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Abstract: Calculating an open-channel steady flow is of main interest in many situations; this 

includes defining the initial conditions for the unsteady simulation or the computation of the water 

level for a given discharge. There are several applications that require a very short computation time 

in order to envisage a large number of runs, for example, uncertainty analysis or optimization. Here, 

an optimized algorithm was implemented for the fast and efficient computation of a 1-D steady 

flow. It merges several techniques: a pseudo-time version of the Saint-Venant equations, an 

evolutionary domain and the use of a non-linear Krylov accelerator. After validation of this new 

algorithm, we also showed that it performs well in scalability tests. The computation cost evolves 

linearly with the number of nodes. This was also corroborated when the execution time was 

compared to that obtained by the non-linear solver, CasADi. A real-world example using a 9.5 km 

stretch of river confirmed that the computation times were very short compared to a standard time-

dependent computation.  
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1. Introduction 

Channelized flows can be simulated using 1-D, 2-D or 3-D models depending on the level of 

flow detail that is required [1]. Results from hydrodynamic numerical models are used in multiple 

domains including flood risk analysis [2] or real-time control of river facilities [3], for instance. 

One-dimensional models are used when a dominant direction can be assumed in the velocity 

field. This may be the case when the flow is restricted to the main riverbed. A 1-D model can still be 

used in the case of out-of-bank flooding, although they are unable to represent complex 2-D flow 

patterns in the floodplain [4]. Several practical cases have shown that flood mapping can be 

performed using 1-D models [5,6] and they can also be used in other fields, such as flood routing for 

hydropower plant operations [7] and mixed flows in pipes [8]. 

In fact, 1-D models are still used extensively even though 2-D and 3-D models are currently 

widely available. There are various reasons for their use, for example, digital elevation models (DEM) 

and bathymetry data are not available in some regions of the world. When only cross-section profiles 

are available to represent the geometry of a riverbed, 1-D models can make direct use of such profiles 

whereas they have to be interpolated to be used in 2-D or 3-D models. Besides, many applications do 

not require a detailed description of the flow features in the floodplain, and thus, a 1-D modeling 

approach is sufficient. 
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Large-scale hydraulic modeling of river networks [9–13] makes heavy use of 1-D models because 

of their ability to compute long stretches of the river at a reasonable cost. To initiate a computation, 

one needs boundary conditions as well as the initial condition. This initial condition is often a steady 

water profile, which can be obtained by performing a time-dependent simulation with steady 

boundary conditions over a period of time that is long enough to reach a steady solution [14]. This 

step may consume a considerable amount of time before the main problem can be addressed. The 

initial condition should be computed with the same numerical scheme as the one used in the unsteady 

model in order to ensure the steadiness of the first step of the unsteady model. The ability of these 

models to quickly obtain a steady initial solution is also of great importance. 

Optimization is another field where obtaining a steady result as quickly as possible is important. 

Indeed, most optimization techniques require a large number of runs in order to figure out the 

optimal solution. In order to ensure that the overall computation time is as short as possible, 

techniques that are quick should be utilized including parallelization [15] or the use of fast computing 

models. 

Although 1-D simulations are known to provide results in a short period of time, accelerating 

the computation of the 1-D steady solution is of great interest in the fields mentioned above. This can 

be achieved by using two main strategies. The first consists of exploiting the resources of modern 

computers more efficiently. Such techniques are more frequently applied to 2-D cases, which 

naturally require more computing resources. Common hardware acceleration strategies include 

parallelizing codes on several CPU cores [16,17] or on a GPU [18–20]. The second method consists of 

designing algorithms in order to converge with less effort toward the solution. To the authors’ 

knowledge, there is no such work available in the literature. Both strategies can be combined in order 

to obtain the best performance. 

The purpose of this paper is to propose algorithmic strategies for the fast computation of 1-D 

steady solutions. First, the equations are presented. Then, we introduce two original strategies in 

order to reduce the overall computation time. These strategies can easily be implemented in other 

hydraulic codes. An alternative non-linear solver is introduced for comparison purposes. Finally, the 

validation results, the optimal parameters for the algorithm, the performance of the model and its 

application to a real-world problem are presented. 

2. Materials and Methods  

2.1. Equations 

One-dimensional water flow is described by the St-Venant equations, which are as follows [21]: 
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where A is the cross-section area (m2), Q is the discharge (m3/s), ql is a lateral discharge per unit length 

(m2/s), g is the gravity acceleration (m/s2), Sf is the friction slope (-), ux is the velocity along the x 

direction of ql (m/s) and zs is the free surface elevation (m). The numerical resolution of this set of non-

conservative equations has been shown to provide accurate results in many practical cases, including 

in the presence of discontinuities [22,23]. 

Assuming a steady flow, temporal derivatives vanish in Equation (1). Since solving the first 

equation is straightforward, the discharge distribution is known on the entire domain for a given 

distribution of ql. We assume that the sign of Q is independent from x. It means that a single equation 

remains with a single unknown A. In order to keep the same numerical scheme as the one used for 

the unsteady system (which is important when a steady solution is used as the initial condition of an 

unsteady problem and to be able to use a similar algorithmic strategy), Kerger et al. [14] added a 

pseudo-temporal term (pseudo-time is   (s)) to the steady form of Equation (1): 



Water 2020, 12, x FOR PEER REVIEW 3 of 18 

 




   
     

   

2
s

f x l

zA Q
gA gAS u q

x A x
 (2) 

where    sign Q . Kerger et al. [14] justify this choice for   by analyzing the characteristic 

velocity of Equation (2): 
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where c (m/s) is the wave celerity. In subcritical flows (Fr < 1,  
0.5

3Fr / /gA bQ  is the Froude 

number (-), b is the width of the free surface (m)), and the sign of   is the sign of  . If Fr > 1, then 

     sign sign . For critical flows (Fr = 1), the characteristic velocity is 0, independently from  . 

In order to keep some form of consistency with the general model, if we choose    sign Q , an 

upstream boundary condition is required when Fr > 1 and a downstream boundary condition is 

required when Fr < 1. This is equivalent to the position of the water depth boundary condition for the 

numerical resolution of the full 1-D set of equations. 

With a single boundary condition and a discharge distributed in the channel, solving Equation 

(2) determines the cross-section area (and subsequently, the water depth) all along the stretch. 

Equation (2) is discretized according to the finite volume method. It is solved according to the same 

numerical scheme as the one used for the full unsteady model [14,24]. 

For a node i, Equation (2) is discretized in finite volumes as: 
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where x  (m) is the spatial discretization step and subscripts refer to the position of variables values. 

For the sake of clarity, we consider  0Q  and a constant reconstruction of the flux at finite 

volume boundaries to explicate the numerical scheme. When applying the considered upwinding 

directions [14] for a node i not located next to a boundary, Equation (4) is equivalent to: 
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This flux vector splitting method has been shown to be unconditionally stable [14]. For the node 

located at the downstream boundary (  1i N ), if a weak water level boundary condition zs,BC is 

imposed at the border, Equation (4) becomes: 
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Without a boundary condition imposed on the value of zs at the external border, a nil zs gradient 

is imposed and Equation (4) becomes: 
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At the upstream node (  0i ), if a weak boundary condition of the water level is imposed at the 

border, Equation (4) becomes: 
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Without a boundary condition at the upstream border, Equation (4) becomes: 
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2.2. Original Solving Strategy 

Solving Equation (2) instead of Equation (1) decreases the computation time since the number 

of equations and unknowns is reduced. In order to save even more time, two additional strategies 

were implemented: (a) a non-linear Krylov accelerator was used to promote fast convergence and (b) 

the computation was only performed on a sliding part of the full domain. 

2.2.1. Non-Linear Krylov Acceleration 

Numerically solving a non-linear system can be performed by different means, including 

Newton’s method and Broyden’s method [25]. More sophisticated methods exist in order to solve 

non-linear systems faster, such as the Jacobian-free Newton–Krylov method [26] and Anderson 

acceleration [27]. The Anderson acceleration method uses the results from successive iterations in 

order to adapt the new approximation. Walker and Ni [28] showed that this method can be 

considered equivalent to the well-known GMRES method [29] when applied to linear systems. The 

nonlinear Krylov acceleration (NKA) [30,31], which is similar to Anderson acceleration, has been 

found to be more efficient in some applications than more recent methods such as the Jacobian-free 

Newton–Krylov method [32]. NKA was used for a faster convergence of our pseudo-time model. 

Since NKA only relies on the results directly produced by the hydraulic model, it can be easily 

applied to other algorithms or other domains. Indeed, no gradient evaluation (nor other prerequisite) 

is required before calling on the NKA algorithm. 

The NKA algorithm records N (
0

N


 ) previous moves of the root finding process. Based on 

these previous moves, NKA adapts its guess for the new root. One of the main assumptions is that 

the Jacobian matrix remains constant within the scope of N moves. We briefly explain the method 

here and extended details can be found in [30–33]. 

A Newton–Raphson iteration process computes the n + 1st guess of the root based on the nth 

guess xn, on the value of the function f at xn and on the invert of the Jacobian matrix J: 
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Instead of evaluating J−1 at each iteration, NKA evaluates it from N previous moves or sets it to 

the identity matrix, in which case the method degenerates to the fixed-point method. 

NKA takes advantage of a history of N corrections of x (denoted v) and N evolutions of  f x  

(denoted w) at iterate n: 
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The method assumes that J is constant and invertible within the scope of the N previous 

iterations, which is written as follows: 
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Mathematical developments described in the references cited above lead to the expression: 
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where the coefficients zi are the solution of the projection: 
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Equation (13) shows that the correction of the variable x is decomposed into two components: 

1. The first term depicts the correction as a linear combination of previous corrections. 

2. The second term is similar to the second term of a fixed-point iteration that takes into account 

previous evolutions of function f. 

Note that the Jacobian matrix is not used in this iterative process. 

2.2.2. Evolutionary Domain 

The second strategy was designed to reduce computational cost. It consists in reducing the size 

of the computation domain and sliding it along the river stretch in order to evaluate the cross-section 

areas from downstream to upstream. 

The development of this strategy has arisen from the long history of numerical hydrodynamics 

in various flow regimes. Indeed, many flows that are solved for rivers are subcritical (Fr < 1) at 

downstream and upstream boundary conditions. In such a situation, the cross-section area 

information is propagated from downstream to upstream. For a fixed flow direction, the upwinding 

direction of the scheme takes all unknowns and properties (except those linked to the discharge) 

downstream. This means that when a new node is computed, it depends only on the downstream 

nodes (Figure 1). It should be noticed that when a node i is added, the upstream border of node i + 1 

produces a change in the upwinding direction of property Q and the unknown Avel (cross-section area 

used to compute the velocity). The node i + 1, which was supposed to be converged, undergoes a new 

convergence process that indirectly affects nodes i + 2, i + 3, … Theoretically, all the nodes located 

downstream of node i should be kept in the computational domain. 

The boundary condition on the border between the node i and node i − 1 (see Figure 1) is called 

a “mirror border”. On this border, all the unknowns and properties are reconstructed from the 

computed inner node. This method is equivalent to reproducing the node i in i − 1, like a mirror. For 

node i in Figure 1, the discretization of Equation (2) is: 
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Figure 1. Upwinding directions of the unknown and flow properties at the upstream limit of the 

computation domain. 

The evolution of the domain relies on three strategies. First, all nodes in the computation domain 

should have reached a partial residual threshold 
p

  (m2/s) before considering the extension of the 
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The influence of a change in the cross-section area in 1i   on the value of /A    in i is given 

by the derivative: 
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Figure 2. Upwinding directions of the unknown and flow properties in the computation domain. 

From the result in (17), one can predict the evolution of the residual /A    of a node that is 

not in the computation domain anymore. If node i is planned to be removed from the computation 

domain, one can check that its /A    remains below the threshold 
f

  even with an evolution of 

the cross-section area in 1i  : 
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where 
1i

A


  is the evolution of the cross-section A in 1i   from the last evaluation of 
,

/
i prev

A    . 

If the evolution of the cross-section area in the computation domain ( 1i  ) implies that 

/
i

A      exceeds the threshold 
f

 , then node i should be added again in the computation domain 

in order to make sure it remains below the threshold until the end of the entire computation. It should 

be noted that node 1, 2,i i   might also be impacted. This technique guarantees that once the 
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sliding domain has moved along the entire domain, all nodes have reached at least the final precision 

required. 

As stated earlier, the method described here was designed within the framework of subcritical 

flows. In order to be able to deal with a larger range of flow regimes, several adaptations were made. 

When a supercritical node is detected downstream (let say at position m), it is not computed and the 

computation domain is extended until a subcritical node is found upstream (say at position n). Then, 

the domain starting from m to n is computed and converged. This technique avoids boundary 

condition problems. Indeed, a supercritical flow requires an upstream BC since the characteristic 

velocity is directed towards the downstream. 

2.2.3. Combination of Solving Strategies 

The combined use of the sliding domain and NKA involves several specific considerations. The 

use of NKA is implemented in the code with a safety coefficient that deactivates this optimizing 

technique in some cases. Indeed, it was experienced that NKA could lead to some instabilities when 

there was a sudden change in the cross-section area. This behavior is due to the assumption in NKA 

that the Jacobian matrix is constant and invertible locally [32,33]. In order to avoid such a situation, 

the accelerator is deactivated when 1 1i i i
A AA 

 
  , where Ai and Ai + 1 refer to the cross-section 

area of the nodes i and i + 1 as depicted in Figure 1, and 0 1   is the safety coefficient (-). After 

several tests, we found that 0.5   provides stability with a limited impact on the computation time. 

The method can be summarized with the following pseudo-code: 

Algorithm 

Initialize (computation list is empty) 

Add most downstream node to computation list 

While some nodes still have to be converged ( /
f

A     ): 

 Initialize lastly added upstream node 

 While nodes of computation list not converged ( /
p

A     ): 

  Compute cross section change for each node 

  If NKA activated: 

   Adapt cross section change with NKA algorithm 

If lastly removed downstream node significantly impacted: 

 Add it back to the computation list and do not expand upstream 

Else: 

 If downstream node in computation list fully converged ( /
f

A     ): 

  Remove this node from computation list 

If upstream nodes remain to be added to computation list: 

 Add 1 upstream node to the computation list 

Finalize 

2.3. Alternative Non-Linear Solver 

Various techniques can be used to solve nonlinear Equation (2). Up to this point, we have chosen 

to discretize the equation using a finite volume scheme and solve it with an explicit time scheme, 

which is consistent with the unified strategy of WOLF [24]. Other techniques can be used, including 

finite difference schemes and/or implicit time schemes. Another possibility is to use an optimization 

algorithm for nonlinear systems. One of these is the recently developed CasADi software [34,35]. 

CasADi first started as an algorithmic differentiation tool. During its evolution, developers chose 

to shift the focus toward optimization. From non-linear expressions, CasADi is able to generate all 

the information needed by a nonlinear solver in order to return a solution to the problem. CasADi 

provides interfaces to MATLAB or Python for easy use. 

The purpose of using CasADi is to show how our algorithm performs compared to a state-of-

the-art solver. 
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The implementation in CasADi was done through Opti stack, a collection of helper functions 

used for nonlinear programming problems. It is possible to define variables to optimize, parameters, 

an objective function and constraints. The solving of a 1-D steady open channel flow can be done 

thanks to this framework. 

The constraints of the problem are discretized in Equation (2) for each node and a water depth 

above 0 everywhere. The downstream boundary condition is imposed through Equation (6). If no 

boundary condition is set, then a flow condition can be imposed through a constraint on the Froude 

number for the downstream node and the flow head is minimized at the upstream node. If the flow 

presents a critical section, minimizing the head upstream is equivalent to finding the section with the 

highest critical head. 

Another way to solve a flow with a critical section is to prescribe a Froude number transition 

from Fr 1  to Fr 1  at that critical section. This is done by setting a constraint on the Froude 

number on the nodes upstream and downstream of the critical section. The identification of the 

critical section should be done prior to the computation on the basis of a critical head analysis. 

3. Results and Discussion 

This section presents the validation of the results and focuses on the optimal parameters and 

performance. The geometries of the tests were different in order to examine as many cases as possible. 

3.1. Validation 

The validation of the models was performed on a bump placed in a straight horizontal channel, 

considering three different flow conditions. The bump and channel geometry have been described 

previously in [36]. The whole domain ranges from 0 to 20 m with the following bed elevation: 
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The channel is considered to be rectangular. The discretization step was chosen as 0.1 m. 

The different flow conditions are described in Table 1. All tests were performed with 610
p
   

m2/s and 1010
f

   m2/s. 

Table 1. Boundary conditions for three test cases. 

Test Upstream BC Downstream BC 

A q = 1 m2/s h = 1.7 m 

B q = 0.4 m2/s h = 0.75 m 

C q = 0.4 m2/s Transmissive 

The objective was to show that the model is able to deal accurately with various flow regimes 

and transitions. Test A simulates a fully subcritical flow with no transition. Test B creates a subcritical 

flow upstream, a subcritical flow downstream and a hydraulic jump in between, downstream of the 

bump. Finally, the goal of test C is to show the robustness of the method for a downstream 

supercritical flow and an upstream subcritical flow. 

The analytical solutions for tests A, B and C were computed from the Bernoulli principle (head 

conservation) [22] and the conjugate water depth formula was used for test B. A graphical 

comparison of the analytical values and numerical results obtained by our algorithm and CasADi is 

given in Figures 3–5. It appears that the new algorithm and CasADi provide results that fit well with 

the analytical solution. However, a small difference in energy can be noticed between the analytical 

solution and the numerical results and also between both numerical methods (see Table 2). This was 

quantified and explained by Bruwier et al. [22]. Moreover, a more noticeable localized difference 
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appears between CasADi and the new algorithm results at the hydraulic jump. Even if the numerical 

scheme is the same for the new algorithm and CasADi, each method has its own convergence 

threshold. Altogether, the analysis validates both models. 

 

Figure 3. Comparison between the analytical solution and the numerical results produced by the new 

algorithm and CasADi for validation test A. 

 

Figure 4. Comparison between the analytical solution and the numerical results produced by the new 

algorithm and CasADi for validation test B. 

 

Figure 5. Comparison between the analytical solution and the numerical results produced by the new 

algorithm and CasADi for validation test C.  
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Table 2. Upstream head values for tests A, B and C and differential to the analytical value. 

Test 
Analytical New Algorithm CasADi 

Head (m) Head (m) Diff. Head (m) Diff. 

A 1.71764 1.72147 0.22% 1.71958 0.11% 

B 1.18040 1.17062 −0.83% 1.16664 −1.17% 

C 1.18040 1.17062 −0.83% 1.16664 −1.17% 

3.2. Optimal Setting of the New Algorithm 

Five test cases were defined in order to specify the optimal values for the parameters for the new 

algorithm. These five tests were designed in order to induce changes in the flow characteristics due 

to topographic or cross-section variations. The first three tests (1 to 3) concern a channel with a 

rectangular cross-section and a bed slope that follows a sine function: 

 sin( )z x x     (20) 

with 0; 20x    , 0.05  , 0.05  , 1/ 2   (for tests 1 and 2) and 2   for test 3. Two hundred 

nodes were used to discretize the 20 m long channel, resulting in a 10 cm spatial step. For test 1, the 

downstream boundary condition is a free surface elevation imposed at 1.2 m. For tests 2 and 3, the 

same type of boundary condition was imposed with a smaller value of 0.55 m, which results in a 

higher Froude number downstream. The specific discharge was imposed upstream at 1 m2/s for tests 

1 to 3. The Manning equation was used for friction in tests 1 to 3, with the Manning coefficient n = 

0.04 s/m1/3. 

The topography and the hydraulic solutions were found thanks to the principle of head 

conservation (Bernoulli) and are shown in Figures 6–8 for tests 1 to 3. Table 3 summarizes the 

characteristics of each test. The objective of tests 1 to 3 was to analyze the influence of a variation of 

the bed topography on the behavior of the sliding domain. For test 1, the irregularity of the bed has 

only a slight influence on the water level. For the other tests, the higher Froude number and less 

spaced bed elevation variations were meant to investigate the possible influence of oscillations in the 

water level on the sliding domain performance.  
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Figure 6. Hydraulic solution for test 1. 

 

Figure 7. Hydraulic solution for test 2. 

 

Figure 8. Hydraulic solution for test 3. 

Tests 4 and 5 were performed on regular bottoms. The discontinuities that we wanted to explore 

here are linked to a change in the flow regime due to the presence of a weir (test 4) or a severe change 

in the cross-section (test 5). For test 4, the topography was set at z = 0 m for all nodes except for three 

of them: z = 0.5 m at x = 9.85 m and x = 10.05 m, and z = 1 m at x = 9.95 m. Friction was computed with 

the Manning formula and a coefficient n = 0.04 s/m1/3. The cross-section is uniform along the channel 

and is rectangular with a width of 1 m. A discharge of 1 m2/s was injected upstream and a water 

depth equal to 0.7 m was imposed downstream. 

Test 5 deals with a severe change in the cross-section on an inclined bottom. The channel extends 

100 m, discretized with 200 nodes. The slope is 0.2%. The cross-section is trapezoidal upstream 

( 47.5x   m), then suddenly becomes rectangular in the middle of the channel (   m4 5 7.5 2m .5 x ), 

and finally returns to a trapezoidal shape in the downstream part ( 52.5x   m). The trapezoidal 

sections have a width at the bottom of 2 m and the banks are inclined with an angle of 45°. The 
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rectangular cross-sections are 1 m wide. The friction and boundary conditions are the same as in test 

4. 

The topography and final water levels for tests 4 and 5 are depicted in Figures 9 and 10. A 

summary of these tests is given in Table 3. 

 

 

Figure 9. Hydraulic solution for test 4. 

  

(a) (b) 

Figure 10. Hydraulic solution (a) and cross-section change (b) for test 5. 

Table 3. Summary of the 5 tests used to investigate the best parameters for the new algorithm. 

Test Channel Bed Friction BC 

1 
  0.05sin / 2 0.05( ) xz x , rectangular cross-

section 

Manning, n = 0.04 

s/m1/3 

q = 1 m/s2, zdown = 1.2 

m 
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2 
  0.05sin / 2 0.05( ) xz x , rectangular cross-

section 

Manning, n = 0.04 

s/m1/3 

q = 1 m/s2, zdown = 0.55 

m 

3 
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Our algorithm includes many parameters that need to be specified. These parameters are the 

partial residual threshold 
p

, the final residual threshold 
f
, the temporal scheme to solve Equation 

(4) and the coefficient for the deactivation of the nonlinear Krylov accelerator. The final and partial 

residuals are two closely linked parameters. They also have a direct impact on the computation time. 

For a given final residual, which has to be parametrized by the user, the partial residual influences 

the number of iterates required to converge the partial domain and the size of these domains. After 

investigation, the other two parameters were shown to have almost no influence on the computation 

time. The following results focus on the best value to use for the partial residual threshold 
p

  for a 

fixed value of 810
f

   m2/s. 

CPU times were measured on a desktop computer (Intel i7 3.5 GHz CPU) for the five tests and 

various partial residual thresholds. The results are reported graphically in Figure 11. It appears that 

the overall computation time decreases with an increase in the partial residual threshold. Some 

stagnation appears around 10−2 m2/s for tests 3 and 5. This can be explained by the fact that the 

residual naturally decreases at each iteration. Keeping some nodes in the computation domain results 

in a decrease in the residual for each node included in the computation domain. 

 

Figure 11. CPU time according to the partial residual threshold for tests 1 to 5. 

In order to assess the efficiency of the new algorithm, two scalability tests were performed. The 

first one consisted of extending the domain upstream, with a constant spatial discretization. The 

second test consisted of keeping the same channel but refining the discretization and then increasing 

the number of computation nodes. 

The first test took place on a frictionless sine bed elevation described by: 

 0.05 sin 2( ) 0.05z x x   (21) 

The downstream boundary condition is a water level imposed at 0.65 m. The discharge is 

constant along the channel stretch and is equal to 1 m2/s. Cross-sections are rectangular and 1 m wide. 

Four domain lengths were tested (20 m, 200 m, 2 km and 20 km) with a spatial step of 0.1 m, meaning 

that these domains include 200, 2000, 20,000 and 200,000 nodes. 

The computation results (Figure 12a) showed that the computation time per node decreases 

when the number of nodes increase. This can be explained by the fact that when the domain gets 
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longer, the flow conditions upstream are smoother than downstream. Longer domains undergo 

fewer changes than shorter domains, leading to shorter computation time per node. This example 

shows that higher partial residual values provide the best computation times. 

 

Figure 12. CPU time evolution with the number of nodes when (a) the spatial step is kept constant 

and when (b) the domain span is fixed. 

In order to complete this scalability study, we looked at the behavior of the algorithm when the 

spatial step decreases for a given domain length. In classical explicit schemes, this case leads to a 

quadratic increase in the computation time. Indeed, when the spatial step decreases, the number of 

nodes increases and the time step decreases. 

A 100 km-long channel with a constant 0.025% slope was chosen to illustrate the behavior of the 

new algorithm. The cross-sections are trapezoidal and are described using tabular values (1 m wide 

at the bottom of the section and 5 m wide at 1 m above the bottom). Friction was generated using a 

Manning law with n = 0.03 s/m1/3. The downstream boundary condition is a water level set at 1 m, 

and 1 m3/s is injected at the upper node and the injection of 4 m3/s is shared amongst the other nodes 

(through the ql term in Equation (1), 0
x

u  ). 

The computation times are showed in Figure 12b. The behavior is slightly different from that 

observed in the previous test. Indeed, the evolution of the computation time is linear in regard to the 

number of nodes (the CPU time per node is globally constant) when the partial residual is set at 10−6 

and 10−8 m2/s. For partial residual values of 10−2 and 10−4 m2/s, the evolution is linear up to 50,000 

nodes; however, for the finest discretization, the computation time increases in a nonlinear way. 

This point was investigated further. It appears that at some moment in the computation, the 

algorithm needs to increase its computation domain size without being able to reduce it quickly (i.e., 

upstream nodes are added to the computation list while downstream nodes cannot be removed for 

residual values reasons). This increase in the number of nodes in the computation list was nonlinear 

compared to the situation with coarser discretization. 

We looked at dimensionless values for parameters 
p

  and 
f

  by dividing them by 3/4

0
gA , 

0
A , which is a characteristic cross-section area. The results obtained showed rather constant values, 
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suggesting that a coherent choice for  3/4

0
/

f
Ag  should be around 10−10. We also found that an 

efficient ratio /
f p

   is around 10−6. 

3.3. Performance of the Models 

The test case chosen for the comparison between CasADi and our algorithm is a rectangular 

channel (1 m wide) with a 100 m long sine wave bottom as shown in the following equation: 

0.05 sin 0.05
4

( )z xx
 

 
 

  (22) 

A Manning friction formula with n = 0.04 s/m1/3 was used to estimate friction losses. The 

downstream boundary condition is a water depth equal to 0.6 m. The unit discharge is uniform and 

is equal to 1 m2/s. The precision parameters are as follows: 610
p
   m2/s and 810

f
   m2/s. 

We compared the CPU time spent in the solving stages of our new algorithm and CasADi. The 

goal was to compare the evolution of the computation time with the number of nodes, rather than 

comparing absolute values. The results are given in Figure 13. They confirm that the computation 

time evolves almost linearly with the number of nodes when the new algorithm is used. This is not 

the case with CasADi: the computation time increases following a power law N , 1  . This is due 

to the matrix operations that CasADi has to perform. Increasing the number of nodes leads to a non-

proportional increase in computation time. The speed up factor, which is the ratio between the CPU 

time spent when using our new algorithm and the CPU time spent with CasADi, ranges from in order 

of 100 to in order of 102 according to the number of nodes considered. 

 

Figure 13. Comparison of the CPU time evolution with the number of nodes between our algorithm 

and CasADi and the associated speed up factor. 

3.4. Real-World Application 

The Romanche River in the French Alps is currently facing a number of significant changes. A 

new hydropower facility is being built in order to replace older power plants. In this context, the dam 

operator needs a fast computation routine in order to operate its facilities in an optimized and safe 

way. To do so, an unsteady 1-D model was implemented in Fortran and integrated in a Simulink S-

Function in order to be compatible with the operator model [7]. Our new algorithm was used for the 

fast computation of an initial condition. 

The studied part of the Romanche River stretches over 9.5 km (Figure 14), from the new Livet 

Dam to Gavet. The geometry and the calibration of the friction coefficients are detailed in [7]. The 

river was discretized with 191 nodes (50 m-long meshes). The downstream boundary condition was 

set at an elevation of 436.8 m. Two discharges were tested: 10 and 40 m3/s. Since the details of the 

hydraulic results are of limited interest for this paper, we focused on the execution time and showed 
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that the Froude number remains under 1 for both discharges (Figure 14). For the same machine as 

the one used earlier, the execution times (CPU time) are 0.018 s and 0.022 s, respectively ( 810
f

   

m2/s and 210
p
   m2/s). In comparison, the computation time of a five-minute full simulation was 

about 0.2 s. Given the length of the stretch and the celerity of a wave, the time for a wave to travel 

from downstream to upstream is of the order of 80 min. This means that approximately 3.2 s of 

computation time are required is order to simulate the propagation of a wave downstream to 

upstream. It is clear that the gain of time offered by our original technique is significant. 

 

Figure 14. Bottom elevation and Froude number distribution for both simulated discharges. 

4. Conclusions 

Several innovations are introduced in this paper, including the use of the non-linear Krylov 

accelerator in open-channel flows, an evolutionary domain algorithm and the use of CasADi to solve 

steady 1-D flows. These improvements lead to an algorithm that is able to quickly solve steady open-

channel flows. Therefore, optimization problems and uncertainty analyses that require many 

evaluations, become more tractable. 

An original algorithm was implemented in order to significantly improve the computation time 

of a steady 1-D open-channel flow problem. It includes two main optimizing strategies: a non-linear 

Krylov accelerator and an evolutionary domain algorithm. This new algorithm was validated against 

the academic benchmarks of flows over a bump. The results showed a good agreement between the 

numerical and analytical values. 

The performance of the suggested algorithm was evaluated against the non-linear optimization 

software CasADi. It showed good scalability properties. Indeed, the execution time of the proposed 

algorithm evolves linearly with the number of nodes. This is not the case with other techniques when 

the mesh is refined and/or when the number of nodes increase. 

Finally, we demonstrated the capabilities of our algorithm in a real-world case. We used the 

optimized algorithm in order to compute quickly the initial condition required by the operational 

model for the Romanche River in France. Our technique was able to provide a steady state solution 

to the unsteady model in a very short period of time. 
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