Microgrids
Introduction to probabilistic forecasting

Jonathan Dumas
jdumas@uliege.be
Introduction to forecasting

Learning objectives

Through this lecture, it is aimed for the students to be able to:

- Produce **probabilistic** forecasts;
- Perform **verification** of probabilistic forecasts
Residential energy supplier

Summary

1. Reminder

2. Probabilistic forecasts

3. Verification of probabilistic forecasts
Introduction to forecasting

Reminder: forecast for decision making

Forecasting is a natural first step to **decision-making**

Key parameters for a microgrid to forecast:

**Generation**: PV, Wind Power, Hydraulic Power, etc

**Load**: office, industrial, residential, etc

**Prices**: electricity, gas, (futures, day ahead, intraday, imbalances).
Introduction to forecasting

Reminder: point forecast definition

A forecast is an **estimate** for time $t + k$, conditional to information up to time $t$.

A **point forecast** informs of the **conditional expectation** of power generation.

$$\hat{y}_{t+k|t} = \mathbb{E}[Y_{t+k}|t \mid g, \Omega_t, \hat{\Theta}_t]$$

given:

- the information set $\Omega$;
- a model $g$
- its estimated parameters $\hat{\Theta}_t$ at time $t$
Introduction to forecasting

Reminder: use a strategy to assess forecasts

Several strategies to assess forecasts:
- splitting the dataset into a learning and a validation sets;
- k-cross validation: k pairs or random learning and validation sets.
Introduction to forecasting

Reminder: use quantitative metrics

**Bias** or Nbias, for the normalized version:

\[
\text{bias}(k) = \frac{1}{T} \sum_{t=1}^{T} \epsilon_{t+k|t}
\]

Mean Absolute Error (**MAE**) or NMAE, for the normalized version:

\[
\text{MAE}(k) = \frac{1}{T} \sum_{t=1}^{T} \left| \epsilon_{t+k|t} \right|
\]

Root Mean Squared Error (**RMSE**) or NRMSE, for the normalized version:

\[
\text{RMSE}(k) = \left[ \frac{1}{T} \sum_{t=1}^{T} \epsilon_{t+k|t}^2 \right]^{1/2}
\]
Residential energy supplier

Summary

1. Reminder

2. Probabilistic forecasts

3. Verification of probabilistic forecasts
Introduction to forecasting

Probabilistic forecasting

The various types of probabilistic forecasts range, from quantile to density forecasts, prediction intervals, and scenarios.
Introduction to forecasting

Quantile forecast definition

A quantile forecast is to be seen as a probabilistic threshold for power generation.

\[ P[Y_{t+k|t} \leq \hat{y}^{(q)}_{t+k|t} | g, \Omega_t, \hat{\Theta}_t] = q \]

\[ \hat{y}^{(q)}_{t+k|t} = \hat{F}^{-1}_{t+k|t}(q) \]

with:
- \( q \) the normal level (quantile)
- the information set \( \Omega \);
- a model \( g \)
- its estimated parameters \( \hat{\Theta}_t \) at time \( t \)
- \( F \) the cumulative distribution function (CDF)
Introduction to forecasting

Prediction interval definition

A **prediction** interval is an **interval** within which power generation may lie, with a certain probability.

\[
\hat{I}(\alpha)_{t+k|t} = [\hat{y}_{t+k|t}^{(q=\alpha/2)}, \hat{y}_{t+k|t}^{(q=1-\alpha/2)}]
\]

with:
- alpha the nominal coverage
Introduction to forecasting

Predictive density definition

A predictive density fully describes the **probabilistic distribution** of power generation for every lead time.

\[ Y_{t+k} \approx \hat{F}_{t+k|t} \]

with:

- \( F \) the cumulative distribution function for \( Y_{t+k} \)
Introduction to forecasting

Trajectories (scenarios) definition

Trajectories are equally-likely **samples** of multivariate predictive densities for power generation (in time and/or space).

\[ z^j_t \approx \hat{F}_t \]

with:

- \( F \) the multivariate predictive cdf of \( Y_t \)
- \( z^j \) the \( j^{th} \) trajectory
PV quantile forecasts computed at 12:00 for the next day along with corresponding observations (Pm in red) and point forecasts (dad 12 in black).

The model are a feed-forward neural network (MLP) on the left figure and a long short term memory neural network (LSTM) on the right figure.
Residential energy supplier

Summary

1. Reminder

2. Probabilistic forecasts

3. Verification of probabilistic forecasts
Introduction to forecasting

Case study: PV parking rooftops from Liège university

PV installation of 466.4 kWp

Introduction to forecasting

Case study: PV forecasting model

The forecasting model $g$ is a **feed-forward neural network**:  
- with one hidden layer;  
- weather forecasts of solar irradiation and air temperature as inputs;  
- the output layer is composed of 96 neurons (96 time steps);  
- it is implemented in python using Tensorflow library.
Introduction to forecasting

Evaluation methodology

Forecasting is about being able to predict future events, in new situations not only explain what happen in the past.

One need to verify forecasts on data that has not been used for the modelling!

Several strategies:

- splitting the dataset into a learning and a validation sets;
- k-cross validation: k pairs or random learning and validation sets.
Introduction to forecasting

Visual inspection

Visual inspection allows you to develop *substantial insight* on forecast quality.

This comprises a *qualitative analysis* only.

*What do you think of these two? Are they good or bad?*

Issued on 1 August 2020 at 12:00 for 2 August 2020.
Introduction to forecasting

Attribute of probabilistic forecast quality

How do you want your forecasts?

- **Reliable**? (also referred to as “probabilistic calibration”)

- **Sharp**? (i.e., informative)

- **Skilled**? (all-round performance, and of higher quality than some benchmark)
Introduction to forecasting

Probabilistic calibration (reliability)

Calibration is about respecting the probabilistic contract:

- **quantile** forecast with a nominal level $q = 0.5$, one expect than the observations are to be less than the forecast 50% of the times;

- **prediction** interval with a nominal coverage of 90%, one expect than the observations are to be covered by this prediction 90% of the times

To do it in practice, we take a frequentist approach... we simply count!
Introduction to forecasting

Reliability diagrams

The calibration assessment can be summarized in reliability diagrams.

Predictive densities composed by quantile forecasts with nominal levels \( \{0.05, 0.1, \ldots, 0.45, 0.55, \ldots, 0.9, 0.95\} \).

**Quantile forecasts** are evaluated one by one, and their empirical levels are reported vs. their nominal levels.

The **closest** to the **diagonal**, the better!
Introduction to forecasting

Sharpness

Sharpness is about the **concentration** of probability.

A perfect probabilistic forecast gives a probability of 100% on a single value!

Consequently, a sharpness assessment boils down to **evaluating how tight the predictive densities are**...

For a given interval forecast

\[
\hat{I}(\alpha)_{t+k|t} = \left[ \hat{y}_{t+k|t}^{(q=\alpha/2)}, \hat{y}_{t+k|t}^{(q=1-\alpha/2)} \right]
\]

The width is

\[
\delta_{t,k}^{(\alpha)} = \hat{y}_{t+k|t}^{(q=1-\alpha/2)} - \hat{y}_{t+k|t}^{(q=\alpha/2)}
\]

Average over the validation set

\[
\delta^{(\alpha)}(k) = \frac{1}{T} \sum_{t=1}^{T} \delta_{t,k}^{(\alpha)}
\]
Introduction to forecasting

Sharpness

Predictive densities are composed by interval forecasts with nominal coverage rates = 0.1, 0.2, ..., 0.9.

The interval width increases with the lead time, reflecting higher forecast uncertainty.
Introduction to forecasting

Overall skill assessment

The skill of probabilistic forecasts can be assessed by scores, like MAE and RMSE for the deterministic forecasts.

The most common skill score for predictive densities is the **Continuous Ranked Probability Score (CRPS)**.

\[
\text{CRPS}_{t,k} = \int_x \left[ \hat{F}_{t+k|t}(x) - 1(x \geq y_{t+k}) \right]^2 dx
\]

\[
\text{CRPS}(k) = \frac{1}{T} \sum_{t=1}^{T} \text{CRPS}_{t,k}
\]

CRPS and MAE (for deterministic forecasts) can be directly compared.
Introduction to forecasting

CRPS example on the case study

CRPS per lead time, from 11-cross validation, of three forecasting models for PV quantile forecasts.
Introduction to forecasting

Conclusion: forecast for decision making

Forecasting is a natural first step to decision-making.

Key parameters for a microgrid to forecast:

**Generation:** PV, Wind Power, Hydraulic Power, etc

**Load:** office, industrial, residential, etc

**Prices:** electricity, gas, (futures, day ahead, intraday, imbalances).
Conclusion: Probabilistic forecasting

The various types of probabilistic forecasts range, from quantile to density forecasts, prediction intervals, and scenarios.
Conclusion: Probabilistic forecasting

The various types of probabilistic forecasts range, from quantile to density forecasts, prediction intervals, and scenarios.
Introduction to forecasting

Conclusion: attribute of probabilistic forecast quality

How do you want your forecasts?

- **Reliable**? (also referred to as “probabilistic calibration”) -> reliability diagrams

- **Sharp**? (i.e., informative) -> width

- **Skilled**? (all-round performance, and of higher quality than some benchmark) -> CRPS
Conclusion: use a strategy to assess forecasts

Several strategies to assess forecasts:
- splitting the dataset into a learning and a validation sets;
- k-cross validation: k pairs or random learning and validation sets.
Introduction to forecasting

References


Free online chapter: http://pierrepinson.com/31761/Literature/reninmarkets-chap2.pdf

Online lessons from P. Pinson:

https://energy-markets-school.dk/summer-school-2019/

http://pierrepinson.com/index.php/teaching/
The end, to be continued ...