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Fig. 1 Hierarchical control architecture.

[1] Fei, G. A. O., et al. "Primary and secondary control in DC microgrids: a review." 
Journal of Modern Power Systems and Clean Energy 7.2 (2019): 227-242.

Microgrid hierarchical control
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Literature: two-layer approach
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Schedule layer:  

- economical operation scheme; 


- 24 hours ahead, 15 min resolution.

Dispatch layer:  

- Computes set points based on the schedule and the microgrid status; 


- 15 min ahead, resolution of a few seconds. 


How interact the schedule and dispatch layers ? 

Two-layer approach intensively studied:

[2] Jiang, Quanyuan, Meidong Xue, and Guangchao Geng. "Energy management of microgrid in grid-connected and stand-alone modes." IEEE 
transactions on power systems 28.3 (2013): 3380-3389. 
[3] Wu, Xiong, Xiuli Wang, and Chong Qu. "A hierarchical framework for generation scheduling of microgrids." IEEE Transactions on Power 
Delivery 29.6 (2014): 2448-2457. 
[4] Sachs, Julia, and Oliver Sawodny. "A two-stage model predictive control strategy for economic diesel-PV-battery island microgrid operation 
in rural areas." IEEE Transactions on Sustainable Energy 7.3 (2016): 903-913. 
[5] Cominesi, Stefano Raimondi, et al. "A two-layer stochastic model predictive control scheme for microgrids." IEEE Transactions on Control 
Systems Technology 26.1 (2017): 1-13. 
[6] Ju, Chengquan, et al. "A two-layer energy management system for microgrids with hybrid energy storage considering degradation costs." 
IEEE Transactions on Smart Grid 9.6 (2017): 6047-6057. 
[7] Solanki, Bharatkumar V., Claudio A. Cañizares, and Kankar Bhattacharya. "Practical energy management systems for isolated microgrids." 
IEEE Transactions on Smart Grid 10.5 (2018): 4762-4775.
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Abstract problem formulation
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This problem is very difficult to solve since the evolution of the system is uncertain, 
actions have long-term consequences, and are both discrete and continuous.

a⋆
𝒯l(t)

= arg min ∑
t′ �∈𝒯l(t)

c(at′�, st′�, ω̂t′ �)

s.t. ∀t′� ∈ 𝒯l(t), st′�+Δt′ � = f(at′�, st′ �, ω̂t′�, Δt′�),

st′� ∈ S′�t

at = (am
t , ad

t )

st = (sm
t , sd

t )

Actions set: market related (m) and set points to the devices (d).

Microgrid state: related to the market (m) and devices (d).
c

f
Cost function.

Transition function of the system.
ω̂t Uncertainty.

(1)
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Forecasting Operational 
planning

Real-time 
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c(at, st, wt) = cm(am
t , st, wt) + cd(ad

t , st, ωt)
Controller

vt(s)

Proposed method: two-layers with a value function

Fig. 2 Hierarchical control procedure illustration.

Two-layers approach with a value function to propagate information from 
operational planning to real-time optimization.
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Proposed method: two-layers with a value function

am,⋆
𝒯m

a (t) = arg min ∑
t′ �∈𝒯m

a (t)

cm(am
t′� , st′�, ω̂t′�)

s.t. ∀t′� ∈ 𝒯m
a (t), st′�+Δτ = f m(am

t′ � , st′�, ω̂t′�, Δτ)

st′� ∈ St′�

(2)

Operational planner:

Real-time controller:

ad,⋆
t = arg min cd(ad

t , st, ω̂t) + vτ(t)(sτ(t))

s.t. sτ(t) = f d(ad
t , st, ω̂t, τ(t) − t)

sτ(t) ∈ Sτ(t)

(3)

vt(sτ(t))

Value function 
at the end of 
the first market 
period.
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Proposed method: objective function of the operational planner

COP
t′� = ( ∑

d∈𝒟she

Δτπshe
d,t′�C

she
d,t′�a

she
d,t′� + ∑

d∈𝒟ste

Δτπste
d,t′ �C

ste
d,t′�a

ste
d,t′ � + ∑

d∈𝒟nst

Δτπnst
d,t′ �C

nst
d,t′ �a

nst
d,t′ �

+ ∑
d∈𝒟sto

Δτγsto
d (Pdηcha

d acha
d,t′� +

Pd

ηdis
d

adis
d,t′�)

− πe
t′�e

gri
t′� + πi

t′ �i
gri
t′ � ) selling/purchasing energy to/from the grid

shed demand steered generation non steered generation

storage fee

DOP
t′� = πpδpt′ � − πs

OPrsym
t′� peak cost and symmetric reserve

JOP
𝒯m

a (t) = ∑
t′�∈𝒯m

a (t)
(COP

t′� + DOP
t′� ) Immediate and delayed costs.(4)

Operational planner:
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Proposed method: objective function of the real-time controller

JRTO
t = CRTO

t + DRTO
t + vτ(t)(sτ(t))

Immediate, delayed costs, 
and value function.(5)

Real-time controller:

Value function = cost-to-go at the end of the ongoing market period as a 
function of the state of charge.


Evaluated by solving (4) for several states of charge = parametrization by 
changing the RHS -> provide cuts.

Fig. 3 Value function approximation illustration.

Cut 1 to 3:
sτ(t) = s1 [μ1] → vτ(t)(s) ≥ vτ(t)(s1) + μT

1 s

sτ(t) = s2 [μ2] → vτ(t)(s) ≥ vτ(t)(s2) + μT
2 s

sτ(t) = s3 [μ3] → vτ(t)(s) ≥ vτ(t)(s3) + μT
3 s
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MiRIS case study
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Fig. 3 PV and consumption on June 12, 2019.

27 days of data (measurements and point forecasts) available on the Kaggle platform: 

https://www.kaggle.com/jonathandumas/liege-microgrid-open-data

MiRIS microgrid located at the John Cockerill Group’s international headquarters 
in Seraing, Belgium. 

https://johncockerill.com/fr/energy-2/stockage-denergie/

PSCC 2020

https://www.kaggle.com/jonathandumas/liege-microgrid-open-data
https://johncockerill.com/fr/energy-2/stockage-denergie/
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MiRIS case study: managing the peak penalty

Table I: Case study parameters.
C = load

S = Battery

Peak penalty if import > 150 kW paid at 40 euros / kW

Day/night import prices: 200/120 euros MWh.

Single export price 35 euros /MWh.
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Numerical results: RTO-OP vs RBC
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Planner (OP):  
- 24 hours ahead; 

- 15 min resolution; 

- run on a quarterly basis.


Controller (RTO):  
- 15 min ahead;

- run on a one minute basis.

PSCC 2020

RTO-OP is compared to a Rule 
Based Controller (RBC).



Numerical results: RTO-OP vs RBC
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PV and consumption weather based point forecasts for OP use 
Recurrent Neural Network (RNN) and Gradient Boosting Regression 
(GBR) techniques.


The weather forecasts provided by the Laboratory of Climatology of the 
university of Liège, based on the MAR regional climate model.

Fig. 4 Case 3 PV forecast on June 12, 2019, 06h00 UTC.



Numerical results: peak management

!17

PSCC 2020

Table II: Results without symmetric reserve.
energy cost (k euros)

peak cost (k euros)

total cost (k euros)

peak power (kW)

RTO-OP is still a long way to manage the 
peak as RTO-OP* due to the forecasting 
errors.


RTO-OP optimizes PV-storage usage, and 
thus requires less installed PV capacity for 
a given demand level than RBC.


cE
cp
ct = cE + cp
Δp

RTO-OP* = perfect forecasts 
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RTO-OP tends to maintain a storage level that allows to better cope 
with forecast error.

Numerical results: peak management with symmetric reserve

Fig. 5 Case 3 SOC comparison for RTO-OP (RNN) with and 
without symmetric reserve.
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Table III: Results with symmetric reserve for RTO-OP (RNN)

There is an economic trade-off to reach to manage the peak and the 
reserve simultaneously depending on the valorization or not on the market 
of the symmetric reserve.

The peak power has decreased.

Numerical results: peak management with symmetric reserve

ct = cE + cp
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Conclusions & extensions
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The value function computed by the operational planner based on PV 
and consumption forecasts allows to cope with the forecasting 
uncertainties.


The approach is tested in the MiRIS microgrid case study with PV and 
consumption data monitored on site.


The results demonstrate the efficiency of this method to manage the 
peak in comparison with a Rule Based Controller.


Extension to a stochastic/robust formulation to deal with 
probabilistic forecasts.


Extension to a community by considering several entities inside the 
microgrid.
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Annex: Point forecasting methodology
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Inputs:  
- PV production / Load historical data

- Weather forecast from the laboratory of climatology of Liège.


Outputs: 
- PV production / load 24 ahead hours with 15 min resolution


The point forecasts are computed on a quarterly basis using a Long Short 
Term Memory (LSTM) with the keras python library [8] and a Gradient 
Boosting Regression (GBR) with the scikit-learn python library [9].


The forecasting process is implemented using a rolling forecast 
methodology. The Learning Set (LS) is refreshed every six hours and 
limited to the week preceding the forecasts. 

[8] F. Chollet et al., “Keras,” https://keras.io, 2015. 
[9] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. 
Weiss, V. Dubourg, J. Vander- plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch- esnay, 
“Scikit-learn: Machine learning in Python,” Journal of Machine Learning Research, vol. 12, pp. 2825–2830, 
2011.
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Annex: Point forecasting results
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Fig. 4 PV forecast scores for GBR (top) and RNN (bottom).


