
Remote free-carrier screening to boost the mobility of Fröhlich-limited 2D
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Van der Waals heterostructures provide a versatile tool to not only protect or control, but also
enhance the properties of a 2D material. We use ab initio calculations and semi-analytical mod-
els to find strategies which boost the mobility of a current-carrying 2D semiconductor within an
heterostructure. Free-carrier screening from a metallic “screener” layer remotely suppresses electron-
phonon interactions in the current-carrying layer. This concept is most effective in 2D semiconduc-
tors whose scattering is dominated by screenable electron-phonon interactions, and in particular the
Fröhlich coupling to polar-optical phonons. Such materials are common and characterised by overall
low mobilities in the small doping limit, and much higher ones when the 2D material is doped enough
for electron-phonon interactions to be screened by its own free-carriers. We use GaSe as a prototype
and place it in a heterostructure with doped graphene as the “screener” layer and BN as a separator.
We develop an approach to determine the electrostatic response of any heterostructure by combin-
ing the responses of the individual layers computed within density-functional perturbation theory.
Remote screening from graphene can suppress the long-wavelength Fröhlich interaction, leading to
an almost constant mobility around 500 to 600 cm2/Vs for carrier densities in GaSe from 1011 to
1013 cm−2. Notably, the low-doping mobility is enhanced by a factor 3. This remote free-carrier
screening is more efficient than more conventional manipulation of the dielectric environment, and
it is most efficient when the separator (BN) is thin.

I. INTRODUCTION

Van der Waals heterostructures (VdWh) are becoming
a device design paradigm in 2D materials applications1,2.
The operating layer, performing the primary function-
ality, is included in a stack of other 2D layers fulfilling
secondary roles like protection, gating or control. Encap-
sulating 2D materials in boron nitride (BN), for example,
has already proven to be highly beneficial to the quality
and cleanliness of the operating material’s response3,4.
The exciting prospect of including supporting 2D lay-
ers, to engineer the properties of the operating material
beyond its intrinsic limits, has been much discussed in
the past decade5,6 but is only starting to be realized7–10.
With this aim, one must understand, control, and exploit
the interactions between all the layers within a VdWh.
The present work takes a critical step towards this chal-
lenging task, in taking fully and quantitatively into ac-
count the mutual dielectric feedback between 2D layers.

VdWh engineering brings particularly interesting op-
portunities to electronic transport. High-mobility semi-
conductors are useful in many devices, especially when
coupled with electrostatic doping11–13, which allows to
exploit a wide range of carrier densities, in a non-
destructive and versatile way. In this context, depending
on the application and the situation, the operating layer
needs to perform well in many different doping regimes
(hereafter, the nature of the doping should be understood
as electrostatic). As discussed in the literature14,15, it is
a strong challenge for materials to display consistently
good mobilities over a large range of carrier densities.

This is particularly true for 2D materials whose scatter-
ing is dominated by the Fröhlich interaction with polar-
optical phonons. This work explores the possibility of
exploiting their integration in a VdWh to provide uni-
form performance over a range of doping levels.

Ab initio simulation of transport properties has shown
promise in its ability to guide materials design. However,
performing such studies for materials within a VdWh and
over a large range of carrier densities remains a chal-
lenge. VdWh are difficult to simulate ab initio due to
their multiple periodicities, entailing simulation super-
cells which are prohibitively large. The simulation of dop-
ing is also not obvious: Most ab initio electron-phonon
scattering calculations in semiconductors are done in
the zero doping limit. The ability to self-consistently
simulate electron-phonon interactions in electrostatically
doped 2D materials was recently developed16, but re-
mains computationally affordable only when Fermi sur-
faces are large enough, i.e. at large enough doping. Mod-
els to bridge the gap between the zero and large doping
regimes are still lacking.

Here we propose a step towards ab initio simulation of
transport in VdWh devices over a large range of dop-
ing. In particular, we propose a framework to deal
with “screenable” contributions to electron scattering by
phonons, as those are likely to be most affected by VdWh
integration and doping. We further focus on one of the
most common and important type of screenable electron-
phonon coupling: the Fröhlich interactions with polar-
optical phonons. A semi-analytical scheme is used to
treat the electrostatics of the VdWh including dielectric



2

and free-carrier screening from different layers. The re-
sponse of each individual layer to a generic potential per-
turbation is computed in Density Functional (Perturba-
tion) Theory (DFT / DFPT), then they are combined
in a model for the full response of the VdWh to the
Fröhlich potential(s). Dielectric models of VdWh have
been developed in the past17–19, with a focus on quan-
tities like the dielectric function. We propose another
formal framework, with a focus on the potentials gener-
ated by electron-phonon interactions, and apply it to a
new problem: phonon-limited electronic transport.

This VdWh electrostatics model is used to demon-
strate a solution to the aforementioned materials design
challenge, i.e. high mobility over a wide range of dop-
ing regimes, using the prototypical example of GaSe.
In a recent work15, the outstanding transport perfor-
mance of GaSe was predicted in the high doping regime.
Transport in this material is limited by the Fröhlich in-
teraction, and the high mobility at high doping relies
largely on the screening of this interaction by free-carriers
added to GaSe. This is confirmed in the present work by
showing a decrease of intrinsic mobility by more than
a factor 3 in the low doping regimes. It is then shown
that this decrease can be avoided by putting GaSe in
proximity with a metal, providing free-carrier screen-
ing externally, irrespective of GaSe’s doping. In par-
ticular, we propose a GaSe/BN/graphene heterostruc-
ture, with doped graphene as a “screener” layer and BN
as a separator. The principle of proximity free-carrier
screening has recently been used to tune the band gap
of semiconductors20 and to manipulate electron-electron
interaction in graphene10. We use it here to engineer
electron-phonon interactions within the current-carrying
2D semiconductor.

This paper is structured as follows. In section II, we
use the case of GaSe to discuss the doping-dependent per-
formance of 2D layers in which the Fröhlich interaction
dominates electron-phonon scattering, and demonstrate
that the lack of intrinsic free-carrier screening at low dop-
ing leads to very low mobility. In section III, we develop
the electrostatic model that allows us to calculate the re-
sponse of the full VdWh from the ab initio response of
each layer computed independently. Finally, in section
IV we apply this approach to the GaSe/BN/Graphene
heterostructure and show that the mobility can be kept
virtually constant at a high value between 500 and 600
cm2/Vs, at carrier densities from 1011 to 1013 cm−2.

II. FRÖHLICH LIMITED 2D
SEMICONDUCTORS

The broad class of materials concerned by this work
are 2D semiconductors for which the electronic transport
performance is limited by scattering mechanisms which
are sensitive to free-carrier screening. It is not obvious
to further qualify this class as a whole, which hosts a va-
riety of different members. Focusing on intrinsic scatter-
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FIG. 1. Ab initio mobility versus temperature in neutral
GaSe, in the n→ 0 limit (reached at n ' 1011). The mobility
without the longitudinal optical (LO) phonons is plotted to
show that scattering with this mode limits transport. Finally,
we also compute mobility in a fictitious system by using the
EPIs of GaSe doped at n = 1013 cm−2 while simulating the
transport at n = 1011 cm−2. This shows that free carrier
screening of the EPIs, induced by doping the layer itself, is
able to suppress the main electron-phonon scattering mecha-
nisms and increase the mobility.
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FIG. 2. EPIs between the LO mode and states at the bottom
of GaSe’s conduction band, computed within DFPT for neu-
tral and doped GaSe, as a function of the phonon momentum.
Other modes have non-negligible coupling (LA and A1g), but
LO clearly dominates scattering through the Fröhlich inter-
action. It is strongly affected by free-carrier screening: in
the doped case, the coupling vanishes as Γ and overall it
barely reaches a 10% of the maximum value in the neutral
case (∼ 1.124 eV at Γ).

ing mechanisms driven by electron-phonon interactions
(EPIs), multi-valley materials can usually be excluded,
since inter-valley EPIs are often strong21,22, and at mo-
menta larger than the size of the Fermi pocket that char-
acterizes the free carriers providing the screening. In this
large momentum regime, free-carrier screening is ineffi-
cient even if the EPI are sensitive to it. In single val-
ley materials (up to quite high chemical potentials), it is
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reasonable to assume that free-carrier screening will be
efficient on screenable EPIs. These include the Fröhlich,
piezoelectric, and acoustic “deformation-potential” EPIs.
Others, like those responsible for graphene’s intrinsic
transport properties, are altogether insensitive to screen-
ing. Which kind of EPI dominates transport will depend
on the specific material. This work focuses on 2D ma-
terials in which the dominant EPI is the Fröhlich inter-
action between electrons and polar-optical phonons, usu-
ally the longitudinal optical (LO) modes. Fröhlich EPIs
concerns any semiconductor in which the atoms of the
unit-cell carry different Born effective charges (BECs).
This includes any non-elemental material, but also ele-
mental materials with some factor disrupting the balance
between the atoms23. Fröhich EPIs increase as: BECs
increases, screening decreases, or the LO phonon energy
decreases. Since they are mediated by long-range electric
fields, they are screenable. It is certainly one of the most
pervasive and critical source of EPI24,25, and it has been
extensively modelled in both 3D26–30 and 2D31, with pa-
rameters for the BECs and the dielectric properties. In
3D bulk materials, the Fröhlich EPI diverges as the in-
verse of the phonon momentum in the long wavelength
limit32, which can have a strong impact on scattering.
While the EPI stays finite in 2D systems, it still under-
goes a sharp increase at small momenta, and the Fröhlich
EPI can easily dominate all other mechanisms as in 3D.

In the 2D framework, the long wavelength Fröhlich
electron-phonon coupling (see App. A 3) can be thought
of as the ratio of a parameter depending on BECs and
mildly on momentum, and the dielectric function ε(q),
which accounts for both the environment and the ma-
terial containing the electrons involved. The dielectric
function in the long wavelength limit (q → 0) can be
modeled as 1 + αq for a 2D material in vacuum, but
the present work relies on a more detailed and realistic
model. One general behavior is that, in 2D, the dielectric
function is dominated by the response of the environment
for q → 0 and by that of the 2D material for q →∞.

In a recent work15, eleven of the best conductors within
a database of exfoliable materials33–35 were identified.
Seven of them display rather large BECs and strong
Fröhlich EPIs. Since the calculations were done at a rela-
tively large doping, these EPIs were screened by local free
carriers, and did not affect drastically the conductivity.
However, those same materials can be expected to have
much lower mobilities at low doping, when screening is
ineffective.

A prototypical example is GaSe (see Ref. 33 for basic
properties). For reference, the room temperature mo-
bility at n = 1013 cm−2 was computed to be µ ' 600
cm2/Vs15, placing it among the very best performing
2D semiconductors at high doping. We now look at
electronic transport in GaSe in the zero doping limit.
EPIs are computed in DFPT and the full energy- and
momentum-dependent Boltzmann transport equation is
solved iteratively as described in Ref. 21. To compute
the zero doping limit, we use n = 1011 cm−2, as we found

that the mobility is stable within 2% below that value.
The mobility as a function of temperature is shown in
Fig. 1 for 3 different sets of EPIs (2 of them fictitious).
In the first (realistic) system, we use the EPI matrix ele-
ments as computed in the neutral material (n = 0). This
represents the standard small doping limit. The room-
temperature mobility is µ ' 174 cm2/Vs, much lower
than the high doping value. For the second (fictitious)
system we use the same EPI, but without the Fröhlich-
inducing phonon LO. The mobility increases by an order
of magnitude, clearly showing that Fröhlich is limiting
the mobility. In the third system, we use the EPI com-
puted in GaSe at a doping of n = 1013 cm−2 in Refs.
15 and 36. This system is fictitious because the BTE is
solved with a doping level (n = 1011 cm−2) different from
the one used in EPI calculations (n = 1013 cm−2). It is
instructive since it shows that, keeping all other factors
the same, using the EPIs from the doped system leads to
an order of magnitude increase in the mobility. This is
due to the screening of the Fröhlich EPI by the high den-
sity of added free carriers, as confirmed in Fig. 2 showing
the coupling of the LO mode gLO(|q|) for the neutral and
doped systems. It can thus be inferred that free-carrier
screening of the Fröhlich EPI would enhance the mobil-
ity of GaSe in the low doping limit. Since there are not
enough intrinsic free carriers in GaSe in the low doping
regime, one would need an external source of free-carrier
screening. We propose to place GaSe in a VdWh with
doped graphene to screen the Fröhlich EPIs remotely. To
demonstrate this, we first develop a model for the com-
plete electrostatics of such systems.

III. VAN DER WAALS ELECTROSTATICS
MODEL

This section describes a semi-analytical model
parametrized with density-functional perturbation the-
ory (DFPT) to solve the electrostatics (i.e. the response
to a static electric field perturbation) of a VdWh in
the presence of both dielectric and free-carrier screen-
ings. We are especially interested in the response to the
Fröhlich potential generated by polar optical phonons.
The entire VdWh would be prohibitively expensive to
simulate in DFPT, especially with the very fine wave
vector grids needed for transport. This model aims at
re-constructing the full response of a VdWh from the
response of each individual layer, which can be reason-
ably computed in DFPT. The process relies on a response
function model, which is isotropic and q dependent in
the plane and has a flexible profile in the out-of-plane
direction. Ultimately, we are interested in the screened
potential felt by electrons in the operating layer, which
will dictate its transport properties and the device per-
formance. More formal details can be found in App. A.

Although any combination of 2D layers can be studied,
we focus here on GaSe/BN/Graphene systems, as repre-
sented in Fig. 3. Monolayer GaSe (gap ≈ 1.8 eV within
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the GGA-PBE approximation to the DFT exchange-
correlation functional) is the operating material in which
electronic transport occurs. Carrier densities ranging
from the n→ 0 limit up to n = 1013 cm−2 are considered
in the GaSe layer. Doped monolayer graphene is the “re-
mote screener”, with a fixed carrier density of n = 5 1013

cm−2, which will be referred to later on via the notation
Gr(doped). BN has a large gap of ≈ 4.7 eV in GGA-PBE
and is routinely used in 2D VdWh as an encapsulator or
gate dielectric. It is necessary here to electrically iso-
late the operating material from the remote screener and
avoid charge transfers. Both monolayer and multilayer
BN are studied in the following.

FIG. 3. Schematic view of the system studied. The transport
layer (here GaSe or more precisely Ga2Se2, which is composed
of too sublayers) is the operating 2D material that carries
the current. The screener layer (doped graphene) provides
free-carrier screening remotely. Finally, the separator (BN)
electrically insulates the operating material and the screener.
The interlayer distances d0 and d1 can be different in general,
but they are both fixed to d = 3.4 Å in this work. Although
monolayer BN is represented, multilayer BN is also consid-
ered.

The electrostatics of the system are determined from
the response of each individual layer to electric fields per-
turbations. Given the in-plane periodicity and symme-
try of the system, the corresponding perturbing poten-
tial is periodic in the plane, and written V (q, z) where q
is the norm of the in-plane momentum, and z the out-
of-plane real-space variable. Doped graphene responds
like a metal, with perfect screening of in-plane electric
fields in the long wavelength limit. BN also brings a q-
dependent dielectric response (inefficient at small q, and
similar to bulk BN at large q). The operating layer, GaSe,
responds like a dielectric at low doping, and a metal at
high doping. The dielectric response of neutral GaSe is
computed directly in DFPT, and the contribution of po-
tential free-carriers (as induced in GaSe by electrostatic
doping) is added on top. As detailed in App. A, The cen-
tral quantity characterizing each layer’s behavior is the
interacting response function, assumed to be of the form:

χ(q, z, z′) =Q(q)f(q, z − z0)f(q, z′ − z0) (1)

+ P (q)g(q, z − z0)g(q, z′ − z0)

Q, f characterize the monopole contribution to the re-
sponse, while P, g represent the dipole part. f is an
even function of z, and describes the normalized spatial
profile of the material’s response to a constant potential
V (q, z) ∝ 1. Q is the associated q-dependent amplitude

of this response. Similarly, g is odd and, along with the
amplitude P , they represent the response to a linear po-
tential V (q, z) ∝ z (q-dependent vertical electric field).
Those functions are computed for each individual layer
in DFPT for the range of momenta q that eventually
enter the Boltzmann transport equation. Isotropy is as-
sumed, so only one arbitrary direction is used for the
momentum.

The responses of each layer are then combined in an
electrostatic model of the VdWh, as detailed in section
A 2. This is done by making an “interlayer mean-field”
approximation. In practice, we assume that each layer
responds to an effective external potential made of the
global external potential plus the sum of the induced po-
tential from all other layers. This assumption allows us
to define a simple system of equations that we then solve
numerically, see App. A 2.

Since they have finite Born effective charges, both BN
and GaSe will generate Fröhlich EPIs. Electrons in GaSe
thus couple to polar-optical phonons in both GaSe and
BN, the latter being remote. Phonons are not explic-
itly simulated in the VdWh electrostatics model. They
are assumed to be unchanged from the isolated layers to
the VdWh (no interlayer hybridization of modes). The
potential they generate is recreated from DFPT calcula-
tions, and used to perturb the VdW electrostatics model.
One improvement over previous models31 is to exploit
the parametrization of the layers’ dielectric response to
model the profile of the polarization density that gen-
erates the Fröhlich EPI, as detailed in App. A 3. Only
first order dipole potentials are considered, quadrupole
contributions37–40 are neglected. In principle, multilayer
materials generate several polar-optical phonons with dif-
ferent phase shifts in the layers41. Here we focus on the
mode with largest Fröhlich EPI, in which all layers are in
phase. We make the adiabatic approximation, allowing
us to treat phonons as a static perturbation (ω = 0).

The Fröhlich potential and the responses are assumed
to be isotropic in the range of q vectors considered. This
is valid for all layers here, as is well-known for graphene
and BN31,41,42, and also in GaSe as we can see in Fig.
2. Indeed, the q vectors calculated within DFPT sample
the whole Brillouin zone, along all possible directions;
the fact that the scatter plot gives a line demonstrates
isotropy.

Interlayer distances are chosen to be 3.4 Å, understood
as the geometric distance between the outermost atomic
planes of successive 2D materials. For BN and graphene,
there is only one atomic plane. For GaSe, there are 4,
the outermost being 2.4 Å away from the center of the
layer.

For clarity, we compare our formalism with the ex-
isting Quantum Electrostatic Heterostructure (QEH)
model17,19 in App. A 5. They both achieve a similar gen-
eral purpose: to compute the dielectric response of a Van
der Waals heterostructure from the ab initio response of
each individual layers. However, the approaches differ on
several levels, mostly related to our focus on z-dependent



5

potentials rather than averaged quantities like the dielec-
tric constant. In addition, we apply this approach to a
different perturbation here, namely the Fröhlich EPI.

Ab initio calculations of structures, ground states
and dielectric responses are performed with Quantum
ESPRESSO43,44 (QE). Full electron-phonon interactions
and transport calculations in neutral and doped GaSe
were done for comparison, with ultrasoft pseudopoten-
tials from the SSSP library45 (efficiency version 0.7). The
Phonon code of QE has been modified to compute the
dielectric response of each layer. More specifically, the
phonon perturbation is replaced by the potentials in Eq.
(A3) of App. A 1. Those modifications are similar to
a previous work42, with the addition of the dipole per-
turbation. Dielectric responses were computed using op-
timized norm-conserving Vanderbilt pseudopotentials46

from the pseudo-Dojo library47, as the modifications of
the Phonon code have not been implemented yet for other
types of pseudopotentials. We use the AiiDA materi-
als informatics infrastructure48,49 to manage calculations
and store data. The solution of the VdWh electrostatics
model is implemented in Python.

IV. RESULTS

Our approach provides a clear and intuitive physi-
cal understanding of the VdWh in terms of electrostat-
ics. Fig. 4 illustrates this by showing the potentials
solving the model in the most relevant configuration:
GaSe(neutral)/BN/Gr(doped) perturbed by a Fröhlich
potential from GaSe’s polar-optical phonons. We select
two momenta at the extrema of the interval considered in
this work. At small q, graphene’s response is prominent.
Indeed, the perturbation extends far in the out-of-plane
direction and graphene is metallic, so the induced poten-
tial is (negatively) large. We also note that since the bare
Fröhlich potential varies over the dielectric thickness of
the graphene layer, graphene’s response is not symmet-
ric with respect to the middle of the layer. Responses
from BN and GaSe both display clear dipole-like fea-
tures with positive and negative electric field regions. For
GaSe, the dipole component originates mostly from the
response to graphene’s induced potential, which varies
significantly over GaSe’s thickness, yielding a finite elec-
tric field. Despite the dipolar feature, GaSe’s response
clearly does not average to zero, indicating that there is
a significant monopole component to its response as well,
this time triggered mostly by the bare Fröhlich pertur-
bation. BN’s response also includes both monopole and
dipole components, but is closer to a purely dipolar one.
BN feels two main potentials with finite derivatives: the
bare Fröhlich from GaSe and the induced response from
graphene. They have counteracting effects, and the sign
of the dipolar response confirms that the bare Fröhlich
from GaSe dominates.

At large q, GaSe itself performs most of the screening,
with a small contribution from BN on one side. The

induced potential from graphene is very weak compared
to the smaller q case, due to the fact that the bare
Fröhlich potential decays more rapidly (as e−q|z−zGaSe|)
in the out-of-plane direction and doesn’t reach graphene.
The screened Fröhlich potential is slightly smaller (more
screened) on the side of GaSe adjacent to BN. This
was true for the small q case as well, and is a general
and intuitive feature: the screening is more efficient
towards the separator and screener layers. However,
the difference is within 2%: despite the asymmetry of
the induced potentials (with respect to their respective
layers), the total screened potential ends up quite
flat within each layer. This indicates that the dipole
response of each layer is near-perfect, meaning that any
perpendicular electric field is almost fully compensated.
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FIG. 4. Bare, induced and screened potentials for the most
relevant configuration: GaSe(neutral)/BN/Gr(doped), in re-
sponse to the Fröhlich potential generated by GaSe, at two
values of momentum. The induced potential is separated into
contributions from each layer, with their position indicated
by the vertical dashed lines. Note that strictly speaking, V is
the potential energy of a test charge e in eV, rather than an
electric potential.

In Fig. 5, the electrostatics are solved in different
systems, gradually adding the key layers and observing
the effects on the screened Fröhlich EPIs as felt by
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GaSe’s electrons. Those are computed by averaging
the full screened potential over the GaSe layer, as
detailed in App. A 3. First, in neutral GaSe alone,
the Fröhlich potential is only screened dielectrically
by GaSe. Second, in GaSe(neutral)/BN, there is a
relatively weak additional dielectric screening from
BN: this represents the standard type of screening one
can expect from a dielectric environment (substrate or
encapsulator). An additional remote Fröhlich potential
from BN comes into play. Although it is quite strong,
its consequence on transport is limited by the fact that
the energy of the associated phonon is very large (∼ 0.19
eV). Indeed, injecting this coupling into a simple Fermi
golden rule, the scattering rate of a state at the Fermi
level is proportional to nBE(~ω)× (1− nFD(εF + ~ω)) +
(nBE(~ω) + 1) × (1 − nFD(εF − ~ω)) where nBE and
nFD are the Bose-Einstein and Fermi-Dirac occupation
functions for phonons and electrons, respectively. Up to
high temperature, there will be few phonons to absorb
(nBE(~ω)� 1), and phonon emission (second term) will
be limited by the fact that states at εF − ~ω are mostly
occupied (1 − nFD(εF − ~ω) � 1). In fact, based on
LO frequencies in GaSe and BN (200 and 1500 cm−1,
respectively), this expression allows to estimate that for
a equal EPI the scattering from BN’s phonons will 3
orders of magnitude less efficient than GaSe’s at room
temperature. Third, in GaSe(neutral)/BN/Gr(doped),
the doped graphene sheet acts as a remote “ screener”
layer. There is now some metallic screening, with the
coupling vanishing as q → 0. The efficiency of this
remote screening is limited in q, as seen when comparing
the induced potentials from graphene at small and large
q in Fig. 4. The efficiency is related to the inverse of the
distance between graphene and GaSe. Still, the remote
screening is most essential in the critical low doping
limit of GaSe, when the Fermi surface and q vectors
relevant for transport in GaSe are small. Thus, reducing
the sharp increase at q = 0 is enough to suppress the
electron-phonon scattering.

Fig. 6 shows the effect of the number N of BN layers.
As N increases, so does the intensity of the remote
Fröhlich EPIs, as contributions from each layer add
up. The efficiency of remote screening from graphene
is limited to momenta smaller than a certain critical q,
which decreases with increasing distance d between GaSe
and graphene. This effect can be roughly estimated
as follows. Both the bare Fröhlich potentials felt by
graphene and the induced potential from graphene felt
by GaSe decay as e−qd. Remote screening becomes
inefficient when e−q×(2d) � 1, that is when q � 1

2d ,

where d = (N + 1) × 3.4 Å in our model. Thus, from
an electrostatics standpoint, it is better to minimize the
number of layers. Of course, what is feasible and optimal
in a practical device may depend on other parameters.

Fig. 7 shows the variation of the EPIs in
GaSe(n)/BN/Gr(doped) with respect to carrier density n
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FIG. 5. Fröhlich EPIs from polar-optical phonons in both
GaSe (plain) and BN (dashed), as felt by electrons in GaSe,
in different setups: GaSe(neutral) alone, GaSe(neutral)/BN,
and GaSe(neutral)/BN/Gr(doped), with at n = 5 1013 cm−2

in graphene. Fröhlich potentials coming from both GaSe and
BN are considered, but always “as felt by GaSe electrons”,
that is, the Fröhlich potential is always averaged over the
GaSe layer.
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FIG. 6. Fröhlich EPI from polar-optical phonons in both
GaSe (plain) and BN (dashed), as felt by electrons in GaSe,
in GaSe(neutral)/BN/Gr(doped), changing the number of BN
layers (N). Most of the screening comes from free carriers in
graphene, and it becomes less efficient as N increases and the
distance between graphene and GaSe increases. The increase
in the Fröhlich EPI coming from polar-optical phonons in BN
is more drastic because the bare Fröhlich potentials from each
BN layer add up.

in GaSe. Screening from the free carriers added in GaSe
is modeled as described in App. A 4 at room tempera-
ture. First, note that as n increases, the Fermi surface
gets larger, and the momenta most relevant to transport
(q ≈ 2kF ) increase. The efficiency of intrinsic free-carrier
screening also follows the size of the Fermi surface and
extends to larger q. As a result, the Fröhlich EPIs (in-
trinsic and remote) at momenta relevant for transport
are always significantly screened.

In Fig. 8, we inject the modelled Fröhlich EPIs of
the last system, GaSe(n)/BN/Gr(doped), back into the
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FIG. 7. Fröhlich EPI from polar-optical phonons in both
GaSe (plain) and BN (dashed), as felt by electrons in GaSe,
in GaSe(n)/BN/Gr(doped), changing the doping in GaSe n.
As the carrier density increases, free-carrier screening from
electrons in GaSe comes into play, ensuring the ability of the
system as a whole to screen EPIs at the larger momenta in-
volved in transport.

Boltzmann transport solver and look at the mobility as
a function of GaSe doping n. Note that the mobility
predicted by our model at n = 1013 cm−2 is quite close
to the one computed directly in DFPT in GaSe alone at
the same doping. This indicates that: i) as expected,
remote Fröhlich EPIs from BN stay negligible with re-
spect to those from GaSe; ii) other potentially screened
EPIs only play a minor role in determining the mobil-
ity at room temperature. In addition to preserving good
performance at high doping, the benefits of the VdWh
are obvious, since instead of degrading towards the neu-
tral isolated limit at low doping, the mobility stays rel-
atively constant. As carrier density decreases, the in-
trinsic free-carrier screening lost from depleting carriers
in GaSe is compensated by remote free-carrier screening
from graphene. Remote screening thus extends the out-
standing performance of GaSe to the full range of doping
typically achievable experimentally.

V. CONCLUSION

We have developed a semi-analytical model to simu-
late the electrostatic response of any VdWh. The model
is parametrized via the DFPT density-response of each
individual layer to a monopole and dipole perturbation
potential. We use this model to explore the possibility of
using metallic 2D layers in VdWh (e.g. doped graphene)
to induce free carrier screening remotely in a current car-
rying semiconducting layer. This is particularly relevant
for 2D semiconductors with transport properties limited
by screenable EPIs such as the Fröhlich interaction. In
particular, such materials would typically showcase ex-

1011 1012 1013

n (cm 2)

200

300

400

500

600

m
ob

ilit
y 

(c
m

2 /V
s)

GaSe/BN/Gr
GaSe, n 0
GaSe, n = 1013 cm 2

FIG. 8. Mobility versus electrostatic doping, replacing gLO by
our model for the Fröhlich EPIs within the VdW heterostruc-
ture. Remote EPIs from BN are also added. The dots are
direct, full DFPT calculations for a monolayer GaSe in the
low doping limit (EPIs computed in neutral GaSe, transport
solved at n = 1011 cm−2) and at high doping (n = 1013

cm−2).

cellent transport performance in presence of free-carrier
screening (e.g. at high-doping), but lower mobilities in
its absence (low doping). Using GaSe as a prototypical
example, we show that integrating it in a VdWh device
with doped graphene as a remote screener and BN as a
separator enhances the mobility at low doping. The mo-
bility is thus maintained at a consistently high value of
∼ 500− 600 cm−2/Vs on a wide range of carrier concen-
trations.
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Appendix A: Model details

This appendix details technical aspects of the electro-
statics model: the extraction and parametrization of each
monolayer’s response from DFPT; the semi-numerical
scheme to combine those responses and solve the elec-
trostatics of the VdWh; the model for the perturbing
Fröhlich potential; the inclusion of doping-induced free-
carrier screening. A quick comparison of this model with
the existing QEH method17,19 is also provided.

1. Monolayer response from DFPT

In-plane periodicity and symmetry suggests we Fourier
transform quantities in-plane and keep the out-of-plane
real-space variable: (x, y, z) → (q, z). Since the systems
are assumed isotropic in the plane, we further simplify
and use q = |q|. The response of the layer to a generic
perturbing potential is written as:

Vind(q, z) = vc(q)

∫
e−q|z−z

′|δn(q, z′)dz′

δn(q, z) =

∫
χ(q, z, z′)Vext(q, z

′)dz′
(A1)

where vc(q) = 2πe2

q is the Coulomb kernel in 2D and

the (interacting) response function χ is written as in
Eq. (1). The profile are normalized as follows:

∫
f(q, z − z0)dz =

∫
(z − zk)g(q, z − zk)dz = 1 (A2)

for a layer k centered around zk. The response from each
layer is computed within DFPT. The layers are perturbed
by a constant potential to probe the monopole response,
then by a linear one (constant field) to probe the dipole

response:

Vp,mono(q, z) = 1 (A3)

Vp,dip(q, z) = z (A4)

The density response δn(q, z) is first extracted in recipro-
cal space δn(q,Gz), with as many Gz as the energy cut-
off and supercell size dictates, then Fourier transformed
back in real space, onto 1000 points z ∈ [−c/2, c/2].
Injecting the above perturbing potential into Eqs. (A1)
with χ from (1), the density response to the monopole
perturbation gives Q(q)f(q, z − z0) while the dipole one
gives P (q)g(q, z− z0). Those quantities are computed on
10 q-points in the range of values relevant for transport
(0−0.26 Å−1), and interpolated (scipy, quadratic spline)
on finer sets of q-points. The Q,P parameters are de-
fined as the integrals over z and f, g as the normalized
profiles. Fig. 9 shows those quantities in GaSe.

2. VdWh electrostatics

The potential induced by the heterostructure is the
sum of the potentials induced by each layer k:

Vind(q, z) =
∑
k

vkind(q, z) (A5)

To compute the response of the system, the essential ap-
proximation is a kind of interlayer mean field approxima-
tion. In particular, we assume that each layer responds
to an effective external potential that is the sum of the
external potential and the potentials induced in each of
the other layers:

vkind(q, z) =vc(q)

∫
e−q|z−z

′|
∫
χ(q, z′, z′′)

[
Vext(z

′′)

(A6)

+
∑
m 6=k

vmind(q, z′′)

]
dz′′dz′

We replace χ by its expression Eq. (1), and re-write the
result as a systems of 2N equations with 2N unknowns,
where N is the number of layers in the heterostructure
and the unknowns are the induced potentials averaged
on each layer using either f or g as weight.

Injecting χ from Eq. (1) into Eq. (A6), we obtain:

vkind(q, z) = vc(q)
(
Qk(q)Fk(q, z − zk)

[
v̄extk (q) + v̄k(q)

]
+ Pk(q)Gk(q, z − zk)

[
w̄extk (q) + w̄k(q)

])
(A7)

with

Fk(q, z) =

∫
e−q|z−z

′|fk(q, z′)dz′ (A8)

Gk(q, z) =

∫
e−q|z−z

′|gk(q, z′)dz′ (A9)
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v̄, w̄ designate projections/averages of the potentials over the monopole or dipole profiles:

v̄extk (q) =

∫
fk(q, z′)Vext(z

′)dz′ (A10)

w̄extk (q) =

∫
gk(q, z′)Vext(z

′)dz′ (A11)

v̄k(q) =

∫
fk(q, z′)

∑
m6=k

vmind(q, z′)dz′ (A12)

w̄k(q) =

∫
gk(q, z′)

∑
m 6=k

vmind(q, z′)dz′ (A13)

Finally, multiplying both sides of Eq. (A7) by fp(q, z − zp) or gp(q, z − zp), integrating over z, and summing over
k 6= p, one obtains a set of equations that v̄p(q) and w̄p(q) should satisfy at each q:

v̄p(q) = vc(q)
∑
k 6=p

(
Qk(q)C[fp, fk](q)

[
v̄extk (q) + v̄k(q)

]
+ Pk(q)C[fp, gk](q)

[
w̄extk (q) + w̄k(q)

])
(A14)

w̄p(q) = vc(q)
∑
k 6=p

(
Qk(q)C[fp, fk](q)

[
v̄extk (q) + v̄k(q)

]
+ Pk(q)C[gp, gk](q)

[
w̄extk (q) + w̄k(q)

])
(A15)

where C[fp, gk](q) denotes the following double integral:

C[fp, gk](q) =

∫ ∫
fp(q, z − zp)e−q|z−z

′|gk(q, z′ − zk)dz′dz (A16)

(A17)

and similarly for other combinations of f, g functions with indices p, k.
Thus, we obtain a set of 2N equations with 2N unknowns, where N is the number of layers. This is solved

numerically at each momentum to find vk(q), wk(q) for each layer k. The full z-dependency of the induced potentials
are then recovered via Eq. (A7).

3. Fröhlich perturbation

Since the screening is computed within the VdWh via
the electrostatics model, only the bare Fröhlich poten-
tial generated by polar-optical phonons is necessary here.
In previous works31, we assumed a generic square pro-
file for the polarization density that is the source of the
Fröhlich potential. Here we assume that the polarization
follows the profile characterizing the materials’ dielectric
response found in DFPT f . The bare Fröhlich potential
from layer k centered around zk is then:

VFro,k(q, z) = CkZ

∫
e−q|z−(z′−zk)|f(z′ − zk)dz′ (A18)

For a layer centered around zk. CkZ is defined in each
layer as:

CkZ =
2πe2

A

∑
a

eq · Zka · eaΓ,LO√
2MaωΓ,LO

(A19)

where A is the area of the unit cell, a is an atomic index,
eq = q/|q|, Zka are the Born effective charges of atom a
in layer k, Ma is the mass of atom a, and ωΓ,LO, e

a
Γ,LO

are the frequency and eigenvector of the LO mode at Γ.

Note that we include an extra electron charge factor e
in the definition of the potential. Strictly speaking, V
is the electric potential energy of a test charge e within
the potential. The variation of CZ as a function of q due
to the phonon eigenvector and frequency are neglected :
the values at Γ are used. DFPT calculations in the GaSe
and BN give CZ = 1.124 and 1.994 eV, respectively. The
total Fröhlich potential is then a sum of the potentials
from each “activated” layer, usually one material at a
time, VFro(q, z) =

∑
k VFro,k(q, z). To compute the corre-

sponding electron-phonon coupling strength on layer m,
the potential is then averaged over the profile of layer m:
gFro,m(q) =

∫
VFro(q, z)fm(z − zm)dz .

4. Free-carrier screening

The following is necessary to model free-carrier screen-
ing from the carrier density injected into the operating
material, GaSe. The non-interacting density response
function14,19,50 is evaluated numerically using the band
structure of the materials on a fine grid of k-points
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(96× 96 for GaSe):

χ0(T = 0, q) = −2FF (q)

(2π)2

∫
d2k

nFD(εk)− nFD(εk+q)

εk+q − εk
(A20)

χ0(T, q) =

∫
χ0(q, T = 0, εF = ε)

4kBT cosh2(εF (T )− ε/2kBT )
dε

(A21)

where nFD is the Fermi-Dirac occupation (which also
depends on the chemical potential and the tempera-
ture) and the form factor FF(q) is computed using the
monopole profile function f .

FF (q) =

∫
f(z − z0)

∫
e−q|z−z

′|f(z′ − z0)dzdz′ (A22)

Note that this form factor relates the Q(q) parameters
to an (interacting) response function χ̃(q) that would
be integrated in the out-plane-direction and would in-
clude only the monopole response χ̃(q) = Q(q)FF (q).
The free-carrier response is combined with the dielec-
tric response already in the model within RPA. In prac-
tice, the non-interacting response functions are added

χ̃0 = χ̃d0 + χ̃f0 (d for dielectric, f for free-carrier), the
interacting response function is recomputed as χ̃(q) =
χ̃0(q)/(1− vc(q)χ̃0(q)) and a new Q(q) = χ̃(q)/FF (q) is
injected in the solver.

5. Comparison with QEH model

The QEH model is similar to our approach but they
differ on the following points: i) In QEH, the linear den-
sity response function is computed as in Ref. 51 then
projected on two potential profile functions for monopole
and dipole contributions. In our approach, the full den-
sity response to monopole and dipole perturbing poten-
tials is directly interpolated on the q-points in which we
are interested. By avoiding the projection on basis func-
tions for the potentials, we keep the full z-dependency
of the induced potentials during the process of solving
the electrostatics. In QEH, a 1D Poisson equation in the
out-of-plane direction needs to be solved at the end of
the process to recover this z-dependency. ii) In QEH,
the combination of the responses is achieved within the
Dyson equation formalism. We employ a somewhat sim-
pler electrostatic model. As far as we can tell, under the
“interlayer mean-field” approximation, also used in QEH,
both formalisms are equivalent. iii) QEH allows for a dy-
namical treatment of the responses, while our method is
presently limited to the static limit. iv) QEH enables
the treatment of anisotropic materials, while we stay in
the isotropic case. v) Concerning free carrier screen-
ing, we arrived independently at a very similar approach
(free carrier screening was added only very recently in
the QEH method19). There are some pratical difference
the calculations. QEH makes use of the quadratic band

approximation to compute χ0, while it is evaluated nu-
merically on the full band structure in our case. Also,
we account for form factors effects. We don’t expect a
significant difference to arise from those differences.

Overall, the methods were developed with different
quantities and applications in mind. Our approach is
centered around potentials and their variations as a func-
tion of momentum q and out-of-plane position z. The
system can easily be perturbed by an arbitrary potential
(Fröhlich in this work), and the response of each individ-
ual layer as well as the total effective potential can be
easily extracted, bringing a clear picture of the under-
lying electrostatics. QEH focuses more macroscopically
averaged quantities like the dielectric function and the
underlying potentials are less accessible. We also have
access to the dielectric function in our framework and we
have checked that it agrees with the QEH one in multi-
layer BN.
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