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“Recent” changes in Al: 1. Deep neural nets
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A deep-learning neural network (DNN) is an artificial neural network (ANN) with multiple layers between
the input and output layers. No universally agreed upon threshold of depth separates shallow learning
from deep learning, but most researchers agree that deep learning involves a chain of transformations
from input to output higher than 2.



1. Outperform supervised learning algorithms but more tuning is often
necessary as well as much higher computational costs for training.

2. Dedicated hardware architectures have been developed for training
and executing those networks (e.g., GPU networks).

3. Open-source software libraries for designing and training DNNs are
available and very well created. The most popular ones include:
PyTorch (Facebook’s Al Research Lab) or Tensorflow (Google Brain).
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2. Generalised adversarial nets (GANSs)
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Examples of Photorealistic GAN-Generated Faces.Taken from Progressive Growing of
GAN:Ss for Improved Quality, Stability, and Variation, 2017
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3. Powerful new reinforcement learning agents
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Lee Sedol, is a former South
Korean professional Go player
with a 9 dan ranking.

He was defeated by the computer
program AlphaGo (based on RL
algorithms combined with DNN)
in a series in March 2016.

On 19 November 2019, Lee
announced his retirement from
professional play as artificial
intelligence had created an
opponent that "cannot be

defeated."
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Table 1. Summary of RL considerations for
electric power system control /decision

Problem Tvpe of RL Reference(s)
control method
Electricity Market  O)-learning Harp et al. (2000)

market decision Rahimiyan et al. (2010)
simulation Nanduri and Das (2007)
Lincoln et al. (2012)
Kim et al. (2016)
Krause et al. (2006)

Transient Emergency ()-learning Ernst et al. (2004)
angle Glavie (2005)
instability Glavic et al. (2005a)
Glavie et al. (2005b)
Li and Wu (1999)

Fitted Q) Ernst et al. (2009)
iteration
Policy Mohagheghi et al. (2006)
search

Oscillatory Emergency Q-learning Ernst et al. (2004)

angle Wang et al. (2014)

instability Glavie et al. (2005a)
Ademoye and Feliachi (2012)

Karimi et al. (2009)

Voltage Normal Q-learning Xu et al. (2012)
control Vlachogiannis et al. (2004)

AGC Normal Q(A) with Yu et al. (2011)
{Automatic) elig. traces
generation Q-learning Daneshfar and Bevrani (2010)
control) Ahamed et al. (2002)
R(AX) Yu et al. (2012b)
Eeonomie Normal Q-learning Jasmin et al. (2011)
dispatch Yu et al. (2016)

Yousefian et al. (2016)
Yan et al. (2016)
Hadidi and Jeyasurya (2013)
Wang et al. (2016)

Wide-area Emergency TD
control C)-learning

Households  Normal Q-learning

control Yan et al. (2016)
Wind Normal Q-learning Wei et al. (2015)
generation Tang et al. (2015)
control Q(A) Yu et al. (2012a)

Demand Normal Fitted Q
control iteration

Ruelens et al. (2016)
Vandael et al. (2015)
System  Restorative ()-learning Ye et al. (2011)
restoration

Congestion Emergency ()-learning Zarabbian et al. (2016)
management

Microgrids Normal Q-learning Khorramabady et al. (2015)
control Li et al. (2012)
Policy  Venayagamorthy et al. (2016)
search

Table taken from: “Reinforcement Learning for Electric Power System Decision and Control: Past Considerations and Perspectives”. M. Glavic, R. Fonteneau and D. Ernst. Proceedings of the

20 IFAC World Congress.



Learning:

Input : x4, uz, re and x4
6+ (re+v max Qzey1,u)) — Qe up)

uelU (2441

Q(xe, ur) +— Q(xt, ur) + ad

Exploration/exploitation: Do not
always take the action that is believed
to be optimal to allow exploration.

Generalisation: Generalise the
experience gained in certain states
to other states.
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First control law for stabilizing power systems every computed using reinforcement learning. More at: ”IRe-in-f-orcement Learning Versus Model Predi tive“ControI: A Comparison on a Power
System Problem”. D. Ernst, M. Glavic, F.Capitanescu, and L. Wehenkel. IEEE Transactions on Syestems, Man, An Cybernetics—PART B: Cybernetics, Vol. 39, No. 2, April 2009.
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RL for trading flexibility in the intraday market
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RL for trading flexibility in the intraday market (Contd.)

Very complex decision-making problem. o - _
Table 4. Descriptive statistics of the returns obtained on the days

of the test set for policies 77¢ and 7%/, The last column also

Good results could be obtained by using the RL provides the C!qrrCSponding proﬁtﬂbi!lfifly ratios.

Fitted Q Iteration algorithm (FQI) combined with 7" returns (€) 7" returns (€) r (%)

DNNs. mean 8583 8439 1.50
min 2391 2366 —0.73

_ _ o 25% 5600 5527 0.23

Trajectories generated artificially on the order the 50% 7661 7622 0.87

book. 75% 10823 10721 A
max 37902 36490 6.56

1.5% increase in profit! " 935552 919871 L7



“A critical present objective is to develop deep RL
methods that that can adapt rapidly to new tasks.”

Deepmind, “Learning to reinforcement learn.” (2016).



Walking: a meta-RL problem solved
through synaptic plasticity and
neuro-modulation

Synaptic Neuro-
plasticity modulation
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Classical architecture for solving meta-RL problems:
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Benchmark description: The RL
agent has to navigate on a plane
to reach the blue target that leads
to high rewards. The environments
differ through the positions of the
target.

Results: Blue curve represents the
neuromodulated neural net. Orange
curve represents the classical
architecture.



o Change of objective o
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More: “Introducing neuromodulation in deep neural networks to learn adaptive behaviours”. N. Vecoven, D. Ernst and G. Drion, 2020.



A question that | was asked a few months ago, and my answer

What types of power system problems can one resolve with machine
learning?

We could potentially address them all, but I fear that the power system
community will not address many of them in the future. Why? Because the
power system community will never be able to attract enough bright
machine-learning scientists who prefer the high-paying salaries of major
companies and corporations (e.g., Facebook, Google) or working on
problems related to robotics that they believe are ‘fancier’. The power
system community should therefore scale back its ambitions to build a very

intelligent grid and focus on the building of grids which do not require a lot
of intelligence to be effectively operated.



But what if big tech was disrupting the energy industry
with its fancy Al solutions?

Autonomous electrical
(oMg ON. vehicle going out to
GO AND GET iT ]/ .. :
b0 AND GET JoME ELECTRICITY !/ collect electricity that is
discharged into domestic
batteries afterwards.

No need to be
connected to the
electrical grid anymore.




Self-driving EV cars could be
NO JiR . charged next to electricity
e o, YO sources ata cheap price.

THE YELF- DRIVING CARD ARE Afterwards, EVs could

BLAINE 1 NHIRK directly sell their electricity
(without using the grid) to
any electricity consumer at a
higher price. As such, they
will act as a true competitor

for the utility grid.
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