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Abstract: Seed removal is a key component of seed dispersal and may be influenced by both
landscape-scale and local attributes, and it has been used as an indicator of the intensity of interactions
between ecosystem components. We examined how the seed removal rates, which integrate the
activity of seed dispersers and seed predators, vary with landscape-scale forest cover. We collected
data under 34 trees belonging to two zoochoric species (Helicostylis tomentosa (Poepp. and Endl.)
J. F. Macbr. and Inga vera Willd.) in 17 remnants in the Brazilian Atlantic forest, with different
percentages of forest cover. The seed removal rate was estimated using a fast method based on the
abundance of intact fruits and fruit scraps on the ground. The amount of forest cover affected the rate
of seed removal in a humpbacked shape, with a maximum seed removal rate at intermediate forest
cover. Seed removal rates must be related to the amount of food resources offered and diversity of
dispersers and predators in the region. In landscapes with intermediate forest amount, there is a
better balance between supply and demand for fruits, leading to a higher seed removal rate than
more deforested or forested landscape. Our results also show that local factors, such as crop size and
canopy surface, together with forest cover amount, are also important to the removal rate, depending
on the species. In addition, our results showed that plant–animal interactions are occurring in all
fragments, but the health status of these forests is similar to disturbed forests, even in sites immersed
in forested landscapes.

Keywords: animal extirpation; forest health indicator; frugivory; satiation; tropical forest

1. Introduction

The Anthropocene is characterized by the pervasive influence of human activity in every biome
on Earth. Human impact has drastically increased and it is now comparable in magnitude to natural
processes affecting many aspects of the global biosphere [1]. Anthropogenic activities are responsible
for drastic land use changes, in which forests are replaced by agricultural and pasture areas [2].
This longstanding process of habitat conversion and consequently habitat loss is the main threat to
biodiversity worldwide [3,4]. Therefore, there is an increasing demand for scientific information to
mitigate habitat loss effects, but first it is necessary to quantify the status of these new ecosystems [5].

Assessing community diversity through conventional methods is extremely difficult and time
consuming [6–8], especially in mega diverse environments such as tropical forests. Therefore, methods
that quickly access species diversity have been increasingly used since large programs such as the
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Conservation International’s Rapid Assessment Program have been proposed [9]. Since then, rapid
methods have been developed to access the diversity of different taxonomic groups, such as tape
recordings for birds [10], acoustic inventories for bats [11], monitoring species by camera traps [12],
and assessing forest structure by drone and lidar [13,14]. Recently, Boissier et al. [5] proposed a method
to estimate ecological processes through the rate of interaction between plants and animals. This is
of paramount importance because species interaction is an often-missed component of biodiversity
loss that can even precede species loss [15]. This rapid seed removal method allows the easier
implementation of large-scale studies and provides a snapshot of the proportion of removed seeds by
frugivores and seed predators [5,16–18]. While not integrative of animal activity over the year, since
seed removal of a given species can be estimated only during the fruiting period, it provides a realistic
picture of it. Indeed, animals adapt the use of their home-range according to the seasonal availability
of food resources, even in degraded or provisioned habitats, as demonstrated for primates [19–21].
The rapid seed removal method is able to estimate a functional aspect of ecosystem health, as it is an
indicator of ecological sustainability [22].

The seed removal rate integrates the activity of seed predators and also of primary and
secondary seed dispersers. Zoochoric seed dispersal is a primordial regeneration process for most
tropical tree species because it prevents local extinction and allows seedlings and saplings to escape
density-dependent mortality processes [23–25]. Seed dispersal by animals is performed by primary
or secondary frugivores. The former consume fruits in the canopy and regurgitate or defecate seeds
elsewhere, and the latter eat fallen fruits from the ground or directly interact with lose seeds, such as
dung beetles [26] and ants [27]. Seed predators may also play a role in seed dispersal processes through
scatter hoarding [28]. Seed predation occurs mainly on ripe fruits and mature seeds in the canopy or
on the ground by different taxonomic groups, such as birds (e.g., parrots), mammals (e.g., squirrels,
monkeys, rodents), or insects (e.g., Hemiptera, Coleoptera), and can be as high as 95% of the crop
(by peccary [29]).

In tropical forests, human disturbances, such as habitat loss and hunting, mainly reduce the
components of the zoochoric seed dispersal, i.e., tree visitation, dispersal distance, and seed removal [30].
On the contrary, the direction of the effects of human perturbations on seed predation depends on
the preferences of the predators and on their responses to the perturbation [31]. For instance,
seed predation by mammals decreased with disturbance [29,32,33], and consequently, seed removal
rate also decreases [18].

In this context, we examined how forest loss affects the seed removal rates of two zoochoric
tree species, in 17 remnants of Atlantic forest in Brazil. We tested for the relationship with forest
cover percentage at different scales, taking into account cofactors known to influence seed removal
rates (canopy surface and fruit crop). A decrease in seed dispersers and predators in abundance and
diversity were previously recorded in the same landscapes due to habitat loss and decrease in fruit
availability [34]. Thus, we predicted that seed removal rates are positively correlated to landscape
forest cover.

2. Material and Methods

2.1. Study Area

The study was performed in the municipality of Una (15.2937◦ S, 39.0743◦ W), in the southern
region of the Bahia State, Brazil. The vegetation in this region is classified as Tropical Lowland
Rainforest, and the climate according Köppen system is Af type, hot and moist without a distinct dry
season. The mean annual rainfall is 2082 mm, while the average temperature is 24.4 ◦C, and the area
shows few seasonal climatic variations (Instituto National de Meterologia, Brazil). The region harbors
high levels of plant and animal species richness and represents one of the three pockets of endemism
in the Atlantic Forest [35,36]. However, hunting pressure has significantly reduced the population of
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seed dispersers, particularly large mammals, and species such as Tapirus terrestris (Linnaeus, 1758) and
Tayassu pecari (Link, 1795) are locally extinct [37–39].

2.2. Sites and Forest Cover

The amount of landscape-scale forest cover is considered a meaningful proxy for habitat loss [40–43],
and it is an easy to access metric due to the advance in remote sensing and image analysis methods.
In addition, other human pressures, logging, wildfires, or hunting in general occur in synergy and
concomitantly with forest loss [1], and thus the amount of landscape forest cover may integrate them.
We conducted samplings in pre-selected landscapes of a large network project (SISBIOTA-Functionality),
which uses satellites images to identify landscapes with different forest amount, considering only
native forest. Each sample site was based around a central point allocated within a forest area, and the
proportion of forest cover surrounding that central point was recorded. In this study, we considered
each focal tree as the central point to calculate forest cover amount, and we adopted the patch-landscape
approach [44] (for details see [45,46]). We considered the percentage of forest cover in different buffers,
with a radius of 200 m to 2000 m. The shortest distance between sites was 1 km, while the average
distance was 13.7 km (Figure 1).
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Figure 1. Map depicting all individuals sampled (19 Helicostylis tomentosa and 15 Inga vera; some points
are overlapping on the map, due to its large scale) which were used for the seed removal rate estimates
and for calculating the amount of Brazilian Atlantic forest (Bahia, Brazil).

2.3. Study Species

Helicostylis tomentosa (Poepp. and Endl.) J. F. Macbr. is an evergreen species belonging to the
Moraceae family. It is a shade-tolerant species, in which the young stages need shade, but trees grow
in full sun. The species is present in greater abundance in more conserved Atlantic Forest areas,
however, it is also present in areas that have suffered medium to high anthropic disturbances such
as slash-and-burn or logging [36,47]. It generally reaches 15 and 30 m in height, with a diameter at
breast height of 40 to 70 cm, and crown up to 12 m in diameter [48]. The infructescence have around
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7 g and 3 cm in diameter, and it is composed by four to ten fruits, with a single seed of about 0.73 cm
diameter in a light-yellow pulp [48,49]. The fruits are consumed by primates [50–52], and according
to [53], five or six primate species interact with H. tomentosa. However, only Leontopithecus chrysomelas
(Kuhl, 1820) and Sapajus xanthosternos ((Wied-Neuwied, 1826) inhabit the study area. Infructescence
with ripe fruits that are not consumed entirely in the treetops are easily found on the ground, and may
be intact, partially consumed, or sometimes broken due to the impact upon reaching the ground.
It seems there are more terrestrial animal species interacting with fruits and seeds: Tortoises (Chelonoidis
denticulatus (Linnaeus, 1766); seed disperser [54]), tapirs (Tapirus terrestris seed disperser [55]), peccaries
(Pecari tajacu (Linnaeus, 1758) and Tayassu pecari; seed predator, [56]), grey brockets (Mazama gouazoubira
(G. Fisher [von Waldheim], 1814); seed disperser and predator [57]), and agoutis (Dasyprocta (Illiger,
1811); seed disperser and predator [48]). To the best of our knowledge, H. tomentosa was rarely
consumed by large frugivorous birds (only sometimes by curassows [52]).

Inga vera Willd. is an evergreen pioneer species belonging to the Fabaceae family. It grows up
to 18 m in height, with a diameter at breast height of approximately 60 cm, and 10 to 15 m crown
diameter bearing long branches. The fruits are indehiscent legumes with an approximate size of
5.6 cm in length and 2 cm in diameter, and when ripe they are brownish to yellowish and contain
approximately 14 seeds of 1.5 cm diameter enveloped in a white, sweetish aril [46,58–60]. The fruits
and the seeds are mainly consumed by primate seed dispersers [53], but are also unequivocally a
source of food for many different species of birds, e.g., five species of parrots (seed predators [61]) and
several species of Passeriformes (seed dispersers [62]) and bats (seed dispersers [63]). Ripe fruits are
usually not consumed entirely in the treetops, and fallen fruit usually has marks showing that they
were partially consumed and are rarely found intact on the ground. Secondary dispersal or predation
in Inga genera is accomplished by a variety of animals: Small and large rodents (seed predators),
tapirs [64], and peccaries (seed predator [65]).

Considering the fruit characteristics of the tree species used and the fauna of the study site,
we consider that it is very unlikely that predation by invertebrates will result in seed removal.
Thus, we believe that the predation with removal is carried out only by vertebrates such as lizards,
but mainly by mammals. Therefore, the removed seeds may have been dispersed by arboreal
frugivores (mainly primates), or predated by arboreal animals (e.g., parrots), and on the ground may
have been dispersed or predated by terrestrial animals (such as Pecari tajacu; Mazama gouazoubira;
Dasyprocta leporina (Linnaeus, 1758); Cuniculus paca (Linnaeus, 1766); Didelphis albiventris (Lund, 1840);
and Didelphis. aurita (Wied-Neuwied, 1826))

2.4. Seed Removal Rates

We visited 32 of the 40 available sites between February and March 2018 to search for fruiting
specimens of four initially selected focal tree species. Indeed, the fruiting periods of the species
could vary according to climate fluctuations, but have to match with the availability of investigators
for field work, and it is also necessary to find enough fruiting specimens to adequately conduct
the investigations. This resulted in 34 reproductive individuals marked (19 Helicostylis tomentosa
and 15 Inga vera), which were sampled to estimate seed removal rates. To obtain the seed removal
rate, we estimated seed production and seed removal from fallen fruits and fruit remains on the
ground [5,17]. We estimated seed production (hereafter crop size) and seed removal by counting in
quadrats, the number of intact ripe fruits, ripe fruit scraps (pedicels and peduncles, parts of fruits) and
loose seeds. Crop size was obtained by adding the number of intact and ripe fruit scraps on the ground
and multiplied by the mean seed number per fruit while removed seeds were the missing seeds in the
scraps. The removal rate was computed as the ratio of removed seeds over crop size. The efficiency of
the seed removal rate testing depends on the researchers’ ability to easily and quickly count seeds.
Since fruit production was particularly low for H. tomentosa, we considered the entire surface under
the crown of each studied tree. For I. vera, we first tested if our method was accurate by sampling
with three 1 m2 random quadrats under each focal tree. For this, we sampled three trees, each with
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20 random quadrats and obtained the mean squared errors (MSE) by bootstrap. The MSE (0.0156,
0.0148 and 0.0269) were in the range of the values obtained by [17], which guarantees the accuracy
of the method. We also determined the canopy surface area of each sample tree using the standard
forester method by estimating four random crown radii [66].

2.5. Statistical Analysis

All the analyses were done in R3.6.3. We first tested whether tree seed removal rate was spatially
auto-correlated with the Moran’s I test while varying the number of neighbors (function ‘moransI.v’ of
the lctools R package; [67]). We computed the mean distances between k neighbors with the ‘knearneigh’
function of the spdep R package [68]. We used auto-covariate logistic regression models following [69]
to test for the relationships between the seed removal rate (the dependent variable) and a combination
of landscape and local variables—forest cover, tree canopy surface (m2 per tree), seed crop (seed
number per m2), and pairwise interactions of these two variables. The auto-covariate was computed
using the ‘autocov dist’ function of spdep following [68]. We included in the analysis the linear and the
quadratic effects of the landscape forest cover. We evaluated the scale of forest cover effect by varying
the buffer radius (200 m to 2000 m). The analyses were performed separately for each species. We tested
all the possible combinations of effects using the function ‘bestglm’ of the bestglm R package [70],
comparing the fits of variable combinations with the Bayesian information criterion (BIC) and applying
the marginality rule (i.e., when an interaction term is included in a model, the corresponding main
effects should be also included). We tested the selected models against a null model with the likelihood
ratio test and the spatial auto-correlation in the Pearson residuals as above (dataset and R code available
in the Supplementary Materials: Supplementary information.zip file). To plot the model prediction of
one factor over the observations, we set the other factors to their mean. As predictive capacity power
of landscape forest cover, we calculated the partial Efron’s pseudo R-squared of the factor with the
function ‘rsq.partial of the rsq R package [71] and compared the coefficients of the models using their
95% confidence intervals.

3. Results

Landscape-scale forest cover ranged between 36.5% and 100% in radius of 200 m to 2000 m.
The seed removal rate was on average 0.56, but varied considerably among trees and between species
(Figure 2); for H. tomentosa, the mean was 50.1%, and for I. vera, 62.4%. The canopy surface of the sampled
H. tomentosa was 11.1 to 61.4 m2 (mean = 33.0 m2) and for I. vera, 12.6 to 139.3 m2 (mean = 64.9 m2).
The crop size of H. tomentosa varied between 1 and 13 seeds/m2 (mean = 6.3 seeds/m2), and that of
I. vera between 27 and 227 seeds/m2 (mean = 94.1 seeds/m2).
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The Moran’s I test indicated positive and significant spatial auto-correlation decreasing with
distance (number of conspecifics taken into account), which means that seed removal rates were more
similar between closer trees. The trend was weaker for H. tomentosa than for I. vera (Figure 3). It also
suggested that, for I. vera, spatial auto-correlation extended beyond landscape limits, since the mean
number of trees per remnant was only two, while the Moran’s I remained significant for distances up
to 4 km.
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Figure 3. Moran’s I for seed removal rates and Pearson residuals of the auto-covariate logistic regression
models computed as a function of the number k of neighbors (accounted for k = 1 to 7, from left to
right) and expressed as a function of corresponding mean distance. Significant values for p ≤ 0.05 are
in solid symbols and non-significant values in hollow symbols.

Model selection allowed to identify highly significant relationships between seed removal rate
and forest cover having a humpbacked shape (Figure 4). The best model of H. tomentosa (Table 1) was
obtained for landscape forest cover estimated in a radius of 1600 m while for I. vera, the best model
was obtained for landscape forest cover estimated in a radius of 1400 m (Table 2). For both species,
the model also included the canopy surface, the crop, their pairwise interaction, and the auto-covariate.
The Pearson residuals were not spatially auto-correlated (Figure 3), which means that the models
correctly captured the generating processes. The effects of landscape forest cover were supported by a
higher partial pseudo-R squared for H. tomentosa than for I. vera. Nevertheless, the response of I. vera
to forest cover was stronger than that of H. tomentosa (Figure 4), as also shown by the forest cover
coefficients, which were significantly larger. The models selected with the estimations of landscape
forest cover in other radii showed the same kind of relationship for forest cover (excepting two of
them), i.e., a humpbacked curve, but with lower fit. The responses of the seed removal rate to crop and
canopy surface were contrasted and clearly resulted from the interaction between both factors.
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Figure 4. Results of the logistic regression models. (a) Seed removal rates as a function of forest cover
around forest remnants (H. tomentosa: Observed values in black squares and black prediction line,
forest cover estimated in a landscapes of 1600 m radius, I. vera: Observed values in red circles and red
dashed prediction line, forest cover estimated in landscapes of 1400 m radius); (b,c) seed removal rate
as a function of crop size, and canopy surface (symbol size is a log function of total number of seeds
taken into account for each tree).
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Table 1. Selected auto-covariate logistic regression models of seed removal rate with Efron’s pseudo
R-squared and likelihood ratio tests. Helicostylis tomentosa, sample size = 19.

Coefficients Estimates Standard Errors Z-Values p-Values

Intercept −9.76 1.041 −9.374 <0.0001
Forest cover (1600 m radius) 0.333 0.041 8.207 <0.0001

Forest cover2 −0.0029 0.0003 −8.453 <0.0001
Canopy surface 0.035 0.0060 5.904 <0.0001

Crop size 0.130 0.0307 4.227 <0.0001
Crop x Canopy surface −0.006 0.0006 −9.824 <0.0001
Scaled auto-covariate −0.210 0.0569 −3.760 0.0002

95% confidence interval of coefficients; Forest cover: 0.2633–0.4122, Forest cover2: −0.00363–−0.00226; Efron’s
pseudo R-squared = 0.5878; Partial Efron’s pseudo R-squared for forest cover effects = 0.5204; Likelihood ratio test
deviance = 645.4, ddl = 6, p-value < 0.0001.

Table 2. Selected auto-covariate logistic regression models of seed removal rate with Efron’s pseudo
R-squared and likelihood ratio tests. Inga vera, sample size = 15.

Coefficients Estimates Standard Errors Z-Values p-Values

Intercept −79.38 5.799 −13.69 <0.0001
Forest cover (1400 m radius) 2.493 0.1820 13.69 <0.0001

Forest cover2 −0.0193 0.0014 −13.64 <0.0001
Canopy surface 0.0195 0.0037 5.329 <0.0001

Crop size −0.0009 0.0021 −0.466 0.6415
Crop x Canopy surface −0.00007 0.00002 −3.483 0.0005
Scaled auto-covariate −0.1873 0.0635 −2.823 0.0048

95% confidence interval of coefficients; Forest cover: 2.136–2.850, Forest cover2: −0.0221–−0.0165; Efron’s
pseudo R-squared 0.3867; Partial Efron’s pseudo R-squared for forest cover effects 0.1247; Likelihood ratio
test deviance = 464.63, ddl = 6, p-value < 0.0001.

4. Discussion

The amount of forest cover affects seed removal rates of two plant species in the Atlantic Forest
from southern Bahia. However, the effect of forest loss was humpbacked shaped and not linear as
expected. Local factors were also important determinants of seed removal rates, depending on the tree
species, such as fruit crop and the canopy surface. Thus, our study showed that the response of seed
removal rate to forest cover is species-specific. More importantly, the seed removal rate results showed
that plant–animal interaction is occurring in all fragments, but it was low in forested landscapes,
an indication that they are also defaunated since it is established that the seed removal rate responds to
defaunation [18].

The variation of spatial autocorrelation of the seed removal rate with number of neighbors
indicated that the H. tomentosa seed removal was limited to each forest remnant and landscape, while
for I. vera, it extended beyond landscape limits. Both species are known to be dispersed by primates,
however, I. vera is also dispersed by several species of birds and bats, while H. tomentosa was only
rarely observed being dispersed by curassows [52], which also has a low population in the region.
Thus, I. vera probably has a more mobile animal community that interacts with seeds than those of
H. tomentosa—this fact probably favors a higher rate of seed removal for this species, as observed in this
work. Seed removal is probably occurring even in the most deforested fragments by some primates
that may be relatively little affected or even favored by forest loss [72]. The primate Leontopithecus
chrysomelas, an important seed disperser in our study area, as well as other tamarins such as Callithrix
penicillata (E. Geoffroy Saint-Hilaire, 1812) and Callithrix jacchus (Linnaeus, 1758), are able to use
degraded areas, such as cocoa-shaded plantations, degraded forests, or rubber plantations [73–75].
The seed dispersal by birds and bats may be also important, but only for I. vera.

Seed removal rates for both species were higher in fragments immersed in landscapes with
intermediate amounts of forest. Seed removal rates must be related to the amount of food resources
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offered and diversity of seed dispersers and predators in the region. In forests immersed in more
deforested landscapes there is a smaller amount of fruits being offered [46], however, the rate of
defaunation is higher, so there are few animals (dispersers and predators) to remove the seeds [76–78]
resulting in low seed removal rates. On the other hand, in more forested landscapes, there is a greater
supply of fruits and more animals due a lower rate of defaunation, also resulting in low seed removal
rates. However, in landscapes with an intermediate forest cover amount, a better balance between
supply and demand of fruits is expected, leading to higher seed removal rates and explaining the
humpback shape. The forests of this region have a high defaunation rate, in which the population
of medium and large mammals has suffered a great decrease or even local extinction, such as the
tapir [37,38]. In the same landscapes, it has been shown that deforestation leads to reduced seed
predation by small mammals [77]. In this way, small and some species of medium mammals (such as
agoutis, pacas, and peccaries) should play the main role in removing fruits on the ground (predation
or secondary dispersal). However, it is noteworthy that the forest cover gradient evaluated comprises
only 36 to 80% of forest cover in the selected buffers, and it is not possible to infer about fragments in
more deforested landscapes due to the fact that fruiting individuals of these species were not found.

The mean seed removal rate was 0.56, but varied considerably among individuals and species.
It was lower to Helicostylis tomentosa, a shade-tolerant species with more nutritive fruits than Inga vera,
a shade-intolerant species with poor fruits [46]. However, both species showed individuals with
high removal rates (maximum 0.95 for H. tomentosa and 0.97 for I. vera). In undisturbed fragments,
with limited hunting pressure, previous studies showed that seed removal rates could be close to
1 [5,16,17], but this also depends on plant species [18]. The seed removal rate in a well-preserved area
was 77%, and 47% in an area with a history of logging and high hunting pressure [18]. The fact that
in our study region, there is high hunting pressure, with a decrease in or local extinction of medium
and large mammals, [37,38,79], could explain the low rates of seed removal even in the most forested
landscapes, even if precise information of these threats on each landscape is lacking.

Seed removal rates can be determined not only by forest amount or diversity of frugivores, but also
by individual tree features, such as crown surface area and crop size, but these features interact with
the animal communities. Plant size generally correlates with crop size (this is also the case in this
study), and larger crops may attract more frugivores. Indeed, crop size is suggested as a key trait for
conspicuousness [80], thus, increasing fruit removal. A recent review on the role of fruit crops provided
evidence to support the hypothesis that crop size represents a conspicuous signal for the amount of
reward for birds [81]. However, faster satiation of disturbed animal communities could occur with
larger crops [82] or when important frugivorous species have been extirpated [83]. The larger trees
may attract more animals but those trees may produce crops so large that only a smaller proportion of
the seeds may finally be removed by dispersers or predators.

5. Conclusions

Seed removal rates in forest remnants were sensitive to forest loss in the landscape, but the
responses were species specific. In the limited scope of our study, we did not register the animal
communities and their responses to forest loss while it would have helped to strengthen our conclusions.
Nevertheless, our analysis highlighted a humpbacked response peaking at intermediate values of
landscape forest cover. Below those values, the conditions for the seed dispersers and seed predators
probably unduly worsen and the seed removal rate strictly decline. Methodological difficulties are
constituted by selecting appropriate species (i.e., species characterized by ripe fruits falling on the
ground and fruits leaving traces after consumption) and by finding many individuals with enough ripe
fruits of the same species in different landscapes. However, the method is not restricted to threatened
tree species or to tropical climate ecosystems. A greater ability to generalize may allow us to deduce a
pertinent indicator of forest functionality, and thus of forest health. Thus, the seed removal rate showed
that animal–plant interaction occurs in all fragments, however, their health is already compromised
since even fragments immersed in highly forested landscapes showed low seed removal rates.
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