIFICATION TEST CASES FOR CUPYDO 165

0 0.2 0.4 0.6 0.8 1 1.2
−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

t [s]

d
z
/b
r

[-
]

V* = 0.300

V* = 0.281

V* = 0.218

Figure 6.32: Aeroelastic response of the AGARD 445.6 wing for three speed indices V ∗ with
M = 0.96 and ρf = 0.0634 kg/m3: vertical displacement dz of the leading edge at the wing tip
normalized by br = cr/2. The flutter speed index is V ∗f = 0.281

0 5 · 10−2 0.1 0.15 0.2 0.25 0.3
−1

−0.5

0

0.5

1

1.5

2
·10−2

V ∗ [-]

ζ
[-

]

Figure 6.33: Computed damping coefficient of the AGARD 445.6 wing aeroelastic response as
a function of the speed index for M = 0.96 and ρf = 0.0634 kg/m3.



CHAPTER 6. FSI VERIFICATION TEST CASES FOR CUPYDO 166

drops until it crosses the ζ = 0 axis which corresponds to the flutter point. Fig. 6.34 shows the
pressure contours on the wing at M = 0.96 and V ∗ = 0.3 for three time instants in a cycle.
Contours of the Mach number in the supersonic region are superposed at three wing sections
in order to show its motion within one cycle and thus highlight the typical nonlinearities of the
transonic regime.

t = T/4 t = T/2 t = 3T/4

Figure 6.34: Surface pressure and Mach number in supersonic region for the AGARD 445.6 wing
at three different time instants of a period with M= 0.96, ρf = 0.0634 kg/m3 and V ∗ = 0.3. The
flow is from right to left.

Fig. 6.35 shows the computed flutter boundary that is compared to the experimental re-
sults [242] and to computational results obtained solving the Euler [226,244,247,248] or RANS [248,
249] equations. For all computational reference results, the structural part is modeled by a modal
decomposition approach which differs from the fully time-integrated approach used in this thesis.
It can be seen that the results obtained by coupling SU2 and Metafor with CUPyDO are in good
agreement with experiments and with the other computational results found in the literature in
the subsonic and transonic regimes. It is also important to note that the transonic dip is well-
captured. However, larger discrepancies with the experimental data are observed for supersonic
Mach numbers, especially at M = 1.141. Similarly to other computations, the flutter boundary
is over-estimated at these Mach numbers. Although the origin of this discrepancy remains un-
clear, several explanations [226, 248] have been proposed, such as the impact of viscous effects
(not accounted for in the present Euler simulations) and the complex nonlinear shock-boundary
layer interaction. Even for RANS simulations, uncertainties remain concerning the turbulence
model and the impact of transition. Additionally, the wing tip geometry, i.e. cut-off or rounded
(rounded here), and the spatial discretization scheme (centered or upwind) [249] could also play
a role in the supersonic regime. Finally, the effect of structural damping on the flutter boundary
should be investigated, since no indication of its experimental value is given [247]. All these de-
tails are relevant for accurately capturing the flutter boundary at high Mach numbers but are in
majority related to the fluid model. A detailed investigation of the flutter solution at supersonic
speeds then falls beyond the scope of the present verification of the coupling environment. Note
however that the performance in terms of coupling convergence is found to be highly satisfactory
for all Mach numbers (3 iterations to reach the prescribed tolerance).

The performance of the coupled simulations in terms of CPU time was assessed at one of
the flutter points: M= 0.96 and V ∗ = 0.281. The results are illustrated by the pie diagram in
Fig. 6.36 which shows the relative contribution of the different tasks to the total CPU time of the
simulation. Not surprisingly the computation of the fluid solution by SU2 is clearly the more time
consuming task and represents about two thirds of the total time. It is followed by the ALE fluid
mesh deformation (based here on a pseudo-elastic solid equilibrium approach) that contributes to
almost one third of the total time. On the other hand, the contribution of the solid computation
represents barely more than 2% of the total time and is thus insignificant. Finally, the FSI tasks,



CHAPTER 6. FSI VERIFICATION TEST CASES FOR CUPYDO 167

0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

M∞

V
∗ f

CUPyDO

Experiment [242]

Beaubien et al. [244]

Chen et al. [249]

Lee-Rausch et al. [247]

Liu et al. [226]

Xiao et al. (Euler) [248]

Xiao et al. (RANS) [248]

Figure 6.35: Flutter boundary of the AGARD 445.6 wing in the transonic regime.

65.07%

Fluid solution

31.97%

Mesh deformation

2.01% Solid solution

0.95% FSI communication

Figure 6.36: Typical distribution of the CPU time, with respect to the total CPU time, for each
sub-system of a coupled simulation on the AGARD 445.6 flutter case.



CHAPTER 6. FSI VERIFICATION TEST CASES FOR CUPYDO 168

which typically include data exchange, interface interpolation and coupling residual computation
only represents a marginal cost (0.95% of the total time). This demonstrates that the overhead
brought by the coupling environment per se is negligible. Note that the distribution of CPU time
presented in Fig. 6.36 relates to the performance obtained for this specific test case. Therefore,
it only gives general indications on the performance one could expect for other 3D cases. The
CPU time is still highly dependent on other factors such as, for instance, the number of threads
used by the computation, the mesh size, the numerical settings and models used in each solver,
or their intrinsic algorithmic efficiency.

6.4.3 Test case summary

The AGARD 445.6 wing test case has been used to validate the coupling tool for flutter analysis
on a general three-dimensional configuration with non-matching interface meshes. From a cou-
pling capability point of view, the level of complexity encountered in this case is comparable to
what must be achieved in industrial design. The results obtained in this study have been com-
pared with a collection of references from the literature. The solution obtained with CUPyDO
has been found to be in good agreement with these references in the subsonic and transonic flow
regimes. In the supersonic regime, large discrepancies have been observed between all the results
and can be in majority related to the fluid solution (typically the flow model and the numerical
schemes) rather than the coupling environment itself. In the present case, the coupling process
has demonstrated very good performances over the whole range of Mach numbers considered.

The relative contribution to CPU time of the different components of a typical 3D flutter
calculation has then been analyzed. It has been found that the contributions of the computation
of the fluid solution (65%) and the ALE mesh deformation (32%), dominate the total CPU cost
while the computation of the solid solution represents only a very small percentage of the total
cost (2%). Finally, the overhead brought by the coupling tasks is found to have the smallest
contribution (1%).

6.5 Conjugate heat transfer with a circular cylinder immersed
in cross-flow

A last verification case is now presented to assess the thermal coupling capabilities of CUPyDO.
The test case is inspired by a numerical study performed by Nettis [78] which involves a conjugate
heat transfer with a circular cylinder immersed in a laminar cross-flow.

The objective of this test case is to verify the thermal coupling schemes implemented in
CUPyDO with a focus on their stability at different Biot numbers. Furthermore, this test
introduces the coupling with GetDP as another compatible FEM structural solver to further
demonstrate the versatility of CUPyDO.

6.5.1 Case description and simulation parameters

We consider a perfectly rigid hollow cylinder immersed in a laminar and uniform flow, as il-
lustrated in Fig. 6.37. The ratio between the inner and outer diameter of the cylinder is
Di/Do = 0.5. The temperature Ti = 350 K is imposed on the inner boundary of the cylinder.
The fluid domain is circular with a farfield diameter of 25Do. The farfield fluid temperature is
imposed at T = 288.15 K, so that the thermal exchange at the outer boundary of the cylinder de-
fines a convective CHT problem. The fluid flow is characterized by a Reynolds number Re = 40
(based on Do), a Mach number M = 0.38, and a Prandtl number Pr = 0.72. Two distinct
values of the ratio between fluid and solid thermal conductivities are considered in this study:
λs/λf = 4, referred to as case A and reproducing the study of Nettis [78], and λs/λf = 1/4,
referred to as case B. The purpose of evaluating two thermal conductivity ratios is that cases A



CHAPTER 6. FSI VERIFICATION TEST CASES FOR CUPYDO 169

T

U
Ti

Do

Di

Figure 6.37: Heated hollow cylinder in a cross flow, geometry and boundary conditions.

and B provide a Biot number which is lower and higher than one, respectively. The performance
of the thermal coupling schemes, as detailed in Section 3.3, is then evaluated.

Steady coupled simulations are performed because the Reynolds number is low enough to
guarantee stationary flow in the wake of the cylinder. The SU2 solver is used to solve the
compressible laminar Navier-Stokes equations in the fluid domain, which is discretized using
a structured O-mesh with 6120 grid points. Convective fluxes are evaluated using the second-
order centered JST scheme and time integration (time-marching for steady solution) is performed
with the second-order Euler implicit scheme. The GetDP solver is used to solve the steady heat
equation in the cylinder. The solid is discretized using quad elements with 21 X 121 points
in the radial and circumferential directions, respectively. The maximum number of coupling
iterations is intentionally set to a high value of 1000 so as not to bias the evaluation of coupling
procedure for cases with a very low convergence rate. The coupling tolerance is set to 0.1 K for
the temperature-back schemes (FFTB and hFTB) whereas it is set to 1 W/m2 for the flux-back
schemes (TFFB and hFFB), i.e. as low as 0.1% of the expected temperatures and fluxes along
the interface.

In a first step, simulations of case A are performed using the four thermal coupling schemes
implemented in CUPyDO and a variable numerical heat transfer coefficient, when applicable.
The performance of the coupling procedure is measured by the number of coupling iterations
that are required to reach the prescribed tolerance. The fluid and solid domains are also meshed
so as to have matching discretizations at the interface to exclude any interpolation error. The
solutions obtained for case A are compared to the reference solution provided by Nettis [78]. In
a second step, the same study is performed for case B and the efficiency of the thermal coupling
schemes is compared to case A. Finally, the mesh discretization of the solid interface is modified
to consider non-matching meshes at the interface. The consistent interface mesh interpolation
implemented in CUPyDO is thus used and tested on case A only, and the solution is compared
to the matching interface case.

Preliminary fluid and solid simulations are also performed in order to verify the settings
of the solvers. In the fluid, the steady flow around the cylinder is computed and the drag
coefficient is then compared with other references. Both adiabatic and isothermal boundary
conditions applied at the cylinder outer boundary are tested. In the solid, the temperature
field is computed for different types of axisymmetric boundary conditions (heat flux imposed
or temperature imposed) applied at the outer boundary. The solution is then compared to
analytical expressions.

6.5.2 Results

The results obtained in the preliminary simulations are presented here, followed by the results
obtained for the fully coupled system.



CHAPTER 6. FSI VERIFICATION TEST CASES FOR CUPYDO 170

Steady laminar flow around the cylinder

The steady laminar fluid-only simulations are performed under the same flow conditions as those
introduced for the coupled problem. One simulation is performed with adiabatic boundary
conditions applied at the wetted surface of the cylinder. The other simulation is performed by
applying a constant temperature To = Ti = 350 K instead. The computed drag coefficients
are cd = 1.68 and cd = 1.64, respectively, which are in good agreement with a large amount of
available experimental results in the literature, e.g. Finn [250](cd = 1.60), Hoerner [251](cd =
1.65) or Panton [252](collection of results in the range cd = 1.50 − 1.68). The steady flow
solution is represented in Fig. 6.38. For such a low Reynolds number, the flow is stable and
features two symmetric contra-rotating vortices that develop in the near wake. Note that an

Figure 6.38: Steady laminar flow around the circular cylinder at Re = 40. Velocity magnitude
contour with streamlines.

unsteady computation would lead to the exact same steady solution.

Thermal analysis of the hollow cylinder under prescribed thermal loads

The GetDP solver is then used to compute the temperature field within the cylinder submitted to
axisymmetric thermal loads. At the outer boundary, either an imposed heat flux qo = (q · n)o,
n pointing outwards the solid domain or an imposed temperature To are considered. At the
inner boundary, a Dirichlet boundary condition is used: Ti = 350 K. For this simple problem,
an axisymmetric analytical solution for the radial temperature field exists (see Appendix G for
details),

T (r) = A ln r +B , (6.27)

where the values of the constants A and B are given in Tab. 6.20 for the two different boundary
conditions at r = Ro = Do/2.

Fig. 6.39 illustrates the results obtained when setting qo = −2000 W/m2, To = 288 K and
λs = 46 W/mK (all arbitrary values). The results show perfect matching between the computed



CHAPTER 6. FSI VERIFICATION TEST CASES FOR CUPYDO 171

Heat flux imposed qo Temperature imposed To

A qoRo

λs

Ti−To

ln(Di/Do)

B Ti −A ln(Di/2)

Table 6.20: Constants A and B for the analytical solution, Eq. (6.27), of the uncoupled thermal
problem in the hollow cylinder.

and analytical solutions, providing support to the choice of numerical settings for the subsequent
fully coupled simulations.

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
280

300

320

340

360

380

r/Ro [-]

T
[K

]

To - Analytical
To -Computed
qo - Analytical
qo - Computed

Figure 6.39: Radial distribution of the temperature in the hollow cylinder for two different types
of boundary conditions applied at the outer boundary.

Coupled CHT results

The four thermal coupling schemes presented in Section 3.3 are tested on the coupled case
A. Tab. 6.21 summarizes the number of coupling iterations required to reach the prescribed
coupling tolerance. This case is chosen such that the local Biot number is below one everywhere
on the surface of the cylinder (averaged computed value Bi = 0.18). The results obtained for
the FFTB and TFFB schemes confirm that only the FFTB sheme is stable in this situation.
In order to stabilize the flux-back scheme, the numerical heat transfer coefficient h̃ can be used
(hFFB scheme) but its optimal value is not known a priori and the coupling convergence rate
remains dominated by the worst local condition, i.e. the points on the interface that are the
farthest from the optimal condition6. In this study, the optimal global value is found to be
h̃ ≈ 30. The number of iterations rapidly grows for smaller values of h̃ and the coupling process

6In Section 3.3, optimal condition corresponded to h̃ = h where h is the physical heat transfer coefficient of
the thermal exchange.



CHAPTER 6. FSI VERIFICATION TEST CASES FOR CUPYDO 172

Value of h̃ (W/m2K) NFSI

hFTB

0.5 8
1 8
2 9
5 10
10 10
15 16
30 14
66 12
80 11
≥ 90 X

FFTB - 8

hFFB

5 79
10 47
20 38
30 33
≥ 40 X

TFFB - X

Table 6.21: Comparison of the performance of different CHT coupling schemes - case A.

becomes unstable for any h̃ > 40. However, the hFFB scheme, although converging at optimal
conditions, still performs poorly when compared to the temperature-back schemes.

The TFFB scheme can also be stabilized through the same coupling under-relaxation as for
mechanical coupling. Static relaxation is here applied and the optimal value of the relaxation
parameter is found to be around 0.2. The corresponding number of coupling iterations is 37,
which does not bring any improvement compared to the hFFB case with an optimal h̃.

The FFTB and hFTB schemes perform significantly better than their flux-back counterparts,
with four times less coupling iterations at optimal conditions. For the hFTB scheme, the number
of coupling iterations for h̃→ 0 reaches the same level as for the FFTB scheme. This behaviour
is in agreement with the properties of the hFTB scheme as stated in Section 3.3. However, it
was not expected that the optimal condition is also found for h̃ → 0, showing that the use of
hFTB over TFFB does not bring any improvements in this particular case.

Fig. 6.40 shows the temperature distribution at the fluid-structure interface Tw obtained with
the different coupling schemes. Good agreement is obtained between the present calculations
and the results of Nettis [78] for which the hFTB scheme was used with h̃ = 10. The temperature
field inside the solid domain is illustrated in Figure 6.41 showing the typical distribution resulting
from the convective heat transfer induced by the surrounding flow.

The study of case A is now extended to consider non-matching meshes at the fluid-solid
interface. Non-matching discretization is obtained by coarsening the solid mesh in the circum-
ferential direction from 31 nodes initially to 21 and 11 nodes. The coupled simulations are
then performed under the same conditions as before, where the consistent RBF interpolation
of CUPyDO is used to transfer the data between the two meshes. The CPC2 basis function is
used with a radius of 0.3 m. The results are summarized in Fig. 6.42 showing the temperature
distribution over the wetted surface of the cylinder for the FFTB coupling scheme. It is found
that the impact of the circumferential solid discretization on the solution is only marginal, which
confirms the efficiency of the consistent interpolation approach for thermal data transfer.

A new analysis is performed now on case B, which is chosen such that the local Biot number is
higher than one everywhere on the surface of the cylinder (averaged computed value Bi = 2.04).
Tab. 6.22 summarizes the number of coupling iterations required to reach the prescribed tolerance



CHAPTER 6. FSI VERIFICATION TEST CASES FOR CUPYDO 173

0 20 40 60 80 100 120 140 160 180
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

θ [deg]

T
w
−
T
∞

T
c
−
T
∞

[-
]

Nettis - hFTB [78]
CUPyDO - hFTB
CUPyDO - FFTB
CUPyDO - hFFB

Figure 6.40: Case A - Temperature distribution over the wetted surface of the cylinder. The
upstream stagnation point corresponds to θ = 0◦.

T [K]

333 337 342 346 350

Figure 6.41: Temperature distribution inside the hollow cylinder.



CHAPTER 6. FSI VERIFICATION TEST CASES FOR CUPYDO 174

0 20 40 60 80 100 120 140 160 180
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

θ [deg]

T
w
−
T
∞

T
c
−
T
∞

[-
]

N circ
s = 31

N circ
s = 21

N circ
s = 11

Figure 6.42: Case A - Temperature distribution over the wetted surface of the cylinder for three
different circumferential discretizations of the solid surface interface mesh. FFTB scheme. The
upstream stagnation point corresponds to θ = 0◦.

for each scheme. As expected, the relative efficiency of the temperature-back and flux-back
schemes is reversed. For Bi > 1, the FFTB scheme is found to be unstable while the TFFB

Value of h̃ (W/m2K) NFSI

hFTB 0.05 to 1000 X

FFTB - X

hFFB

1 90
2 44
5 17
7 13
8 11
9 11
10 17
11 32
12 102
≥13 X

TFFB - 8

Table 6.22: Comparison of the performance of different CHT coupling schemes - case B (Bi =
2.04).

schemes provides a fast coupling convergence. In this particular case, it is also not possible to find
a value of h̃ that leads to a stable coupling of the hFTB scheme. This makes any temperature-
back scheme inefficient for this case. Optimal conditions can be found for the hFFB scheme, but
still provide lower efficiency than TFFB. This again limits the benefit of thermal schemes using
uniform h̃ for practical applications and calls for the development of locally optimized versions



CHAPTER 6. FSI VERIFICATION TEST CASES FOR CUPYDO 175

that involve local values of h̃. Fig. 6.43 illustrates the temperature distribution over the wetted
surface of the cylinder for Bi = 2.04.

0 20 40 60 80 100 120 140 160 180
0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34

0.36

0.38

0.4

θ [deg]

T
w
−
T
∞

T
c
−
T
∞

[-
]

Figure 6.43: Case B - Temperature distribution over the wetted surface of the cylinder. The
upstream stagnation point corresponds to θ = 0◦.

6.5.3 Test case summary

This verification case has tested the thermal capabilities of CUPyDO for CHT applications. The
solid solver GetDP has been used, which further demonstrates the versatility of the coupling
environment. Thermal exchanges between the hollow cylinder and the cross-flow have been sim-
ulated for two physical Biot numbers using the four coupling schemes implemented in CUPyDO.
The performance of the schemes has been evaluated in terms of the number of coupling iter-
ations, and their behavior has been compared to the expected trends that were established in
Section 3.3 on an analytical 1D model. Results have confirmed that temperature-back schemes
are efficient for Bi < 1 while, conversely, flux-back schemes become efficient for Bi > 1. It has
also been shown that the use of a numerical heat transfer coefficient h̃ can stabilize the coupling
procedure. However, it has been found that the use of a constant h̃ along the interface limits
the benefit of the method, as it is related to the worst local condition along the interface. The
same under-relaxation procedure as used for mechanical FSI can also be considered to stabilize
the coupling, but it has not been found to perform significantly better than h̃-based schemes.
Finally, consistent interpolation is successfully applied for the transfer of thermal data in the
case of a non-matching interface discretization.

CUPyDO has been validated on both mechanical and thermal applications of various
complexity. For the mechanical coupling, test cases focused mainly on vortex-induced
vibrations and aeroelastic flutter. The results obtained in these studies have been com-
pared to other works from the literature with good agreement. To compute the fluid part
of the problem, the Euler or Navier-Stokes equations are solved in SU2 with the finite

Summary of chapter 6



CHAPTER 6. FSI VERIFICATION TEST CASES FOR CUPYDO 176

volume method in a Arbitrary Lagrangian-Eulerian formulation. The high modularity of
the framework has been demonstrated by using different structural solvers and models.
Lagrangian linear/nonlinear finite element solvers such as GetDP or Metafor are used
to solve the structural dynamic equilibrium for deformable solids and the heat equation
for thermal conduction. A simpler integrator is used to compute constrained rigid body
motions as in the Isogai aeroelastic test case for instance.

Through the different verification cases, the main coupling capabilities of CUPyDO,
such as strong/weak coupling, Aitken’s under-relaxation, thermal coupling schemes and
non-matching interface mesh interpolation, have been assessed. The performance and
the efficiency of the different features are highly satisfactory and several guidelines (or
best practice) have been suggested. For flutter applications, the strong coupling scheme
should be preferred over the weak coupling to reach a better accuracy on the flutter
speed. For coupled problems with high added-mass effects, the Aitken’s under-relaxation
with the max criterion should be preferably used. The min criterion should be used as an
alternative if a convergent coupling process can still not be obtained. Removing the time-
step prediction could also improve stability in the most severe cases. Cases with severe
added-mass effects can also be handled by the IQN-ILS coupling procedure developed in
CUPyDO by M.L. Cerquaglia [2]a.

Fot CHT problems, the correct thermal scheme should be selected according to the
characteristic Biot number (temperature-back for Bi< 1 and flux-back for Bi> 1). Thermal
schemes based on a numerical heat transfer coefficient should be used only if stability
cannot be obtained with the classical schemes. Similarly to the mechanical coupling,
under-relaxation can also be envisaged. Finally, the RBF interpolation can be safely used
for non-matching interface discretization with any of the two basis functions available. For
mechanical applications, the conservative interpolation is preferably used as it is designed
to conserve the mechanical energy and the total fluid load through the interface. For
thermal applications consistent interpolation is preferred for exchanging temperature and
heat flux.

The performance in terms of CPU time of a typical coupled simulation has been eval-
uated on a typical three-dimensional aeroelastic case. It has been clearly shown that
the computation of the fluid solution (65.07%) and the fluid mesh deformation (31.97%)
represent the largest contributions. The computation of the solid solution (2.01%) usu-
ally represents a negligible contribution while the overhead brought by the coupling tasks
(0.95%) is marginal. Parallel coupled simulations have been successfully performed on 16
cores of a single cluster node. However, tests on a massively distributed architecture and
a parallel scalability analysis should be considered in the futureb. Finally, introducing
a local computation of the optimal numerical heat transfer coefficient could improve the
efficiency of the thermal coupling schemes as well.

aNo detail about this development was provided in this thesis as the IQN-based coupling method is
part of the scope of the thesis of M.L Cerquaglia.

bThis is out of the scope of this thesis, but it should be mentioned CUPyDO was successfully run in
parallel on up to four cluster nodes (64 cores).



Chapter 7

Aeroelastic study of a thin flat plate
wing

This chapter presents a typical application of CUPyDO for the aeroelastic study of a thin flat
plate wing. The main purpose is to compute the aeroelastic response of such a flexible system by
focusing on the flutter boundary and on nonlinear limit cycle oscillations that low order models
cannot efficiently represent. The present study is based on a preliminary experimental study that
was conducted on several geometrical configurations of the plate, with an aspect ratio varying
between 2 and 4 and a sweep angle between 0 and 45 degrees. Some of these configurations are
simulated here under the same flow conditions as in the experiment.

This chapter is organized as follows. First, the context of the study, the methodology and
the numerical settings are introduced. The relevant experimental results are also recalled. Then,
preliminary computational studies are conducted in order to assess and validate the parametriza-
tion of each coupled solver. Finally, the aeroelastic numerical study is conducted with CUPyDO
and the results are confronted to the available experimental data.

7.1 Context and case description

The aeroelastic response of a generic cantilever flat plate wing with a cord c, a span s, a thickness
t and a sweep angle Λ is studied. The general geometry of the plate is illustrated in Fig. 7.1. The
data for this study are directly taken from an experimental study performed by Dimitriadis et
al. [253] in the low-speed wind tunnel of the University of Sydney. The geometrical parameters
of the different plates used in this experimental study are given in Tab. 7.1. The present work
focuses only on three of the high aspect ratio (AR) configurations with Λ = 0◦, 20◦ and 45◦

denoted here configuration AR4-S0, AR4-S20 and AR4-S45, respectively. The AR4 will be
dropped for conciseness. The flat plate wing is made of aluminum sheet with thickness of 1 mm.

Configuration s [cm] c [cm] t [mm] Λ [deg]

?AR4-S0 (AR = 4 ) 80 20 1 0
AR4-S10 (AR = 4 ) 80 20 1 10
?AR4-S20 (AR = 4 ) 80 20 1 20
?AR4-S45 (AR = 4 ) 80 20 1 45
AR3-S0 (AR = 3 ) 60 20 1 0
AR2-S0 (AR = 2.25 ) 45 20 1 0

Table 7.1: Geometrical parameters of the flat plate wings investigated experimentally by Dimi-
triadis et al. [253] The configurations considered in the present numerical study are highlighted
by the ? symbol.

177



CHAPTER 7. AEROELASTIC STUDY OF A THIN FLAT PLATE WING 178

s

c

x

y

z

Λ

Figure 7.1: Geometry of the cantilever flat plate wing.

Due to the lack of more precise information about the material properties, an isotropic elastic
material with standard values for aluminium is considered here, i.e. with density ρs = 2700
kg/m3, Young’s modulus Es = 69 · 109 Pa and Poisson’s coefficient νs = 0.346. The wind
tunnel tests were conducted with air under ambient mean temperature T = 302.98 K and
pressure P = 102302.4 Pa which leads to an air density ρ = 1.18 kg/m3 and dynamic viscosity
µ = 1.86 ·10−5 Pa·s (assuming a perfect gas). For the three plate configurations considered here,
the maximum airspeed is Umax = 21 m/s which gives a maximum chord-based Reynolds number
Rec = 266450. The plates were clamped vertically to the floor of the wind tunnel so that the
chord is aligned with the free-stream flow (i.e. zero angle of attack). The motion of the plate
was captured by a single high-speed camera (250 fps) which tracked targets that were drawn
on the wing. The position of the targets on each frame were extracted by a dedicated software.
As explained by Dimitriadis et al. [253], using only one camera results in a 2D projection of the
3D wing motion. Nevertheless, these measurements were sufficiently accurate to determine the
main quantities of interest, i.e., the flutter speed and flutter frequency.

The experimental study aimed to validate a flutter prediction method based on low-fidelity1

Vortex Latice Method (VLM) and Doublet Lattice Method (DLM) approaches [253]. The flut-
ter predictions obtained from these two techniques were compared to the experimental data and
showed that both the VLM and DLM tend to be moderately conservative in the prediction of
the flutter speed. At the critical flutter speed the plates underwent a Hopf bifurcation leading to
limit cycle oscillations. General theory about bifurcations of aeroelastic systems can be found in
the book of Dimitriadis [254]. As mentioned in the previous chapter, a Hopf bifurcation occurs
when the fixed point of a system becomes unstable and limit cycle with infinitesimal amplitude
appears around it. The supercritical Hopf bifurcation is characterized by an increase of the LCO
amplitude and frequency with the free-stream airspeed at post-critical conditions. A supercrit-
ical aeroelastic bifurcation can be schematically illustrated by the black curve in Fig. 7.2 which
shows the LCO amplitude of the response as a function of the free-stream airspeed. The critical
airspeed is also identified as the flutter speed of the underlying linear system [254]: Uc = Uf. In
contrast to the supercritical bifurcation, a subcritical bifurcation of nonlinear aeroelastic systems
allows LCO to occur for free-stream airspeeds below the linear flutter threshold (red curve in
Fig. 7.2). This is explained by the intrinsic properties of nonlinear systems whose trajectory
response can be highly sensitive to the initial conditions. Typically for such systems, a LCO
response can be obtained for U < Uf if one increases the initial perturbation beyond a given

1In this context, models that are not based on a CFD approach are considered as being low-fidelity models.



CHAPTER 7. AEROELASTIC STUDY OF A THIN FLAT PLATE WING 179

0.9 0.92 0.94 0.96 0.98 1 1.02 1.04 1.06 1.08 1.1
0

0.5

1

1.5

2

2.5

3

3.5

4

U/Uc [-]

A
[m

]

Figure 7.2: Typical behavior of the LCO amplitude as a function of the free-stream airspeed for
a supercritical (black) and a subcritical (red) Hopf bifurcation. Values are arbitrary. Uc is the
critical airspeed.

threshold. In practice, an aeroelastic bifurcation is caused by either structural or aerodynamic
nonlinearities. Lee et al. [255] have given some typical examples. Structural nonlinearities are
for instance related to the presence of stores, control surface freeplay, friction and geometrical or
material hardening. Aerodynamic nonlinearities are more related to viscous effects, such as for
example leading-edge recirculation bubbles, dynamic stall and wing tip vortices. For transon-
ic/supersonic flows, shock dynamics and boundary layer-shock interaction are also significant
sources of nonlinearities. In the experimental study, the plate wings started undergoing limit
cycle oscillations at a specific critical airspeed that depended on the sweep angle and the aspect
ratio. The bifurcation was identified as being supercritical, meaning that the amplitude of the
LCO grew with airspeed and that the critical airspeed could be considered as the flutter speed
of the underlying linear system [253]. The study performed in this thesis focuses on the same
nonlinear aspects of the aeroelastic response. Particularly, the post-critical response of the plate
is further analyzed with respect to the amplitude of the initial perturbation imposed to the
system.

The numerical coupled model uses SU2 as the fluid solver, Metafor as the structural solver
and CUPyDO for the coupling environment. The plate is immersed in a hemi-spherical fluid
domain where the outer boundary extends to 25c. Freestream conditions are imposed on the
farfield boundary whereas a no-slip condition is imposed at the plate surface. In order to limit the
constraints on the grid cells size near the clamping plan, which represents the floor of the wind
tunnel, the boundary layer was neglected by imposing a slip condition (i.e. impermeability)
on this boundary. The RANS equations with the SST k − ω turbulence model are solved in
SU2. The fluid mesh used for the study is illustrated in Fig. 7.3 for the configuration S0.
Note that the edges of the plate are kept sharp. The mesh is a structured O-mesh. The wing
surface is discretized with 60, 30 and 10 cells in the spanwise, chordwise and thickness direction,
respectively, with a clustering near the leading and trailing edges and near the wing tip. The
radial direction (i.e. from the wing surface to the outer domain boundary) is discretized using 40



CHAPTER 7. AEROELASTIC STUDY OF A THIN FLAT PLATE WING 180

X

Y

Z

Figure 7.3: Fluid mesh around the wing plate (configuration S0).

cells with a clustering near the wing surface. The total number of grid points is 373981. Note that
this mesh results from a mesh convergence study that is presented hereafter. Convective fluxes
are evaluated using the second-order centered JST scheme and time integration is performed
with the second-order Euler implicit dual-time stepping scheme. The structural part is modeled
in Metafor with 8-node continuum EAS elements and discretized with 60, 30 and 2 cells in the
spanwise, chordwise and thickness direction, respectively.

Strongly-coupled simulations are used to compute the aeroelastic response of the flat plate
wing. The initialization process for the aeroelastic response is the same as the one used for
the AGARD 445.6 validation test case. The simulation is started with a uniform flow and no
deformation of the plate. During a given initial period t∗, a load is applied on an upstream
portion of the plate tip in order to generate a perturbation in the z-direction (out-of-plane
direction). Then the loading is released and the plate is let free to vibrate in the flow. The time
evolution of the perturbation load F (t) is described by the function

F (t) =

{
F ∗ sin(2π

T t) if t < t∗,
0 otherwise,

(7.1)

with F ∗ = 0.25 N and T = 4t∗ (the dead load is maximum at t = t∗ just before releasing it).
The value of t∗ is used as the control parameter for the amplitude of the initial perturbation.
Using t∗ rather than F ∗ as the control parameter is preferred because in the latter case an
increase of the amplitude would lead to an impulse-like rather than a better-adapted smooth
perturbation. Four different values of the perturbation time t∗ are considered: 0.01, 0.02, 0.05
and 0.1 s. Note that an initial perturbation through a local dead load was preferred to a global
initial displacement of the wing because it was found to be easier and faster to set up. A sine
function is used in Eq. (7.1) to ensure a smooth loading profile over the perturbation period t∗

and a vanishing time variation of the force at the beginning and at the end of this period.
The fluid forces and solid displacements at the interface are interpolated with the conservative

RBF-CPC2 scheme. The control parameters of the simulations are summarized in Tab. 7.2.



CHAPTER 7. AEROELASTIC STUDY OF A THIN FLAT PLATE WING 181

Since no numerical instability due to added mass effect is expected (Ma = 2288), BGS without
relaxation and a second-order predictor is used as coupling scheme. Simulations are performed
in parallel on 16 cores (16 fluid instances, 1 solid) of a computing node with Intel Xeon E5-2650
processor (2 GHz, 16 threads).

Time step [s] ∆t 0.001
Simulated physical time [s] ttot up to 10
Maximum number of coupling iterations per time step nFSI 10
Coupling tolerance [m] ε 1 · 10−6

CPC2 radius [m] r 0.2

Table 7.2: Control parameters for aeroelastic simulations of the flat plate wing.

7.2 Preliminary study

Several preliminary simulations are first performed to validate the mesh and the numerical
settings of the solvers. First, uncoupled unsteady fluid simulations on a perfectly rigid plate
are performed with different fluid mesh discretizations in order to determine the grid that offers
the best balance between accuracy and computational cost (mainly CPU time). Then, a linear
modal analysis of the plate structure is performed with several mesh discretizations.

7.2.1 Fluid simulations and mesh analysis

The preliminary unsteady fluid simulations are performed with the plate configuration AR4-S0
and a free-stream velocity U = 20 m/s. Two angles of attack are considered: 5◦ (low) and 30◦

(high). Five mesh discretizations are assessed in this study as summarized in Tab. 7.3. The

Spanwise Chordwise Thickness Radial Total number

Mesh A 30 15 5 31 70425
Mesh B 40 20 7 31 116100
Mesh C 60 30 10 31 249000
Mesh D 60 30 10 41 364000
Mesh E 80 50 15 41 847200

Table 7.3: Mesh discretizations used for the preliminary fluid simulations. Number of wing
surface cells, number of cells in the radial direction between the plate surface and the outer
domain boundary, and total number of cells (entire mesh).

same temporal discretization as in the coupled problem (described in the previous section) is
also used here.

Tab. 7.4 summarizes the lift and drag coefficients obtained by the different meshes. At the
low angle of attack, the unsteady simulation provides a stationary flow solution. This is not the
case at the high angle of attack as the flow is, as expected, significantly separated. The time-
averaged values of the coefficients are provided in this case. The time spent by the solver for
each iteration of the time-marching algorithm (i.e. a steady iteration within the time step)2 is
also indicated in the last column. The table also computes the maximum difference over the five
meshes with respect to the value obtained on the finest mesh (E). This difference is barely higher
than 3% for the lift coefficient and demonstrates that the meshes considered have a relatively low

2The number of cores (16) is kept constant for all computations.



CHAPTER 7. AEROELASTIC STUDY OF A THIN FLAT PLATE WING 182

impact on the pressure field. However, and not surprisingly, a significant difference is observed
for the drag coefficient at low angle of attack, which reveals the impact of the discretization on
the friction component of the drag. This effect is not observed at high angle of attack where the
drag is dominated by the pressure component (profile drag) as the flow is separated. Considering

AoA = 5◦ AoA = 30◦ titer [s]

CL CD CL CD
Mesh A 0.423 0.0653 0.932 0.545 0.76
Mesh B 0.417 0.0643 0.939 0.543 1.21
Mesh C 0.421 0.0573 0.924 0.534 2.30
Mesh D 0.428 0.0457 0.936 0.541 4.32
Mesh E 0.431 0.0473 0.953 0.554 8.98

Maximum relative difference 3.04% 41.42% 3.02% 3.62% /

Table 7.4: Stationary (low AoA) and time-averaged (high AoA) aerodynamic coefficients ob-
tained with several mesh discretizations. titer is the time per steady iteration.

the relatively small variation of the coefficients between mesh D and E (less than 4% for mesh
size ratio of 2.32), mesh D is preferred for the computation of unsteady aeroelastic cases as the
computational cost of mesh E is expected to be too prohibitive for unsteady simulations with
multiple fluid solutions and mesh deformation3 required at each time step.

7.2.2 Modal analysis of the structure

A structural linear modal analysis is performed in Metafor to evaluate the discretization of the
solid model of the plate wing. Three meshes are considered, whose discretization is detailed in
Tab. 7.5. In Tab. 7.6, the first five natural frequencies computed for the plate in configuration

Spanwise Chordwise Thickness Total number

Mesh A’ 30 15 2 900
Mesh B’ 60 30 2 3600
Mesh C’ 120 60 4 28800

Table 7.5: Mesh discretizations used for the preliminary structural modal analysis. Number of
wing volume cells.

AR4-S45 are compared to those obtained by a finite element model used by Dimitriadis et
al. [253]. This model was constructed in MSC Nastran using plate elements, as opposed to volume
elements used in this study. Based on the results, the B’ mesh is selected for the discretization
of the structural model. The gain of using mesh C’, i.e. a maximum variation of 1.8% on the
fifth frequency, is not considered important enough to justify the cost increase. The accuracy
of the structural model is assessed for the other plate configurations by performing the same
modal analysis on the selected mesh. Results are reported in Tab. 7.7 and are again compared
to the frequencies obtained by the finite elements analysis performed by Dimitriadis et al. [253].
A maximum deviation of 3.8% is observed on the fifth frequency of the configuration S45, which
is acceptable for the aeroelastic study. Note that the error on the first three frequencies for all
configurations is not higher than 2.3%. For Λ 6= 0 all modes combine both bending and torsion
but mode 1 is mostly first bending and mode 3 is mostly first torsion [253].

3The robustness of the mesh deformation process can also severely decrease when fine RANS meshes are used
in SU2.



CHAPTER 7. AEROELASTIC STUDY OF A THIN FLAT PLATE WING 183

f1 f2 f3 f4 f5

Dimitriadis et al. [253] 0.68 4.18 10.13 11.63 22.69
Mesh A’ 0.73 4.54 10.97 13.10 26.99
Mesh B’ 0.69 4.29 10.40 11.98 23.56
Mesh C’ 0.69 4.25 10.29 11.86 23.15

Table 7.6: First five natural frequencies of the plate in configuration AR4-S45 computed with
Metafor using different mesh discretizations and compared to the results of the finite element
model of Dimitriadis et al. [253]. Frequencies are in Hz.

AR4-S0 AR4-S20 AR4-S45
Reference [253] Metafor Reference [253] Metafor Reference [253] Metafor

f1 1.28 1.31 1.15 1.17 0.68 0.69
f2 8.01 8.17 7.09 7.23 4.18 4.29
f3 10.17 10.34 10.28 10.48 10.13 10.40
f4 22.48 22.99 19.83 20.30 11.63 11.98
f5 31.42 32.07 31.55 32.25 22.69 23.56

Table 7.7: First five natural frequencies computed with Metafor for all considered AR4 plate
configurations using the selected mesh, i.e. mesh B’. Comparison with the results of the finite
element model of Dimitriadis et al. [253]. Frequencies are in Hz.

7.2.3 Free wind-off response of the structure

The wind-off4 response of the plate (configuration S0) to the aforementioned initial perturbation
is assessed with respect to different perturbation durations, t∗ in Eq. (7.1). The main purpose
is to estimate the maximum wind-off amplitude that is reached for each tested value t∗. This is
illustrated in Fig. 7.4 that shows the wind-off response of the plate (displacement of the leading
edge at the plate tip) computed by Metafor with different perturbation times. In all cases, the
response is composed of two main frequencies. Tab. 7.8 summarizes the maximum amplitude and
the main frequencies of each response. The same frequency content is measured for all responses.

t∗ [s] max dz/c [-] f1 [Hz] f2 [Hz]

0.01 0.0629 1.4 8.3
0.02 0.1277 1.4 8.3
0.05 0.3037 1.4 8.3
0.1 0.5406 1.4 8.3

Table 7.8: Maximum amplitude and main frequency content of the wind-off response for the
configuration AR4-S0.

Note that the perturbation has been defined in such a way that it does not trigger any specific
deformation mode, but it can be seen that mode 1 and mode 2 are mostly active in the wind-
off response as the measured frequencies are very close to the first two natural frequencies.
The maximum wind-off amplitude ranges between 6% and 54% of the chord. Fig. 7.5 shows the
maximum wind-off amplitude as a function of t∗. It can be seen that, in the range of perturbation
durations considered here, the maximum amplitude evolves almost linearly. Higher values of t∗,
hence higher amplitude of the perturbation, have been considered, but no coupled solution has

4Response of the plate in a vacuum.



CHAPTER 7. AEROELASTIC STUDY OF A THIN FLAT PLATE WING 184

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

t [s]

d
z
/
c

[-
]

t∗ = 0.01 s

t* = 0.02 s

t* = 0.05 s

t* = 0.1 s

Figure 7.4: Wind-off response of the plate leading edge at the wing tip, configuration S0, with
respect to different perturbation durations but with the same perturbation pattern (as described
in Section 7.1).

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

0.1

0.2

0.3

0.4

0.5

0.6

t∗ [s]

m
ax
d
z
/c

[-
]

Figure 7.5: Maximum wind-off amplitude of the response as a function of t∗ for the S0 plate
configuration.



CHAPTER 7. AEROELASTIC STUDY OF A THIN FLAT PLATE WING 185

VLM [253] Experimental [253] Computed
Uf ff Uf ff Uf ff

Plate S0 17.0 5.47 17.1 8.0 16.9 6.1
Plate S20 14.9 5.00 15.8 5.8 15.2 5.4
Plate S45 12.7 3.46 13.4 4.2 13.8 3.6

Table 7.9: Flutter characteristics (velocity Uf in m/s and frequency ff in Hz) computed with
CUPyDO for the different AR4 plate configurations. Results are compared with the VLM results
and experimental measurements reported in Dimitriadis et al. [253].

been obtained due to the a lack of robustness in the fluid mesh deformation procedure that led
to numerical instabilities and a rapid divergence of the fluid solution (more details are provided
further below).

7.3 Unsteady aeroelasticity

The unsteady aeroelastic response of the fully coupled system is now considered. First, the flutter
velocity and frequency are sought by computing the aeroelastic response to small perturbations.
Then, the amplitude of the perturbation is increased at post-critical conditions and its impact
on the limit cycle oscillations is studied.

7.3.1 Flutter study

The flutter characteristics of the different plate configurations are now presented. As introduced
in Section 7.1, an initial perturbation is given to the system by applying a dead load on the
plate tip leading edge during a duration t∗. As only the linear flutter characteristics are sought
at this stage, a small perturbation duration (t∗ = 0.01 s) is chosen in order to provide the
smallest amount of perturbation and thus limit the effects of the system nonlinearities (e.g. large
structural displacements and flow separation). The damping is extracted from the aeroelastic
response and flutter inception is determined using the same iterative process as described in
Section 6.2.3. The iterative process is here continued until the flutter speed converges up to a
tolerance of 0.1 m/s.

The flutter characteristics obtained for each plate configuration are reported in Tab. 7.9.
The computed values are compared to the VLM results and the experimental measurements
reported in the work of Dimitriadis et al. [253]. Fig. 7.6 illustrates the variation of the flutter
speed and flutter frequency with the sweep angle for the three AR4 plates. The results computed
with CUPyDO follow the same trend as the references, i.e. a decrease of the flutter velocity and
frequency as the sweep angle increases. It is also important to note that the results computed
by CUPyDO are consistently closer to the experimental results than the VLM results. The
only exception is for the flutter speed at Λ = 0◦ but the discrepancy with experimental results
is very small (less than 1.16%) at this point. The errors on the flutter speed for Λ = 20◦

and Λ = 45◦ are also relatively low, i.e., 3.8% and 3.0%, respectively. When comparing the
computed (CUPyDO) flutter frequencies to the experimental reference, the maximum error
(23.7%) is found for the unswept configuration in contrast with the smallest error found for
the flutter speed. The same trend is observed for the VLM results. The errors on the flutter
frequency for Λ = 20◦ and Λ = 45◦ are 6.9% and 14.2%, respectively. This flutter study
demonstrates the accuracy of the CFD-FEM coupling with CUPyDO for capturing the flutter
speed of plate wings. Although the present results are close to the experimental measurements,
the VLM approach provides a satisfactory level of accuracy for a computation time that is
significantly smaller than a full high-fidelity FSI calculation. Indeed, the computation of the



CHAPTER 7. AEROELASTIC STUDY OF A THIN FLAT PLATE WING 186

0 5 10 15 20 25 30 35 40 45
12

13

14

15

16

17

18

Λ [deg]

U
f

[m
/s

]

CUPyDO
Experimental
VLM

(a) Flutter speed.

0 5 10 15 20 25 30 35 40 45
3

4

5

6

7

8

Λ [deg]

f f
[H

z]

(b) Flutter frequency.

Figure 7.6: Flutter speed (a) and frequency (b) as a function of the sweep angle for the AR4
plates.



CHAPTER 7. AEROELASTIC STUDY OF A THIN FLAT PLATE WING 187

flutter speed with VLM requires only a few seconds, while the SU2-Metafor coupling requires
roughly 12 hours of computing time to simulate one full cycle of the aeroelastic response on a
node with 16 cores and for a mean value of 3 FSI iterations per time step to reach the given
coupling tolerance5. Thus, other than for verification purposes, the use of a complete CFD-
FEM coupling to capture the flutter characteristics of the plate wings seems hard to justify
against the use of low-fidelity methods. The good predictions of the VLM can be explained
in the present case by the linear mechanisms underlying the flutter inception (e.g., in-plane
modes are neglected, small displacements, attached flow). However, a detailed description of the
post-flutter aeroelastic response of the plate and flow cannot be accurately predicted by such
simplified methods because of the increasing importance of nonlinear mechanisms, as shown
in the next section. Under these conditions, high-fidelity (thus nonlinear) coupled models are
required.

Fig. 7.7 compares the aeroelastic response of the wing in configuration S0 for different free-
stream velocities U ≤ Uf and a small duration of the initial perturbation (t∗ = 0.01 s). For
free-stream velocities below the flutter threshold, Uf = 16.9 m/s, the initial perturbation is
damped in time, with a damping rate that does depend on the speed itself. Typically, the ini-
tial perturbation is damped faster at U = 10 m/s than at U = 16 m/s. At the flutter speed,
the initial perturbation quickly turns into limit cycle oscillations. The aeroelastic response is
composed of a harmonic component which vibrates around a steadily recovering non-oscillatory
component, slightly damped in time. This non-oscillatory component of the deformation can be
identified as part of the aeroelastic response since it did not occur in the wind-off (i.e. structure
only) simulations. The occurrence of a non-oscillatory aeroelastic deflection of the unswept plate
was also confirmed by the experiment but the context in which this deflection appears is signif-
icantly different. As reported in Dimitriadis et al. [253], the straight plate tested in the wind
tunnel undergoes significant static (constant in time) deflection for all airspeeds below the flut-
ter threshold. The amplitude of the static deflection increases with the free-stream velocity and
becomes as large as the chord for velocities close to the flutter threshold. In contrast, the non-
oscillatory deformation computed here is not steady but decays (with varying decay rate though)
at all free-stream airspeeds, including at the flutter threshold. Consequently, the amplitude of
the computed non-oscillatory deflection is also much smaller (about 100 times smaller) compared
to the experiments. Another point is that the static deflection observed experimentally occurs
without any significant initial perturbation other than the natural perturbations contained in
the free-stream flow of the wind tunnel (typically turbulent buffeting). Conversely, this deflec-
tion cannot be obtained in the CFD-FEM coupled model without intentionally perturbing the
system, as any other marginal numerical perturbation would immediately be damped. This
deflection is associated with a transient component of the response to the initial perturbation.
It is therefore challenging to relate the computed non-oscillatory deflection with the one ob-
served experimentally, as no experimental evidence could be found to explain the phenomenon.
Dimitriadis et al. [253] have nevertheless made the following supposition: any imperfection in
the flatness, angle of attack or installation of the flat plate in the wind tunnel will result in a
small amount of twist under the action of the drag that acts in front the flexural axis. This
initial twist will, in turn, generate a small amount of lift, also acting in front of the flexural
axis, that will cause further twist and bending, until the deflection of the plate is stabilised by
the internal structural loads. Note that this mechanism cannot be reflected by the VLM-based
aeroelastic model, as the drag is neglected. In a CFD-FEM coupled model, such interaction can
be represented but, in the present computations, the process appears to be decaying in time,
potentially because there is no imperfection either in the plate or in its angle of attack. Since
the plate is very flexible, the contribution of gravity to the buckling of the plate could be pointed
out as a further destabilizing factor, which cannot be represented by the computational model
as gravity is neglected in both the fluid and solid domains. Finally, the experimentally observed

5For the S0 plate, this typically represents 3.2 days for 1 s of simulated time.



CHAPTER 7. AEROELASTIC STUDY OF A THIN FLAT PLATE WING 188

static deflection of the plate has been pointed out by Dimitriadis et al. [253] as being a stiffening
mechanism which results in an increase in the experimental flutter frequency compared to the
numerical models where this mechanism does not occur.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−2

−1

0

1

2

3

4
·10−2

t [s]

d
z
/c

[-
]

U = 16.9 m/s

U = 16 m/s

U = 10 m/s

Figure 7.7: Aeroelastic response (out-of-plane displacement of the plate tip LE) of the configu-
ration AR4-S0 for U < Uf = 16.9 m/s and an initial perturbation using t∗ = 0.01 s.

The aeroelastic responses of the swept configurations (S20 and S45) differ from the unswept
case. As illustrated in Fig. 7.8 for the S45 configuration, the plate also features limit cycle
oscillations at the flutter free-stream airspeed (Uf = 13.8 m/s), but the oscillations do not occur
around a non-oscillatory deflection of the plate. Hence, the LCO simply develops around the
undeformed configuration of the plate. This trend is also confirmed by the experimental study,
where no static deflection was recorded for any free-stream airspeed and any swept configura-
tion [253]. At the flutter threshold, the LCO simply develops around the undeformed plate
configuration.

In summary, the flutter characteristics obtained by the computational coupled model are
in good agreement with those recorded by the experiment. The decreasing trend of both flut-
ter speed and frequency with respect to the sweep angle is well captured. Also, it was shown
that the aeroelastic response of the unswept plate (S0) features a non-oscillatory component
that is decaying in time even at the flutter threshold. In absence of any experimental evidence,
this mean component of the response could not be assumed to be the counterpart of the static
deflection observed during the experiments for any free-stream airspeed up to the flutter thresh-
old. Conversely, the response of the swept plate (S45) does not feature any significant mean
component, in agreement with experimental measurements.

7.3.2 Study of limit cycle oscillations

The previous section was dedicated to the study of the flutter characteristics of the plate. The
perturbation duration t∗, and hence the perturbation amplitude, was intentionally kept low in
order to limit the effect of the nonlinearities that could arise for higher amplitudes. In this



CHAPTER 7. AEROELASTIC STUDY OF A THIN FLAT PLATE WING 189

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−3

−2

−1

0

1

2

3

·10−2

t [s]

d
z
/
c

[-
]

U = 13.4 m/s

U = 13.8 m/s

Figure 7.8: Aeroelastic response (out-of-plane displacement of the plate tip LE) of the configu-
ration AR4-S45 for U < Uf = 13.8 m/s and an initial perturbation using t∗ = 0.01 s.

section, the impact of higher perturbation amplitudes on the aeroelastic response is assessed.
Furthermore, aeroelastic responses for free-stream velocities higher than the flutter threshold
are also simulated. Finally, this section also aims to provide more details on the flow around the
deforming plate. The idea is to use flow visualization from CFD results, as experimental flow
visualization had not been attempted and the VLM approach cannot provide the critical flow
details of interest.

The following study focuses on the two plate configurations AR4-S0 and AR4-S45. The
impact of the perturbation duration t∗ on the unswept plate (S0) is first assessed. Fig. 7.9
illustrates the aeroelastic response at U = 17.1 m/s (= 1.01Uf, i.e, very slightly above the
computed flutter velocity) for different perturbation durations. For the two lowest values of t∗,
the LCO response is the same as the one discussed for critical conditions in the previous section.
After the transient phase, the response settles onto a limit cycle with the same frequency (6.2
Hz) and amplitude (dz/c = 0.018) for both t∗ = 0.01 s and t∗ = 0.02 s. We also note the presence
of a non-oscillatory deformation component, as previously discussed, that is still slightly damped
in time although the free-stream velocity is set higher than the flutter threshold. This LCO is
dominated by a bending motion of the plate, as shown in Fig. 7.10 by the contour of the z-
displacement. Fig. 7.12 (a) depicts the z-displacement of both the leading and trailing edges at
the plate tip, showing that their motion is quasi in-phase. Moreover, the larger motion amplitude
of the trailing edge indicates the presence of some torsion (also seen in Fig. 7.10).

The aeroelastic response for the two highest values of t∗ significantly differs from the small
initial perturbation case. After the transient phase, the response converges to a limit cycle with
higher frequency (9.8 Hz) and higher amplitude (dz/c = 0.046) for both t∗ = 0.05 s and t∗ = 0.1
s. This new LCO is now dominated by a torsion mode of the plate, as illustrated by the contour
of the out-of-plane displacement in Fig. 7.11. This is further demonstrated by the displacement
of the leading and trailing edges of the plate tip that move now in opposite-phase, as depicted
in Fig. 7.12 (b). A non-oscillatory component is also present in the response of the plate, but it



CHAPTER 7. AEROELASTIC STUDY OF A THIN FLAT PLATE WING 190

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−0.1

−5 · 10−2

0

5 · 10−2

0.1

0.15

0.2

0.25

0.3

t [s]

d
z
/c

[-
]

t∗ = 0.1 s
t∗ = 0.05 s
t∗ = 0.02 s
t∗ = 0.01 s

Figure 7.9: Aeroelastic response (z-displacement of the plate tip LE) of the configuration S0 at
U = 17.1 m/s (= 1.01Uf) for different initial perturbation durations.

Figure 7.10: Contour of the z-displacement (peak value) for the S0 configuration at U = 17.1
m/s (= 1.01Uf) and small initial perturbation duration (t∗ = 0.01 s). The motion is dominated
by bending.



CHAPTER 7. AEROELASTIC STUDY OF A THIN FLAT PLATE WING 191

is much more quickly damped than in the case of the LCO with lower frequency and amplitude.

Figure 7.11: Contour of the z-displacement(peak value) for the S0 configuration at U = 17.1
m/s (= 1.01Uf) and large initial perturbation duration (t∗ = 0.1 s). The motion is dominated
by torsion.

The computational analysis of the aeroelastic response of the plate subjected to different
durations of the initial perturbation reveals the presence of two LCO that are characterized,
for one particular free-stream airspeed, by two distinct frequencies and amplitudes. For a short
initial perturbation, the response is attracted towards the low-frequency and amplitude LCO,
while the response to longer initial perturbation is attracted towards the high-frequency and
amplitude LCO. As introduced at the beginning of the chapter, the sensitivity of the trajectory
response to initial conditions is seen as an intrinsic property of nonlinear aeroelastic systems.
However, such sensitivity was explained in the context of a sub-critical bifurcation of the response
for which U < Uf. In the present simulations, an impact of the initial (structural) solution has
been found at post-critical conditions (U > Uf). The occurrence of a sub-critical bifurcation in
the computational model has been investigated as well. No LCO response has been observed
for any sub-critical free-stream velocity (the closest tested value to Uf is 0.98Uf) with a long
duration of the initial perturbation (0.1 s), i.e. all responses were damped in time. Hence, the
large set of parameters considered seems to clearly indicate that the bifurcation is supercritical,
as observed in the experimental study. However, the occurrence of two distinct LCO responses
was not observed during the experiment. To relate quantitatively the computed LCO to the
one observed in the wind tunnel or to verify experimentally the existence of these two LCOs is
very challenging for two main reasons. On the one hand, the actual motion of the plate is only
partially captured by the camera. On the other hand, there is no mechanism to impose the same
initial condition (perturbation) in the experiment as in the simulations. Qualitative analysis
of videos recorded during the experiments suggests that the motion is dominated by bending
and thus would correspond to the low-frequency LCO of the computational model, where the
frequency discrepancy (comp. 6.2 Hz vs exp. 8.0 Hz) can be explained by the stiffening effect of
the static deflection encountered in the experiments (as discussed previously). No experimental



CHAPTER 7. AEROELASTIC STUDY OF A THIN FLAT PLATE WING 192

4 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 5
−6

−4

−2

0

2

4

6

·10−2

t [s]

d
z
/c

[-
]

Leading edge
Trailing edge

(a) t∗ = 0.01 s.

4 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 5

−6

−4

−2

0

2

4

6

·10−2

t [s]

d
z
/c

[-
]

(b) t∗ = 0.1 s.

Figure 7.12: Out-of-plane z-displacement of the leading and trailing edges at the wing tip for
different initial perturbation durations at U = 17.1 m/s = 1.01Uf, configuration S0.



CHAPTER 7. AEROELASTIC STUDY OF A THIN FLAT PLATE WING 193

quantitative data on the amplitude is reported in Dimitriadis et al. [253], but the qualitative
analysis of the recorded videos provides an estimation for the amplitude that is about one order
of magnitude higher than the numerical solution. From a purely numerical point of view, the
existence of two distinct LCO responses is confirmed in the simulated time window that was
defined for this study (up to 10 s). It would be of interest to run some representative cases for
a much longer time (e.g., at least 30 s of simulated time) in order to confirm that these LCOs
have truly reached their stable steady state. For instance, it may happen that one type of LCO
response transits, after a long time, towards the other type. However, running the simulations
for such a long simulated time implies tremendous computational time (several weeks to months)
which was not affordable for the numerous simulations that were needed in this study.

The same transition from low- to high-frequency LCO for configuration S0 can also be
computationally triggered by increasing the free-stream velocity further beyond the flutter point,
while keeping the smallest perturbation duration t∗ = 0.01 s. This is depicted in Fig. 7.13 that
shows the computed aeroelastic response of the plate for different post-critical velocities. Note
that in this case the short initial perturbation is used for all velocities. It can be observed
that, at U = 21 m/s (1.24Uf), a transition from the low- to the high-frequency LCO occurs.
This transition is not observed at lower velocity. The post-transition response has the same
qualitative characteristics as the high-frequency LCO that was triggered at U = 17 m/s (1.01Uf)
by applying a longer initial perturbation: the motion is again dominated by torsion with a
motion of the leading and trailing edges in opposite phase.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
−0.1

−5 · 10−2

0

5 · 10−2

0.1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
−0.1

−5 · 10−2

0

5 · 10−2

0.1

d
z
/c

[−
]

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

−4
−2

0
2
4
·10−2

t[s]

U = 17.1 m/s (1.01Uf)

U = 20 m/s (1.18Uf)

U = 21 m/s (1.24Uf)

Figure 7.13: z-displacement at the plate tip of the leading edge for configuration S0 and for
different post-critical free-stream velocities (t∗ = 0.01 s). Note that the plotted simulation time
is truncated at 3 s for clarity, but simulations have been run up to 5 s with no change in the
response.



CHAPTER 7. AEROELASTIC STUDY OF A THIN FLAT PLATE WING 194

The post-critical limit cycle amplitude and frequency of the aeroelastic response of the S0
plate are summarized in Fig. 7.14 as a function of the free-stream airspeed. Similarly to the
experiments6, the computed LCOs show that the amplitude increases monotonically at super-
critical airspeeds, which is characteristic of a supercritical bifurcation. The LCO frequency
follows the same trend. Fig. 7.14 also represents the two LCO branches that can be triggered

0.95 1 1.05 1.1 1.15 1.2 1.25
0

1

2

3

4

5

6

7

8
·10−2

U/Uf [-]

A
L

C
O
/c

[-
]

low-frequency branch
high-frequency branch

(a) LCO amplitude.

0.95 1 1.05 1.1 1.15 1.2 1.25
6

7

8

9

10

11

12

13

14

U/Uf [-]

f L
C

O
[H

z]

(b) LCO frequency.

Figure 7.14: LCO amplitude and frequency of the aeroelastic response (z-displacement of the
leading edge at the plate tip) as a function of the free-stream airspeed, normalized by the flutter
speed, configuration S0.

either by varying the perturbation duration t∗ or the free-stream airspeed, as discussed above.
In the frequency plot, the two branches are well separated. On the other hand, the LCO am-
plitude of the low-frequency branch rapidly converges towards the high-frequency branch and
merges into it around U = 1.18Uf. For a post-critical airspeed up to 1.18Uf, there is a threshold
in the initial perturbation duration (and hence in the perturbation amplitude) that determines

6Dimitriadis et al. [253] observed a growing LCO amplitude but do not provide quantitative data.



CHAPTER 7. AEROELASTIC STUDY OF A THIN FLAT PLATE WING 195

the branch on which the LCO frequency and amplitude will lock. The analysis of the responses
to the four pre-determined values of t∗ at several post-critical airspeeds up to 1.24Uf allows
us to roughly estimate this boundary between the two possible LCOs in the parameter space
(t∗, U/Uf), as shown in Fig. 7.15. Four types of responses can be roughly identified. The first

1 1.05 1.1 1.15 1.2 1.25 1.3
0

2 · 10−2

4 · 10−2

6 · 10−2

8 · 10−2

0.1

U/Uf [-]

t∗
[s

]

low
modulated low
low→high transition
high
not available

Figure 7.15: Types of LCO responses obtained with respect to the perturbation duration t∗

and the free-stream airspeed U . Not available data are mostly computations that experience
robustness issues and for which no result could be extracted.

three have already been presented and discussed: low-frequency LCO, high-frequency LCO and
a transitional response from low- to high-frequency LCO. The fourth type of response is very
similar to the low-frequency LCO but features a modulated amplitude which appears to be a
precursory sign of transition towards high-frequency LCO if one increases the free-stream air-
speed or the perturbation duration7 (see case U = 20 m/s in Fig. 7.13). Fig. 7.15 clearly shows
that the theoretical threshold value of t∗ decreases when the free-stream velocity increases, up
to the point where only the high-frequency response can be obtained at the lowest t∗. Note that
no exploitable results could be obtained for simultaneously large initial perturbation and high
velocity. The main reason is the large deformation amplitude during the transient phase (before
reaching the LCO) that imposes a large mesh deformation. The mesh deformation process is
incremental, i.e. each new deformed mesh is obtained from the deformed mesh at the previous
coupling iteration. Once the quality of the mesh starts to deteriorate, this process can quickly
lead to invalid meshes which cause the entire simulation to numerically diverge.

The flow around the plate in configuration S0 is now analyzed by means of flow vizualization.
Particular characteristics of the flow, such as separation and vortex shedding, are usually sought
to explain the occurrence of the two LCO branches. No massive flow separation other than the
expected tip vortices (three-dimensional lifting effects) has been found to occur in the flow for
both LCO branches and any free-stream airspeed considered (up to U = 1.24Uf = 21 m/s).
However, in the high-frequency response of the plate, one can observe a stable (i.e. that does
not appear to detach and be shed in the wake) leading edge recirculation bubble that extends on
the suction side of the plate. This is illustrated in Fig. 7.16 that shows the pressure contour and

7Or also potentially the simulated time window, as discussed earlier.



CHAPTER 7. AEROELASTIC STUDY OF A THIN FLAT PLATE WING 196

the (uncoloured) velocity streamlines on the plate in configuration S0 at velocity U = 1.01Uf

and maximum deformation. The leading edge recirculation is marked on the surface by the low
pressure yellow band while the core of the recirculation is well identified by the streamlines.
Downstream of the leading edge recirculation bubble, the flow appears to stay attached to the
plate. The generation of the LE recirculation bubble in the high-frequency LCO can be explained

Figure 7.16: Pressure contour and velocity streamlines on the second half-span and at maximum
deformation of the high-frequency response. U = 1.01Uf, configuration S0. The flow is from
right to left.

by the combination of two factors: on the one hand the torsion-dominated motion of the plate
generates a higher local angle-of-attack, and on the other hand the sharp leading edge of the
plate favours the detachment of the boundary layer. As the torsion, and so the effective local
angle-of-attack, of the plate increase in the spanwise direction, the size of the recirculation bubble
increases in that direction too. This can be observed in Fig. 7.17 that shows, on the suction side
of the plate, the contour of the negative streamwise friction coefficient, that is again interpreted
here as a marker of the separation. The pressure-coloured velocity streamlines are superposed
to mark again the core of the recirculation bubble. In particular, the significant part of the
recirculation zone begins at about 65% of the span and becomes largest between 75% and 93%
of the span before decreasing towards the plate tip where it collapses due to the interaction with
the tip vortices. Because of the periodic deformation of the plate, the recirculation bubble is not
present during the entire cycle but periodically appears on the suction side of the plate. The
existence of the LE recirculation bubble has been observed in high-frequency LCO for all free-
stream airspeeds considered. The proposed explanation for the occurrence of two LCO branches
in the computational model is therefore the nonlinear aerodynamic effect of the recirculation. By
looking at how the LCO branches merge in Fig. 7.14 (a), we can reasonably assume that there
exists a deformation amplitude threshold (a critical t∗ here) above which the recirculation bubble
can fully develop and increase locally the suction near the leading edge, therefore changing the
response trajectory of the plate itself towards a torsion-dominated stall flutter. The suction
effect brought by the recirculation bubble was already well illustrated in Fig. 7.16 by the leading
edge low pressure band.



CHAPTER 7. AEROELASTIC STUDY OF A THIN FLAT PLATE WING 197

Figure 7.17: Contour of the streamwise negative skin friction coefficient and pressure-coloured
streamlines on the second half-span and at maximum deformation of the high-frequency response.
U = 1.01Uf, configuration S0. The flow is from right to left.

The post-critical behaviour of the swept configuration S45 significantly differs from the one
observed in the unswept case. Although the amplitude of its response is comparable to the S0
configuration at the flutter airspeed, it shows a sharp increase with respect to the free-stream
airspeed. Computations at post-critical conditions reveals a fast growth of the amplitude in
the range U = 13.8 − 15 m/s (Uf − 1.09Uf), as illustrated in Fig. 7.18. At a velocity 9% above
the flutter threshold, the displacement of the leading edge at the plate tip exceeds dz/c = 0.13,
which is already twice as large as the displacement obtained for the S0 configuration at a ve-
locity almost 25% above its own flutter airspeed (dz/c = 0.066). A qualitative analysis of the
records from the wind tunnel study also confirms that the response of the swept plate configu-
ration is characterized by a higher amplitude when compared with the unswept configuration at
similar free-stream airspeeds. As previously mentioned, such large amplitudes of the aeroelastic
response represent a significant challenge for the numerical approach because the resulting large
deformation of the computational grid leads to meshes of very poor quality. The fluid solution
is thus strongly impacted: numerical instabilities start developing and eventually lead to the
divergence of the solution, as illustrated by the case U = 1.09Uf in Fig. 7.18. Several simulation
parameters were adjusted to try to stabilize the computation (typically turbulence model, CFL
number, multi-grid levels, mesh deformation artificial stiffness and number of mesh deformation
iterations), but none of these attempts were successful in significantly improving the robustness
of the solver. Note that this lack of robustness is further exacerbated here by the use of a
structured RANS mesh, as such meshes are more prone to deterioration when deformed.

The impact of the perturbation duration t∗ is also assessed for the swept S45 configuration.
In contrast to the unswept configuration, no LCO branch bifurcation has been observed in
the range of t∗ values tested. For the largest initial perturbation considered (t∗ = 0.1 s), the
aeroelastic response quickly reaches the limit cycle, as illustrated in Fig. 7.19 for the post-critical
free-stream airspeed U = 1.03Uf. The limit cycle of the swept plate S45 is characterized by a
complex motion that combines both bending and torsion, as shown in Fig. 7.20. This figure



CHAPTER 7. AEROELASTIC STUDY OF A THIN FLAT PLATE WING 198

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

−0.2

−0.1

0

0.1

0.2

Fluid solver diverges

t [s]

d
z
/c

[-
]

U = 1.09Uf

U = 1.03Uf

U = Uf

U = 0.97Uf

Figure 7.18: Aeroelastic response (z-displacement of the plate tip LE) of the configuration S45
at different free-stream velocities (t∗ = 0.01 s).

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−0.2

−0.1

0

0.1

0.2

t [s]

d
z
/c

[-
]

Figure 7.19: z-displacement of the leading edge at the plate tip for a free-stream airspeed
U = 1.03Uf and a perturbation duration t∗ = 0.1 s; configuration S45.



CHAPTER 7. AEROELASTIC STUDY OF A THIN FLAT PLATE WING 199

also compares qualitatively the deformation of the S45 plate between the model simulated with
CUPyDO and the experimental model in the wind tunnel at similar post-critical U . In both
cases, the maximum amplitude of the deformation is clearly located at the trailing edge of
the plate tip and the deformation pattern can be divided into three distinct parts. The first
part extends from approximately 69% of the span to the plate tip (100%), where the plate is
literally waving about in the z-direction. The second part extends from 22% to 69% of the span
and mostly shows an out-of-plane displacement of the leading edge which is in opposite phase
compared to the first part of the deformation pattern. The last part of the plate experiences
only marginal deformation, as it is closer to the clamped extremity.

The flow around the plate in configuration S45 is also investigated by means of flow vi-
sualization. Fig. 7.21 shows the flow velocity streamlines around the plate at a free-stream
velocity U = 1.01Uf and for an initial perturbation with t∗ = 0.1 s. Similarly to the unswept
configuration, no massive flow separation is observed, even at the highest amplitude obtained
at U = 1.09Uf

8. The absence of flow separation can be explained by the combination of sev-
eral factors. First, the amplitude of motion of the span sections located close to the clamped
extremity of the plate is relatively small and the resulting local angle of attack is too low to
produce flow separation. Then, for span sections further away from the root, the motion of the
plate is such a complex combination of bending and torsion that the local angle of attack might
remain under the dynamic stall angle. More specifically, for each two-dimensional span section,
the analogy with a pitch-plunge flat plate9 reveals that a nose-up-pitch-induced angle of attack
could be compensated by an upward plunge motion, thus limiting the effective angle of attack.
The third factor is a consequence of the significant three-dimensional effects of the flow field.
Both the spanwise flow deflection towards the plate tip, induced by the swept geometry and
the lift-induced tip vortices significantly influence the vortex dynamics and tend to smooth out
the unsteadiness related to vortex shedding that would otherwise typically appear in a purely
two-dimensional flow simulation around a plate section. This effect of tip vorticity was already
highlighted in the work of Taira and Colonius [256] who performed flow simulations around
three-dimensional rigid flat plate wings featuring comparable aspect ratios (up to 4) but lower
Reynolds numbers (of the order of 102) than in the present case. Neither the occurrence of a
low-speed LE vortex nor any particular change in the flow structure have been been observed
for the S45 configuration in the range of U and t∗ considered. In this configuration, the absence
of two distinct LCO responses is then correlated to the absence of distinct and nonlinear flow
features, that could otherwise appear when varying the free-stream airspeed or the perturbation
duration in the range considered in this study.

8As mentioned and illustrated in Fig. 7.18, no higher deformation could be simulated due to the limited
robustness of the mesh deformation procedure.

9The 2D pitch motion is the analogy of the 3D torsion of the plate and the 2D plunge motion is the analogy
of the 3D bending.



CHAPTER 7. AEROELASTIC STUDY OF A THIN FLAT PLATE WING 200

(a) Contour of the plate surface z-displacement computed with CUPyDO
(U = 14 m/s = 1.01Uf).

(b) Snapshot of the plate motion in the wind tunnel (U = 13.8 m/s =
1.03Uexp

f ).

Figure 7.20: Qualitative comparison of the plate LCO between computation with CUPyDO and
experimental observation, configuration S45.



CHAPTER 7. AEROELASTIC STUDY OF A THIN FLAT PLATE WING 201

Figure 7.21: Flow velocity streamlines at the plate tip and crest amplitude of the deformation.
U = Uf, configuration S45.

The last chapter of this thesis presented the application of the coupling between SU2 and
Metafor using CUPyDO for aeroelastic simulations of a very flexible cantilever flat plate
wing. This test case was based on an experimental study performed by Dimitriadis et
al. [253]. Several geometrical configurations of the plate with an aspect ratio of four and
varying sweep angles have been considered.

Linear flutter properties (speed and frequency) have been determined by computing the
aeroelastic response of the plate to small perturbations. Results are found to be in good
agreement with the experimental observations and with other numerical results obtained
by low-fidelity models based on the Vortex Lattice Method (VLM) and the Doublet Lattice
Method (DLM). In particular, flutter characteristics follow the same trend: a decrease of
the flutter speed and frequency with the sweep angle. Overall, the results computed by
CUPyDO are closer to the experimental results than the VLM results are. The LCO
flutter response of the unswept wing has been found to establish itself around a non-
oscillatory and steadily decaying deformation component of the plate. Although sub-
critical and critical static deflections of the plate were also experimentally observed for
this configuration, relating the computed non-oscillatory deflection with the one observed
experimentally is challenging as they differ in several aspects: the amplitude (up to 100
times larger in the experiment), the duration (permanent in the experiment, decays in time
in the computational model) and the conditions for this deflection to occur (produced by
the initial perturbation in the computational model while naturally developing in the
experiment).

In a second step, the post-critical aeroelastic response of the plate has been computed
for an unswept and a swept (Λ = 45◦) configuration. At post-critical free-stream air-
speeds, the response of the unswept plate features a supercritical bifurcation which can

Summary of chapter 7



CHAPTER 7. AEROELASTIC STUDY OF A THIN FLAT PLATE WING 202

turn into two distinct LCO depending on the amplitude of the initial perturbation, con-
trolled here by the perturbation duration t∗. The existence of threshold values of t∗ has
been shown for free-stream airspeeds up to U = 1.24Uf. For t∗ below the threshold value,
the response locks on a low amplitude and low frequency LCO that oscillates around
a decaying non-oscillatory component of the deformation. It has also been found that
this LCO is dominated by a bending motion of the plate. For t∗ above the threshold
value, the response locks on a higher-amplitude and higher-frequency torsion-dominated
LCO with no mean deformation. The threshold value of t∗ has been found to decrease
when increasing the post-critical free-stream airspeed up to a point where only the high-
frequency LCO is obtained for the whole set of perturbation durations considered in this
study. Flow visualization has been used to show that the high-frequency LCO response
is related to the occurrence of a leading-edge recirculation bubble which is not observed
in the low-frequency LCO. The occurrence of two distinct LCO responses has not been
observed during the experiment, and the correspondence between one of the two compu-
tational LCO branches and the actual response of the plate in the wind tunnel is unclear.
Qualitative deformation patterns and frequency measurements are comparable to the low-
frequency computational response, but the experimental amplitude of deformation remains
significantly larger than in the computational model.

The post-critical response of the S45 swept plate differs from the unswept configuration.
Small initial perturbations are quickly amplified in time until they reach a limit cycle which
is characterized by a much larger amplitude than in the unswept case. The post-critical
amplification factor quickly increases with increasing free-stream airspeed. At 9% above
the flutter airspeed, the maximum computed displacement of the leading edge at the plate
tip is already twice as large as the displacement obtained for the unswept plate at a
velocity almost 25% above its own flutter threshold. Furthermore, static deflection has
been observed neither for the numerical simulations nor for the experimental measurements
and a qualitative comparison of the deformation pattern between the computational and
experimental responses has shown satisfactory agreement. Finally, the limit cycle response
of the swept wing does not feature multiple branches as for the unswept wing, at least
in the range of t∗ and U for which proper results have been obtained. The absence of
transition from one LCO to another has been corroborated by the absence of significant
changes in the flow structure around the plate, such as the potential occurrence of a
leading-edge recirculation zone, in contrast to the unswept case.

Finally, because of the body-fitted ALE strategy followed for the flow calculation, sev-
eral LCOs with large amplitudes could not be properly simulated. In particular, large
deformations of the structure tend to destabilize the incremental mesh deformation proce-
dure of SU2, which finally leads to invalid meshes and the divergence of the flow solution.
This highlights one of the typical limitations of the body-fitted ALE approach used by the
fluid solver, but does not question the validity of the coupling approach used by CUPyDO.



Conclusion

Fluid-Structure Interaction problems have gained increasing interest from industrial designers
and scientists because of their significant complexity making efficient designs more challenging.
This thesis has focused on the computational approach for studying or designing FSI systems.
Fluid and solid solvers are used to solve the governing equations for each physics with a high
level of fidelity, but the complete multi-physics solution also requires coupling/interfacing effects
to be accounted for by coupled computational models. Such models bring additional challenges
that are related to, for instance, the coupling technology, the solver inter-communication or the
coupling algorithm.

In this context, this thesis presented the development, verification and application of the
tool CUPyDO that has been designed as a FSI coupling environment for single-physics black-
box solvers. The partitioned approach followed in this work allows the intrinsic features of the
individual solvers to be leverage, and a wide range of applications can be envisaged if the coupling
interface is flexible enough. CUPyDO has been developed with a focus on computing efficiency,
flexibility and user-friendliness. A modern programming technique is used, that combines C++
and Python, two standard object-oriented languages, into the same software architecture.

The fluid-structure interaction model

This thesis has been divided into three parts. The first part, composed of three chapters, is
dedicated to the description of the fluid-structure interaction problem. Chapter 1 has described
the main phenomenological aspects of the FSI problem. A classification has been proposed,
depending on the characteristics of the fluid flow, but not all categories have been considered
in this thesis. In particular, the examples discussed were restricted to steady external flows.
Three mechanical FSI phenomena have been presented: VIV, galloping and flutter. Finally the
importance of FSI in the engineering design process has been discussed.

Chapter 2 has presented the mathematical model of a coupled FSI system. The two principal
strategies, i.e. the monolithic and the partitioned approaches, have been reviewed, as well as the
general formalism for the description of the fluid and solid motion. While a Lagrangian formalism
is still used for the solid, the ALE formalism combined with a moving mesh is used in the fluid
domain. The governing equations for each physics have been presented before introducing the
coupling conditions that express the continuity of displacement, force, temperature and heat flux
through the fluid-solid interface. These interface conditions are the central part in the definition
of the coupled problem. The most relevant non-dimensional parameters for FSI have finally
been recalled.

Chapter 3 has been presented as an important review of the numerical aspects of FSI.
Mechanical and thermal coupling algorithms have been presented based on the fixed point for-
mulation of the coupled problem. Their numerical stability has also been discussed, and the
mass number Ma and Biot number Bi have been shown to represent a good measure of the
stability margin. For the mechanical coupling, the under-relaxed block Gauss-Seidel coupling
algorithm is used to stabilize the iterative process in case of high added-mass effects. More
efficient Newton-based methods such as the interface quasi-Newton with approximation of the

203



CONCLUSION 204

inverse Jacobian from least-square (IQN-ILS), providing better convergence rate, have also been
reviewed. For the thermal coupling, stability is achieved by selecting the appropriate scheme
depending on the characteristic Biot number of the problem. Stability can further be improved
by using a numerical heat transfer coefficient. Also for the thermal coupling, specific time ad-
vancement strategies that take into account the significant difference in physical time scales
between the coupled domains have also been reviewed. The fluid-structure interface treatment
can be achieved through two main approaches that have been discussed. The non-conformal
approach deals with a structural domain that is embedded in a Cartesian fluid mesh. The fluid
solver is thus based on the immersed-boundary method, which complexifies the treatment of
the interface conditions. The approach that has been followed in this thesis is the conformal
approach, in which the fluid mesh conforms with the structural boundary, making the interface
treatment more explicit. The fluid solver is thus based on the ALE formalism with a dynam-
ically deforming fluid mesh. Using a conformal interface mesh does not automatically imply
that the discretization in each domain is matching. Interpolation is thus required to transfer
solution data from one interface to the other. Several interpolation methods have been pre-
sented and discussed, for both conservative and consistent approaches. The RBF approach has
been implemented in CUPyDO, as it is suited for partitioned coupling of black-box solvers and
does not require knowledge of the interface topology. The fluid mesh dynamics of the ALE
formalism has been reviewed as well. The mesh deformation problem can be expressed by par-
tial differential equations, with specific boundary conditions, for the new position of the grid
nodes. The pseudo-elasticity analogy is a typical example, which formulates the mesh defor-
mation problem as a linear elastic solid deformation computed with a finite element approach.
Another approach is to rely on an interpolation of the boundary displacement to the volume
mesh, which advantageously does not require any information on the mesh topology. The same
RBF approach can thus be applied for mesh deformation as for interface interpolation. Other
interpolation methods for mesh deformation include the inverse distance weighting (IDW) or
sphere relaxation. The importance of the Geometric Conservation Law (GCL) for ALE schemes
has been briefly discussed and related to the accuracy and stability of the underlying numerical
schemes. Despite contradictory results in the literature, the development of GCL-compliant
ALE schemes is still encouraged. Finally, the single physics solvers used in this thesis have
been introduced. For the fluid part, the SU2 solver is used to solve the compressible unsteady
RANS or Euler equations on a potentially deforming unstructured grid using a GCL-compliant
ALE formalism. The mesh deformation is achieved using the pseudo-elasticity analogy method.
For the solid, several solvers have been considered. Metafor is a nonlinear finite elements code
for thermo-mechanical problems involving large solid displacements and deformations. It has
been used for mechanical FSI problems. GetDP is a general environment for the treatment of
discrete PDE-based problems with the finite element method as well. GetDP has been used for
thermal FSI problems. Finally, an in-house rigid body integrator code has been presented for
solving one and two degree-of-freedom rigid motions that are characteristics of simplified VIV
and aeroelastic models.

The coupling tool CUPyDO

The second part of this thesis, composed of two chapters, is related to the review of multi-code
coupling technologies and the development of the coupling environment CUPyDO. Chapter 4
has first proposed a review of different inter-code communication methods and coupling archi-
tectures. For inter-code communication, the MPI protocol is expected to offer the best perfor-
mances, especially for HPC-compliant architectures. The chosen coupling architecture relies on
a unified approach as it offers better flexibility and direct communication between the solvers,
that neither the master-slave nor client-server architectures can achieve. Several state-of-the-art
coupling software have been reviewed and compared based on relevant characteristics such as



CONCLUSION 205

the availability of coupling schemes, the HPC-compliance, or the intrusive character of the cou-
pling tasks. This has motivated the exploration of an original coupling technology based on the
Python wrapping of C/C++ code and the development of CUPyDO.

The implementation of CUPyDO has been detailed in Chapter 5. CUPyDO is designed as
an hybrid C++/Python environment for the coupling of independent black-box solvers. Effort
has been invested in the coupling flexibility and the modularity, which limits code invasiveness
for the coupled solvers. By using a unified coupling approach, the coupled solvers can be manip-
ulated as library objects instead of standalone executables, providing flexibility and usability to
the coupling. The Python wrapping methodology, the central technology of CUPyDO, has been
introduced and illustrated in the context of a very simple C++ example. It has been shown how
the different classes of the core solvers code can be embedded into an API layer and exposed
to Python by using SWIG, while conserving the object-oriented structure of the core language.
The Python wrapping methodology has also been applied and detailed for the interfacing of the
fluid solver SU2. The resulting Python layer is used as an API that interfaces the function-
alities of the solver in a very intuitive way, while these functionalities remain executed under
the original compiled language for best efficiency. The structure of CUPyDO is also based on
the Python wrapping technology. It comes with several built-in coupling functionalities, such as
coupling algorithms and non-matching mesh interpolation schemes, which are accessible from
a high-level API that does not require strong knowledge of the Python language. For a more
advanced usage of the environment, the structure of CUPyDO offers the possibility to customize
the coupling tasks or even implement new functionalities that can be easily derived from existing
ones. The detailed architecture of CUPyDO is composed of a C++ kernel, gathering all the
computationally intensive coupling tasks, and a Python API that interfaces these core function-
alities at a high level. The kernel is also used to link with external libraries such as OpenMPI
and PETSc to support HPC capability. The Python API is divided into several layers. The
Python Utility layer defines fundamental functionalities, such as MPI-related routines, interface
data containers and linear algebra capabilities. The interface data containers are vector-like
structures that support solver inter-communication as they can store and perform parallel arith-
metical operations on data which are exposed by each coupled solver. The central part of the
environment is the Core layer which provides the high-level management for the coupling al-
gorithms, interface solution transfer and interface solution interpolation. The object-oriented
structure of CUPyDO allows the user to generate new coupling algorithms directly in Python
with limited effort. The Interface layer is specifically designed to ensure the compatibility be-
tween the core of CUPyDO and the coupled solvers while keeping a high level of flexibility. It
is used to accommodate each independent solver wrapper to the algorithmic part of the envi-
ronment. This is achieved by filling corresponding interface modules (one per coupled solver)
with the Python-exposed functionalities. These interfacing modules directly inherit from a com-
mon generic solver class that is directly used by the Core layer. The management of parallel
computation has been described by considering two types of communication between processes.
While intra-communication is seen as black-box as they involve data exchange within an indi-
vidual coupled solver, inter-communication is used to exchange data through the fluid-structure
interface, between processes of distinct coupled solvers. New MPI communicators are defined
as a subset of the standard MPI_COMM_WORLD in order to identify and tag groups of processors
in which data exchange is needed, for both intra- and inter-communication. The communica-
tion network resulting from the heterogeneous MPI partitioning of each solver domain is stored
and managed by the Manager class of CUPyDO. The non-matching interface mesh capability of
CUPyDO is composed of two steps. The interpolation matrices are first computed by pairing
and mapping interface fluid and solid nodes. For parallel computations, the mapping is achieved
through successive communication rounds from the partitions of the donor side to the partitions
of the target side. The parallel interface data structure for matrices and vectors is supported
by the PETSc library through the functionalities that are interfaced in the Utility layer. In the



CONCLUSION 206

second step, the linear system formed by the interpolation matrices is solved each time data
need to be exchanged from one interface mesh to the other. The method implemented in the
Interpolator class of CUPyDO is based on the use of Radial Basis Functions, which are well
suited for black-box partitioned coupling and easy to apply in parallel. Both conservative and
consistent interpolation schemes are available, using the Thin Plate Spline (TPS) or the Com-
pact C2 (CPC2) basis functions. CUPyDO has been designed to provide a user interface that
offers an adequate balance between usability and flexibility. Each coupled solver is individually
configured by using their native configuration system (typically input data files). The coupling
environment is then configured with a Python script that directly instantiates the main API
classes by following a specific but intuitive sequence.

Verification and applications of CUPyDO

The third part of this thesis has been dedicated to the verification and application of CUPyDO.
In Chapter 6, the framework has been verified and validated for both mechanically and ther-
mally coupled applications of various complexity. In the fluid part, the Euler or Navier-Stokes
equations are solved with SU2 using the finite volume method with an Arbitrary Lagrangian-
Eulerian formulation. The high modularity of the coupling framework has been demonstrated
by using different structural solvers and models. Lagrangian finite element solvers such as
Metafor (nonlinear) and GetDP (linear) are used to solve the structural dynamic equilibrium
for deformable solids and the heat equation for thermal conduction, respectively. A simpler
integrator is used to compute constrained rigid body motions such as the plunging cylinder or
the pitching-plunging airfoil. The main coupling capabilities of CUPyDO, such as strong/weak
coupling, Aitken’s under-relaxation, thermal coupling schemes and non-matching interface mesh
interpolation, have been assessed through different verification cases. Several guidelines (or best
practices) have been highlighted as well.

The coupling between SU2 and the rigid body integrator has been first tested. The study of
the vortex-induced vibrations of the one-degree-of-freedom cylinder has clearly showed that, for
Reynolds numbers falling in the lock-in region, a fully coupled model is required to accurately
predict the amplitude of the motion of the structure, that is severely underestimated by a
separate (uncoupled) analysis of each physics. The Isogai wing section model has been used
to validate CUPyDO for aeroelastic flutter applications. The complex S-shape of the flutter
boundary, due to the presence of several flutter points at highly transonic Mach numbers, has
been successfully predicted. In the post-critical region, aerodynamic nonlinearities lead to limit
cycle oscillations of the structure with an amplitude that depends on the speed index. The speed
index has been found to have an impact on the frequency content of the response and the phase
shift between the structural modes as well. Testing both strong and weak coupling schemes
has revealed that, for accurately capturing the flutter boundary, a strongly coupled scheme is
preferred.

The complete CFD-CSD coupling has been tested by substituting the Metafor solver to the
rigid body integrator. The design of the interfacing layer of CUPyDO has made the procedure
straightforward and has not required any adaptation of CUPyDO. The coupling was tested
on the classical case of the cantilever attached in the wake of a square cylinder. The vortex-
induced vibrations of the cantilever have been properly captured, and a good agreement has been
observed for the frequency and the amplitude of the cantilever motion. Added-mass effects, and
consequently numerical coupling instabilities and slow convergence rates, have been intentionally
introduced by decreasing the mass ratio in order to test the performance of the Aitken’s coupling
relaxation implemented in CUPyDO. It has been found that Aitken’s relaxation outperforms
the static relaxation by stabilizing the coupling procedure and by decreasing the mean number
of coupling iterations.

The coupling between SU2 and Metafor has been used again for aeroelastic flutter com-



CONCLUSION 207

putations on the AGARD 445.6 wing case, a test case representative of industrial complexity
(three-dimensional, non-matching interface meshes). The flutter boundary obtained in this study
has been compared to a collection of results, both experimental and numerical, with good agree-
ment in the subsonic and transonic regimes. In the supersonic regime, a large scatter is observed
across the results found in the literature, which can mostly be attributed to an inaccurate fluid
solution (flow model, numerical scheme, mesh...) rather than to deficiencies of the coupling
environment itself. The conservative RBF interpolation has been successfully applied for trans-
ferring interface data between the two coupled solvers. The performance in terms of CPU time
of a typical coupled simulation has been evaluated on a representative flight condition of the
ARGARD wing. It has been shown that the largest contribution to the total CPU time stems
for the computation of the fluid solution (65%) and from the fluid mesh deformation (32%).
The computation of the solid solution (2%) represents a much smaller contribution while the
overhead brought by the coupling task (1%) is marginal.

The thermal coupling capabilities of CUPyDO have been tested for the case of a heated
hollow cylinder immersed in a steady cross flow. The coupling versatility of the tool has been
further demonstrated by using the GetDP FEM code instead of Metafor, without changing
anything in the coupling framework. The four available thermal coupling schemes have been
tested for two distinct physical Biot numbers (smaller and larger than one). The coupling
performance has been measured by the number of coupling iterations, and it has been confirmed
that temperature-back schemes are the most efficient for Bi < 1 cases while, reversely, flux-back
schemes become more efficient for Bi > 1. It has also been showed that the use of a numerical
heat transfer coefficient can stabilized the coupling procedure if stability cannot be obtained
with the standard schemes. Finally, consistent interpolation has been successfully applied for
the transfer of thermal data in the case of a non-matching interface discretization.

The last application of CUPyDO in Chapter 7 has involved the coupling between SU2 and
Metafor for the aeroelastic simulation of a very flexible cantilever flat plate wing. Different
geometries with varying sweep angles have first been studied in the linear flutter regime by com-
puting the response to small initial perturbations. Computed flutter velocities and frequencies
have been compared with experimental observations and with a low-fidelity numerical model
based on the vortex lattice method. The results have shown a decreasing flutter speed and
frequency with respect to the sweep angle in good agreement with the reference data.

In a second step the post-critical aeroelastic response of the plate has been considered for two
sweep angles: 0◦ and 45◦. For post-critical flow velocities up to 24% above the flutter airspeed,
two distinct super-critical LCO branches have been identified for the unswept configuration,
depending on the amplitude of the initial perturbation as measured by the initial perturbation
duration. The low-amplitude/frequency branch has been shown to be dominated by a bending
mode, while the high-amplitude/frequency branch has been shown to be dominated by a torsion
mode. The theoretical threshold value of t∗, above which the LCO switches from the low- to the
high-frequency branch, has been found to decrease with increasing free-stream airspeed. The
response on the low-frequency LCO branch features a non-oscillatory component which slightly
decays in time. Significant static deflection had been experimentally observed but could not
be directly related to the transient non-oscillatory deformation component in the computational
model, as they differ in several aspects such as amplitude, duration and conditions of occurrence.
Only one type of LCO response had been observed during the experiments. This single LCO
resembles more the low-frequency solution in terms of frequency and deformation pattern, but
they significantly differ in their amplitude. In the computational model, the transition from
the low- to the high-frequency LCO has been correlated to a change in the flow structure: the
occurrence of a stable (i.e. not shed into the wake) leading edge recirculation zone that increases
locally the suction.

The post-critical response of the swept plate (Λ = 45◦) has been found to be significantly
different from the unswept configuration. Small initial perturbations are quickly amplified in



CONCLUSION 208

time until the dynamics reaches a limit cycle which is characterized by a much larger amplitude
than in the unswept case. Moreover, the limit cycle response of the swept wing does not feature
multiple branches and flow visualization has not revealed any significant change in the flow
structure over the set of perturbation and free-stream airspeed considered. Static deflection has
not been observed numerically for the swept plate, in agreement with experimental observations.
Additionally, qualitative comparison of the deformation pattern between the computational and
experimental response has shown satisfactory agreement.

Finally, several post-critical computations for both sweep angles have revealed that the ro-
bustness of the fluid mesh deformation remains limited when the structure undergoes large
deformation. This highlights one of the typical disadvantages of using body-fitted ALE fluid
meshes for FSI applications. Other coupling approaches should therefore be considered, as
discussed in the following section.

Future perspectives

One of the major objectives of this thesis was to develop a robust tool that provides all the basic
features required for the computational analysis of FSI problems in an academic or industrial
context. This was achieved through the development of CUPyDO. However, the number of
potential improvements and extensions one can imagine in the future of CUPyDO is large. This
last section aims to provide a non-exhaustive list of possible developments and applications of
CUPyDO that could be considered in the context of future research work.

In order to increase the capabilities of CUPyDO for FSI applications, the list of compatible
fluid and solid solvers to be coupled should be enlarged. The interest would be to interface
solvers based on other models than the FVM/FEM as presented in this thesis. Typically, on
the fluid side, coupling solvers based on the immersed boundary approach would be of great
interest for applications involving large rigid body motion such as store-release or flapping flight
problems. FSI simulations involving free-surface flows have already been successfully performed
by coupling a Lagrangian fluid solver based on the PFEM method with Metafor [2]. Fast steady
aeroelastic computations of composite wings have also been achieved by coupling a fluid FEM-
based code for the resolution of the full potential equations with a structural solver based on a
modal decomposition [5]. In order to reduce further the computational cost, the coupling with
low-fidelity flow models based on panel or lattice methods is also being tested with CUPyDO for
fast parametric studies. On the solid side, the FEM solver for deformable solids has already been
successfully replaced by a modal integrator computing the deformation of the solid using modal
superposition [6]. This approach requires the use of a FEM solver only prior to the coupled
simulation to compute once the modal modes of the structure.

The coupling environment has been designed for fluid-structure applications by exchanging
surface data from one side of the interface to the other side. The coupling capabilities could
however be extended towards general multiphysics applications, for example by coupling an
electro-magnetic field, using for instance the GetDP solver, to a fluid flow. This typically would
require the exchange of 3D volume data in addition to surface data as well as adding new
dedicated solvers to the current list of compatible solvers to be coupled. Development of new
coupling algorithms might also be required, which could raise again the question of numerical
coupling stability.

The design capabilities of CUPyDO could be further extended towards optimization of cou-
pled FSI problems. Optimization problems are now commonly solved for single-physics problems
but coupled problems increase significantly the complexity of the optimization as sensitivities to
the design variables, considering a gradient-based optimizer, must be computed for each coupled
sub-system. The computation of the gradients can be achieved by several methods. A direct
method would require the exact representation of the Jacobian of the governing equation, which
is usually not affordable in practice. The standard finite difference method is easy to implement



CONCLUSION 209

for black-box solvers and does not require expressing the Jacobian. However, the accuracy of
the gradient calculation depends on a suitable choice of the numerical increment. Most impor-
tantly, for both direct and finite difference methods, the cost directly depends on the number
of design variables [257]. Adjoint methods should thus be preferred, as the adjoint governing
equations do not depend on the number of design variables. By using the same approach as for
the direct coupled problem, an adjoint coupled problem could be obtained by coupling black-box
fluid and solid adjoint solvers. On the fluid side, the SU2 solver can be envisaged as it already
features adjoint capabilities, in which the derivatives are computed by Algorithmic Differentia-
tion (AD) [257]. On the solid side, a new, possibly existing, structural solver featuring adjoint
capabilities might be required, or the extension of Metafor and GetDP could be proposed. The
coupling algorithm of CUPyDO will need to be extended as well for the coupling of adjoint
solutions. The same iterative procedure such as the block Gauss-Seidel iterative coupling can
be applied, but the cross dependencies (off-diagonal terms of the tangent matrix in Eq. (3.3) of
the three field problem) must be computed. This may require some coupling tasks of CUPyDO
(e.g. non-matching mesh interpolation) to be differentiated. For this purpose, AD can also be
envisaged to be introduced in the C++ kernel of CUPyDO for the derivatives to be exposed
in Python through the wrapper. Optimization for steady-state FSI has been recently achieved
while unsteady FSI with adjoint is still an ongoing work.

The algorithmic capabilities of CUPyDO could also be extended or improved. In addition
to the staggered iterative coupling, for which the coupled solvers compute their solution one at
a time, a vectorial coupling could be envisaged. In this situation, the coupled solvers compute
their solution at the same time and exchange their solutions between each time step. This
strategy would however require the use of MPI even for non-parallelized solvers, so that each
of them can be run on distinct cores (see segregated distribution from Section 5.6). Stability
and coupling convergence rate improvements can be proposed for cases with high-added mass
effect, for which the performance of BGS is still limited. In this context, the IQN-ILS coupling
scheme has already been implemented but other coupling schemes could be envisaged. For
thermal coupling schemes based on a numerical heat transfer coefficient, a procedure for locally
computing this coefficient instead of imposing a constant and uniform value, would improve and
even optimize the convergence rate of the coupled solution. The non-matching mesh capabilities
can be improved as well. For instance, the dependence on the RBF radius can be lowered
by implementing the variant based on the partition of unity (see end of Section 3.4.2). The
CPU cost associated with the solution of the linear system could also be reduced by applying
coarsening methods for selecting a representative subset of source nodes. Implementing other
interpolation methods, potentially less costly, such as the explicit Inverse Distance Weighting to
further increase the flexibility of CUPyDO could represent another avenue for future research.
Finally, the usability of the coupling tool could be further improved by implementing a restart
capability for coupled simulations. This is not a trivial task as the restart solution of each
coupled solver must be re-synchronized properly to conserve the order of accuracy of the time
schemes.

Finally, a more-in-dept analysis of the HPC capabilities of CUPyDO could be performed.
Parallel scalability on massively distributed architectures could be assessed. However, as the
scalability of the coupled system strongly depends on the intrinsic scalability of the sub-systems
(i.e. the black-box solvers) the study should only focus on the coupling tasks, typically the
parallel non-matching mesh mapping and interpolation, both being supported by the linear
algebra kernel linked to the PETSc library. Also, and in order to improve the usability and
portability of the coupling tool, replacing PETSc by another parallel linear algebra engine,
could be envisaged. It was found indeed that running PETSc on Windows platforms can become
cumbersome. Ideally, the new candidate should come with a Python wrapper as it was the case
for PETSc. The Trilinos library [258] from Sandia National Laboratories may be a potential
candidate.



List of Figures

1 Illustration of the continuous increase in aircraft take-off weight over the century.
Taken from Bejan et al. [1]. On the right extremity of the graph, we note the
presence of the B787 and A350 models which are known to integrate a significant
part of lighter and more flexible composite materials. . . . . . . . . . . . . . . . . xiv

2 Examples of FSI applications involving the coupling with CUPyDO in other re-
search projects. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii

1.1 Collar’s aeroelastic triangle: force interactions in an aeroelastic system. . . . . . 2
1.2 Fan-generated airflow for hot plate cooling by forced convection. . . . . . . . . . 3
1.3 Example of static fluid-structure interaction problems. . . . . . . . . . . . . . . . 4
1.4 FIV classification for single-phase flows. The red path highlights the mechanisms

that are treated in details in this thesis. Charts taken from [11]. . . . . . . . . . 5
1.5 Illustration of the garden-hose instability. On the left, stable behavior when the

fluid velocity U is under the critical value. On the right, unstable configuration
when U is beyond the critical limit. . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.6 Cessna engine cooled by external airflow. . . . . . . . . . . . . . . . . . . . . . . 6
1.7 Turbine blade submitted to hot gas flow and protected by a fresh air cooling film. 7
1.8 Laminar Von Kármán vortex street in the wake of a circular cylinder. Taken

from [24]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.9 Illustration of typical VIV suppression devices. Taken from Holland et al. [29]. . 8
1.10 Body shape dependence for galloping to occur. . . . . . . . . . . . . . . . . . . . 9
1.11 Instantaneous photograph of the torsional galloping of the Tacoma Narrows Bridge

before its collapse. Taken from Päıdoussis [30], originally taken from Scruton [33]. 9
1.12 Example of typical motion of wing tip undergoing flutter. . . . . . . . . . . . . . 10
1.13 Tail flutter occurring during a flight test on a Piper PA-30 Twin Comanche

(NASA, 1966). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1 Domain separation for a generic fluid-solid system with interface and intrinsic
boundaries. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1 Illustration of the monolithic coupling architecture. . . . . . . . . . . . . . . . . . 26
3.2 Illustration of the partitioned coupling architecture. . . . . . . . . . . . . . . . . 26
3.3 Time step advancement procedure for a loosely-coupled scheme. Black: time ad-

vancement steps, red: communication steps. The order of the different operations
is indicated by the number in parenthesis next to each arrow. . . . . . . . . . . . 29

3.4 Time step advancement procedure for a strongly coupled scheme. Black: time ad-
vancement steps, red: communication steps. The order of the different operations
is indicated by the number in parenthesis next to each arrow. . . . . . . . . . . . 30

3.5 Time step advancement procedure for a predictive strongly coupled scheme. Black:
time advancement steps, red: communication steps, blue: prediction step. . . . . 31

3.6 Illustration of the added-mass effect for the simplified fluid-solid coupled problem. 32
3.7 Standard thermal coupling schemes. . . . . . . . . . . . . . . . . . . . . . . . . . 41

210



LIST OF FIGURES 211

3.8 Flat plate flow for 1D CHT problem. Analysis is performed in the normal direction
to the plate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.9 Thermal coupling schemes with stabilizing Robin boundary condition and numer-
ical heat transfer coefficient. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.10 Absolute value of the amplification factor of the hFTB scheme as a function of
the numerical convective heat transfer coefficient h̃ for a Biot number smaller (a)
and larger (b) than one. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.11 Absolute value of the amplification factor of the hFFB scheme as a function of
the numerical convective heat transfer coefficient h̃ for a Biot number smaller (a)
and larger (b) then one. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.12 Time step advancement for a loosely- or strongly-coupled scheme for thermal
interaction. Black: time advancement steps, red: communication steps. . . . . . . 47

3.13 Time step advancement of a very loose coupled scheme for CHT, the data ex-
change is performed after several physical time steps. Black: time advancement
steps, red: communication steps. . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.14 Time step advancement of a very loose coupled scheme for CHT, the data ex-
change is performed after several physical time steps which are not the same
between the fluid and solid domains. Black: time advancement steps, red: com-
munication steps. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.15 Time step advancement of the quasi-dynamic coupling scheme for CHT. Black:
time advancement steps, red: communication steps. . . . . . . . . . . . . . . . . . 49

3.16 Mesh treatment methods for the characterization of the fluid-structure interface. 50
3.17 Illustration of a non-matching mesh discretization at the fluid-structure interface. 51
3.18 Pairing between fluid cells (cl) and Gauss points of structural elements (e) for the

evaluation of fluid loads at nodes sm. . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.19 Large geometric discrepancies between the fluid interface Γf and the solid interface

Γs due to a simple wing-box geometry description of the solid problem. . . . . . 53
3.20 Illustration of the nearest neighbor mapping. Fluid nodes f1 to f4 will be assigned

the same value from structural node s1, f5 to f8 will be assigned data of s2. . . . . 55
3.21 Illustration of the nearest neighbor interpolation leading to a stair-shape interface.

Case of the bending of a vertically clamped beam. . . . . . . . . . . . . . . . . . 55
3.22 Orthogonal projection of a fluid node fl onto its closest structural element (e) for

interface mapping using element shape functions. . . . . . . . . . . . . . . . . . . 56
3.23 Unstructured two-dimensional fluid mesh with prismatic boundary layer mesh in

the vicinity of the body surface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.24 Illustration of the spring analogy method for deforming an unstructured fluid

mesh in 2D. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.25 Spring analogy for 3D unstructured meshes. Additional linear spring connecting

each vertex i with the opposite face in a tetrahedron. The edge springs are not
represented but are part of the method as well. . . . . . . . . . . . . . . . . . . . 63

3.26 Sphere relaxation. Two-dimensional representation of spheres centered at the
nodes and used for mesh deformation [152]. . . . . . . . . . . . . . . . . . . . . . 66

3.27 Schematic of the definition of a control volume on the dual mesh based on the
primal mesh. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.28 Two-dimensional mesh deformation after a 45◦ rotation of a NACA 0012 airfoil
using the elastic analogy implemented in SU2. This example uses a fictitious
Young’s modulus that is inversely proportional to the distance from the airfoil
(moving boundary). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.29 Rigid body kinematics for the simplified structural models. . . . . . . . . . . . . 75

4.1 Illustation of the manual coupling based on files for data exchange. . . . . . . . . 82
4.2 Illustration of the master-slave coupling methodology. . . . . . . . . . . . . . . . 83



LIST OF FIGURES 212

4.3 Client-server architecture with central coupling instance. . . . . . . . . . . . . . . 84
4.4 Unified coupling architecture. The coupling framework embeds the coupled solvers. 85

5.1 Compilation steps and generation of the Python wrapper for a simple C++ code.
Grey boxes represent the source files (written by the developer). Dashed arrows
are for include, double arrows are for compilation, simple arrows are for library
link and blue arrows are for SWIG wrapper generation. . . . . . . . . . . . . . . 93

5.2 Illustration of two manners of generating the Python wrapper depending on the
exposed-code structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.3 Schematic illustration of a coupling environment and its interaction with the
respective fluid and solid Python wrappers. . . . . . . . . . . . . . . . . . . . . . 95

5.4 Generation of the SU2 Python wrapper based on the CDriver class. . . . . . . . 97
5.5 Overview of the main architecture of CUPyDO. Black boxes represent C++ code,

blue boxes represent Python classes that inherit from the C++ kernel, white boxes
represent Python-only classes and red boxes represent the interfacing Python
layer. All these components are detailed in the next sections. . . . . . . . . . . . 99

5.6 Wrapping procedure exposing a C++ kernel class to the Python framework of
CUPyDO. Black box: C++ kernel class, blue arrow : SWIG wrapping action,
light blue boxes: Python classes derived from the wrapper, black arrows indicate
inheritance between classes and are pointing from child to mother classes. . . . . 100

5.7 Structure of the Algorithm class. . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
5.8 Time-marching coupling algorithm based on the block-Gauss-Seidel scheme with

Aitken’s ∆2 relaxation as implemented in CUPyDO (i is the time iterator and j
is the FSI iterator). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.9 Schematic illustration of InterfaceData structure for storing multi-dimensional
interface quantities. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.10 Usage of the InterfaceData class for inter-solver communications (example for
the mechanical coupling). Each red box corresponds to one instance of Inter-

faceData. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
5.11 Segregated vs integrated processes solver distribution. In this example, blue and

gray colors represent fluid and solid solvers, respectively. . . . . . . . . . . . . . . 107
5.12 Illustration of intra- versus inter-communication. Blocks represent either a fluid

(blue) or solid (grey) instance. Note that both fluid and solid instances can
be hosted by the same MPI rank. Blocks with dashed boundaries represent
instances that own fluid-structure interface nodes and are thus involved in the
inter-communication procedure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.13 Non-matching mesh mapping for distributed interface partitions. In this simple
example, two communication rounds (red and green arrows) are needed to map
two solid interface partitions (in grey) with three fluid interface partitions (in blue).110

5.14 Parallel re-distribution of the fluid-structure interface for balanced mesh interpola-
tion. Blocks with dashed boundaries represent instances that own fluid-structure
interface nodes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.15 Object-oriented structure of the Interpolator class. Children class to be instan-
tiated are identified with dashed boundaries. . . . . . . . . . . . . . . . . . . . . 113

5.16 Interpolation of the displacement field (bending case) from the 12×3 mesh to the
100× 10 mesh using two different basis functions. . . . . . . . . . . . . . . . . . . 116

5.17 Interpolation error as a function of the radius for a CPC2 basis function used on
two mesh combinations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6.1 Oscillating rigid cylinder immersed in a cross flow. The motion is constrained by
a standard spring-damping system. . . . . . . . . . . . . . . . . . . . . . . . . . . 125



LIST OF FIGURES 213

6.2 Schematic amplitude of the response of the cylinder as a function of the frequency
of the harmonic loading. Numerical values are arbitrary. Θ0 = 1

2ρDU
2C0

L. . . . . 126
6.3 Dynamics of the coupled wake-cylinder oscillators. Evolution of the frequency (a)

and damping (b) as a function of the flow velocity. . . . . . . . . . . . . . . . . . 128
6.4 Illustration of the structured O-mesh mesh in the vicinity of the cylinder. . . . . 129
6.5 Normalized frequency of the vortex shedding as a function of the Reynolds num-

ber. Case of the fixed cylinder. Present results are compared to experimental
data coming from Roshko [217]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

6.6 Normalized amplitude of the uncoupled forced response of the cylinder as a func-
tion of the flow Reynolds number. . . . . . . . . . . . . . . . . . . . . . . . . . . 131

6.7 Normalized frequency of the vortex shedding as a function of the Reynolds number
and the normalized velocity. Case of the moving cylinder. . . . . . . . . . . . . . 132

6.8 Normalized amplitude of the displacement of the cylinder as a function of the
Reynolds number and the normalized velocity. . . . . . . . . . . . . . . . . . . . . 133

6.9 Envelope of the normalized amplitude of the cylinder response for four represen-
tative Reynolds numbers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

6.10 Airfoil with pitch and plunge degree-of-freedom immersed in a cross flow. . . . . 136
6.11 Dynamics of the pitch-and-plunge airfoil immersed in a cross flow. Variation of

the damping (a) and frequency (b) as a function of the flow velocity. . . . . . . . 137
6.12 Free response of the airfoil. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
6.13 Dynamic evolution of the lift and moment coefficient as a function of the angle of

attack for an airfoil with an imposed sinusoidal pitching motion. . . . . . . . . . 142
6.14 Damping coefficient, measured on the plunge degree of freedom, as a function of

the speed index obtained at constant Mach number (M = 0.875). Letters (a) to
(d) are used to identify speed indices that are used in Fig. 6.16. . . . . . . . . . . 143

6.15 Flutter speed index as a function of the free-stream Mach number (flutter bound-
ary). All results from the literature correspond to numerical studies performed
with the same flow conditions as the present work. . . . . . . . . . . . . . . . . . 145

6.16 Aeroelastic response of the airfoil for different speed indices at M = 0.875. . . . . 145
6.17 Pressure contour around the airfoil during one limit cycle to highlight the motion

of the shocks on both sides of the airfoil. M = 0.875 and V ∗ = 1. . . . . . . . . . 146
6.18 Amplitude of the LCO (pitch degree of freedom) as a function of the speed index

for M = 0.875. Zero amplitude means no LCO. . . . . . . . . . . . . . . . . . . . 146
6.19 Main frequencies of the aeroelastic response as a function of the speed index at

M = 0.875. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
6.20 Frequency spectrum of the aeroelastic response for two different speed indices at

M = 0.875. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
6.21 Phase shift between the pitch and plunge mode of the airfoil for several speed

indices at M = 0.875. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
6.22 Comparison of the aeroelastic response obtained with weak and strong coupling.

M = 0.875 and V ∗ = 0.56. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
6.23 Fluid domain geometry and boundary conditions for the flexible cantilever in the

wake of a square cylinder (H = 0.01 m). . . . . . . . . . . . . . . . . . . . . . . . 151
6.24 Mesh in the vicinity of the square cylinder with flexible cantilever. . . . . . . . . 152
6.25 Velocity field of the computed flow around the square cylinder, left without rigid

cantilever and right with rigid cantilever. Instantaneous view corresponding to
the maximum lift. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

6.26 Vertical displacement of the cantilever tip as a function of time. Uncoupled free
response. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

6.27 Vertical displacement of the cantilever tip as a function of time. Coupled vortex-
induced response. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155



LIST OF FIGURES 214

6.28 Flexible cantilever attached to a rigid square cylinder: velocity magnitude contour
at three phases of a period. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

6.29 Flexible cantilever attached to a rigid square cylinder: velocity magnitude contour
and deformation mode for three different mass ratios at the time of maximum
deformation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

6.30 Geometry of the AGARD 445.6 wing. . . . . . . . . . . . . . . . . . . . . . . . . 160
6.31 CFD mesh around the AGARD 445.6 wing. . . . . . . . . . . . . . . . . . . . . . 161
6.32 Aeroelastic response of the AGARD 445.6 wing for three speed indices V ∗ with

M = 0.96 and ρf = 0.0634 kg/m3: vertical displacement dz of the leading edge at
the wing tip normalized by br = cr/2. The flutter speed index is V ∗f = 0.281 . . . 165

6.33 Computed damping coefficient of the AGARD 445.6 wing aeroelastic response as
a function of the speed index for M = 0.96 and ρf = 0.0634 kg/m3. . . . . . . . . 165

6.34 Surface pressure and Mach number in supersonic region for the AGARD 445.6
wing at three different time instants of a period with M= 0.96, ρf = 0.0634 kg/m3

and V ∗ = 0.3. The flow is from right to left. . . . . . . . . . . . . . . . . . . . . . 166
6.35 Flutter boundary of the AGARD 445.6 wing in the transonic regime. . . . . . . . 167
6.36 Typical distribution of the CPU time, with respect to the total CPU time, for

each sub-system of a coupled simulation on the AGARD 445.6 flutter case. . . . 167
6.37 Heated hollow cylinder in a cross flow, geometry and boundary conditions. . . . . 169
6.38 Steady laminar flow around the circular cylinder at Re = 40. Velocity magnitude

contour with streamlines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
6.39 Radial distribution of the temperature in the hollow cylinder for two different

types of boundary conditions applied at the outer boundary. . . . . . . . . . . . . 171
6.40 Case A - Temperature distribution over the wetted surface of the cylinder. The

upstream stagnation point corresponds to θ = 0◦. . . . . . . . . . . . . . . . . . . 173
6.41 Temperature distribution inside the hollow cylinder. . . . . . . . . . . . . . . . . 173
6.42 Case A - Temperature distribution over the wetted surface of the cylinder for

three different circumferential discretizations of the solid surface interface mesh.
FFTB scheme. The upstream stagnation point corresponds to θ = 0◦. . . . . . . 174

6.43 Case B - Temperature distribution over the wetted surface of the cylinder. The
upstream stagnation point corresponds to θ = 0◦. . . . . . . . . . . . . . . . . . . 175

7.1 Geometry of the cantilever flat plate wing. . . . . . . . . . . . . . . . . . . . . . . 178
7.2 Typical behavior of the LCO amplitude as a function of the free-stream airspeed

for a supercritical (black) and a subcritical (red) Hopf bifurcation. Values are
arbitrary. Uc is the critical airspeed. . . . . . . . . . . . . . . . . . . . . . . . . . 179

7.3 Fluid mesh around the wing plate (configuration S0). . . . . . . . . . . . . . . . . 180
7.4 Wind-off response of the plate leading edge at the wing tip, configuration S0,

with respect to different perturbation durations but with the same perturbation
pattern (as described in Section 7.1). . . . . . . . . . . . . . . . . . . . . . . . . . 184

7.5 Maximum wind-off amplitude of the response as a function of t∗ for the S0 plate
configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

7.6 Flutter speed (a) and frequency (b) as a function of the sweep angle for the AR4
plates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

7.7 Aeroelastic response (out-of-plane displacement of the plate tip LE) of the config-
uration AR4-S0 for U < Uf = 16.9 m/s and an initial perturbation using t∗ = 0.01
s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

7.8 Aeroelastic response (out-of-plane displacement of the plate tip LE) of the con-
figuration AR4-S45 for U < Uf = 13.8 m/s and an initial perturbation using
t∗ = 0.01 s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

7.9 Aeroelastic response (z-displacement of the plate tip LE) of the configuration S0
at U = 17.1 m/s (= 1.01Uf) for different initial perturbation durations. . . . . . . 190



LIST OF FIGURES 215

7.10 Contour of the z-displacement (peak value) for the S0 configuration at U = 17.1
m/s (= 1.01Uf) and small initial perturbation duration (t∗ = 0.01 s). The motion
is dominated by bending. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

7.11 Contour of the z-displacement(peak value) for the S0 configuration at U = 17.1
m/s (= 1.01Uf) and large initial perturbation duration (t∗ = 0.1 s). The motion
is dominated by torsion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

7.12 Out-of-plane z-displacement of the leading and trailing edges at the wing tip for
different initial perturbation durations at U = 17.1 m/s = 1.01Uf, configuration S0.192

7.13 z-displacement at the plate tip of the leading edge for configuration S0 and for
different post-critical free-stream velocities (t∗ = 0.01 s). Note that the plotted
simulation time is truncated at 3 s for clarity, but simulations have been run up
to 5 s with no change in the response. . . . . . . . . . . . . . . . . . . . . . . . . 193

7.14 LCO amplitude and frequency of the aeroelastic response (z-displacement of the
leading edge at the plate tip) as a function of the free-stream airspeed, normalized
by the flutter speed, configuration S0. . . . . . . . . . . . . . . . . . . . . . . . . 194

7.15 Types of LCO responses obtained with respect to the perturbation duration t∗

and the free-stream airspeed U . Not available data are mostly computations that
experience robustness issues and for which no result could be extracted. . . . . . 195

7.16 Pressure contour and velocity streamlines on the second half-span and at maxi-
mum deformation of the high-frequency response. U = 1.01Uf, configuration S0.
The flow is from right to left. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

7.17 Contour of the streamwise negative skin friction coefficient and pressure-coloured
streamlines on the second half-span and at maximum deformation of the high-
frequency response. U = 1.01Uf, configuration S0. The flow is from right to
left. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

7.18 Aeroelastic response (z-displacement of the plate tip LE) of the configuration S45
at different free-stream velocities (t∗ = 0.01 s). . . . . . . . . . . . . . . . . . . . 198

7.19 z-displacement of the leading edge at the plate tip for a free-stream airspeed
U = 1.03Uf and a perturbation duration t∗ = 0.1 s; configuration S45. . . . . . . 198

7.20 Qualitative comparison of the plate LCO between computation with CUPyDO
and experimental observation, configuration S45. . . . . . . . . . . . . . . . . . . 200

7.21 Flow velocity streamlines at the plate tip and crest amplitude of the deformation.
U = Uf, configuration S45. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

22 One-dimensional oscillator of mass m, with stiffness k and damping c. . . . . . . 241
23 Simplified fluid-solid coupled problem. . . . . . . . . . . . . . . . . . . . . . . . . 242
24 Illustration of added-mass effect for the simplified fluid-solid coupled problem. . . 243
25 Newmark algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245
26 Geometry of the hollow cylinder with boundary conditions for the thermal analysis.252



List of Tables

2.1 Typical material properties of dry air at standard conditions under the calorically
perfect gas assumption. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1 Stability conditions on the numerical heat transfer coefficient (through the nu-
merical Biot number) for different numerical schemes as a function of the physical
Biot number. The particular value of Bi = 1 leads to a stable coupling, whichever
the scheme is applied. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.2 Examples of basis functions frequently used for fluid-structure interface mapping.
For locally supported functions, ξ = ||x||

r where r is the compact radius. The
subscript + means that only positive contributions are considered (zero otherwise). 60

4.1 Summary of existing coupling software evaluated according to selected criteria. . 88

5.1 Main coupling routines of the SU2 Python wrapper. . . . . . . . . . . . . . . . . 98
5.2 Summary of the different interface discretization combinations used during the

verification tests. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.1 Physical parameters for the one degree-of-freedom cylinder in a cross flow. . . . . 127
6.2 Simulation parameters for the one degree-of-freedom cylinder in a cross flow. . . 129
6.3 Structural and flow parameters for the Isogai wing section aeroelastic test case. . 138
6.4 Simulation parameters for the Isogai wing section aeroelastic test case. . . . . . . 138
6.5 Structural parameters used for the verification of the pitch-plunge airfoil model

implemented in the rigid body integrator. . . . . . . . . . . . . . . . . . . . . . . 139
6.6 Comparison of flutter speed indices computed by strong and weak coupling schemes,

M= 0.875. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
6.7 Flexible cantilever attached to a rigid square cylinder: physical properties of the

solid and fluid. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
6.8 Simulation parameters for the VIV flexible cantilever. . . . . . . . . . . . . . . . 152
6.9 Flow around a square cylinder: Strouhal number and drag coefficients for a flow

around a square cylinder: comparison between current computed values and var-
ious references (both experimental and numerical). . . . . . . . . . . . . . . . . . 153

6.10 Comparison between computed and analytical values for the first four natural
frequencies of the cantilever. Frequencies are expressed in Hz. . . . . . . . . . . . 154

6.11 Comparison of the maximum tip displacement and oscillation frequency of the
flexible cantilever between the present computation and results from the litera-
ture. The range of values obtained by Sanchez et al. corresponds to a parametric
study on the relaxation parameter in the BGS algorithm. . . . . . . . . . . . . . 156

6.12 Summary of results obtained with different prediction orders: mean number of
coupling iterations per time step and mean value of the final coupling error per
time step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

216



LIST OF TABLES 217

6.13 Flexible cantilever attached to a rigid square cylinder: analysis of the efficiency
of the coupling algorithm with decreasing density ratio. ω is the value of the
relaxation parameter in case of static relaxation. In the case an Aitken’s relax-
ation, it corresponds to the fixed value used in criterion Eq. (3.23). NFSI is the
average number of coupling iterations per time step. The X symbol means that
the coupling process diverges. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

6.14 Geometrical properties of the AGARD 445.6 wing. . . . . . . . . . . . . . . . . . 160
6.15 Material properties for the AGARD 445.6 wing. . . . . . . . . . . . . . . . . . . . 161
6.16 Mesh discretizations used for the preliminary fluid simulations. Number of wing

surface cells and total number of cells (whole mesh). . . . . . . . . . . . . . . . . 162
6.17 Lift and moment coefficients as functions of the angle of attack for the four fluid

meshes. Preliminary steady fluid simulations with rigid wing. . . . . . . . . . . . 163
6.18 First four natural frequencies of the AGARD 445.6 wing from the present calcu-

lation and the literature (all numerical models). Frequencies are in Hz with f1

and f3 corresponding to the first and second bending modes, and f2 and f4 to
the first and second torsion modes, respectively. . . . . . . . . . . . . . . . . . . . 164

6.19 Vertical displacement of the wing tip at the leading and trailing edges (respectively
denoted LE and TE). T is the average time spent by the interpolation at each
FSI iteration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

6.20 Constants A and B for the analytical solution, Eq. (6.27), of the uncoupled ther-
mal problem in the hollow cylinder. . . . . . . . . . . . . . . . . . . . . . . . . . . 171

6.21 Comparison of the performance of different CHT coupling schemes - case A. . . . 172
6.22 Comparison of the performance of different CHT coupling schemes - case B (Bi =

2.04). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

7.1 Geometrical parameters of the flat plate wings investigated experimentally by
Dimitriadis et al. [253] The configurations considered in the present numerical
study are highlighted by the ? symbol. . . . . . . . . . . . . . . . . . . . . . . . . 177

7.2 Control parameters for aeroelastic simulations of the flat plate wing. . . . . . . . 181
7.3 Mesh discretizations used for the preliminary fluid simulations. Number of wing

surface cells, number of cells in the radial direction between the plate surface and
the outer domain boundary, and total number of cells (entire mesh). . . . . . . . 181

7.4 Stationary (low AoA) and time-averaged (high AoA) aerodynamic coefficients
obtained with several mesh discretizations. titer is the time per steady iteration. . 182

7.5 Mesh discretizations used for the preliminary structural modal analysis. Number
of wing volume cells. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

7.6 First five natural frequencies of the plate in configuration AR4-S45 computed
with Metafor using different mesh discretizations and compared to the results of
the finite element model of Dimitriadis et al. [253]. Frequencies are in Hz. . . . . 183

7.7 First five natural frequencies computed with Metafor for all considered AR4 plate
configurations using the selected mesh, i.e. mesh B’. Comparison with the results
of the finite element model of Dimitriadis et al. [253]. Frequencies are in Hz. . . . 183

7.8 Maximum amplitude and main frequency content of the wind-off response for the
configuration AR4-S0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

7.9 Flutter characteristics (velocity Uf in m/s and frequency ff in Hz) computed with
CUPyDO for the different AR4 plate configurations. Results are compared with
the VLM results and experimental measurements reported in Dimitriadis et al. [253].185

10 Variable mesh discretization, TPS and CPC2 basis functions. . . . . . . . . . . . 249
11 CPC2 basis function with variable radius. . . . . . . . . . . . . . . . . . . . . . . 249
12 Variable mesh discretization, TPS and CPC2 basis functions. . . . . . . . . . . . 250
13 CPC2 basis function with variable radius. . . . . . . . . . . . . . . . . . . . . . . 250
14 Variable mesh discretization, TPS and CPC2 basis functions. . . . . . . . . . . . 251



LIST OF TABLES 218

15 CPC2 basis function with variable radius. . . . . . . . . . . . . . . . . . . . . . . 251



Bibliography

[1] A. Bejan, J.D. Charles, and S. Lorente. The evolution of airplanes. Journal of Applied
Physics, 116(4), 2014. https://doi.org/10.1063/1.4886855.

[2] M.L. Cerquaglia, D. Thomas, R. Boman, V. Terrapon, and J.-P. Ponthot. A fully parti-
tioned Lagrangian framework for FSI problems characterized by free surfaces, large solid
deformations and displacements, and strong added-mass effects. Computer Methods in
Applied Mechanics and Engineering, 348:409–442, 2019. https://doi.org/10.1016/j.

cma.2019.01.021doi:10.1016/j.cma.2019.01.021.

[3] M.L. Cerquaglia. Development of a fully-partitioned PFEM-FEM approach for fluid-
structure interaction problems characterized by free surfaces, large solid deformations, and
strong added-mass effects. PhD thesis, Université de Liège, Belgium, 2019.

[4] A. Crovato, H.S. Almeida, G. Vio, G.H. Silva, A.P. Prado, C. Breviglieri, H. Güner,
P.H. Cabral, R. Boman, V.E. Terrapon, and G. Dimitriadis. Effect of levels of fidelity
on steady aerodynamic and static aeroelastic computations. Aerospace, 7, 2020. https:

//doi.org/10.3390/aerospace7040042.

[5] A. Crovato. Steady Transonic Aerodynamic and Aeroelastic Modeling for Preliminary
Aircraft Design. PhD thesis, Université de Liège, Belgium, 2020.

[6] H. Güner. Unsteady aerodynamic modeling methodology based on Dynamic Mode Interpo-
lation (DMI) for transonic flutter calculations. PhD thesis, Université de Liège, Belgium,
2020.

[7] H. Güner, D. Thomas, G. Dimitriadis, and V.E. Terrapon. Unsteady aerodynamic mod-
eling methodology based on dynamic mode interpolation for transonic flutter calcula-
tions. Journal of Fluid and Structures, 84:218–232, 2019. https://doi.org/10.1016/j.
jfluidstructs.2018.11.002.

[8] G.J. Kennedy and J. Martins. A parallel finite-element framework for largescale gradient-
based design optimization of high-performance structures. Finite Elements in Analysis
and Design, 87:56–73, 2014. https://doi.org/10.1016/j.finel.2014.04.011.

[9] M.A. Abdelrhman. Modeling coupling between eelgrass zostera marina and water flow.
Marine Ecology Progress Series, 338:81–96, 2007.

[10] I.E. Garrick and W.H. Reed III. Historical development of aircraft flutter. Journal of
Aircraft, 18(11):897–912, 1981.

[11] Shigehiko Kaneko, Tomomichi Nakamura, Fumio Inada, Minoru Kato, Kunihiko Ishihara,
Takashi Nishihara, and Mikael A. Langthjem, editors. Flow-Induced Vibrations. Academic
Press, Oxford, Second edition, 2014. https://doi.org/10.1016/B978-0-08-098347-9.

00011-4.

219

https://doi.org/10.1063/1.4886855
https://doi.org/10.1016/j.cma.2019.01.021
https://doi.org/10.1016/j.cma.2019.01.021
https://doi.org/10.3390/aerospace7040042
https://doi.org/10.3390/aerospace7040042
https://doi.org/10.1016/j.jfluidstructs.2018.11.002
https://doi.org/10.1016/j.jfluidstructs.2018.11.002
https://doi.org/10.1016/j.finel.2014.04.011
https://doi.org/10.1016/B978-0-08-098347-9.00011-4
https://doi.org/10.1016/B978-0-08-098347-9.00011-4


BIBLIOGRAPHY 220

[12] D.G. Gorman, J.M. Reese, and Y.L. Zhang. Vibration of a flexible pipie conveying viscous
pulsating fluid flow. Journal of Sound and Vibration, 230(2):379–392, 2000.

[13] L. Lui and F. Xuan. Flow-induced vibration analysis of supported pipes conveying pulsat-
ing fluid using precise integration method. Mathematical Problems in Engineering, 2010,
2010.

[14] S. Zhou, T-J. Yu, X-D. Yang, and W. Zhang. Global dynamics of pipes conveying pulsating
fluid in the supercritical regime. International Journal of Applied Mechanics, (2), 2017.

[15] M.P. Päıdoussis. Fluid-Structure Interaction: Slender structures and axial flow, volume 1.
Elsevier Academic Press, Second edition, 2014.

[16] F. Xie, X. Zheng, M.S. Triantafyllou, Y. Constantinides, and G. Em Karniadakis. The
flow dynamics of the garden-hose instability. Journal of Fluid Mechanics, 800:595–612,
2016.

[17] X. Li, B. Sun, H. You, and L. Wang. Evolution of Rolls-Royce air-cooled turbine blades
and feature analysis. Procedia Engineering, 2014 Asia-Pacific International Symposium
on Aerospace Technology, APISAT2014, 99:1482–1491, 2015.

[18] R.D. Blevins. Flow-Induced Vibrations. Nostrand Reinhold Co., New York, 1977.

[19] T. Sarpkaya. Vortex-Induced Oscillations: A selective review. Journal of Applied Mechan-
ics, 46(2):241–258, 1979. https://doi.org/10.1115/1.3424537.

[20] C.H.K. Williamson. Vortex shedding in the cylinder wake. Annual Review of Fluid Me-
chanics, 28:477–539, 1996. https://doi.org/10.1146/annurev.fl.28.010196.002401.

[21] P.W. Bearman. Circular cylinder wakes and vortex-induced vibrations. Journal of Fluids
and Structures, (5):648–658, 2011. https://doi.org/10.1016/j.jfluidstructs.2011.

03.021.

[22] R. Bourguet and M.S. Triantafyllou. Vortex-induced vibrations of a flexible cylinder at
large inclination angle. Philosophical transactions Series A, Mathematical, physical, and
engineering sciences, 373(2033), 2015. https://doi.org/10.1098/rsta.2014.0108.

[23] Jiaqing Kou, Weiwei Zhang, Yilang Liu, and Xintao Li. The lowest reynolds number of
vortex-induced vibrations. Physics of Fluids, 29(4):041701, 2017. https://doi.org/10.

1063/1.4979966.

[24] M. Van Dyke. An album of fluid motion. The Parabolic Press, Stanford, California, USA,
1982.

[25] M.S. Triantafyllou, R. Bourguet, J. Dahl, and Y. Modarres-Sadeghi. Vortex-Induced
Vibrations. In M.R. Dhanak and N.I Xiros, editors, Handbook of Ocean Engineer-
ing, chapter 36, pages 819–849. Spring International, 2004. https://doi.org/10.1007/

978-3-319-16649-0.

[26] Jing Xu, Dongshi Wang, Hui Huang, Menglan Duan, Jijun Gu, and Chen An. A vortex-
induced vibration model for the fatigue analysis of a marine drilling riser. Ships and Off-
shore Structures, 12(S1):S280–S287, 2017. https://doi.org/10.1080/17445302.2016.

1271557.

[27] Yongle Li, Haojun Tang, Qiaoman Lin, and Xinzhong Chen. Vortex-induced vibration
of suspenders in the wake of bridge tower by numerical simulation and wind tunnel test.
Journal of Wind Engineering and Industrial Aerodynamics, 164(Sup C):164 – 173, 2017.
https://doi.org/10.1016/j.jweia.2017.02.017.

https://doi.org/10.1115/1.3424537
https://doi.org/10.1146/annurev.fl.28.010196.002401
https://doi.org/10.1016/j.jfluidstructs.2011.03.021
https://doi.org/10.1016/j.jfluidstructs.2011.03.021
https://doi.org/10.1098/rsta.2014.0108
https://doi.org/10.1063/1.4979966
https://doi.org/10.1063/1.4979966
https://doi.org/10.1007/978-3-319-16649-0
https://doi.org/10.1007/978-3-319-16649-0
https://doi.org/10.1080/17445302.2016.1271557
https://doi.org/10.1080/17445302.2016.1271557
https://doi.org/10.1016/j.jweia.2017.02.017


BIBLIOGRAPHY 221

[28] P. D’Asdia and S. Noè. Vortex-induced vibration of reinforced concrete chimneys: in
sity experimentation and numerical previsions. Journal of Wind Engineering and Indus-
trial Aerodynamics, 74-76:765–776, 1998. https://doi.org/10.1016/S0167-6105(98)

00069-5.

[29] V. Holland, T. Tezdogan, and E. Oguz. Full-scale CFD investigations of helicql strakes as
a means of reducing the vortex induced forces on a semi-submersible. Ocean Engineering,
137:338–351, 2017. https://doi.org/10.1016/j.oceaneng.2017.04.014.

[30] Päıdoussis Michael P., Price Stuart J., and de Langre Emmanuel. Fluid-Structure Inter-
action: Cross-Flow-Induced Instabilities. Cambridge University Press, New York, First
edition, 2011.

[31] J.P. Den Hartog. Mechanical vibrations. McGraw-hill, New York, 1956.

[32] C.B. Rawlins. Galloping conductors. In Transmission Line Reference Book, chapter 4,
Wind-induced conductor motion. Palo Alto, CA: Electic Power Research Institute, 1979.

[33] C. Scruton. Wind effects on structures. Proceedings Institution of Mechanical Engineers,
185:301–317, 1971.

[34] G.V. Parkinson. Wind-induced instability of structures. Philosophical Transactions of the
Royal Society, 269:395–409, 1971.

[35] Y.C Fung. An introducion to the theory of elasticity. Dover Publications, Inc, New York,
1993.

[36] E.H Dowell, R Clark, D. Cox, H.C. Curtiss, J.W. Edwards, K.C. Hall, D.A. Peters,
R. Scanlan, E. Simiu, F. Sisto, and T.W. Strganac. A modern course in aeroelasticity,
volume 116 of Solid mechanics and its applications. Kluwer Academic Publisher, fourth
revised and enlarged edition, 2004.

[37] F. Debrabandere. Computational methods for industrial Fluid-Structure Interactions. PhD
thesis, Université de Mons, Belgium, 2014.

[38] W. Shyy, Y. Lian, S.K. Chimakurthi, J. Tang, C.E.S Cesnik, B. Stanford, and Ifju
P.G. Flexible wings and fluid-structure interactions for micro-air vehicles. In D. Flo-
reano, JC. Zufferey, M. Srinivasan, and Ellington C., editors, Flying Insects and
Robots, pages 143–157. Springer, Berlin, Heidelberg, 2009. https://doi.org/10.1007/

978-3-540-89393-6_11.

[39] T.P. Combes, A.S. Malik, G. Bramesfeld, and M.W. McQuilling. Efficient fluid-structure
interaction method for conceptual design of flexible, fixed-wing micro-air-vehicle wings.
AIAA Journal, 53(6):1142–1454, 2015. https://doi.org/10.2514/1.J053125.

[40] F-B. Tian, H. Dai, H. Luo, J.F. Doyle, and B. Rousseau. Fluid-structure interaction in-
volving large deformations: 3D simulations and applications to biological systems. Journal
of Computational Physics, 258:451–469, 2014. https://doi.org/10.1016/j.jcp.2013.

10.047.

[41] A. Abdelkefi. Aeroelastic energy harvesting: A review. International Journal of Engineer-
ing Science, 100:112–135, 2016. https://doi.org/10.1016/j.ijengsci.2015.10.006.

[42] K. Shoele and R. Mittal. Energy harvesting by flow-induced flutter in a simple model
of an inverted piezoelectric flag. Journal of Fluid Mechanics, 790:582–606, 2016. https:

//doi.org/10.1017/jfm.2016.40.

https://doi.org/10.1016/S0167-6105(98)00069-5
https://doi.org/10.1016/S0167-6105(98)00069-5
https://doi.org/10.1016/j.oceaneng.2017.04.014
https://doi.org/10.1007/978-3-540-89393-6_11
https://doi.org/10.1007/978-3-540-89393-6_11
https://doi.org/10.2514/1.J053125
https://doi.org/10.1016/j.jcp.2013.10.047
https://doi.org/10.1016/j.jcp.2013.10.047
https://doi.org/10.1016/j.ijengsci.2015.10.006
https://doi.org/10.1017/jfm.2016.40
https://doi.org/10.1017/jfm.2016.40


BIBLIOGRAPHY 222

[43] J.M. McCarthy, S. Watkins, A. Deivasigamani, and S.J. John. Fluttering energy harvesters
in the wind: A review. Journal of Sound and Vibration, 361:355–377, 2016. https:

//doi.org/.

[44] Q. Xiao and Q. Zhu. A review on flow energy harvesters based on flapping foils. Journal of
Fluids and Structures, 46:174–191, 2014. https://doi.org/10.1016/j.jfluidstructs.
2014.01.002.

[45] T.B. Le and F. Sotiropoulos. Fluid-structure interaction of an aortic heart valve prosthesis
driven by an animated anatomic left ventricle. Journal of Computational Physics, 244:41–
62, 2013. https://doi.org/10.1016/j.jcp.2012.08.036.

[46] L. Radtke, A. Larena-Avellaneda, T. Kölbel, E.S. Debus, and A. Düsterl. Cardiovascular
fluid-structure interaction: A partitioned approach utilizing the p-fem. Proceedings in
Applied Mathematics and Mechanics, 14(1):493–494, 2014. https://doi.org/10.1002/

pamm.201410234.

[47] S.R. Idelsohn, E. Oñate, R. Rossi, J. Marti, and F. Del Pin. New computational challenges
in fluid-structure interactions problems. In J Eberhardsteiner, C Hellmich, HA Mang, and
J Périaux, editors, ECCOMAS Multidisciplinary Jubilee Symposium, volume 14 of Com-
putational Methods in Applied Sciences, pages 17–31. Springer Netherlands, Dordrecht,
2009. https://doi.org/10.1007/978-1-4020-9231-2_2.

[48] P.B. Ryzhakov, R. Rossi, S.R. Idelsohn, and E. Oñate. A monolithic Lagrangian ap-
proach for fluid-structure interaction problems. Computational Mechanics, 46:883–899,
2010. https://doi.org/10.1007/s00466-010-0522-0.

[49] G. Hou, J. Wang, and A. Layton. Numerical methods for fluid-structure interaction - A
review. Communications in Computational Physics, 12(2):337–377, 2012. https://doi.

org/10.4208/cicp.291210.290411s.

[50] J. Donéa, A. Huerta, J-Ph. Ponthot, and A. Rodŕıguez-Ferran. Arbitrary Lagrangian-
Eulerian methods. In R. Stein, R. de Borst, and T.J.R. Hughes, editors, Encyclopedia of
Computational Mechanics. Wiley, 2004. https://doi.org/10.1002/0470091355, ISBN
9780470091357.

[51] R. Boman and J-P. Ponthot. Finite element simulation of lubricated contact in rolling using
the arbitrary Lagrangian–Eulerian formulation. Computer Methods in Applied Mechanics
and Engineering, 193(39-41):4323–4353, 2004. https://doi.org/10.1016/j.cma.2004.

01.034.

[52] J.D. Jr Anderson. Fundamentals of aerodynamics. McGraw-Hill, New York, fifth edition,
2011.

[53] E. Garnier, N. Adams, and P. Sagaut. Large Eddy Simulation for Compressible
Flows. Scientific Computation. Springer Netherlands, 2009. https://doi.org/10.1007/

978-90-481-2819-8.

[54] J. Smagorinsky. General circulation experiments with the primitive equations.I. The basic
experiment. Monthly Weather Review, 91(3):99–164, 1963. https://doi.org/10.1175/

1520-0493(1963)091<0099:GCEWTP>2.3.CO;2.

[55] P.A. Durbin and B.A. Pettersson-Reif. Reynolds-Averaged Navier-Stokes equations. In
Statistical theory and modeling for turbulent flows. Wiley, second edition, 2010. ISBN
978-0-470-68931-8.

https://doi.org/
https://doi.org/
https://doi.org/10.1016/j.jfluidstructs.2014.01.002
https://doi.org/10.1016/j.jfluidstructs.2014.01.002
https://doi.org/10.1016/j.jcp.2012.08.036
https://doi.org/10.1002/pamm.201410234
https://doi.org/10.1002/pamm.201410234
https://doi.org/10.1007/978-1-4020-9231-2_2
https://doi.org/10.1007/s00466-010-0522-0
https://doi.org/10.4208/cicp.291210.290411s
https://doi.org/10.4208/cicp.291210.290411s
https://doi.org/10.1002/0470091355
https://doi.org/10.1016/j.cma.2004.01.034
https://doi.org/10.1016/j.cma.2004.01.034
https://doi.org/10.1007/978-90-481-2819-8
https://doi.org/10.1007/978-90-481-2819-8
https://doi.org/10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2
https://doi.org/10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2


BIBLIOGRAPHY 223

[56] P.R. Spalart and S.R. Allmaras. A one-equation turbulence model for aerodynamic flows.
In 30th Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, 1992. https://doi.

org/10.2514/6.1992-439.

[57] F.R. Menter. Zonal two equation k − ω turbulence model for aerodynamic flows. In
AIAA Paper 1993-2906. 23rd Fluid Dynamics, Plasmadynamics, and Lasers Conference,
Orlando, Florida, USA, 1993. https://doi.org/10.2514/6.1993-2906.

[58] J-P. Ponthot. Unified stress update algorithms for the numerical simulation of large defor-
mation elasto-plastic and elasto-viscoplastic processes. International Journal of Plasticity,
18(1):91–126, 2002. https://doi.org/10.1016/S0749-6419(00)00097-8.

[59] A. Bertram and R. Glüge. Solid Mechanics: Theory, Modeling and Problems. Springer,
first german edition, 2013.

[60] A. Ibrahimbegovic. Nonlinear Solid Mechanics: Theoretical Formulations and Finite El-
ement Solution Methods, volume 160 of Solid mechanics and its applications. Springer,
2009.

[61] C. Farhat, M. Lesoinne, and P. Le Tallec. Load and motion transfer algorithms for
fluid/structure interaction problems with non-matching discrete interfaces: momentum
and energy conservation, optimal discretization and application to aeroelasticity. Com-
puter Methods in Applied Mechanics and Engineering, 157(1-2):95–114, 1998. https:

//doi.org/10.1016/S0045-7825(97)00216-8.

[62] M. Lesoinne and C. Farhat. Stability analysis of dynamic meshes for transient aeroe-
lastic computations. In AIAA Paper 93-3325. 11th AIAA Computational Fluid Dy-
namics Conference, pages 309–314, Orlando, Florida, USA, July 6-9 1993. https:

//doi.org/10.2514/6.1993-3325.

[63] U. Küttler and W. Wall. Fixed-point fluid-structure interaction solvers with dynamic
relaxation. Computational Mechanics, 43:61–72, 2008. https://doi.org/10.1007/

s00466-008-0255-5.

[64] R.L. Bisplinghoff, H. Ashley, and R.L. Halfman. Aeroelasticity. Dover Publications, 1996.

[65] P. Causin, J.F. Gerbeau, and F. Nobile. Added-mass effect in the design of partitioned
algorithms for fluid-structure problems. Computer Methods in Applied Mechanics and
Engineering, 194:4506–4527, 2005. https://doi.org/10.1016/j.cma.2004.12.005.

[66] C. Förster, W.A. Wall, and E. Ramm. The artificial added-mass effect in sequential
staggered fluid-structure interaction algorithm. In European Conference on Computational
Fluid Dynamics ECCOMAS CFD, TU Delft, The Netherlands, 2006.

[67] J. Degroote, P. Bruggeman, R. Haelterman, and J. Vierendeels. Stability of a coupling
technique for partitioned solvers in FSIapplications. Computers and Structures, 86(23-
24):2224–2234, 2008. https://doi.org/10.1016/j.compstruc.2008.05.005.

[68] B.M. Irons and R.C. Turck. A version of the Aitken accelerator for computer iteration.
International journal for Numerical Methods in Engineering, 1:275–277. https://doi.

org/10.1002/nme.1620010306.

[69] A.E.J Bogaers, S. Kok, B.D. Reddyd, and T. Franz. Quasi-Newton methods for implicit
bock-box FSI coupling. Computational Methods in Applied Mechanics and Engineering,
279:113–132, 2014. https://doi.org/10.1016/j.cma.2014.06.033.

https://doi.org/10.2514/6.1992-439 
https://doi.org/10.2514/6.1992-439 
https://doi.org/10.2514/6.1993-2906 
https://doi.org/10.1016/S0749-6419(00)00097-8
https://doi.org/10.1016/S0045-7825(97)00216-8
https://doi.org/10.1016/S0045-7825(97)00216-8
https://doi.org/10.2514/6.1993-3325 
https://doi.org/10.2514/6.1993-3325 
https://doi.org/10.1007/s00466-008-0255-5
https://doi.org/10.1007/s00466-008-0255-5
https://doi.org/10.1016/j.cma.2004.12.005
https://doi.org/10.1016/j.compstruc.2008.05.005
https://doi.org/10.1002/nme.1620010306
https://doi.org/10.1002/nme.1620010306
https://doi.org/10.1016/j.cma.2014.06.033


BIBLIOGRAPHY 224

[70] J. Degroote, R. Haelterman, S. Annerel, C. Bruggeman, and J. Vierendeels. Performance
of partitioned procedures in fluid–structure interaction. Computers and Structures, 88(7-
8):446–457, 2010. https://doi.org/10.1016/j.compstruc.2009.12.006.

[71] J. Vierendeels, L. Lanoye, J. Degroote, and P. Verdonck. Implicit coupling of partitioned
fluid–structure interaction problems with reduced order models. Computers and Struc-
tures, 85(11-14):970–976, 2007. https://doi.org/10.1016/j.compstruc.2006.11.006.

[72] A.E.J. Bogaers, S. Kok, B.D. Reddy, and T. Franz. An evaluation of quasi-newton meth-
ods for application to FSI problems involving free surface flow and solid body contact.
Computers and Structures, 173:71–83, 2016. https://doi.org/10.1016/j.compstruc.

2016.05.018.

[73] J. Degroote, K-J. Bathe, and J. Vierendeels. Performance of a new partitioned procedure
versus a monolithic procedure in fluid–structure interaction. Computers and Structures,
87(11-12):793–801, 2009. https://doi.org/10.1016/j.compstruc.2008.11.013.

[74] J. Degroote, S. Annerel, and J. Vierendeels. Stability analysis of Gauss–Seidel iterations
in a partitioned simulation of fluid–structure interaction. Computers and Structures, 88(5-
6):263–271, 2010. https://doi.org/10.1016/j.compstruc.2009.09.003.

[75] R. Haelterman, A.E.J. Bogears, K. Scheufele, B. Uekermann, and M. Mehl. Improving
the performance of the partitioned QN-ILS procedure for fluid–structure interaction prob-
lems: Filtering. Computers and Structures, 171:9–17, 2016. https://doi.org/10.1016/

j.compstruc.2016.04.001.

[76] F. Lindner, M. Mehl, K. Scheufele, and B. Uekermann. A comparison of various quasi-
Newton schemes for partitioned fluid-structure interaction. In VI International Conference
on Computational Methods for Coupled Problems in Science and Engineering, Coupled
Problems 2015, Venice, Italy, 2015.

[77] S. Badia, A. Quaini, and A. Quarteroni. Modular vs. non-modular preconditioners for
fluid–structure systems with large added-mass effect. Computer Methods in Applied Me-
chanics and Engineering, 197(49-50):4216–4232, 2008. https://doi.org/10.1016/j.

cma.2008.04.018.

[78] L. Nettis. Conjugate Heat Transfer: Strategies and Applications. PhD thesis, Politecnico
Di Bari, 2011.

[79] T. Verstraete, Z. Alsalihi, and R.A. Van den Braembussche. A conjugate heat tranfer
method applied to turbomachinery. In European Conference on Computational Fluid Dy-
namics ECCOMAS CFD 2006, TU Delft, The Netherlands, 2006.

[80] T. Verstraete and R.A. Van den Braembussche. A novel method for the computation
of conjugate heat transfer with coupled solvers. In International Symposium on Heat
Transfer in Gas Turbine Systems, Antalya, Turkey, 2009. https://doi.org/10.1615/

ICHMT.2009.HeatTransfGasTurbSyst.570.

[81] T. Verstraete and S. Scholl. Stability analysis of partitioned methods for predicting conju-
gate heat transfer. International Journal of Heat and Mass Transfer, 101:852–869, 2016.
https://doi.org/10.1016/j.ijheatmasstransfer.2016.05.041.

[82] M.B. Giles. Stability analysis of numerical interface conditions in fluid–structure
thermal analysis. International Journal for Numerical Methods in Fluids, 25(4):421–
436, 1997. https://doi.org/10.1002/(SICI)1097-0363(19970830)25:4<421::

AID-FLD557>3.0.CO;2-J.

https://doi.org/10.1016/j.compstruc.2009.12.006
https://doi.org/10.1016/j.compstruc.2006.11.006
https://doi.org/10.1016/j.compstruc.2016.05.018
https://doi.org/10.1016/j.compstruc.2016.05.018
https://doi.org/10.1016/j.compstruc.2008.11.013
https://doi.org/10.1016/j.compstruc.2009.09.003
https://doi.org/10.1016/j.compstruc.2016.04.001
https://doi.org/10.1016/j.compstruc.2016.04.001
https://doi.org/10.1016/j.cma.2008.04.018
https://doi.org/10.1016/j.cma.2008.04.018
https://doi.org/10.1615/ICHMT.2009.HeatTransfGasTurbSyst.570
https://doi.org/10.1615/ICHMT.2009.HeatTransfGasTurbSyst.570
https://doi.org/10.1016/j.ijheatmasstransfer.2016.05.041
https://doi.org/10.1002/(SICI)1097-0363(19970830)25:4<421::AID-FLD557>3.0.CO;2-J
https://doi.org/10.1002/(SICI)1097-0363(19970830)25:4<421::AID-FLD557>3.0.CO;2-J


BIBLIOGRAPHY 225

[83] S.K. Godunov and V.S. Ryabenkii. The Theory of Difference Schemes - An introduction.
North-Holland, Amsterdam, 1964.

[84] M-P. Errera and G. Turpin. Temporal multiscale strategies for conjugate heat transfer
problems. Journal of Coupled Systems and Multiscale Dynamics, 1(1):89–98, 2013. https:
//doi.org/10.1166/jcsmd.2013.1005.

[85] M-P. Errera, M. Lazareff, J-D. Garaud, T. Soubrié, C. Douta, and T. Federici. A cou-
pling approach to modeling heat transfer during a full transient flight cycle. International
Journal of Heat and Mass Transfer, 110:587–605, 2017. https://doi.org/10.1016/j.

ijheatmasstransfer.2017.03.048.

[86] G. Gimenez, M-P. Errera, D. Baillis, Y. Smith, and F. Pardo. A coupling numeri-
cal methodology for weakly transient conjugate heat transfer problems. International
Journal of Heat and Mass Transfer, 97:975–989, 2016. https://doi.org/10.1016/j.

ijheatmasstransfer.2016.02.037.

[87] M-P. Errera and S. Chemin. Optimal solutions of numerical interface conditions in
fluid–structure thermal analysis. Journal of Computational Physics, 245:431–455, 2013.
https://doi.org/10.1016/j.jcp.2013.03.004.

[88] M-P. Errera and F. Duchaine. Comparative study of coupling coefficients in dirichlet–robin
procedure for fluid–structure aerothermal simulations. Journal of Computational Physics,
312:218–234, 2016. https://doi.org/10.1016/j.jcp.2016.02.022.

[89] R. Corral and Z. Wang. An efficient steady state coupled fluid-solid heat transfer method
for turbomachinery applications. International Journal of Thermal Sciences, 130:59–69,
2018. https://doi.org/10.1016/j.ijthermalsci.2018.04.003.

[90] R.R. El Khoury, M. Errera, K. El Khoury, and M. Nemer. Efficiency of coupling schemes
for the treatment of steady state fluid-structure thermal interactions. International Journal
of Thermal Sciences, 115:225–235, 2017. https://doi.org/10.1016/j.ijthermalsci.

2017.02.001.

[91] F. Duchaine, A. Corpron, L. Pons, V. Moureau, F. Nicoud, and T. Poinsot. Development
and assessment of a coupled strategy for conjugate heat transfer with Large Eddy Simula-
tion: Application to a cooled turbine blade. International Journal of Heat and Fluid Flow,
30(6):1129–1141, 2009. https://doi.org/10.1016/j.ijheatfluidflow.2009.07.004.

[92] J. Degroote, A. Swillens, P. Bruggeman, R. Haelterman, P. Segers, and J. Vieren-
deels. Simulation of fluid–structure interaction with the interface artificial compress-
ibility method. Numerical Methods in Biomedical Engineering, 26(3-4):276–289, 2009.
https://doi.org/10.1002/cnm.1276.

[93] S. Jaure, F. Duchaine, G. Staffelbach, and L.Y.M. Gicquel. Massively parallel conjugate
heat transfer methods relying on large eddy simulation applied to an aeronautical com-
bustor. Computational Science and Discovery, 6(1), 2013. https://doi.org/10.1088/

1749-4699/6/1/015008.

[94] E. Radenac, J. Gressier, and P. Millan. Methodology of numerical coupling for transient
conjugate heat transfer. Computers and Fluids, 100:95–107, 2014. https://doi.org/10.
1016/j.compfluid.2014.05.006.

[95] B. Roe, R. Jaiman, A. Haselbacher, and P.H. Geubelle. Combined interface boundary
condition method for coupled thermal simulations. International Journal for Numerical
Methods in Fluids, 57(3):329–354, 2008. https://doi.org/10.1002/fld.1637.

https://doi.org/10.1166/jcsmd.2013.1005
https://doi.org/10.1166/jcsmd.2013.1005
https://doi.org/10.1016/j.ijheatmasstransfer.2017.03.048
https://doi.org/10.1016/j.ijheatmasstransfer.2017.03.048
https://doi.org/10.1016/j.ijheatmasstransfer.2016.02.037
https://doi.org/10.1016/j.ijheatmasstransfer.2016.02.037
https://doi.org/10.1016/j.jcp.2013.03.004
https://doi.org/10.1016/j.jcp.2016.02.022
https://doi.org/10.1016/j.ijthermalsci.2018.04.003
https://doi.org/10.1016/j.ijthermalsci.2017.02.001
https://doi.org/10.1016/j.ijthermalsci.2017.02.001
https://doi.org/10.1016/j.ijheatfluidflow.2009.07.004
https://doi.org/10.1002/cnm.1276
https://doi.org/10.1088/1749-4699/6/1/015008
https://doi.org/10.1088/1749-4699/6/1/015008
https://doi.org/10.1016/j.compfluid.2014.05.006
https://doi.org/10.1016/j.compfluid.2014.05.006
https://doi.org/10.1002/fld.1637


BIBLIOGRAPHY 226

[96] B. Baqué, M. Errera, A. Roos, and F. Feyel. Simulation of transient conjugate heat trans-
fer via a temporal multiscale approach. International Journal for Multiscale Computa-
tional Engineering, 11(4):333–345, 2013. https://doi.org/10.1615/IntJMultCompEng.

2013004653.

[97] C.S. Peskin. Numerical analysis of blood flow in the heart. Journal of Computational
Physics, 25(3):220–252, 1977. https://doi.org/10.1016/0021-9991(77)90100-0.

[98] C.S. Peskin. The immersed boundary method. Acta Numerica, 11:479–517, 2002. https:
//doi.org/10.1017/S0962492902000077.

[99] R. Mittal and G. Iaccarino. Immersed boundary methods. Annual Review of Fluid Mechan-
ics, 37:239–261, 2005. https://doi.org/10.1146/annurev.fluid.37.061903.175743.

[100] Y. Kim and C.S. Peskin. Penalty immersed boundary method for an elastic boundary
with mass. Physics of Fluids, 19, 2007. https://doi.org/10.1063/1.2734674.

[101] H. Luo, R. Mittal, X. Zheng, S.A. Bielamowicz, R.J. Walsh, and J.K. Hahn. An immersed-
boundary method for flow-structure interaction in biological systems with application to
phonation. Journal of Computational Physics, 227(22):9303–9332, 2008. https://doi.

org/10.1016/j.jcp.2008.05.001.

[102] L. Wang, G.M.D. Currao, F. Han, A.J. Neely, J. Young, and F-B. Tian. An immersed
boundary method for fluid–structure interaction with compressible multiphase flows. Jour-
nal of Computational Physics, 346:131–151, 2017. https://doi.org/10.1016/j.jcp.

2017.06.008.

[103] R. Ghias, R. Mittal, and H. Dong. A sharp interface immersed boundary method for
compressible viscous flows. Journal of Computational Physics, 225(1):528–553, 2007.
https://doi.org/10.1016/j.jcp.2006.12.007.

[104] R. Mittal, H. Dong, M. Bozkurttas, F.M. Najjar, A. Vargas, and A. von Loebbecke. A
versatile sharp interface immersed boundary method for incompressible flows with complex
boundaries. Journal of Computational Physics, 227(10):4825–4852, 2008. https://doi.

org/10.1016/j.jcp.2008.01.028.

[105] A. de Boer, A.H. van Zuijlen, and H. Bijl. Review of coupling methods for non-matching
meshes. Computer Methods in Applied Mechanics and Engineering, 196(8):1515–1525,
2007. https://doi.org/10.1016/j.cma.2006.03.017.

[106] A. Beckert. Coupling fluid (CFD) and structural (FE) models using finite interpolation
elements. Aerospace Science and Technology, 4(1):13–22, 2000. https://doi.org/10.

1016/S1270-9638(00)00111-5.

[107] A. de Boer, A.H. van Zuijlen, and H. Bijl. Radial basis functions for interface interpolation
and mesh deformation. In Barry Koren and Kees Vuik, editors, Advanced Computational
Methods in Science and Engineering, pages 143–178. Springer, Berlin, Heidelberg, 2010.
https://doi.org/10.1007/978-3-642-03344-5_6.

[108] T. Klöppel, A. Popp, U. Küttler, and W.A. Wall. Fluid–structure interaction for non-
conforming interfaces based on a dual mortar formulation. Computer Methods in Applied
Mechanics and Engineering, 200(45-46):3111–3126, 2011. https://doi.org/10.1016/j.

cma.2011.06.006.

[109] C. Bernardi, Y. Maday, and A.T. Patera. A new nonconforming approach to domain
decomposition: the mortar element method. In H. Brezis and J-L. Lions, editors, Collège
de France Seminar. Pitman, 1990.

https://doi.org/10.1615/IntJMultCompEng.2013004653
https://doi.org/10.1615/IntJMultCompEng.2013004653
https://doi.org/10.1016/0021-9991(77)90100-0
https://doi.org/10.1017/S0962492902000077
https://doi.org/10.1017/S0962492902000077
https://doi.org/10.1146/annurev.fluid.37.061903.175743
https://doi.org/10.1063/1.2734674
https://doi.org/10.1016/j.jcp.2008.05.001
https://doi.org/10.1016/j.jcp.2008.05.001
https://doi.org/10.1016/j.jcp.2017.06.008
https://doi.org/10.1016/j.jcp.2017.06.008
https://doi.org/10.1016/j.jcp.2006.12.007
https://doi.org/10.1016/j.jcp.2008.01.028
https://doi.org/10.1016/j.jcp.2008.01.028
https://doi.org/10.1016/j.cma.2006.03.017
https://doi.org/10.1016/S1270-9638(00)00111-5
https://doi.org/10.1016/S1270-9638(00)00111-5
https://doi.org/10.1007/978-3-642-03344-5_6
https://doi.org/10.1016/j.cma.2011.06.006
https://doi.org/10.1016/j.cma.2011.06.006


BIBLIOGRAPHY 227

[110] C. Lacour and Y. Maday. Two different approaches for matching nonconforming grids: the
mortar element method and the FETI method. BIT Numerical Mathematics, 37(3):720–
738, 1997. https://doi.org/10.1007%2FBF02510249.

[111] F.P.T. Baaijens. A fictitious domain/mortar element method for fluid–structure interac-
tion. International Journal for Numerical Methods in Fluids, 35(7):743–761, 2001. https:
//doi.org/10.1002/1097-0363(20010415)35:7<743::AID-FLD109>3.0.CO;2-A.

[112] M.W. Heinstein and T.A. Laursen. A three dimensional surface-to-surface projection
algorithm for non-coincident domains. International Journal for Numerical Methods in
Biomedical Engineering, 19(6):421–432, 2003. https://doi.org/10.1002/cnm.601.

[113] R.K. Jaiman, X. Jiao, P.H. Geubelle, and E. Loth. Conservative load transfer along
curved fluid–solid interface with non-matching meshes. Journal of Computational Physics,
218(1):372–397, 2006. https://doi.org/10.1016/j.jcp.2006.02.016.

[114] X. Jiao and M.T. Heath. Common-refinement-based data transfer between non-matching
meshes in multiphysics simulations. International Journal for Numerical Methods in En-
gineering, 61(14):2402–2427, 2004. https://doi.org/10.1002/nme.1147.

[115] P.E. Farrell, M.D. Piggott, C.C. Pain, G.J. Gorman, and C.R. Wilson. Conserva-
tive interpolation between unstructured meshes via supermesh construction. Computer
Methods in Applied Mechanics and Engineering, 198(33-36):2632–2642, 2009. https:

//doi.org/10.1016/j.cma.2009.03.004.

[116] P.E. Farrell and J.R. Maddison. Conservative interpolation between volume meshes by
local galerkin projection. Computer Methods in Applied Mechanics and Engineering, (1-
4):89–100, 2011. https://doi.org/10.1016/j.cma.2010.07.015.

[117] R.K. Jaiman, X. Jiao, P.H. Geubelle, and E. Loth. Assessment of conservative load transfer
for fluid–solid interface with non-matching meshes. International Journal for Numerical
Methods in Engineering, 64(15):2014–2038, 2005. https://doi.org/10.1002/nme.1434.

[118] P. Chen and Jadoc I. Interfacing of fluid and structural models via innovative structural
boundary element method. AIAA Journal, 36(2):282–287, 1998. https://doi.org/10.

2514/2.7513.

[119] M. Sadeghi, F. Liu, K.L. Lai, and H.M. Tsai. Application of three-dimensional interfaces
for data transfer in aeroelastic computations. In 22nd Applied Aerodynamics Conference
and Exhibit, Guidance, Navigation, and Control and Co-located Conferences, Rhodes Is-
land, Greece, 2004. https://doi.org/10.2514/6.2004-5376.

[120] G.S.L. Goura, K.J. Badcock, M.A. Woodgate, and B.E. Richards. A data exchange method
for fluid-structure interaction problems. The Aeronautical Journal, 105(1046):215–221,
2001. https://doi.org/10.1017/S0001924000025458.

[121] T.C.S. Rendall and C.B. Allen. Unified fluid–structure interpolation and mesh motion
using radial basis functions. International Journal for Numerical Methods in Engineering,
74(10):1519–1559, 2008. https://doi.org/10.1002/nme.2219.

[122] N. Maman and C. Farhat. Matching fluid and structure meshes for aeroelastic compu-
tations: a parallel approach. Computers and Structures, 54(4):779–785, 1995. https:

//doi.org/10.1016/0045-7949(94)00359-B.

[123] M.J. Smith, D.H. Hodges, and C.E.S. Cesnik. Evaluation of computational algorithms
to interface between cfd and csd methodologies. Technical report, Wright-Patterson Air
Force report, WL-TR-96-3055, 1995.

https://doi.org/10.1007%2FBF02510249
https://doi.org/10.1002/1097-0363(20010415)35:7<743::AID-FLD109>3.0.CO;2-A
https://doi.org/10.1002/1097-0363(20010415)35:7<743::AID-FLD109>3.0.CO;2-A
https://doi.org/10.1002/cnm.601
https://doi.org/10.1016/j.jcp.2006.02.016
https://doi.org/10.1002/nme.1147
https://doi.org/10.1016/j.cma.2009.03.004
https://doi.org/10.1016/j.cma.2009.03.004
https://doi.org/10.1016/j.cma.2010.07.015
https://doi.org/10.1002/nme.1434
https://doi.org/10.2514/2.7513
https://doi.org/10.2514/2.7513
https://doi.org/10.2514/6.2004-5376
https://doi.org/10.1017/S0001924000025458
https://doi.org/10.1002/nme.2219
https://doi.org/10.1016/0045-7949(94)00359-B
https://doi.org/10.1016/0045-7949(94)00359-B


BIBLIOGRAPHY 228

[124] M Buhmann. Radial Basis Functions. Cambridge University Press, 2003.

[125] H. Wendland. Scattered Data Approximation. Cambridge University Press, 2004.

[126] A. Beckert and H. Wendland. Multivariate interpolation for fluid-structure-interaction
problems using radial basis functions. Aerospace Science and Technology, 5(2):125–134,
2001. https://doi.org/10.1016/S1270-9638(00)01087-7.

[127] R. Ahrem, A. Beckert, and H. Wendland. A meshless spatial coupling scheme for large-scale
fluid-structure-interaction problems. Computer Modeling in Engineering and Sciences,
12(2):121–136, 2006. https://doi.org/10.3970/cmes.2006.012.121.

[128] Cordero-Gracia M., M. Gómez, and E. Valero. A radial basis function algorithm for
simplified fluid-structure data transfer. International Journal for Numerical Methods in
Engineering, 99(12):888–905, 2014. https://doi.org/10.1002/nme.4708.

[129] T.C.S Rendall and C.B. Allen. Improved radial basis function fluid–structure coupling
via efficient localized implementation. International Journal for Numerical Methods in
Engineering, 78(10):1188–1208, 2009. https://doi.org/10.1002/nme.2526.

[130] E. Luke, E. Collins, and E. Blades. A fast mesh deformation method using explicit in-
terpolation. Journal of Computational Physics, 231(2):586–601, 2012. https://doi.org/
10.1016/j.jcp.2011.09.021.

[131] J.T. Batina. Unsteady Euler airfoil solutions using unstructured dynamic meshes. AIAA
Journal, 28(8):1381–1388, 1990. https://doi.org/10.2514/3.25229.

[132] C. Farhat, C. Degand, B. Koobus, and M. Lesoinne. Torsional springs for two-dimensional
dynamic unstructured fluid meshes. Computer Methods in Applied Mechanics and Engi-
neering, 163(1-4):231–245, 1998. https://doi.org/10.1016/S0045-7825(98)00016-4.

[133] C. Degand and C. Farhat. A three-dimensional torsional spring analogy method for un-
structured dynamic meshes. Computers and Structures, 80(3-4):305–316, 2002. https:

//doi.org/10.1016/S0045-7949(02)00002-0.

[134] C.L. Bottasso, D. Detomi, and R. Serra. The ball-vertex method: a new simple spring anal-
ogy method for unstructured dynamic meshes. Computer Methods in Applied Mechanics
and Engineering, 194(39-41):4244–4264, 2005. https://doi.org/10.1016/j.cma.2004.

08.014.

[135] R. Löhner and C. Yang. Improved ALE mesh velocities for moving bodies. Communications
in Numerical Methods in Engineering, 12(10):599–608, 1996. https://doi.org/10.1002/
(SICI)1099-0887(199610)12:10<599::AID-CNM1>3.0.CO;2-Q.

[136] B.T. Helenbrook. Mesh deformation using the biharmonic operator. International Journal
for Numerical Methods in Engineering, 56(7):1007–1021, 2003. https://doi.org/10.

1002/nme.595.

[137] X. Zhou and S. Li. A new mesh deformation method based on disk relaxation algorithm
with pre-displacement and post-smoothing. Journal of Computational Physics, 235:199–
215, 2013. https://doi.org/10.1016/j.jcp.2012.10.024.

[138] S. Sun, S. Lv, Y. Yuan, and M. Yuan. Mesh deformation method based on mean value
coordinates interpolation. Acta Mechanica Solida Sinica, 29(1):1–12, 2016. https://doi.
org/10.1016/S0894-9166(16)60002-2.

https://doi.org/10.1016/S1270-9638(00)01087-7
https://doi.org/10.3970/cmes.2006.012.121
https://doi.org/10.1002/nme.4708
https://doi.org/10.1002/nme.2526
https://doi.org/10.1016/j.jcp.2011.09.021
https://doi.org/10.1016/j.jcp.2011.09.021
https://doi.org/10.2514/3.25229
https://doi.org/10.1016/S0045-7825(98)00016-4
https://doi.org/10.1016/S0045-7949(02)00002-0
https://doi.org/10.1016/S0045-7949(02)00002-0
https://doi.org/10.1016/j.cma.2004.08.014
https://doi.org/10.1016/j.cma.2004.08.014
https://doi.org/10.1002/(SICI)1099-0887(199610)12:10<599::AID-CNM1>3.0.CO;2-Q
https://doi.org/10.1002/(SICI)1099-0887(199610)12:10<599::AID-CNM1>3.0.CO;2-Q
https://doi.org/10.1002/nme.595
https://doi.org/10.1002/nme.595
https://doi.org/10.1016/j.jcp.2012.10.024
https://doi.org/10.1016/S0894-9166(16)60002-2
https://doi.org/10.1016/S0894-9166(16)60002-2


BIBLIOGRAPHY 229

[139] K. Stein, T. Tezduyar, and R. Benney. Mesh moving techniques for fluid-structure in-
teractions with large displacements. Journal of Applied Mechanics, 70(1):58–63, 2003.
https://doi.org/10.1115/1.1530635.

[140] K. Stein, T.E. Tezduyar, and R. Benney. Automatic mesh update with the solid-extension
mesh moving technique. Computer Methods in Applied Mechanics and Engineering,
193(21-22):2019–2032, 2004. https://doi.org/10.1016/j.cma.2003.12.046.

[141] R.P. Dwight. Robust mesh deformation using the linear elasticity equations. In H. Decon-
inck and E. Dick, editors, Computational Fluid Dynamics 2006. Springer, Berlin, Heidel-
berg, 2006. https://doi.org/10.1007/978-3-540-92779-2_62.

[142] A.L. Gaitonde and S.P. Fiddes. A three-dimensional moving mesh method for the cal-
culation of unsteady transonic flows. The Aeronautical Journal, 99(984):150–160, 1995.
https://doi.org/10.1017/S0001924000027135.

[143] J.A.S. Witteveen. Explicit and robust inverse distance weighting mesh deformation for
cfd. In 48th AIAA Aerospace Sciences Meeting, Orlando, Florida, 2010. https://doi.

org/10.2514/6.2010-165.

[144] A. de Boer, M.S. van der Schoot, and H. Bijl. Mesh deformation based on radial basis
function interpolation. Computers and Structures, 85(11-14):784–795, 2007. https://

doi.org/10.1016/j.compstruc.2007.01.013.

[145] G.A. Strofylas, G.I. Mazanakis, S.S. Sarakinos, G.N. Lygidakis, and I.K. Nikolos. Us-
ing improved radial basis functions methods for fluid-structure coupling and mesh de-
formation. In ECCOMAS Congress 2016 VII European Congress on Computational
Methods in Applied Sciences and Engineering, Cretes Island, Greece, 2016. https:

//doi.org/10.7712/100016.1905.9110.

[146] T.C.S. Rendall and C.B. Allen. Efficient mesh motion using radial basis functions with
data reduction algorithms. Journal of Computational Physics, 228(17):6231–6249, 2009.
https://doi.org/10.1016/j.jcp.2009.05.013.

[147] T.C.S. Rendall and C.B. Allen. Parallel efficient mesh motion using radial basis functions
with application to multi-bladed rotors. International Journal for Numerical Methods in
Engineering, 81(1):89–105, 2010. https://doi.org/10.1002/nme.2678.

[148] T. Gillebaart, D.S. Blom, A.H. van Zuijlen, and H. Bijl. Adaptive radial basis function
mesh deformation using data reduction. Journal of Computational Physics, 321:997–1025,
2016. https://doi.org/10.1016/j.jcp.2016.05.036.

[149] X. Gao, Dong Y., C. Xu, M. Xiong, Z. Wang, and X. Deng. Developing a new mesh
deformation technique based on support vector machine. International Journal of Compu-
tational Fluid Dynamics, 31(4-5):246–257, 2017. https://doi.org/10.1080/10618562.

2017.1328734.

[150] J. Niu, J. Lei, and J. He. Radial basis function mesh deformation based on dynamic
control points. Aerospace Science and Technology, 64:122–132, 2017. https://doi.org/

10.1016/j.ast.2017.01.022.

[151] L. Kedward, C.B. Allen, and T.C.S. Rendall. Efficient and exact mesh deformation us-
ing multiscale rbf interpolation. Journal of Computational Physics, 345:732–751–, 2017.
https://doi.org/10.1016/j.jcp.2017.05.042.

https://doi.org/10.1115/1.1530635
https://doi.org/10.1016/j.cma.2003.12.046
https://doi.org/10.1007/978-3-540-92779-2_62
https://doi.org/10.1017/S0001924000027135
https://doi.org/10.2514/6.2010-165
https://doi.org/10.2514/6.2010-165
https://doi.org/10.1016/j.compstruc.2007.01.013
https://doi.org/10.1016/j.compstruc.2007.01.013
https://doi.org/10.7712/100016.1905.9110
https://doi.org/10.7712/100016.1905.9110
https://doi.org/10.1016/j.jcp.2009.05.013
https://doi.org/10.1002/nme.2678
https://doi.org/10.1016/j.jcp.2016.05.036
https://doi.org/10.1080/10618562.2017.1328734
https://doi.org/10.1080/10618562.2017.1328734
https://doi.org/10.1016/j.ast.2017.01.022
https://doi.org/10.1016/j.ast.2017.01.022
https://doi.org/10.1016/j.jcp.2017.05.042


BIBLIOGRAPHY 230

[152] X. Zhou and S. Li. A novel three-dimensional mesh deformation method based on sphere
relaxation. Journal of Computational Physics, 298:320–336, 2015. https://doi.org/10.
1016/j.jcp.2015.05.046.

[153] X. Liu, N. Qin, and H. Xia. Fast dynamic grid deformation based on delaunay graph
mapping. Journal of Computational Physics, 211(2):405–423, 2006. https://doi.org/

10.1016/j.jcp.2005.05.025.

[154] E. Lefrançois. A simple mesh deformation technique for fluid–structure interaction based
on a submesh approach. International Journal for Numerical Methods in Engineering,
75(9):1085–1101, 2008. https://doi.org/10.1002/nme.2284.

[155] Y. Wang, N. Qin, and N. Zhao. Delaunay graph and radial basis function for fast quality
mesh deformation. Journal of Computational Physics, 294:149–172, 2015. https://doi.

org/10.1016/j.jcp.2015.03.046.

[156] H. Fang, C. Gong, C. Yu, C. Min, X. Zhang, J. Liu, and L. Xiao. Efficient mesh deformation
based on cartesian background mesh. Computers and Mathematics with Applications,
73(1):71–86, 2017. https://doi.org/10.1016/j.camwa.2016.10.023.

[157] M Lesoinne and C. Farhat. Geometric conservation laws for flow problems with mov-
ing boundaries and deformable meshes, and their impact on aeroelastic computations.
Computer Methods in Applied Mechanics and Engineering, 134(1-2):71–90, 1996. https:

//doi.org/10.1016/0045-7825(96)01028-6.

[158] B. Koobus and C. Farhat. Second-order time-accurate and geometrically conserva-
tive implicit schemes for flow computations on unstructured dynamic meshes. Com-
puter Methods in Applied Mechanics and Engineering, 170(1-2):103–129, 1999. https:

//doi.org/10.1016/S0045-7825(98)00207-2.

[159] H. Guillard and C. Farhat. On the significance of the geometric conservation law for flow
computations on moving meshes. Computer Methods in Applied Mechanics and Engineer-
ing, 190(11-12):1467–1482, 2000. https://doi.org/10.1016/S0045-7825(00)00173-0.

[160] C. Farhat, P. Geuzaine, and C. Grandmont. The discrete geometric conservation law and
the nonlinear stability of ALE schemes for the solution of flow problems on moving grids.
Journal of Computational Physics, 174(2):669–694, 2001. https://doi.org/10.1006/

jcph.2001.6932.

[161] P. Geuzaine, C. Grandmont, and C. Farhat. Design and analysis of ALE schemes with prov-
able second-order time-accuracy for inviscid and viscous flow simulations. Journal of Com-
putational Physics, 191(1):206–227, 2003. https://doi.org/10.1016/S0021-9991(03)

00311-5.

[162] D. Boffi and L. Gastaldi. Stability and geometric conservation laws for ALE formulations.
Computer Methods in Applied Mechanics and Engineering, 193(42-44):4717–4739, 2004.
https://doi.org/10.1016/j.cma.2004.02.020.

[163] S. Etienne, A. Garon, and D. Pelletier. Perspective on the geometric conservation law and
finite element methods for ALE simulations of incompressible flow. Journal of Computa-
tional Physics, 228(7):2313–2333, 2009. https://doi.org/10.1016/j.jcp.2008.11.032.

[164] R. Ma, X. Chang, L. Zhang, X. He, and M. Li. On the geometric conservation law for
unsteady flow simulations on moving mesh. Procedia Engineering, 126:639–644, 2015.
https://doi.org/10.1016/j.proeng.2015.11.253.

https://doi.org/10.1016/j.jcp.2015.05.046
https://doi.org/10.1016/j.jcp.2015.05.046
https://doi.org/10.1016/j.jcp.2005.05.025
https://doi.org/10.1016/j.jcp.2005.05.025
https://doi.org/10.1002/nme.2284
https://doi.org/10.1016/j.jcp.2015.03.046
https://doi.org/10.1016/j.jcp.2015.03.046
https://doi.org/10.1016/j.camwa.2016.10.023
https://doi.org/10.1016/0045-7825(96)01028-6
https://doi.org/10.1016/0045-7825(96)01028-6
https://doi.org/10.1016/S0045-7825(98)00207-2
https://doi.org/10.1016/S0045-7825(98)00207-2
https://doi.org/10.1016/S0045-7825(00)00173-0
https://doi.org/10.1006/jcph.2001.6932
https://doi.org/10.1006/jcph.2001.6932
https://doi.org/10.1016/S0021-9991(03)00311-5
https://doi.org/10.1016/S0021-9991(03)00311-5
https://doi.org/10.1016/j.cma.2004.02.020
https://doi.org/10.1016/j.jcp.2008.11.032
https://doi.org/10.1016/j.proeng.2015.11.253


BIBLIOGRAPHY 231

[165] F. Palacios, J.J. Alonso, K. Duraisamy, M. Colonno, J. Hicken, A. Aranak, A. Cam-
pos, S. Copeland, T. Economon, A. Lonkar, T. Lukaczyk, and T. Taylor. Stanford
University Unstructured (SU2: An open-source integrated computational environment
for multi-physics simulation and design. In 51st AIAA Aerospace Sciences Meeting in-
cluding the New Horizons Forum and Aerospace Exposition, Gravepine, Texas, 2013.
https://doi.org/10.2514/6.2013-287.

[166] F. Palacios, T.D. Economon, A.C. Aranake, S.S. Copeland, A.K. Lonkar, T.W. Lukaczyk,
D.E. Manosalvas, K.R. Naik, A. Santiago Padrón, B. Tracey, A. Variyar, and J.J. Alonso.
Stanford University Unstructured (SU2): Open-source analysis and design technology for
turbulent flows. In 52nd Aerospace Sciences Meeting, AIAA SciTech, National Harbor,
Maryland, 2014.

[167] T.D. Economon, F. Palacios, and J.J. Alonso. Unsteady continuous adjoint approach for
aerodynamic design on dynamic meshes. AIAA Journal, 53(9):2437–2453, 2015. https:

//doi.org/10.2514/1.J053763.

[168] T.D. Economon, F. Palacios, S.R. Copeland, T.W. Lukaczyk, and J.J. Alonso. SU2: An
open-source suite for multiphysics simulation and design. AIAA Journal, 54(3):828–846,
2016. https://doi.org/10.2514/1.J053813.

[169] T.D. Economon, D. Mudigere, G. Bansal, A. Heinecke, F. Palacios, J. Park, M. Smelyan-
skiy, J.J. Alonso, and P. Dubey. Performance optimizations for scalable implicit RANS
calculations with SU2. Computers and Fluids, 129:146–158, 2016. https://doi.org/10.
1016/j.compfluid.2016.02.003.

[170] R. Sanchez, H.L. Kline, D. Thomas, A. Variyar, M. Righi, T.D. Economon, J.J. Alonso,
R. Palacios, G. Dimitriadis, and V. Terrapon. Assessment of the fluid-structure interaction
capabilities for aeronautical applications of the open-source solver SU2. In ECCOMAS
Congress, VII European Congress on Computational Methods in Applied Sciences and
Engineering, Crete Island, Greece, June 2016. https://doi.org/10.7712/100016.1903.
6597.

[171] M. Pini, S. Vitale, P. Colonna, G. Gori, A. Guardone, T.D. Economon, J.J. Alonso, and
F. Palacios. SU2: the open-source software for non-ideal compressible flows. Journal of
Phyics: Conference Series, 821(1), 2017. https://doi.org/10.1088/1742-6596/821/1/
012013.

[172] P.L. Roe. Approximate riemann solvers, parameter vectors, and difference schemes. Jour-
nal of Computational Physics, 43(2), 1981. https://doi.org/10.1016/0021-9991(81)

90128-5.

[173] B. van Leer. Towards the ultimate conservative difference scheme. V. A second-order
sequel to Godunov’s method. Journal of Computational Physics, 32(1), 1979. https:

//doi.org/10.1016/0021-9991(79)90145-1.

[174] V. Venkatakrishnan. On the accuracy of limiters and convergence to steady state solutions.
In 31st Aerospace Sciences Meeting, Aerospace Sciences Meetings, Reno, NV, 1993. https:
//doi.org/10.2514/6.1993-880.

[175] A. Jameson, W. Schmidt, and E. Turkel. Numerical solution of the euler equations by
finite volume methods using runge kutta time stepping schemes. In 14th Fluid and Plasma
Dynamics Conference, Fluid Dynamics and Co-located Conferences, Palo Alto, CA, 1981.
https://doi.org/10.2514/6.1981-1259.

https://doi.org/10.2514/6.2013-287
https://doi.org/10.2514/1.J053763
https://doi.org/10.2514/1.J053763
https://doi.org/10.2514/1.J053813
https://doi.org/10.1016/j.compfluid.2016.02.003
https://doi.org/10.1016/j.compfluid.2016.02.003
https://doi.org/10.7712/100016.1903.6597
https://doi.org/10.7712/100016.1903.6597
https://doi.org/10.1088/1742-6596/821/1/012013
https://doi.org/10.1088/1742-6596/821/1/012013
https://doi.org/10.1016/0021-9991(81)90128-5
https://doi.org/10.1016/0021-9991(81)90128-5
https://doi.org/10.1016/0021-9991(79)90145-1
https://doi.org/10.1016/0021-9991(79)90145-1
https://doi.org/10.2514/6.1993-880
https://doi.org/10.2514/6.1993-880
https://doi.org/10.2514/6.1981-1259


BIBLIOGRAPHY 232

[176] A. Jameson. Time dependent calculations using multigrid, with applications to unsteady
flows past airfoils and wings. In 10th Computational Fluid Dynamics Conference, Honolulu,
HI, USA, 1991. https://doi.org/10.2514/6.1991-1596.

[177] A. Jameson and S. Schenectady. An assessment of dual-time stepping, time spectral and
artificial compressibility based numerical algorithms for unsteady flow with applications to
flapping wings. In 19th AIAA Computational Fluid Dynamics, San Antonio, Texas, 2009.
https://doi.org/10.2514/6.2009-4273.

[178] D.J. Mavripilis. Multigrid techniques for unstructured meshes. Technical report, Inst.
for Computer Applications on Science and Engineering, NASA Langley Research Center
TR-95-27, Hampton, VA, 1995.

[179] D.J. Mavripilis. On convergence acceleration techniques for unstructured meshes. Tech-
nical report, Inst. for Computer Applications on Science and Engineering,NASA Langley
Research Center, ICASE Rept. TR-98-44, Hampton, VA, 1998.

[180] R. Biedron and J. Thomas. Recent enhancements to the FUN3D flow solver for moving-
mesh applications. In 47th AIAA Aerospace Sciences Meeting including The New Horizons
Forum and Aerospace Exposition, Orlando, Florida, 2009. https://doi.org/10.2514/6.
2009-1360.

[181] L. Adam and J-P. Ponthot. Thermomechanical modeling of metals at finite strains: First
and mixed order finite elements. International Journal of Solids and Structures, 42:5615–
5655, 2005. https://doi.org/10.1016/j.ijsolstr.2005.03.020.

[182] P. Bussetta, D. Marceau, and J-P. Ponthot. The adapted augmented Lagrangian method: a
new method for the resolution of the mechanical frictional contact problem. Computational
Mechanics, 49(2):259–275, 2012. https://doi.org/10.1007/s00466-011-0644-z.

[183] R. Boman and J-P. Ponthot. Efficient ALE mesh management for 3D quasi-Eulerian
problems. International Journal For Numerical Methods in Engineering, 92:857–890, 2012.
https://doi.org/10.1002/nme.4361.

[184] Y. Crutzen, R. Boman, L. Papeleux, and J-P. Ponthot. Continuous roll forming including
in-line welding and post-cut within an ALE formalism. Finite Elements in Analysis and
Design, 143:11–31, 2018. https://doi.org/10.1016/j.finel.2018.01.005.

[185] P. Dular, C. Geuzaine, F. Henrotte, and W. Legros. A general environment for the treat-
ment of discrete problems and its application to the finite element method. IEEE Trans-
actions on Magnetics, 34(5):3395–3398, 1998. https://doi.org/10.1109/20.717799.

[186] C. Geuzaine. GetDP: a general finite-element solver for the de Rham complex. In PAMM
Volume 7 Issue 1. Special Issue: Sixth International Congress on Industrial Applied Math-
ematics (ICIAM07) and GAMM Annual Meeting, Zürich, pages 1010603–1010604, 2007.
https://doi.org/10.1002/pamm.200700750.

[187] Q.V. Bui, L. Papeleux, and J.P. Ponthot. Numerical simulation of springback using en-
hanced assumed strain elements. Journal of Materials Processing Technology, 153-154:314–
318, 2004. https://doi.org/10.1016/j.jmatprotec.2004.04.342.

[188] P.P. Jeunechamps and J.P. Ponthot. An efficient implicit approach for the thermomechan-
ical behavior of materials submitted to high strain rates. Journal de Physique IV France,
134:515–520, 2006. https://doi.org/10.1051/jp4:2006134079.

https://doi.org/10.2514/6.1991-1596
https://doi.org/10.2514/6.2009-4273
https://doi.org/10.2514/6.2009-1360
https://doi.org/10.2514/6.2009-1360
https://doi.org/10.1016/j.ijsolstr.2005.03.020
https://doi.org/10.1007/s00466-011-0644-z
https://doi.org/10.1002/nme.4361
https://doi.org/10.1016/j.finel.2018.01.005
https://doi.org/10.1109/20.717799
https://doi.org/10.1002/pamm.200700750
https://doi.org/10.1016/j.jmatprotec.2004.04.342
https://doi.org/10.1051/jp4:2006134079


BIBLIOGRAPHY 233

[189] L. Adam and J.P. Ponthot. A coupled thermo-viscoplastic formulation at finite strains for
the numerical simulation of superplastic forming. Journal of Materials Processing Tech-
nology, 139(1-3):514–520, 2003. https://doi.org/10.1016/S0924-0136(03)00529-6.

[190] B.W. Uekermann. Partitioned Fluid-Structure Interaction on Massively Parallel Systems.
PhD thesis, Technische Universität München, Germany, 2016.

[191] S. Kataoka, S. Minami, H. Kawai, T. Yamada, and S. Yoshimura. A parallel itera-
tive partitioned coupling analysis system for large-scale acoustic fluid–structure interac-
tions. Computational Mechanics, 53(6):1299–1310, 2014. https://doi.org/10.1007/

s00466-013-0973-1.

[192] T. Yamada, G. Hong, S. Kataoka, and S. Yoshimura. Parallel partitioned coupling analysis
system for large-scale incompressible viscous fluid–structure interaction problems. Com-
puters and Fluids, 141:259–268, 2016. https://doi.org/10.1016/j.compfluid.2016.

03.030.

[193] T. Wang, S. Sicklinger, R. Wüchner, and K.-U. Bletzinger. Concept and realization of
coupling software EMPIRE in multi-physics co- simulation. In Computational Methods in
Marine Engineering, pages 289–298, 2013.

[194] M. Sayed, Th. Lutz, E. Krämer, Sh. Shayegan, A. Ghantasala, R. Wüchner, and K.-U.
Bletzinger. High fidelity cfd-csd aeroelastic analysis of slender bladed horizontal-axis wind
turbine. Journal of Physics: Conference Series, 753, 2016. https://doi.org/10.1088/

1742-6596/753/4/042009.

[195] Fraunhofer Institute for Algorithms and Germany Scientific Computing SCAI, Sankt Au-
gustin. MpCCI 4.5.0-1 documentation. https://www.mpcci.de/content/dam/scai/

mpcci/documents/MpCCIdoc-4_5_0.pdf.

[196] W. Joppich and M. Kürschner. MpCCI - A tool for the simulation of coupled applications.
Concurrency and Computation: Practice and Experience, 18(2):183–192, 2006. https:

//doi.org/10.1002/cpe.913.

[197] F. Duchaine, S. Jauré, D. Poitou, E. Quémerais, G. Staffelbach, T. Morell, and L. Gicquell.
Analysis of high performance conjugate heat transfer with the OpenPALM coupler. Com-
putational Science and Discovery, 8(1), 2015. https://doi.org/10.1088/1749-4699/8/
1/015003.

[198] A. Piacentini, T. Morel, M. Thévenin, and F. Duchaine. O-PALM: an open source dy-
namic parallel coupler. In IV International Conference on Computational Methods for
Coupled Problems in Science and Engineering, Coupled Problems, pages 885–895, Kos
Island, Greece, 2011.

[199] S. Valcke. The OASIS3 coupler: a European climate modelling community soft-
ware. Geoscientific Model Development, 6(2):373–388, 2013. https://doi.org/10.5194/
gmd-6-373-2013.

[200] A. Craig, S. Valcke, and L. Coquart. Development and performance of a new version of
the OASIS coupler, OASIS3-MCT3.0. Geoscientific Model Development, 10(9):3297–3308,
2017. https://doi.org/10.5194/gmd-10-3297-2017.

[201] E. Sanchez-Gomez, C. Cassou, Y. Ruprich-Robert, E. Fernandez, and L. Terray. Drift
dynamics in a coupled model initialized for decadal forecasts. Climate Dynamics, 46(5-
6):1819–1840, 2016. https://doi.org/10.1007/s00382-015-2678-y.

https://doi.org/10.1016/S0924-0136(03)00529-6
https://doi.org/10.1007/s00466-013-0973-1
https://doi.org/10.1007/s00466-013-0973-1
https://doi.org/10.1016/j.compfluid.2016.03.030
https://doi.org/10.1016/j.compfluid.2016.03.030
https://doi.org/10.1088/1742-6596/753/4/042009
https://doi.org/10.1088/1742-6596/753/4/042009
https://www.mpcci.de/content/dam/scai/mpcci/documents/MpCCIdoc-4_5_0.pdf
https://www.mpcci.de/content/dam/scai/mpcci/documents/MpCCIdoc-4_5_0.pdf
https://doi.org/10.1002/cpe.913 
https://doi.org/10.1002/cpe.913 
https://doi.org/10.1088/1749-4699/8/1/015003
https://doi.org/10.1088/1749-4699/8/1/015003
https://doi.org/10.5194/gmd-6-373-2013
https://doi.org/10.5194/gmd-6-373-2013
https://doi.org/10.5194/gmd-10-3297-2017
https://doi.org/10.1007/s00382-015-2678-y


BIBLIOGRAPHY 234

[202] M. Ličer, P. Smerkol, A. Fettich, M. Ravdas, A. Papapostolou, A. Mantziafou, B. Strajnar,
J. Cedilnik, M. Jeromel, J. Jerman, S. Petan, V. Malačič, and S. Sofianos. Modeling
the ocean and atmosphere during an extreme bora event in northern Adriatic using one-
way and two-way atmosphere–ocean coupling. Ocean Science, 12(1):71–86, 2016. https:

//doi.org/10.5194/os-12-71-2016.

[203] M. Mehl, B. Uekermann, H. Bijl, D. Blom, B. Gatzhamme, and A. van Zuijlen. Paral-
lel coupling numerics for partitioned fluid–structure interaction simulations. Computers
and Mathematics with Applications, 71(4):869–891, 2016. https://doi.org/10.1016/j.

camwa.2015.12.025.

[204] H.-J. Bungartz, F. Lindner, B. Gatzhammer, M. Mehl, K. Scheufele, K. Shukaev, and
B. Uekermann. preCICE – A fully parallel library for multi-physics surface coupling. Com-
puters and Fluids, 141:250–258, 2016. https://doi.org/10.1016/j.compfluid.2016.

04.003.

[205] K.E Jacobson. Adjoint-based aeroelastic optimization with high-fidelity time-accurate anal-
ysis. PhD thesis, Georgie Institute of Technology, 2019.

[206] K.E. Jacobson, J.F. Kiviaho, M.J. Smith, and G.J. Kennedy. An aeroelastic cou-
pling framework for time-accurate aeroelastic analysis and optimization. In 2018
AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference,
Kissimmee, Florida, 2018.

[207] R.T. Biedron, J-R. Carlson, J.M. Delarga, P.A. Gnoffo, D.P. Hammond, W.T. Jones,
B. Kleb, E.M. Lee-Rausch, E.J. Nielsen, M.A. Park, C.L. Rumsey, J.L. Thomas, K.B.
Thompson, and A.W. William. Fun3d manual: 13.6. https://fun3d.larc.nasa.gov/

papers/FUN3D_Manual-13.6.pdf.

[208] W.K. Anderson and D.L. Bonhaus. An implicit upwind algorithm for computing turbulent
flows on unstructured grids. Computers and Fluids, 23(1):1–21, 1994. https://doi.org/
10.1016/0045-7930(94)90023-X.

[209] D.M. Beazley. SWIG : An easy to use tool for integrating scripting lan-
guages with C and C++. In 4th Tcl/Tk Workshop, Monterey, CA, USA, July
1996. https://www.usenix.org/legacy/publications/library/proceedings/tcl96/

full_papers/beazley/index.html.

[210] S. van der Walt, S.C. Colbert, and G. Varoquaux. The NumPy array: A structure for
efficient numerical computation. Computing in Science & Engineering, 13(2):22–30, 2011.
https://doi.org/10.1109/MCSE.2011.37.

[211] Abaqus analysis user’s guide V6.14, online documentation. SIMULIA, http://abaqus.
software.polimi.it/v6.14/books/usb/default.htm.

[212] L. Dalcin, R. Paz, M. Storti, and J. D’Eĺıa. MPI for Python: Performance improvements
and MPI-2 extensions. Journal of Parallel and Distributed Computing, 68(5):655–662,
2008. https://doi.org/10.1016/j.jpdc.2007.09.005.

[213] L. Dalcin, R. Paz, P. Kler, and A. Cosimo. Parallel distributed computing using Python.
Advances in Water Resources, 34(9):1124–1139, 2011. https://doi.org/10.1016/j.

advwatres.2011.04.013.

[214] K. Han, Y.T. Feng, and D.R.J. Owen. Performance comparisons of tree-based and
cell-based contact detection algorithm. Engineering Computations, 24(2):165–181, 2007.
https://doi.org/10.1108/02644400710729554.

https://doi.org/10.5194/os-12-71-2016
https://doi.org/10.5194/os-12-71-2016
https://doi.org/10.1016/j.camwa.2015.12.025
https://doi.org/10.1016/j.camwa.2015.12.025
https://doi.org/10.1016/j.compfluid.2016.04.003
https://doi.org/10.1016/j.compfluid.2016.04.003
https://fun3d.larc.nasa.gov/papers/FUN3D_Manual-13.6.pdf
https://fun3d.larc.nasa.gov/papers/FUN3D_Manual-13.6.pdf
https://doi.org/10.1016/0045-7930(94)90023-X
https://doi.org/10.1016/0045-7930(94)90023-X
https://www.usenix.org/legacy/publications/library/proceedings/tcl96/full_papers/beazley/index.html
https://www.usenix.org/legacy/publications/library/proceedings/tcl96/full_papers/beazley/index.html
https://doi.org/10.1109/MCSE.2011.37
http://abaqus.software.polimi.it/v6.14/books/usb/default.htm
http://abaqus.software.polimi.it/v6.14/books/usb/default.htm
https://doi.org/10.1016/j.jpdc.2007.09.005
https://doi.org/10.1016/j.advwatres.2011.04.013
https://doi.org/10.1016/j.advwatres.2011.04.013
https://doi.org/10.1108/02644400710729554


BIBLIOGRAPHY 235

[215] C.E. Augarde and A.J. Deeks. The use of Timoshenko’s exact solution for a cantilever
beam in adaptive analysis. Finite Elements in Analysis and Design, 44(9-10):595–601,
2008. https://doi.org/10.1016/j.finel.2008.01.010.

[216] W. Dettmer and D. Perić. A computational framework for fluid–rigid body interaction:
Finite element formulation and applications. Computer Methods in Applied Mechanics
and Engineering, 195(13-16):1633–1666, 2006. https://doi.org/10.1016/j.cma.2005.

05.033.

[217] A. Roshko. On the development of turbulent wakes from vortex streets. Technical report,
National Advisory Committee for Aeronautics, NACA, 1953.

[218] P. Anagnostopoulos and P.W. Bearman. Response characteristics of a vortex-excited
cylinder at low Reynolds numbers. Journal of Fluids and Structures, 6:39–50, 1992.
https://doi.org/10.1016/0889-9746(92)90054-7.

[219] K. Isogai. On the transonic-dip mechanism of flutter of a sweptback wing. AIAA Journal,
17(7):793–795, 1979. https://doi.org/10.2514/3.61226.

[220] K. Isogai. Transonic-dip mechanism of flutter of a sweptback wing: Part II. AIAA Journal,
19(9):1240–1242, 1981. https://doi.org/10.2514/3.7853.

[221] T. Theodorsen. General theory of aerodynamic instability and the mechanism of flutter.
NASA Report No 496, 1940. https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.
gov/19800006788.pdf.

[222] S. S. Davis. Naca 64 a010 (nasa ames model) oscillatory pitching. Technical report,
AGARD Report No. 702, 1982.

[223] X. Amandolese, S. Michelin, and M. Choquel. Low speed flutter and limit cycle oscillations
of a two-degree-of-freedom flat plate in a wind tunnel. Journal of Fluids and Structures,
43:244–255, 2013. https://doi.org/10.1016/j.jfluidstructs.2013.09.002.

[224] M. McMullen, A. Jameson, and J.J. Alonso. Application of a non-linear frequency domain
solver to the Euler and Navier-Stokes equations. In 40th AIAA Aerospace Sciences Meeting
and Exhibit, Aerospace Sciences Meetings, Reno, NV, USA, 2002. https://doi.org/10.
2514/6.2002-120.

[225] N.A. Pierce and J.J. Alonso. Efficient computation of unsteady viscous flows by an implicit
preconditioned multigrid method. AIAA Journal, 36(3):401–408, 1998. https://doi.org/
10.2514/2.377.

[226] F. Liu, J. Cai, Y. Zhu, H.M. Tsai, and A.S.F. Wong. Calculation of wing flutter by a
coupled fluid-structure method. Journal of Aircraft, 38(2):334–342, 2001. https://doi.

org/10.2514/2.2766.

[227] J.J. Alonso and A. Jameson. Fully-implicit time-marching aeroelastic solution. In AIAA
Paper 94-056. 32nd Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, 10-13 Jan-
uary, 1994. https://doi.org/10.2514/6.1994-56.

[228] Z. Biao, Q. Zhide, and G. Chao. Transonic flutter analysis of an airfoil with approximate
boundary method. In 26th international congress of the aeronautical sciences, 2008. http:
//www.icas.org/ICAS_ARCHIVE/ICAS2008/PAPERS/230.PDF.

[229] J.P. Thomas, K.C. Hall, and E.H. Dowell. Reduced-order aeroelastic modeling using
proper-orthogonal decompositions. Presented at CEAS/AIAA/ICASE/NASA Langley In-
ternational Forum on Aeroelasticity and Structural Dynamics, 1999. http://people.

duke.edu/~jthomas/papers/papers/podairfoil.pdf.

https://doi.org/10.1016/j.finel.2008.01.010
https://doi.org/10.1016/j.cma.2005.05.033
https://doi.org/10.1016/j.cma.2005.05.033
https://doi.org/10.1016/0889-9746(92)90054-7
https://doi.org/10.2514/3.61226
https://doi.org/10.2514/3.7853
https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19800006788.pdf
https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19800006788.pdf
https://doi.org/10.1016/j.jfluidstructs.2013.09.002
https://doi.org/10.2514/6.2002-120
https://doi.org/10.2514/6.2002-120
https://doi.org/10.2514/2.377
https://doi.org/10.2514/2.377
https://doi.org/10.2514/2.2766
https://doi.org/10.2514/2.2766
https://doi.org/10.2514/6.1994-56
http://www.icas.org/ICAS_ARCHIVE/ICAS2008/PAPERS/230.PDF
http://www.icas.org/ICAS_ARCHIVE/ICAS2008/PAPERS/230.PDF
http://people.duke.edu/~jthomas/papers/papers/podairfoil.pdf
http://people.duke.edu/~jthomas/papers/papers/podairfoil.pdf


BIBLIOGRAPHY 236

[230] C. Gao, S. Luo, F. Liu, and D.M. Schuster. Calculation of unsteady transonic flow by
an euler method with small disturbance boundary conditions. In 41st Aerospace Sciences
Meeting and Exhibit, Reno, NV, USA, 6-9 January, 2003. https://doi.org/10.2514/6.
2003-1267.

[231] C. Habchi, S. Russeil, D. Bougeard, J-L. Harion, T. Lemenand, A. Ghanem, D. Della Valle,
and H. Peerhossaini. Partitioned solver for strongly coupled fluid-structure interac-
tion. Computers and Fluids, 71:306–319, 2013. https://doi.org/10.1016/j.compfluid.
2012.11.004.

[232] A. Okajima. Strouhal numbers of rectangular cylinders. Journal of Fluid Mechanics,
123:379–398, 1982. https://doi.org/10.1017/S0022112082003115.

[233] A. Okajima. Numerical analysis of the flow around an oscillating cylinder. In Proceedings
of the 6th International Conference on Flow-Induced Vibration, April, 10-12, 1995.

[234] S.C. Yen, K.C. San, and T.H. Chuang. Interactions of tandem square cylinders at low
Reynolds numbers. Experimental Thermal and Fluid Science, 32(4):927–938, 2008. https:
//doi.org/10.1016/j.expthermflusci.2007.07.001.

[235] M.I. Yuce and D.A. Kareem. A numerical analysis of fluid flow around circular and
square cylinders. Journal - American Water Works Association, 108(10):E546–E554, 2016.
https://doi.org/10.5942/jawwa.2016.108.0141.

[236] A. Sohankar, C. Norberg, and L. Davidson. Numerical simulation of unsteady low-
Reynolds number flow around rectangular cylinders at incidence. Journal of Wind Engi-
neering and Industrial Aerodynamics, 69-71:189–201, 1997. https://doi.org/10.1016/

S0167-6105(97)00154-2.

[237] M. Geradin and D. Rixen. Mechanical Vibrations, Theory and application to structural
dynamics. Wiley and Sons, Second edition, 1997.

[238] C. Kassiotis, A. Ibrahimbegovic, R. Niekamp, and H. Matthies. Nonlinear fluid-structure
interaction problem. Part I : implicit partitioned algorithm, nonlinear stability proof and
validation examples. Computational Mechanics, 47(3):305–323, 2011. https://doi.org/

10.1007/s00466-010-0545-6.

[239] C. Wood, A.J. Gil, O. Hassan, and J. Bonet. Partitioned block-Gauss-Seidel coupling
for dynamic fluid-structure interaction. Computers and Structures, 88:1367–1382, 2010.
https://doi.org/10.1016/j.compstruc.2008.08.005.

[240] M. Olivier, G. Dumas, and J. Morissette. A fluid-structure interaction solver for nano-
air-vehicle flapping wings. In AIAA Paper 2009-3676. 19th AIAA Computational Fluid
Dynamics Conference, pages 1–15, San Antonio, USA, June 2009. https://doi.org/10.
2514/6.2009-3676.

[241] R. Sanchez, R. Palacios, T.D. Economon, H.L. Kline, J.J. Alonso, and F. Palacios. To-
wards a fluid-structure interaction solver for problems with large deformations within
the open-source SU2 suite. In AIAA 2016-0205. 57th AIAA/ASCE/AHS/ASC Struc-
tures, Structural Dynamics, and Materials Conference, January, 4-8, 2016. https:

//doi.org/10.2514/6.2016-0205.

[242] E.C. Yates. AGARD standard aeroelastic configuration for dynamic response I -
Wing 445.6. AGARD Report 765, 1988. http://www.dtic.mil/dtic/tr/fulltext/u2/

a199433.pdf.

https://doi.org/10.2514/6.2003-1267
https://doi.org/10.2514/6.2003-1267
https://doi.org/10.1016/j.compfluid.2012.11.004
https://doi.org/10.1016/j.compfluid.2012.11.004
https://doi.org/10.1017/S0022112082003115
https://doi.org/10.1016/j.expthermflusci.2007.07.001
https://doi.org/10.1016/j.expthermflusci.2007.07.001
https://doi.org/10.5942/jawwa.2016.108.0141
https://doi.org/10.1016/S0167-6105(97)00154-2
https://doi.org/10.1016/S0167-6105(97)00154-2
https://doi.org/10.1007/s00466-010-0545-6
https://doi.org/10.1007/s00466-010-0545-6
https://doi.org/10.1016/j.compstruc.2008.08.005
https://doi.org/10.2514/6.2009-3676
https://doi.org/10.2514/6.2009-3676
https://doi.org/10.2514/6.2016-0205
https://doi.org/10.2514/6.2016-0205
http://www.dtic.mil/dtic/tr/fulltext/u2/a199433.pdf
http://www.dtic.mil/dtic/tr/fulltext/u2/a199433.pdf


BIBLIOGRAPHY 237

[243] G.S.L. Goura. Time marching analysis of flutter using computational fluid dynamics. PhD
thesis, University of Glasgow, 2001.

[244] R.J. Beaubien, F. Nitzsche, and D. Feszty. Time and frequency domain solutions for the
AGARD 445 wing. In International Forum on Aeroelasticity and Structural Dynamics
(IFASD), Munich, Germany, 2005. https://www.researchgate.net/publication/

228737999_Time_and_frequency_domain_flutter_solutions_for_the_AGARD_4456_

wing.

[245] B. Zhang, W. Ding, J. Shengcheng, and J. Zhang. Transonic flutter analysis of an AGARD
445.6 wing in the frequency domain using the Euler method. Engineering applications
of computational fluid mechanics, 10(1):244–255, 2016. http://dx.doi.org/10.1080/

19942060.2016.1152200.

[246] R.B. Melville, S.A. Morton, and D.P. Rizzetta. Implementation of a fully-implicit, aeroe-
lastic Navier-Stokes solver. In 13th Computational Fluid Dynamics Conference, Snowmass
Village, CO, USA, 1997. https://doi.org/10.2514/6.1997-2039.

[247] E.M. Lee-Rausch and J.T. Batina. Calculation of AGARD wing 445.6 flutter using Navier-
Stokes aerodynamics. In AIAA paper 93-3476. 11th Applied Aerodynamics Conference,
Monterey, CA, USA, 1993. https://doi.org/10.2514/6.1993-3476.

[248] J. Xiao and C. Gu. Wing flutter simulations using an aeroelastic solver based on the
predictor-corrector scheme. Proceedings of the Institution of Mechanical Engineers, Part
G: Journal of Aerospace Engineering, 224(11):1193–1210, 2010. https://doi.org/10.

1243/09544100JAERO756.

[249] X. Chen, G-C. Zha, and M-T. Yang. Numerical simulation of 3-D wing flutter with fully
coupled fluid-structure interaction. Computers and Fluids, 36(5):856–867, 2007. https:

//doi.org/10.1016/j.compfluid.2006.08.005.

[250] R.K. Finn. Determination of the drag on a cylinder at low Reynolds numbers. Journal of
Applied Physics, 24(6):771–773, 1953. https://doi.org/10.1063/1.1721373.

[251] S.F. Hoerner. Fluid-dynamic drag: practical information on aerodynamic drag and hydro-
dynamic resistance. Hoerner fluid dynamics, First edition, 1965.

[252] R.L. Panton. Incompressible flow. Wiley, Fourth edition, 2013.

[253] G. Dimitriadis, N.F. Giannelis, and G.A. Vio. A modal frequency-domain generalised
force matrix for the unsteady Vortex Lattice method. Journal of Fluids and Structures,
76:216–228, 2018. https://doi.org/10.1016/j.jfluidstructs.2017.10.010.

[254] G. Dimitriadis. Introduction to Nonlinear Aeroelasticity. Wiley, First edition, 2017. https:
//doi.org/10.1002/9781118756478.

[255] B.H.K. Lee, S.J. Price, and Y.S. Wong. Nonlinear aeroelastic analysis of airfoils: bifurca-
tion and chaos. Progress in Aerospace Sciences, 35:205–334, 1999. https://doi.org/10.
1016/S0376-0421(98)00015-3.

[256] K. Taira and T. Colonius. Three-dimensional flows around low-aspect-ratio flat-plate
wings at low reynolds numbers. Journal of Fluid Mechanics, 623:187–207, 2004. https:

//doi.org/10.1017/S0022112008005314.

[257] R. Sanchez, T. Albring, R. Palacios, N.R. Gauger, T.D. Economon, and J.J. Alonso.
Coupled adjoint-based sensitivities in large-displacement fluid-structure interaction using
algorithmic differentiation. International Journal for Numerical Methods in Engineering,
113:1081–1107, 2018. https://doi.org/10.1002/nme.5700.

https://www.researchgate.net/publication/228737999_Time_and_frequency_domain_flutter_solutions_for_the_AGARD_4456_wing
https://www.researchgate.net/publication/228737999_Time_and_frequency_domain_flutter_solutions_for_the_AGARD_4456_wing
https://www.researchgate.net/publication/228737999_Time_and_frequency_domain_flutter_solutions_for_the_AGARD_4456_wing
http://dx.doi.org/10.1080/19942060.2016.1152200
http://dx.doi.org/10.1080/19942060.2016.1152200
https://doi.org/10.2514/6.1997-2039
https://doi.org/10.2514/6.1993-3476
https://doi.org/10.1243/09544100JAERO756
https://doi.org/10.1243/09544100JAERO756
https://doi.org/10.1016/j.compfluid.2006.08.005
https://doi.org/10.1016/j.compfluid.2006.08.005
https://doi.org/10.1063/1.1721373
https://doi.org/10.1016/j.jfluidstructs.2017.10.010
https://doi.org/10.1002/9781118756478
https://doi.org/10.1002/9781118756478
https://doi.org/10.1016/S0376-0421(98)00015-3
https://doi.org/10.1016/S0376-0421(98)00015-3
https://doi.org/10.1017/S0022112008005314
https://doi.org/10.1017/S0022112008005314
https://doi.org/10.1002/nme.5700


BIBLIOGRAPHY 238

[258] M.A. Heroux, R.A. Bartlett, V.E. Howle, R.J. Hoekstra, R.J. Hu, T.G. Kolda, R.B.
Lehoucq, K.R. Long, R.P. Pawlowski, E.T. Phipps, A.G. Salinger, H.K. Thornquist,
R.S. Tuminaro, J.M. Willenbring, A. Williams, and K.S. Stanley. An overview of the
Trilinos project. ACM Transaction on Mathematical Software, 31(3):397–423, 2005.
https://doi.org/10.1145/1089014.1089021.

https://doi.org/10.1145/1089014.1089021


Appendix A

RANS turbulence models

This appendix describes the Spalart-Allmaras and the Shear Stress Transport k − ω RANS
models as implemented in the SU2 solver.

Spalart-Allmaras

The standard one-equation SA model computes the turbulent viscosity µt as:

µt = ρν̃fv1 , (2)

with the following definitions:

fv1 =
χ3

χ3 + c3
v1

, χ =
ν̃

ν
. (3)

The quantity ν = µ/ρ is defined as the molecular kinematic viscosity. The new variable ν̃ is
obtained by solving a transport equation where the convective, viscous, and source terms are
given by

F c = vν̃ , F v = −ν + ν̃

σ
∇ν̃ , Q = cb1Ŝν̃ − cw1fw

(
ν̃

dS

)2

+
cb2
σ
|∇ν̃|2 . (4)

The production term is defined as

Ŝ = |ω|+ ν̃

κ2d2
S

fv2 , (5)

where ω = ∇∧ v is the fluid vorticity, dS is the distance to the nearest wall and

fv2 = 1− χ

1 + χfv1

. (6)

The function fw is computed as

fw = g

[
1 + c6

w3

g6 + c6
w3

]
, (7)

where g = r + cw2(r6 − r) and

r =
ν̃

Ŝκ2d2
S

. (8)

Finally, the set of closure constants for the model is given by

σ = 2/3 , cb1 = 0.1355 , cb2 = 0.622 , κ = 0.41 , (9)

cw1 =
cb1
κ2

+
1 + cb2
σ

, cw2 = 0.3 , cw3 = 2 , cv1 = 7.1 . (10)

Generally, at the far-field boundary, the turbulent viscosity is imposed as some fraction of the
laminar viscosity, while ν̃ is set to zero at viscous walls.

239



APPENDIX A 240

Shear Stress Transport k − ω

The Menter SST turbulence model is a two-equation model that expresses the turbulent vis-
cosity as a function of the turbulent kinetic energy k and its specific dissipation rate ω. More
specifically, it consists of the blending of the traditional k − ω and k − ε models. The eddy
viscosity, which includes the shear stress limiter, is given by

µt =
ρa1k

max(a1ω;SF2)
, (11)

where S =
√

2SijSij , S being the rate-of-strain tensor, and F2 is the second blending function
which is defined as

arg2 = max

(
2

√
k

0.09ωy
;
500ν

y2ω

)
, (12)

F2 = tanh(arg2
2) . (13)

In those expressions, the variable y is the shortest distance to the nearest solid surface. The
convective, viscous, and source terms for the turbulent kinetic energy are

F c = ρkv , F v = −(µ+ σkµt)∇k , Q = P − β∗ρωk , (14)

where P is the production of turbulent kinetic energy. The convective, viscous, and source terms
for the specific dissipation are given by

F c = ρωv , F v = −(µ+ σkµt)∇ω , (15)

Q =
γ

νt
P − β∗ρω2 + 2(1− F1)

ρσw2

ω
∇k∇ω , (16)

where F1 is the first blending function which is defined by

arg1 = min

(
max

( √
k

0.09ωy
;
500ν

y2ω

)
;

4ρσω2k

CDkωy2

)
, (17)

F1 = tanh(arg4
1) . (18)

Some closure constants of the model are directly given by

a1 = 0.31 , β∗ = 0.09 , σω2 = 0.856 , (19)

whereas the remaining set of constants are blended functions according to the value of F1:

σk = 0.85 . . . 1 ,

σω = 0.5 . . . 0.856 ,

γ = 0.55 . . . 0.44 ,

β = 0.075 . . . 0.0828 .

(20)



Appendix B

Lagrange’s equation

The dynamics of a system discretized in a finite set of degrees of freedom q = [q1, . . . , qn] can
be represented by Lagrange’s equation

d

dt

(
∂T

∂q̇i

)
− ∂T

∂qi
+
∂V

∂qi
+
∂D

∂q̇i
= Qi(t) i = 1, . . . , n , (21)

where T(q̇, q, t) is the total kinetic energy of the system, V(q, t) is the potential energy, D(q̇, t)
is the dissipation function and Q is the generalized external forces.

Example of the 1D oscillator

The use of Lagrange’s equation is illustrated by a simple one-dimensional oscillator, as depicted
in Fig. 22. The body oscillator of mass m is allowed to move vertically. The motion is described

m

k c

h(t)

F (t)

Figure 22: One-dimensional oscillator of mass m, with stiffness k and damping c.

by the variable h(t). The dynamics of the motion is constrained by a linear stiffness k and a
linear damping c. A vertical force F (t) is applied to the oscillator. In this case the kinetic
energy, potential energy and dissipation function are given by:

T =
1

2
mḣ2

V =
1

2
kh2

D =
1

2
cḣ2 .

(22)

The application of Eq. (21) leads to the second order ordinary differential equation of motion

mḧ+ cḣ+ kh = F (t) (23)

which corresponds to the standard oscillator equation.

241



Appendix C

Simplified approach for the characterization of the added-mass
effect

The concept of added-mass effect is introduced using a simplified fluid-structure model. A rigid
body of mass m attached to a spring of stiffness k is immersed in a still, incompressible, inviscid
fluid without body force, as illustrated in Fig. 23, where the fluid domain is supposed to extend
to infinity. Considering only a small structural motion in the fluid, the nonlinear advection term
of the Euler equations can be neglected. This leads to the simplified system of fluid equations
(conservation of mass and momentum):

∇ · v = 0,

ρf
∂v

∂t
= −∇p.

(24)

It is assumed that the solid rigid displacement η is under the form η = q(t)φ, where q is an
unknown function of time only and φ = ey a well defined modal shape ensuring a vertical
rigid displacement. A simple application of Lagrange’s equation leads to a standard oscillator
equation for q,

mq̈ + kq = L , (25)

where L is the resultant force applied by the fluid projected along the solid motion. The

k

m

n

ρf, v, p

Γey

ex

Figure 23: Simplified fluid-solid coupled problem.

kinematic and dynamic coupling conditions (2.27) on the fluid-solid interface Γ are here given

242



APPENDIX C 243

by

v · n = q̇ ey · n ,

L =

∫
Γ
−pn · ey dΓ ,

(26)

where the dynamic conditions expresses the resultant force acting on the solid as a contribution
of the fluid pressure distribution projected towards the vertical motion. In these expressions,
n is the unit normal on Γ pointing outwards from the solid. Taking the time derivative of the
kinematic coupling condition and using the momentum equation of the fluid dynamic leads to

∇p · n = −ρf q̈ ey · n . (27)

This equation suggests expressing the pressure field as

p = q̈ φp , (28)

where φp is the modal shape of the fluid pressure field. Introducing this expression into the
dynamic coupling conditions allows us to rewrite the oscillator equation under the form:

(m+ma) q̈ + kq = 0 , (29)

where ma =
∫

Γ φpn · ey dΓ is the added mass related to the fluid pressure field. Equation (29)
describes the motion of the solid in the fluid as its free response in vacuum (i.e. without a
surrounding medium) with a modified inertia term accounting for fluid-solid interaction, as
illustrated in Fig. 24. In this simple case, a direct consequence of the presence of the fluid on
the free response is a modification of the natural frequency of the oscillator.

k

m

k

m m
a

Figure 24: Illustration of added-mass effect for the simplified fluid-solid coupled problem.



Appendix D

Temporal integration schemes

This appendix describes two common temporal integration schemes: the second-order implicit
generalized-α method from the Newmark finally and the fourth-order explicit Runge-Kutta.

Newmark family schemes

Algorithms of the Newmark family are popular methods for simulating systems whose dynamics
is represented by a second order nonlinear differential equation:

M(q)q̈ = f(q, q̇, t) , (30)

with the initial conditions q(t0) = q0 and q̇(t0) = q̇0. The left-hand side has the form of an
inertia term and the right-hand side is a general nonlinear term. At each time step n + 1, the
standard Newmark method computes the dynamic response qn+1, q̇n+1, q̈n+1 by solving the
equations

M(qn+1)q̈n+1 = f(qn+1, q̇n+1, tn+1) , (31)

qn+1 = qn + ∆tq̇n + ∆t2(0.5− β)q̈n + ∆t2βq̈n+1 , (32)

q̇n+1 = q̇n + ∆t(1− γ)q̈n + ∆tγq̈n+1 , (33)

where β and γ are two user-defined parameters that control accuracy and stability. In practice,
these two parameters are defined based on a third parameter α > 0 which is a measure of the
numerical damping of the algorithm:

γ = 0.5 + α ,

β = 0.25(γ + 0.5)2 .
(34)

In order to solve the system of equations (31)-(33) with a Newton-Raphson procedure, the
nonlinear equation (31) is written in a residual form:

r(q, q̇, q̈, t) = Mq̈ − f(q̇, q, t) = 0 , (35)

that can then be linearized around an approximate solution q∗, q̇∗, q̈∗:

r(q∗ + ∆q, q̇∗ + ∆q̇, q̈∗ + ∆q̈, t) = r(q∗, q̇∗, q̈∗, t) + M∆q̈ + Ct∆q̇ + Kt∆q , (36)

with the tangent damping and stiffness matrices

Ct = −∂f
∂q̇

and Kt = −∂f
∂q

. (37)

The solution at time step n+ 1 is computed based on a predictor-corrector approach and a
Newton-Raphson procedure that solves the linearized residual equation. The prediction is first
computed using Eqs. (32) and (33) in which we set q̈n+1 = 0:

qn+1 = qn + ∆tq̇n + ∆t2(0.5− β)q̈n , (38)

q̇n+1 = q̇n + ∆t(1− γ)q̈n , (39)

244



APPENDIX D 245

then the corrector is computed based on the linearized equation and two increments from
Eqs. (32) and (33):

∆qn+1 = −S−1
t r(qn+1, q̇n+1, q̈n+1) , (40)

∆q̇n+1 =
γ

∆tβ
∆qn+1 , (41)

∆q̈n+1 =
1

∆t2β
∆qn+1 . (42)

In this expressions, St is the tangent operator

St =
1

∆t2β
M +

γ

∆tβ
Ct + Kt . (43)

The complete algorithm is depicted in Fig. 25. The Newmark algorithm is second order accurate
if α = 0 but does not provide numerical damping. When α > 0, the algorithm has numerical
damping but is only first-order accurate in time. The generalized-α method is an extension

Time increment
n+ = 1, tn+1 = tn + ∆t

Initial prediction
Eqs. (38) and (39) and q̈n+1 = 0

Evaluation of residual
r = r(qn+1, q̇n+1, q̈n+1, tn+1)

Check for convergence
||r < ε||

Compute correction
Eqs. (40)-(42)

Incrementation
qn+1+ = ∆qn+1

q̇n+1+ = ∆q̇n+1

q̈n+1+ = ∆q̈n+1

NO

YES

Figure 25: Newmark algorithm.

of the standard Newmark that combines second-order accuracy and numerical damping. The
procedure is the same as in the standard case, but with the equations

M(qn+1)q̈n+1 = f(qn+1, q̇n+1, tn+1) , (44)

qn+1 = qn + ∆tq̇n + ∆t2(0.5− β)an + ∆t2βan+1 , (45)

q̇n+1 = q̇n + ∆t(1− γ)an + ∆tγan+1 , (46)

(1− αm)an+1 + αman = (1− αf )q̈n+1 + αf q̈n , (47)



APPENDIX D 246

to solve, where a new acceleration-like vector a has been introduced. The generalized-α method
also introduces two algorithmic parameters αm and αf that are also used in the definition of γ
and β

γ = 0.5 + αf − αm ,
β = 0.25(γ + 0.5)2 .

(48)

Some typical values of αm and αf are associated with certain classical methods in structural
dynamics:

• the standard Newmark procedure is recovered for αf = αm = 0,

• the Hilber-Hughes-Taylor (HHT) method is obtained for αm = 0 and αf ∈ [0; 1/3],

• the Chung-Hulbert method is obtained when defining αm and αf from a unique value
of the spectral radius at infinite frequencies ρ∞ ∈ [0; 1] (1 for no dissipation and 0 for a
complete damping of high-frequency content) such that

αm =
2ρ∞ − 1

ρ∞ + 1
and αf =

ρ∞
ρ∞ + 1

. (49)

4th-order Runge-Kutta method

The 4th-order Runge-Kutta (RK4) method is an explicit time integration method that was
developed in order to solve a first order system of the form:

ġ = f(g, t) , (50)

with the initial condition g(t0) = g0. At each time step n + 1, the RK4 method computes the
state of the system as

gn+1 = gn +
∆t

6
(k1 + 2k2 + 2k3 + k4) , (51)

where the ki vectors are given by

k1 = f(gn, tn) ,

k2 = f(gn +
∆t

2
k1, tn +

∆t

2
) ,

k3 = f(gn +
∆t

2
k2, tn +

∆t

2
) ,

k4 = f(gn + ∆tk3, tn + ∆t) .

(52)

The central idea of the method is to explicitly compute the next state of the system gn+1 as
the sum of the current state gn and the product between the time step and an estimate of the
slope. This slope is estimated by a weighted sum of different slopes along the interval [tn, tn+1]:
k1 the slope at the beginning of the interval, k2 and k3 are slopes at the middle of the interval,
and k4 is the slope at the end of the interval.

The RK4 method can be used to solve a second-order differential equation

g̈ = f(g, ġ, t) , (53)

with the initial conditions g(t0) = g0 and ġ(t0) = ġ0, by expressing the problem as a system of
two first-order equations

ġ = h(g,d, t) = d ,

ḋ = s(g,d, t) = f(g,d, t) ,
(54)

or, in the form equivalent to Eq. (50),

Ġ = F (G, t) , (55)

with G = [g,d]T and F = [h,f ]T.



Appendix E

The following code illustrates how a coupling algorithm can be developed at a high-level by using
the object-oriented structured of CUPyDO. This code is schematic and the exact syntax may
slightly differ from what can be actually found in the source code. Note that self represent the
Algorithm class itself.

1 def BGSLoop(self):

2

3 self.FSIIter = 0

4 self.FSIConv = False

5 self.errValue = 1e12

6

7 while ((self.FSIIter < nbFSIIter) and (not ...

self.criterion.isVerified(self.errValue))):

8 #Communicate/interpolate solid displacement onto the ...

fluid mesh

9 self.solidToFluidMechaTransfer ()

10

11 #Deform volume fluid mesh and compute grid velocity

12 self.FluidSolver.meshUpdate ()

13

14 #Call fluid solver for one time step

15 self.FluidSolver.run(self.time -self.∆T, self.time)

16

17 #Communicate/interpolate fluid loads onto the solid ...

mesh

18 self.fluidToSolidMechaTransfer ()

19

20 #Call solid solver for one time step

21 self.SolidSolver.run(self.time -self.∆T, self.time)

22

23 #Compute the coupling residual

24 res = self.computeSolidInterfaceResidual ()

25 self.errValue = self.criterion.update(res)

26

27 #Assess coupling convergence

28 self.FSIConv = self.criterion.isVerified(self.errValue)

29

30 #Perform solid interface relaxation

31 self.relaxSolidPosition ()

32

33 #Write coupling monitoring data

247



APPENDIX E 248

34 self.writeRealTimeData ()

35

36 self.FSIIter += 1

37



Appendix F

Results of the verification test for the RBF interpolation in CU-
PyDO

The following tables summarize the errors obtained during the verification tests of the RBF
interpolation implemented in CUPyDO. The details related to these tests can be found in Section
5.7.2.

Pure translation

Source discretization Target discretization TPS CPC2 (r = 0.5L)

12× 3 12× 3 1.68e−12 2.3e−11

12× 3 25× 3 1.18e−12 2.3e−11

12× 3 50× 5 1.04e−12 2.4e−11

12× 3 100× 10 1.15e−12 2.4e−11

100× 10 12× 3 1.54e−10 8.5e−11

100× 10 25× 3 1.16e−10 6.9e−11

100× 10 50× 5 1.05e−10 9.4e−11

100× 10 100× 10 9.29e−11 9.9e−11

Table 10: Variable mesh discretization, TPS and CPC2 basis functions.

Source discretization Target discretization Radius Error

12× 3 100× 10

0.25L 0
0.5L 2.40e−11

0.75L 2.07e−11

L 1.2e−11

100× 10 12× 3

0.25L 2.5e−10

0.5L 8.5e−11

0.75L 1.2e−10

L 1.5e−10

Table 11: CPC2 basis function with variable radius.

249



APPENDIX F 250

Pure rotation

Source discretization Target discretization TPS CPC2 (r = 0.5L)

12× 3 12× 3 4.7e−12 1.2e−13

12× 3 25× 3 4.4e−12 6.2e−13

12× 3 50× 5 4.5e−12 4.6e−13

12× 3 100× 10 4.4e−12 5.4e−13

100× 10 12× 3 1.3e−10 2.6e−11

100× 10 25× 3 1.0e−10 2.2e−11

100× 10 50× 5 9.1e−11 3.5e−11

100× 10 100× 10 9.7e−11 9.9e−11

Table 12: Variable mesh discretization, TPS and CPC2 basis functions.

Source discretization Target discretization Radius Error

12× 3 100× 10

0.25L 2.2e−12

0.5L 5.40e−13

0.75L 5.3e−14

L 0

100× 10 12× 3

0.25L 4.9e−7

0.5L 2.6e−11

0.75L 4.9e−11

L 6.6e−11

Table 13: CPC2 basis function with variable radius.



APPENDIX F 251

Bending

Source discretization Target discretization TPS CPC2 (r = 0.5L)

12× 3 12× 3 2.7e−12 4.6e−13

12× 3 25× 3 1.2e−3 2.8e−3

12× 3 50× 5 1.3e−3 2.9e−3

12× 3 100× 10 1.3e−3 2.9e−3

100× 10 12× 3 6.4e−8 1.5e−7

100× 10 25× 3 3.3e−7 1.6e−7

100× 10 50× 5 8.8e−7 1.3e−6

100× 10 100× 10 1.1e−10 5.8e−10

Table 14: Variable mesh discretization, TPS and CPC2 basis functions.

Source discretization Target discretization Radius Error

12× 3 100× 10

0.25L 6.6e−3

0.5L 2.9e−3

0.75L 1.8e−3

L 1.4e−3

100× 10 12× 3

0.25L 1.9e−6

0.5L 1.5e−7

0.75L 6.5e−8

L 3.8e−8

Table 15: CPC2 basis function with variable radius.



Appendix G

Analytical solution for the axisymmetric thermal problem in a
hollow cylinder

A hollow cylinder with inner and outer diameter denoted by Di and Do, respectively, is here
considered. It is proposed to solve the steady heat equation in the solid domain Ωs under
the assumption of an axisymmetric problem and with the following boundary conditions: a
constant uniform temperature Ti imposed at the inner boundary and either a constant uniform
temperature To or a constant uniform heat flux qo = (q · n)o imposed at the outer boundary.
The problem is depicted in Fig. 26. Note that both boundary conditions are represented on the
outer boundary but only one is considered at a time.

Ti

Do

Di To

qo

Figure 26: Geometry of the hollow cylinder with boundary conditions for the thermal analysis.

The governing equations reduces here to the simple Laplace’s equation,

∇2T = 0 , (56)

which reads in polar coordinates (r, θ)

∂

∂r

(
r
∂T

∂r

)
, (57)

when considering an axisymmetric problem (∂ · /∂θ = 0). A straightforward solution of this
equation is given by

T (r) = A ln r +B , (58)

in which A and B are constants depending on the boundary conditions. When the temperature
is imposed on the outer boundary,

A =
Ti − To

ln (Di/Do)
(59)

252



APPENDIX G 253

while

A =
qoRo

λ
(60)

when a heat flux is imposed on the outer boundary. In any case, the constant B is given by

B = Ti −A ln(Di/2) . (61)


	Abstract
	Acknowledgements
	Contents
	List of abbreviations
	Mathematical notations
	List of symbols
	Introduction
	Context
	Motivation and objectives
	Innovation and contributions
	Associated publications
	Outline


	I The Fluid-Structure Interaction problem
	An overview of the fluid-structure interaction problem
	Classification of fluid-structure interaction phenomena
	Vortex-induced vibrations
	Galloping
	Flutter
	The fluid-structure interaction problem in the engineering design process

	Mathematical model of FSI
	The monolithic and the partitioned approaches
	General description of fluid and solid motion
	Fluid dynamics
	Turbulence modeling

	Solid dynamics
	Boundary and coupling conditions
	Non-dimensional parameters

	Numerical model of FSI
	Introduction to the different methodologies for computing FSI problems
	Low-fidelity versus high-fidelity models
	One-way versus two-way coupling
	Monolithic versus partitioned coupling

	Mechanical coupling algorithm
	Fixed-point formulation of the coupled problem
	Loosely-coupled procedure
	Strongly-coupled procedure
	Strongly coupled procedure with time step prediction
	Stability of the coupling procedure and Aitken relaxation for the strongly coupled scheme
	Newton-based techniques for the strongly coupled problem

	Thermal coupling schemes
	Stability of the thermal coupling schemes
	Time advancement of the thermal coupling procedure

	Treatment of the fluid-structure interface
	Conforming vs non-conforming meshes
	Interface mesh interpolation

	Dynamic mesh treatment
	Mesh deformation methods
	Geometric conservation law

	The fluid solver
	Spatial integration
	Time integration
	Multigrid acceleration techniques
	Dynamic mesh computation

	Structural solver
	Spatial integration
	Time integration

	Simplified structural models


	II Development and implementation of the coupling environment
	The multi-code coupling
	Common considerations
	Multi-code communications methods
	File communication
	MPI communication
	Socket communication

	Multi-code coupling technology
	Manual coupling
	Master-slave architecture
	Client-server architecture
	Unified architecture

	State of the art
	Review of existing coupling tools
	Motivation for the development of a new coupling framework

	General challenges and basic requirements of the multi-code coupling for fluid-structure interaction

	The coupling tool CUPyDO
	Design strategy
	Multi-language programming and Python-wrapping procedure
	Generating the Python wrapper
	Coupling with the Python wrapper
	Development of the SU2 Python wrapper

	Architecture of CUPyDO
	C++ kernel
	Python Utility layer
	Python Core layer
	Python Interface layer

	Interface data structure
	Coupling with black-box solvers and compatibility
	Coupling parallelization
	Interface mesh interpolation
	Parallel implementation of the RBF mesh interpolation
	Verification of the RBF implementation

	Setting a fluid-structure computation with CUPyDO


	III Verification of the CUPyDO coupling environment and application to an aeroelastic case study
	FSI verification test cases for CUPyDO
	Vortex-induced vibration of a circular cylinder with one degree of freedom
	Description of the simplified model
	Case description and simulation parameters
	Results
	Test case summary

	Flutter of an airfoil with pitch and plunge degrees of freedom
	Description of the simplified model
	Case description and simulation parameters
	Results
	Test case summary

	Vortex-induced vibration of a flexible cantilever
	Case description and simulation parameters
	Results
	Test case summary

	Aeroelastic study of the AGARD 445.6 wing
	Case description and simulation parameters
	Results
	Test case summary

	Conjugate heat transfer with a circular cylinder immersed in cross-flow
	Case description and simulation parameters
	Results
	Test case summary


	Aeroelastic study of a thin flat plate wing
	Context and case description
	Preliminary study
	Fluid simulations and mesh analysis
	Modal analysis of the structure
	Free wind-off response of the structure

	Unsteady aeroelasticity
	Flutter study
	Study of limit cycle oscillations



	Conclusion
	Summary of the thesis
	Future perspective

	List of Figures
	List of Tables
	Bibliography
	Appendix A
	Appendix B
	Appendix C
	Appendix D
	Appendix E
	Appendix F
	Appendix G

