

Water 2020, 12, x; doi: FOR PEER REVIEW www.mdpi.com/journal/water

Article

An Optimized and Scalable Algorithm for the Fast

Convergence of Steady 1-D Open-Channel Flows

Louis Goffin *, Benjamin Dewals, Sebastien Erpicum, Michel Pirotton and

Pierre Archambeau

Hydraulics in Environmental and Civil Engineering (HECE) research unit, Urban and Environmental

Engineering (UEE) department, Faculty of Applied Sciences, University of Liege (ULiege), Allée de la

Découverte, 9-4000 Liège, Belgium; b.dewals@uliege.be (B.D.); s.erpicum@uliege.be (S.E.);

michel.pirotton@uliege.be (M.P.); pierre.archambeau@uliege.be (P.A.)

* Correspondence: l.goffin@uliege.be

Received: 11 October 2020; Accepted: 11 November 2020; Published: date

Abstract: Calculating an open-channel steady flow is of main interest in many situations; this

includes defining the initial conditions for the unsteady simulation or the computation of the water

level for a given discharge. There are several applications that require a very short computation time

in order to envisage a large number of runs, for example, uncertainty analysis or optimization. Here,

an optimized algorithm was implemented for the fast and efficient computation of a 1-D steady

flow. It merges several techniques: a pseudo-time version of the Saint-Venant equations, an

evolutionary domain and the use of a non-linear Krylov accelerator. After validation of this new

algorithm, we also showed that it performs well in scalability tests. The computation cost evolves

linearly with the number of nodes. This was also corroborated when the execution time was

compared to that obtained by the non-linear solver, CasADi. A real-world example using a 9.5 km

stretch of river confirmed that the computation times were very short compared to a standard time-

dependent computation.

Keywords: shallow water; CasADi; fast computation; 1-D

1. Introduction

Channelized flows can be simulated using 1-D, 2-D or 3-D models depending on the level of

flow detail that is required [1]. Results from hydrodynamic numerical models are used in multiple

domains including flood risk analysis [2] or real-time control of river facilities [3], for instance.

One-dimensional models are used when a dominant direction can be assumed in the velocity

field. This may be the case when the flow is restricted to the main riverbed. A 1-D model can still be

used in the case of out-of-bank flooding, although they are unable to represent complex 2-D flow

patterns in the floodplain [4]. Several practical cases have shown that flood mapping can be

performed using 1-D models [5,6] and they can also be used in other fields, such as flood routing for

hydropower plant operations [7] and mixed flows in pipes [8].

In fact, 1-D models are still used extensively even though 2-D and 3-D models are currently

widely available. There are various reasons for their use, for example, digital elevation models (DEM)

and bathymetry data are not available in some regions of the world. When only cross-section profiles

are available to represent the geometry of a riverbed, 1-D models can make direct use of such profiles

whereas they have to be interpolated to be used in 2-D or 3-D models. Besides, many applications do

not require a detailed description of the flow features in the floodplain, and thus, a 1-D modeling

approach is sufficient.

Water 2020, 12, x FOR PEER REVIEW 2 of 18

Large-scale hydraulic modeling of river networks [9–13] makes heavy use of 1-D models because

of their ability to compute long stretches of the river at a reasonable cost. To initiate a computation,

one needs boundary conditions as well as the initial condition. This initial condition is often a steady

water profile, which can be obtained by performing a time-dependent simulation with steady

boundary conditions over a period of time that is long enough to reach a steady solution [14]. This

step may consume a considerable amount of time before the main problem can be addressed. The

initial condition should be computed with the same numerical scheme as the one used in the unsteady

model in order to ensure the steadiness of the first step of the unsteady model. The ability of these

models to quickly obtain a steady initial solution is also of great importance.

Optimization is another field where obtaining a steady result as quickly as possible is important.

Indeed, most optimization techniques require a large number of runs in order to figure out the

optimal solution. In order to ensure that the overall computation time is as short as possible,

techniques that are quick should be utilized including parallelization [15] or the use of fast computing

models.

Although 1-D simulations are known to provide results in a short period of time, accelerating

the computation of the 1-D steady solution is of great interest in the fields mentioned above. This can

be achieved by using two main strategies. The first consists of exploiting the resources of modern

computers more efficiently. Such techniques are more frequently applied to 2-D cases, which

naturally require more computing resources. Common hardware acceleration strategies include

parallelizing codes on several CPU cores [16,17] or on a GPU [18–20]. The second method consists of

designing algorithms in order to converge with less effort toward the solution. To the authors’

knowledge, there is no such work available in the literature. Both strategies can be combined in order

to obtain the best performance.

The purpose of this paper is to propose algorithmic strategies for the fast computation of 1-D

steady solutions. First, the equations are presented. Then, we introduce two original strategies in

order to reduce the overall computation time. These strategies can easily be implemented in other

hydraulic codes. An alternative non-linear solver is introduced for comparison purposes. Finally, the

validation results, the optimal parameters for the algorithm, the performance of the model and its

application to a real-world problem are presented.

2. Materials and Methods

2.1. Equations

One-dimensional water flow is described by the St-Venant equations, which are as follows [21]:

2

l

s
f x l

A Q
q

t x

zQ Q
gA gAS u q

t x A x

 (1)

where A is the cross-section area (m2), Q is the discharge (m3/s), ql is a lateral discharge per unit length

(m2/s), g is the gravity acceleration (m/s2), Sf is the friction slope (-), ux is the velocity along the x

direction of ql (m/s) and zs is the free surface elevation (m). The numerical resolution of this set of non-

conservative equations has been shown to provide accurate results in many practical cases, including

in the presence of discontinuities [22,23].

Assuming a steady flow, temporal derivatives vanish in Equation (1). Since solving the first

equation is straightforward, the discharge distribution is known on the entire domain for a given

distribution of ql. We assume that the sign of Q is independent from x. It means that a single equation

remains with a single unknown A. In order to keep the same numerical scheme as the one used for

the unsteady system (which is important when a steady solution is used as the initial condition of an

unsteady problem and to be able to use a similar algorithmic strategy), Kerger et al. [14] added a

pseudo-temporal term (pseudo-time is (s)) to the steady form of Equation (1):

Water 2020, 12, x FOR PEER REVIEW 3 of 18

2
s

f x l

zA Q
gA gAS u q

x A x
 (2)

where sign Q . Kerger et al. [14] justify this choice for by analyzing the characteristic

velocity of Equation (2):

2 22 2 1 Frcc u
 (3)

where c (m/s) is the wave celerity. In subcritical flows (Fr < 1,
0.5

3Fr / /gA bQ is the Froude

number (-), b is the width of the free surface (m)), and the sign of is the sign of . If Fr > 1, then

 sign sign . For critical flows (Fr = 1), the characteristic velocity is 0, independently from .

In order to keep some form of consistency with the general model, if we choose sign Q , an

upstream boundary condition is required when Fr > 1 and a downstream boundary condition is

required when Fr < 1. This is equivalent to the position of the water depth boundary condition for the

numerical resolution of the full 1-D set of equations.

With a single boundary condition and a discharge distributed in the channel, solving Equation

(2) determines the cross-section area (and subsequently, the water depth) all along the stretch.

Equation (2) is discretized according to the finite volume method. It is solved according to the same

numerical scheme as the one used for the full unsteady model [14,24].

For a node i, Equation (2) is discretized in finite volumes as:

2 2

, 1/2 , 1/21/2 1/2 1/2 1/2

, , ,

/ / s i s ii i i i

i f i x i l i

z zQ A Q A A
gA S u q

x x
 (4)

where x (m) is the spatial discretization step and subscripts refer to the position of variables values.

For the sake of clarity, we consider 0Q and a constant reconstruction of the flux at finite

volume boundaries to explicate the numerical scheme. When applying the considered upwinding

directions [14] for a node i not located next to a boundary, Equation (4) is equivalent to:

2 2
, 1 ,1 1

, , ,

/ / s i s ii i i i
i f i x i l i

z zQ A Q A A
gA S u q

x x
 (5)

This flux vector splitting method has been shown to be unconditionally stable [14]. For the node

located at the downstream boundary (1i N), if a weak water level boundary condition zs,BC is

imposed at the border, Equation (4) becomes:

2 2
, , 11 1 2 2

1 , 1 , 1 , 1

/ / s BC s NN N N N
N f N x N l N

z zQ A Q A A
gA S u q

x x
 (6)

Without a boundary condition imposed on the value of zs at the external border, a nil zs gradient

is imposed and Equation (4) becomes:

2 2

1 1 2 2
1 , 1 , 1 , 1

/ /
N N N N

N f N x N l N

Q A Q A A
gA S u q

x
 (7)

At the upstream node (0i), if a weak boundary condition of the water level is imposed at the

border, Equation (4) becomes:

,1

,0 ,00

,

,0

s s BC

f x l

z z A
gA S u q

x
 (8)

Without a boundary condition at the upstream border, Equation (4) becomes:

Water 2020, 12, x FOR PEER REVIEW 4 of 18

,1 ,0

,0 ,0 ,00

s s

f x l

z z A
gA S u q

x
 (9)

2.2. Original Solving Strategy

Solving Equation (2) instead of Equation (1) decreases the computation time since the number

of equations and unknowns is reduced. In order to save even more time, two additional strategies

were implemented: (a) a non-linear Krylov accelerator was used to promote fast convergence and (b)

the computation was only performed on a sliding part of the full domain.

2.2.1. Non-Linear Krylov Acceleration

Numerically solving a non-linear system can be performed by different means, including

Newton’s method and Broyden’s method [25]. More sophisticated methods exist in order to solve

non-linear systems faster, such as the Jacobian-free Newton–Krylov method [26] and Anderson

acceleration [27]. The Anderson acceleration method uses the results from successive iterations in

order to adapt the new approximation. Walker and Ni [28] showed that this method can be

considered equivalent to the well-known GMRES method [29] when applied to linear systems. The

nonlinear Krylov acceleration (NKA) [30,31], which is similar to Anderson acceleration, has been

found to be more efficient in some applications than more recent methods such as the Jacobian-free

Newton–Krylov method [32]. NKA was used for a faster convergence of our pseudo-time model.

Since NKA only relies on the results directly produced by the hydraulic model, it can be easily

applied to other algorithms or other domains. Indeed, no gradient evaluation (nor other prerequisite)

is required before calling on the NKA algorithm.

The NKA algorithm records N (
0

N

) previous moves of the root finding process. Based on

these previous moves, NKA adapts its guess for the new root. One of the main assumptions is that

the Jacobian matrix remains constant within the scope of N moves. We briefly explain the method

here and extended details can be found in [30–33].

A Newton–Raphson iteration process computes the n + 1st guess of the root based on the nth

guess xn, on the value of the function f at xn and on the invert of the Jacobian matrix J:

 1

1
J

n n n
fx x x (10)

Instead of evaluating J−1 at each iteration, NKA evaluates it from N previous moves or sets it to

the identity matrix, in which case the method degenerates to the fixed-point method.

NKA takes advantage of a history of N corrections of x (denoted v) and N evolutions of f x

(denoted w) at iterate n:

1

1

, 1, ,i i i

i i i

i n N n
f f

v x x

w x x
 (11)

The method assumes that J is constant and invertible within the scope of the N previous

iterations, which is written as follows:

1

J

J

i i

i i

v w

v w
 (12)

Mathematical developments described in the references cited above lead to the expression:

 1
1 1

1 1

n n

n i i n i i
i n N i n N

n n n

fz z

 v v x w

x x v

 (13)

where the coefficients zi are the solution of the projection:

Water 2020, 12, x FOR PEER REVIEW 5 of 18

0

1

arg min
n

a n i i
i n N

f a

 z x w
¡

 (14)

Equation (13) shows that the correction of the variable x is decomposed into two components:

1. The first term depicts the correction as a linear combination of previous corrections.

2. The second term is similar to the second term of a fixed-point iteration that takes into account

previous evolutions of function f.

Note that the Jacobian matrix is not used in this iterative process.

2.2.2. Evolutionary Domain

The second strategy was designed to reduce computational cost. It consists in reducing the size

of the computation domain and sliding it along the river stretch in order to evaluate the cross-section

areas from downstream to upstream.

The development of this strategy has arisen from the long history of numerical hydrodynamics

in various flow regimes. Indeed, many flows that are solved for rivers are subcritical (Fr < 1) at

downstream and upstream boundary conditions. In such a situation, the cross-section area

information is propagated from downstream to upstream. For a fixed flow direction, the upwinding

direction of the scheme takes all unknowns and properties (except those linked to the discharge)

downstream. This means that when a new node is computed, it depends only on the downstream

nodes (Figure 1). It should be noticed that when a node i is added, the upstream border of node i + 1

produces a change in the upwinding direction of property Q and the unknown Avel (cross-section area

used to compute the velocity). The node i + 1, which was supposed to be converged, undergoes a new

convergence process that indirectly affects nodes i + 2, i + 3, … Theoretically, all the nodes located

downstream of node i should be kept in the computational domain.

The boundary condition on the border between the node i and node i − 1 (see Figure 1) is called

a “mirror border”. On this border, all the unknowns and properties are reconstructed from the

computed inner node. This method is equivalent to reproducing the node i in i − 1, like a mirror. For

node i in Figure 1, the discretization of Equation (2) is:

, 1 ,

, , ,
0s i s i

i f i x i l i

z z
gA S u q

x

 (15)

Figure 1. Upwinding directions of the unknown and flow properties at the upstream limit of the

computation domain.

The evolution of the domain relies on three strategies. First, all nodes in the computation domain

should have reached a partial residual threshold
p

 (m2/s) before considering the extension of the

Water 2020, 12, x FOR PEER REVIEW 6 of 18

computation domain: /
p

A . Then, the most downstream node can be removed from the

partial domain once it drops under the final residual threshold
f

 (m2/s): /
f

A . Finally, we

have to make sure that the nodes that were removed from the domain are not impacted by the

computation domain in such a way that their residuals /A become higher than the final

precision threshold
f

 . Dimensionless parameters are discussed further in Section 3.2.

In order to assess whether the removed nodes /A remain lower than
f

 , an analytical

analysis of the discretized model is performed. Let us consider three nodes and their borders (Figure

2). The discretized formulation of Equation (2) at node i is:

2

2 2

1

2 2
1 , 1 ,1

1

s
f x l

i i

i i

i i s i s ii i
f x l i

i i

zA Q
gA gAS u q

x A x

Q Q

A A z zA A
g gAS u q

x A A x

 (16)

The influence of a change in the cross-section area in 1i on the value of /A in i is given

by the derivative:

2

1

2
1 1

1i

i i i

QA

A x A

 (17)

Figure 2. Upwinding directions of the unknown and flow properties in the computation domain.

From the result in (17), one can predict the evolution of the residual /A of a node that is

not in the computation domain anymore. If node i is planned to be removed from the computation

domain, one can check that its /A remains below the threshold
f

 even with an evolution of

the cross-section area in 1i :

2

1
12

, , 1

1i
i

i next i prev i

QA A
A

x A

 (18)

where
1i

A

 is the evolution of the cross-section A in 1i from the last evaluation of
,

/
i prev

A .

If the evolution of the cross-section area in the computation domain (1i) implies that

/
i

A exceeds the threshold
f

 , then node i should be added again in the computation domain

in order to make sure it remains below the threshold until the end of the entire computation. It should

be noted that node 1, 2,i i might also be impacted. This technique guarantees that once the

Water 2020, 12, x FOR PEER REVIEW 7 of 18

sliding domain has moved along the entire domain, all nodes have reached at least the final precision

required.

As stated earlier, the method described here was designed within the framework of subcritical

flows. In order to be able to deal with a larger range of flow regimes, several adaptations were made.

When a supercritical node is detected downstream (let say at position m), it is not computed and the

computation domain is extended until a subcritical node is found upstream (say at position n). Then,

the domain starting from m to n is computed and converged. This technique avoids boundary

condition problems. Indeed, a supercritical flow requires an upstream BC since the characteristic

velocity is directed towards the downstream.

2.2.3. Combination of Solving Strategies

The combined use of the sliding domain and NKA involves several specific considerations. The

use of NKA is implemented in the code with a safety coefficient that deactivates this optimizing

technique in some cases. Indeed, it was experienced that NKA could lead to some instabilities when

there was a sudden change in the cross-section area. This behavior is due to the assumption in NKA

that the Jacobian matrix is constant and invertible locally [32,33]. In order to avoid such a situation,

the accelerator is deactivated when 1 1i i i
A AA

 , where Ai and Ai + 1 refer to the cross-section

area of the nodes i and i + 1 as depicted in Figure 1, and 0 1 is the safety coefficient (-). After

several tests, we found that 0.5 provides stability with a limited impact on the computation time.

The method can be summarized with the following pseudo-code:

Algorithm

Initialize (computation list is empty)

Add most downstream node to computation list

While some nodes still have to be converged (/
f

A):

 Initialize lastly added upstream node

 While nodes of computation list not converged (/
p

A):

 Compute cross section change for each node

 If NKA activated:

 Adapt cross section change with NKA algorithm

If lastly removed downstream node significantly impacted:

 Add it back to the computation list and do not expand upstream

Else:

 If downstream node in computation list fully converged (/
f

A):

 Remove this node from computation list

If upstream nodes remain to be added to computation list:

 Add 1 upstream node to the computation list

Finalize

2.3. Alternative Non-Linear Solver

Various techniques can be used to solve nonlinear Equation (2). Up to this point, we have chosen

to discretize the equation using a finite volume scheme and solve it with an explicit time scheme,

which is consistent with the unified strategy of WOLF [24]. Other techniques can be used, including

finite difference schemes and/or implicit time schemes. Another possibility is to use an optimization

algorithm for nonlinear systems. One of these is the recently developed CasADi software [34,35].

CasADi first started as an algorithmic differentiation tool. During its evolution, developers chose

to shift the focus toward optimization. From non-linear expressions, CasADi is able to generate all

the information needed by a nonlinear solver in order to return a solution to the problem. CasADi

provides interfaces to MATLAB or Python for easy use.

The purpose of using CasADi is to show how our algorithm performs compared to a state-of-

the-art solver.

Water 2020, 12, x FOR PEER REVIEW 8 of 18

The implementation in CasADi was done through Opti stack, a collection of helper functions

used for nonlinear programming problems. It is possible to define variables to optimize, parameters,

an objective function and constraints. The solving of a 1-D steady open channel flow can be done

thanks to this framework.

The constraints of the problem are discretized in Equation (2) for each node and a water depth

above 0 everywhere. The downstream boundary condition is imposed through Equation (6). If no

boundary condition is set, then a flow condition can be imposed through a constraint on the Froude

number for the downstream node and the flow head is minimized at the upstream node. If the flow

presents a critical section, minimizing the head upstream is equivalent to finding the section with the

highest critical head.

Another way to solve a flow with a critical section is to prescribe a Froude number transition

from Fr 1 to Fr 1 at that critical section. This is done by setting a constraint on the Froude

number on the nodes upstream and downstream of the critical section. The identification of the

critical section should be done prior to the computation on the basis of a critical head analysis.

3. Results and Discussion

This section presents the validation of the results and focuses on the optimal parameters and

performance. The geometries of the tests were different in order to examine as many cases as possible.

3.1. Validation

The validation of the models was performed on a bump placed in a straight horizontal channel,

considering three different flow conditions. The bump and channel geometry have been described

previously in [36]. The whole domain ranges from 0 to 20 m with the following bed elevation:

2
10

8 m 12 m
(

0.8 1

0

) 4b
z

x
x

x (19)

The channel is considered to be rectangular. The discretization step was chosen as 0.1 m.

The different flow conditions are described in Table 1. All tests were performed with 610
p

m2/s and 1010
f

 m2/s.

Table 1. Boundary conditions for three test cases.

Test Upstream BC Downstream BC

A q = 1 m2/s h = 1.7 m

B q = 0.4 m2/s h = 0.75 m

C q = 0.4 m2/s Transmissive

The objective was to show that the model is able to deal accurately with various flow regimes

and transitions. Test A simulates a fully subcritical flow with no transition. Test B creates a subcritical

flow upstream, a subcritical flow downstream and a hydraulic jump in between, downstream of the

bump. Finally, the goal of test C is to show the robustness of the method for a downstream

supercritical flow and an upstream subcritical flow.

The analytical solutions for tests A, B and C were computed from the Bernoulli principle (head

conservation) [22] and the conjugate water depth formula was used for test B. A graphical

comparison of the analytical values and numerical results obtained by our algorithm and CasADi is

given in Figures 3–5. It appears that the new algorithm and CasADi provide results that fit well with

the analytical solution. However, a small difference in energy can be noticed between the analytical

solution and the numerical results and also between both numerical methods (see Table 2). This was

quantified and explained by Bruwier et al. [22]. Moreover, a more noticeable localized difference

Water 2020, 12, x FOR PEER REVIEW 9 of 18

appears between CasADi and the new algorithm results at the hydraulic jump. Even if the numerical

scheme is the same for the new algorithm and CasADi, each method has its own convergence

threshold. Altogether, the analysis validates both models.

Figure 3. Comparison between the analytical solution and the numerical results produced by the new

algorithm and CasADi for validation test A.

Figure 4. Comparison between the analytical solution and the numerical results produced by the new

algorithm and CasADi for validation test B.

Figure 5. Comparison between the analytical solution and the numerical results produced by the new

algorithm and CasADi for validation test C.

Water 2020, 12, x FOR PEER REVIEW 10 of 18

Table 2. Upstream head values for tests A, B and C and differential to the analytical value.

Test
Analytical New Algorithm CasADi

Head (m) Head (m) Diff. Head (m) Diff.

A 1.71764 1.72147 0.22% 1.71958 0.11%

B 1.18040 1.17062 −0.83% 1.16664 −1.17%

C 1.18040 1.17062 −0.83% 1.16664 −1.17%

3.2. Optimal Setting of the New Algorithm

Five test cases were defined in order to specify the optimal values for the parameters for the new

algorithm. These five tests were designed in order to induce changes in the flow characteristics due

to topographic or cross-section variations. The first three tests (1 to 3) concern a channel with a

rectangular cross-section and a bed slope that follows a sine function:

 sin()z x x (20)

with 0; 20x , 0.05 , 0.05 , 1/ 2 (for tests 1 and 2) and 2 for test 3. Two hundred

nodes were used to discretize the 20 m long channel, resulting in a 10 cm spatial step. For test 1, the

downstream boundary condition is a free surface elevation imposed at 1.2 m. For tests 2 and 3, the

same type of boundary condition was imposed with a smaller value of 0.55 m, which results in a

higher Froude number downstream. The specific discharge was imposed upstream at 1 m2/s for tests

1 to 3. The Manning equation was used for friction in tests 1 to 3, with the Manning coefficient n =

0.04 s/m1/3.

The topography and the hydraulic solutions were found thanks to the principle of head

conservation (Bernoulli) and are shown in Figures 6–8 for tests 1 to 3. Table 3 summarizes the

characteristics of each test. The objective of tests 1 to 3 was to analyze the influence of a variation of

the bed topography on the behavior of the sliding domain. For test 1, the irregularity of the bed has

only a slight influence on the water level. For the other tests, the higher Froude number and less

spaced bed elevation variations were meant to investigate the possible influence of oscillations in the

water level on the sliding domain performance.

Water 2020, 12, x FOR PEER REVIEW 11 of 18

Figure 6. Hydraulic solution for test 1.

Figure 7. Hydraulic solution for test 2.

Figure 8. Hydraulic solution for test 3.

Tests 4 and 5 were performed on regular bottoms. The discontinuities that we wanted to explore

here are linked to a change in the flow regime due to the presence of a weir (test 4) or a severe change

in the cross-section (test 5). For test 4, the topography was set at z = 0 m for all nodes except for three

of them: z = 0.5 m at x = 9.85 m and x = 10.05 m, and z = 1 m at x = 9.95 m. Friction was computed with

the Manning formula and a coefficient n = 0.04 s/m1/3. The cross-section is uniform along the channel

and is rectangular with a width of 1 m. A discharge of 1 m2/s was injected upstream and a water

depth equal to 0.7 m was imposed downstream.

Test 5 deals with a severe change in the cross-section on an inclined bottom. The channel extends

100 m, discretized with 200 nodes. The slope is 0.2%. The cross-section is trapezoidal upstream

(47.5x m), then suddenly becomes rectangular in the middle of the channel (m4 5 7.5 2m .5 x),

and finally returns to a trapezoidal shape in the downstream part (52.5x m). The trapezoidal

sections have a width at the bottom of 2 m and the banks are inclined with an angle of 45°. The

Water 2020, 12, x FOR PEER REVIEW 12 of 18

rectangular cross-sections are 1 m wide. The friction and boundary conditions are the same as in test

4.

The topography and final water levels for tests 4 and 5 are depicted in Figures 9 and 10. A

summary of these tests is given in Table 3.

Figure 9. Hydraulic solution for test 4.

(a) (b)

Figure 10. Hydraulic solution (a) and cross-section change (b) for test 5.

Table 3. Summary of the 5 tests used to investigate the best parameters for the new algorithm.

Test Channel Bed Friction BC

1
 0.05sin / 2 0.05() xz x , rectangular cross-

section

Manning, n = 0.04

s/m1/3

q = 1 m/s2, zdown = 1.2

m

Water 2020, 12, x FOR PEER REVIEW 13 of 18

2
 0.05sin / 2 0.05() xz x , rectangular cross-

section

Manning, n = 0.04

s/m1/3

q = 1 m/s2, zdown = 0.55

m

3
 0.05sin 2 0.05() xz x , rectangular cross-

section

Manning, n = 0.04

s/m1/3

q = 1 m/s2, zdown = 0.55

m

4 Flat bottom with a weir, rectangular cross-section
Manning, n = 0.04

s/m1/3

q = 1 m/s2, zdown = 0.7

m

5 0.2% slope, sudden change in cross-section
Manning, n = 0.04

s/m1/3

q = 1 m/s2, zdown = 0.7

m

Our algorithm includes many parameters that need to be specified. These parameters are the

partial residual threshold
p

, the final residual threshold
f
, the temporal scheme to solve Equation

(4) and the coefficient for the deactivation of the nonlinear Krylov accelerator. The final and partial

residuals are two closely linked parameters. They also have a direct impact on the computation time.

For a given final residual, which has to be parametrized by the user, the partial residual influences

the number of iterates required to converge the partial domain and the size of these domains. After

investigation, the other two parameters were shown to have almost no influence on the computation

time. The following results focus on the best value to use for the partial residual threshold
p

 for a

fixed value of 810
f

 m2/s.

CPU times were measured on a desktop computer (Intel i7 3.5 GHz CPU) for the five tests and

various partial residual thresholds. The results are reported graphically in Figure 11. It appears that

the overall computation time decreases with an increase in the partial residual threshold. Some

stagnation appears around 10−2 m2/s for tests 3 and 5. This can be explained by the fact that the

residual naturally decreases at each iteration. Keeping some nodes in the computation domain results

in a decrease in the residual for each node included in the computation domain.

Figure 11. CPU time according to the partial residual threshold for tests 1 to 5.

In order to assess the efficiency of the new algorithm, two scalability tests were performed. The

first one consisted of extending the domain upstream, with a constant spatial discretization. The

second test consisted of keeping the same channel but refining the discretization and then increasing

the number of computation nodes.

The first test took place on a frictionless sine bed elevation described by:

 0.05 sin 2() 0.05z x x (21)

The downstream boundary condition is a water level imposed at 0.65 m. The discharge is

constant along the channel stretch and is equal to 1 m2/s. Cross-sections are rectangular and 1 m wide.

Four domain lengths were tested (20 m, 200 m, 2 km and 20 km) with a spatial step of 0.1 m, meaning

that these domains include 200, 2000, 20,000 and 200,000 nodes.

The computation results (Figure 12a) showed that the computation time per node decreases

when the number of nodes increase. This can be explained by the fact that when the domain gets

Water 2020, 12, x FOR PEER REVIEW 14 of 18

longer, the flow conditions upstream are smoother than downstream. Longer domains undergo

fewer changes than shorter domains, leading to shorter computation time per node. This example

shows that higher partial residual values provide the best computation times.

Figure 12. CPU time evolution with the number of nodes when (a) the spatial step is kept constant

and when (b) the domain span is fixed.

In order to complete this scalability study, we looked at the behavior of the algorithm when the

spatial step decreases for a given domain length. In classical explicit schemes, this case leads to a

quadratic increase in the computation time. Indeed, when the spatial step decreases, the number of

nodes increases and the time step decreases.

A 100 km-long channel with a constant 0.025% slope was chosen to illustrate the behavior of the

new algorithm. The cross-sections are trapezoidal and are described using tabular values (1 m wide

at the bottom of the section and 5 m wide at 1 m above the bottom). Friction was generated using a

Manning law with n = 0.03 s/m1/3. The downstream boundary condition is a water level set at 1 m,

and 1 m3/s is injected at the upper node and the injection of 4 m3/s is shared amongst the other nodes

(through the ql term in Equation (1), 0
x

u).

The computation times are showed in Figure 12b. The behavior is slightly different from that

observed in the previous test. Indeed, the evolution of the computation time is linear in regard to the

number of nodes (the CPU time per node is globally constant) when the partial residual is set at 10−6

and 10−8 m2/s. For partial residual values of 10−2 and 10−4 m2/s, the evolution is linear up to 50,000

nodes; however, for the finest discretization, the computation time increases in a nonlinear way.

This point was investigated further. It appears that at some moment in the computation, the

algorithm needs to increase its computation domain size without being able to reduce it quickly (i.e.,

upstream nodes are added to the computation list while downstream nodes cannot be removed for

residual values reasons). This increase in the number of nodes in the computation list was nonlinear

compared to the situation with coarser discretization.

We looked at dimensionless values for parameters
p

 and
f

 by dividing them by 3/4

0
gA ,

0
A , which is a characteristic cross-section area. The results obtained showed rather constant values,

Water 2020, 12, x FOR PEER REVIEW 15 of 18

suggesting that a coherent choice for 3/4

0
/

f
Ag should be around 10−10. We also found that an

efficient ratio /
f p

 is around 10−6.

3.3. Performance of the Models

The test case chosen for the comparison between CasADi and our algorithm is a rectangular

channel (1 m wide) with a 100 m long sine wave bottom as shown in the following equation:

0.05 sin 0.05
4

()z xx

 (22)

A Manning friction formula with n = 0.04 s/m1/3 was used to estimate friction losses. The

downstream boundary condition is a water depth equal to 0.6 m. The unit discharge is uniform and

is equal to 1 m2/s. The precision parameters are as follows: 610
p
 m2/s and 810

f
 m2/s.

We compared the CPU time spent in the solving stages of our new algorithm and CasADi. The

goal was to compare the evolution of the computation time with the number of nodes, rather than

comparing absolute values. The results are given in Figure 13. They confirm that the computation

time evolves almost linearly with the number of nodes when the new algorithm is used. This is not

the case with CasADi: the computation time increases following a power law N , 1 . This is due

to the matrix operations that CasADi has to perform. Increasing the number of nodes leads to a non-

proportional increase in computation time. The speed up factor, which is the ratio between the CPU

time spent when using our new algorithm and the CPU time spent with CasADi, ranges from in order

of 100 to in order of 102 according to the number of nodes considered.

Figure 13. Comparison of the CPU time evolution with the number of nodes between our algorithm

and CasADi and the associated speed up factor.

3.4. Real-World Application

The Romanche River in the French Alps is currently facing a number of significant changes. A

new hydropower facility is being built in order to replace older power plants. In this context, the dam

operator needs a fast computation routine in order to operate its facilities in an optimized and safe

way. To do so, an unsteady 1-D model was implemented in Fortran and integrated in a Simulink S-

Function in order to be compatible with the operator model [7]. Our new algorithm was used for the

fast computation of an initial condition.

The studied part of the Romanche River stretches over 9.5 km (Figure 14), from the new Livet

Dam to Gavet. The geometry and the calibration of the friction coefficients are detailed in [7]. The

river was discretized with 191 nodes (50 m-long meshes). The downstream boundary condition was

set at an elevation of 436.8 m. Two discharges were tested: 10 and 40 m3/s. Since the details of the

hydraulic results are of limited interest for this paper, we focused on the execution time and showed

Water 2020, 12, x FOR PEER REVIEW 16 of 18

that the Froude number remains under 1 for both discharges (Figure 14). For the same machine as

the one used earlier, the execution times (CPU time) are 0.018 s and 0.022 s, respectively (810
f

m2/s and 210
p
 m2/s). In comparison, the computation time of a five-minute full simulation was

about 0.2 s. Given the length of the stretch and the celerity of a wave, the time for a wave to travel

from downstream to upstream is of the order of 80 min. This means that approximately 3.2 s of

computation time are required is order to simulate the propagation of a wave downstream to

upstream. It is clear that the gain of time offered by our original technique is significant.

Figure 14. Bottom elevation and Froude number distribution for both simulated discharges.

4. Conclusions

Several innovations are introduced in this paper, including the use of the non-linear Krylov

accelerator in open-channel flows, an evolutionary domain algorithm and the use of CasADi to solve

steady 1-D flows. These improvements lead to an algorithm that is able to quickly solve steady open-

channel flows. Therefore, optimization problems and uncertainty analyses that require many

evaluations, become more tractable.

An original algorithm was implemented in order to significantly improve the computation time

of a steady 1-D open-channel flow problem. It includes two main optimizing strategies: a non-linear

Krylov accelerator and an evolutionary domain algorithm. This new algorithm was validated against

the academic benchmarks of flows over a bump. The results showed a good agreement between the

numerical and analytical values.

The performance of the suggested algorithm was evaluated against the non-linear optimization

software CasADi. It showed good scalability properties. Indeed, the execution time of the proposed

algorithm evolves linearly with the number of nodes. This is not the case with other techniques when

the mesh is refined and/or when the number of nodes increase.

Finally, we demonstrated the capabilities of our algorithm in a real-world case. We used the

optimized algorithm in order to compute quickly the initial condition required by the operational

model for the Romanche River in France. Our technique was able to provide a steady state solution

to the unsteady model in a very short period of time.

Author Contributions: Conceptualization, M.P. and P.A.; methodology, L.G. and P.A.; software, L.G. and P.A.;

validation, L.G.; writing—original draft preparation, L.G.; writing—review and editing, P.A., M.P., B.D. and S.E.;

supervision, M.P. and P.A. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Water 2020, 12, x FOR PEER REVIEW 17 of 18

Conflicts of Interest: The authors declare no conflict of interest.

Computer Code and Software: The following software and codes were used for this paper: (a) WOLF was

developed by the HECE research group (http://www.hece.ulg.ac.be/cms/) at the University of Liège since 2000

and is not freely available, (b) CasADi is freely available at https://web.casadi.org/, and (c) the routines used to

test CasADi are freely available at https://gitlab.uliege.be/HECE/HydroCasADi.

References

1. Proust, S.; Berni, C.; Boudou, M.; Chiaverini, A.; Dupuis, V.; Faure, J.-B.; Paquier, A.; Lang, M.; Guillen-

Ludena, S.; Lopez, D.; et al. Predicting the flow in the floodplains with evolving land occupations during

extreme flood events (FlowRes ANR project). In Proceedings of the E3S Web of Conferences, Lyon, France,

17–21 October 2016; Volume 7.

2. Drab, A.; Riha, J. An approach to the implementation of European Directive 2007/60/EC on flood risk

management in the Czech Republic. Nat. Hazards Earth Syst. Sci. 2010, 10, 1977–1987, doi:10.5194/nhess-10-

1977-2010.

3. Schwanenberg, D.; Becker, B.P.J.; Xu, M. The open real-time control (RTC)-Tools software framework for

modeling RTC in water resources sytems. J. Hydroinform. 2014, 17, 130–148, doi:10.2166/hydro.2014.046.

4. Tayefi, V.; Lane, S.N.; Hardy, R.J.; Yu, D. A comparison of one- and two-dimensional approaches to

modelling flood inundation over complex upland floodplains. Hydrol. Process. 2007, 21, 3190–3202,

doi:10.1002/hyp.6523.

5. Horritt, M.S.; Bates, P.D. Evaluation of 1D and 2D numerical models for predicting river flood inundation.

J. Hydrol. 2002, 268, 87–99, doi:10.1016/S0022-1694(02)00121-X.

6. Cook, A.; Merwade, V. Effect of topographic data, geometric configuration and modeling approach on

flood inundation mapping. J. Hydrol. 2009, 377, 131–142, doi:10.1016/j.jhydrol.2009.08.015.

7. Goffin, L.; Dewals, B.J.; Erpicum, S.; Pirotton, M.; Archambeau, P. Non-linear optimization of a 1-D shallow

water model and integration into Simulink for operational use. In Proceedings of the Sustainable

Hydraulics in the Era of Global Change—4th European Congress of the International Association of

Hydroenvironment Engineering and Research (IAHR 2016), Liege, Belgium, 27–29 July 2016; CRC

Press/Balkema: Boca Raton, FL, USA, 2016; pp. 445–451.

8. Bourdarias, C.; Gerbi, S.; Gisclon, M. A kinetic formulation for a model coupling free surface and

pressurised flows in closed pipes. J. Comput. Appl. Math. 2008, 218, 522–531, doi:10.1016/j.cam.2007.09.009.

9. Paiva, R.C.D.; Collischonn, W.; Tucci, C.E.M. Large scale hydrologic and hydrodynamic modeling using

limited data and a GIS based approach. J. Hydrol. 2011, 406, 170–181, doi:10.1016/j.jhydrol.2011.06.007.

10. Paz, A.R.; Bravo, J.M.; Allasia, D.; Collischonn, W.; Tucci, C.E.M. Large-scale hydrodynamic modeling of a

complex river network and floodplains. J. Hydrol. Eng. 2010, 15, 152–165, doi:10.1061/(ASCE)HE.1943-

5584.0000162.

11. Lai, X.; Jiang, J.; Liang, Q.; Huang, Q. Large-scale hydrodynamic modeling of the middle Yangtze River

Basin with complex river-lake interactions. J. Hydrol. 2013, 492, 228–243, doi:10.1016/j.jhydrol.2013.03.049.

12. Remo, J.W.F.; Pinter, N. Retro-modeling the Middle Mississippi River. J. Hydrol. 2007, 337, 421–435,

doi:10.1016/j.jhydrol.2007.02.008.

13. Biancamaria, S.; Bates, P.D.; Boone, A.; Mognard, N.M. Large-scale coupled hydrologic and hydraulic

modelling of the Ob river in Siberia. J. Hydrol. 2009, 379, 136–150, doi:10.1016/j.jhydrol.2009.09.054.

14. Kerger, F.; Archambeau, P.; Erpicum, S.; Dewals, B.J.; Pirotton, M. A fast universal solver for 1D continuous

and discontinuous steady flows in rivers and pipes. Int. J. Numer. Methods Fluids 2011, 66, 38–48,

doi:10.1002/fld.2243.

15. Sandric, I.; Ionita, C.; Chitu, Z.; Dardala, M.; Irimia, R.; Furtuna, F.T. Using CUDA to accelerate uncertainty

propagation modelling for landslide susceptibility assessment. Environ. Model. Softw. 2019, 115, 176–186,

doi:10.1016/j.envsoft.2019.02.016.

16. Neal, J.C.; Fewtrell, T.J.; Bates, P.D.; Wright, N.G. A comparison of three parallelisation methods for 2D

flood inundation models. Environ. Model. Softw. 2010, 25, 398–411.

17. Lacasta, A.; Garcia-Navarro, P.; Burguete, J.; Murillo, J. Preprocess static subdomain decomposition in

practical cases of 2D unsteady hydraulic simulation. Comput. Fluids 2013, 80, 225–232,

doi:10.1016/j.compfluid.2012.03.010.

18. Brodtkorb, A.R.; Sæ tra, M.L.; Altinakar, M. Efficient shallow water simulations on GPUs: Implementation,

visualization, verification, and validation. Comput. Fluids 2012, 55, 1–12.

Water 2020, 12, x FOR PEER REVIEW 18 of 18

19. Petaccia, G.; Leporati, F.; Torti, E. OpenMP and CUDA simulations of Sella Zerbino Dam break on

unstructured grids. Comput. Geosci. 2016, 20, 1123–1132, doi:10.1007/s10596-016-9580-5.

20. Smith, L.S.; Liang, Q. Towards a generalised GPU/CPU shallow-flow modelling tool. Comput. Fluids 2013,

88, 334–343, doi:10.1016/j.compfluid.2013.09.018.

21. Chaudhry, M.H. Open-Channel Flow; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2007.

22. Bruwier, M.; Archambeau, P.; Erpicum, S.; Pirotton, M.; Dewals, B. Discretization of the divergence

formulation of the bed slope term in the shallow-water equations and consequences in terms of energy

balance. Appl. Math. Model. 2016, 40, 7532–7544, doi:10.1016/j.apm.2016.01.041.

23. Franzini, F.; Soares-Frazão, S. Efficiency and accuracy of Lateralized HLL, HLLS and Augmented Roe’s

scheme with energy balance for river flows in irregular channels. Appl. Math. Model. 2016, 40, 7427–7446,

doi:10.1016/j.apm.2016.02.007.

24. Erpicum, S.; Dewals, B.; Archambeau, P.; Pirotton, M. Dam break flow computation based on an efficient

flux vector splitting. J. Comput. Appl. Math. 2010, 234, 2143–2151.

25. Broyden, C.G. A class of methods for solving nonlinear simultaneous equations. Math. Comput. 1965, 19,

577–593.

26. Knoll, D.A.; Keyes, D.E. Jacobian-free Newton–Krylov methods: A survey of approaches and applications.

J. Comput. Phys. 2004, 193, 357–397, doi:10.1016/j.jcp.2003.08.010.

27. Anderson, D.G. Iterative Procedures for Nonlinear Integral Equations. J. ACM 1965, 12, 547–560,

doi:10.1145/321296.321305.

28. Walker, H.F.; Ni, P. Anderson acceleration for fixed-point iterations. SIAM J. Numer. Anal. 2011, 49, 1715–

1735.

29. Saad, Y.; Schultz, M.H. GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear

systems. SIAM J. Sci. Stat. Comput. 1986, 7, 856–869.

30. Carlson, N.N.; Miller, K. Design and application of a gradient-weighted moving finite element code I: In

one dimension. SIAM J. Sci. Comput. 1998, 19, 728–765.

31. Carlson, N.N.; Miller, K. Design and Application of a Gradient-Weighted Moving Finite Element Code II:

In Two Dimensions. SIAM J. Sci. Comput. 1998, 19, 766–798, doi:10.1137/S1064827594269561.

32. Calef, M.T.; Fichtl, E.D.; Warsa, J.S.; Berndt, M.; Carlson, N.N. Nonlinear Krylov acceleration applied to a

discrete ordinates formulation of the k-eigenvalue problem. J. Comput. Phys. 2013, 238, 188–209,

doi:10.1016/j.jcp.2012.12.024.

33. Wang, C.; Cheng, J.; Berndt, M.; Carlson, N.N.; Luo, H. Application of nonlinear Krylov acceleration to a

reconstructed discontinuous Galerkin method for compressible flows. Comput. Fluids 2018, 163, 32–49,

doi:10.1016/j.compfluid.2017.12.015.

34. Andersson, J.A.E.; Gillis, J.; Horn, G.; Rawlings, J.B.; Diehl, M. CasADi—A software framework for

nonlinear optimization and optimal control. Math. Program. Comput. 2018, 11, 1–36.

35. Baayen, J.; Piovesan, T.; VanderWees, J. Optimization problems subject to the nonlinear semi-implicitly

discretized Saint-Venant equations have a unique solution. arXiv 2018, preprint arXiv:1801.06507.

36. Aureli, F.; Maranzoni, A.; Mignosa, P.; Ziveri, C. A weighted surface-depth gradient method for the

numerical integration of the 2D shallow water equations with topography. Adv. Water Resour. 2008, 31, 962–

974, doi:10.1016/j.advwatres.2008.03.005.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional

affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access

article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

