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Abstract 

This paper presents a spatiotemporal analysis to simulate and project urban sprinkling with coupled cellular 

automata (CA) and multinomial logistic regression (MLR) model. Our case study, the Basilicata region, south 

of Italy, is characterized by urban sprinkling - literally "a small amount of urban territory distributed in scattered 

particles".  The region is witnessing a decoupled growth between demographic trend and urban expansion. 

We applied a coupled approach based on CA and MLR for urban sprinkling modeling and simulation. From 

three regional building datasets (1989, 1998 and 2013) building density maps were created and used to 

calibrate and validate the model and to project future urban expansion. Built-up causative factors were 

identified through an analysis of 19 articles that were compared and discussed according to their main features 

(methods, case studies, drivers, urbanization dynamics and demographic growth). The transition probability 

for the first period (1989-1998) was calibrated with MLR for built-up causative factors and with the multi-

objective genetic algorithm (MOGA) for CA neighborhood effects. The calibrated model was used to simulate 

the 2013 urban pattern which was compared with the actual map of 2013 (validation). We then used our 

calibrated model to simulate urban expansion in 2030. The results of the 2030 forecast show the largest 

variations in class 1 (low density built-up patches) that correspond to urban sprinkling.  

Keywords: Urban Sprinkling, Low-density, Cellular Automata, Multinomial Logistic Regression, Basilicata 

Region. 

1. Introduction 

The quantitative and qualitative analysis and prediction of land use transformation dynamics plays an 

increasingly central role in earth system science (Feng, 2017; Feng & Tong, 2020). Among these 

transformation dynamics, urban sprawl is undoubtedly amongst the most studied dynamics. Urban sprawl is 

usually associated with the development of mono-functional, low-density urban settlements occupying a large 

territory around medium- and large-sized cities (Galster et al., 2001; Hasse & Lathrop, 2003; Nechyba & Walsh, 

2004). A similar, though somehow distinct, phenomenon of territorial transformation is observed in the 

proximity of smaller cities. This has been defined as urban sprinkling (Romano, Zullo, Fiorini, Ciabò, et al., 

2017). Literally speaking, according to Merriam-Webster’s definition, sprinkling is defined as: “a small amount 

falling into drops or scattered particles”. Urban sprinkling is typical of rural areas and involves the construction 

of low-density, small-scale residential settlements, scattered throughout the territory, far from existing public 

services and characterized by low levels of accessibility. It is characterized by very low population density and 

building density rates (Romano, Zullo, Fiorini, Marucci, et al., 2017). It is usually associated with territorial 

fragmentation (Saganeiti et al., 2018). The configuration of urban sprinkling is extremely dispersed. It develops 
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through heterogeneous and very small-sized aggregates, composed of a single building or a small group of 

buildings. Aggregates may welcome different uses, from residential to industrial, agricultural or commercial 

uses, which are inserted within the rural matrix. These aggregates typically develop along the existing road 

networks, which are usually characterized by an organic scheme. While existing cities tend to attract urban 

sprawl, which progressively consolidates over time, newly built areas would rather tend to develop farther away 

from existing urban settlements in urban sprinkling.  

On the Italian territory, urban sprinkling is usually associated with weak urban planning. In some cases, it is 

the consequence of abusive initiatives, encouraged by amnesties for the violation of building regulations. In 

Belgium it is largely related to deficiencies of land planning documents adopted in the 1970’s, which provided 

room for the so-called “ribbon development” along secondary roads without much congruency with existing 

settlements (Halleux et al., 2012; Mustafa, Van Rompaey, et al., 2018; Verbeek et al., 2014). Uncontrolled, 

poorly managed and fragmented urban transformation generates an economic and social impact on the 

population also defined as a social cost. The social cost includes both direct costs arising from the construction 

of new roads and new infrastructure services,  as well as indirect costs arising from health costs owing to 

increased pollution and therefore increased travel, costs on account of loss of landscape quality and other 

costs associated with the daily life of the local population (Jan K. Brueckner, 2001; Carruthers & Ulfarsson, 

2003; Freilich & Peshoff, 1997).  

It is of great interest to study the dynamics of territorial transformation, in particular those linked to urban 

sprinkling, so as to understand which factors (drivers) have most contributed to the development of the 

phenomenon. Moreover, the projection into the future (even if not a very distant one) of the transformation 

dynamics  may help control the social costs that the population bears because of the urban sprinkling 

phenomenon. As demonstrated in Manganelli et al., 2020, the social costs increase, as urban sprinkling 

increases. 

A fundamental prerequisite for developing or applying an urban transformation prediction model is certainly 

the knowledge of the factors that influence the process, i.e. the causative factors (drivers). Many studies (G. 

Li et al., 2018; Mustafa et al., 2017; Puertas et al., 2014; Rienow & Goetzke, 2015; J. Yang et al., 2020) are 

dedicated to the analysis of the drivers that regulate the transformation dynamics of a territory, i.e. the 

urbanization processes. Table A in the appendix A shows a collection of 19 scientific articles from 2014 to 

2020. For each one, in addition to other information discussed in the next paragraph, the drivers taken into 

consideration have been reported. The processes of expansion are influenced by geophysical, socio-economic 

and legislative conditions. Most research shows that economic factors, including population growth, income 

and value of agricultural land, are of primary importance in setting the rules for urban expansion (J. K. 

Brueckner & Fansler, 1983; McGrath, 2005). As a matter of fact, urban prediction models are generally applied 

in contexts where the population growth rate is positive and settlement density is relatively high. Among the 

reviewed articles, only Rienow et al. (Rienow & Goetzke, 2015) analyses a rural context with scattered 

settlements and a negative demographic trend in a German region.  

Land use models allow to project and simulate future urban patterns in order to act on the dynamics and 

mechanisms of urban expansion (Wahyudi & Liu, 2016). Urban land use change models are generally 

analyzed and applied to provide a decision support to policy makers in the implementation of new urbanization 

plans (Allen & Lu, 2003; Nasiri et al., 2019; Puertas et al., 2014). Furthermore, these models can support 

planning policies such as flood risk mitigation (Mustafa, Bruwier, et al., 2018), regulation of climate change 



and the provision of ecosystem services (Shoyama & Yamagata, 2014) as well as the development of 

scenarios for environmental impact assessment (Poelmans & Van Rompaey, 2009). In this study, our focus is 

to cross the literature gap concerning the correlation between demographic trends and urban expansion in 

order to arrive at the conclusion that a predictive model can be used to control urban transformations where 

they are not necessary and to preserve those areas with a particular environmental value. 

In this research, we have applied a modeling approach that integrates multinomial logistic regression (MLR) 

and cellular automata (CA) to analyze and project urban sprinkling. The model was proposed by Mustafa et 

al. 2018 (Mustafa, Heppenstall, et al., 2018) and used to simulate urbanization scenarios in Belgium.  

Our case study, the Basilicata region in southern Italy, is affected by the urban sprinkling phenomenon and a 

decoupled growth between demographics and built-up areas in the last 30 years (Saganeiti et al., 2018). This 

phenomenon is representative of a number of internal Western areas which, even though their population is 

in decline and/or static, have the necessary resources to continue to invest in urbanization processes (Caselli 

et al., 2020; Martinez-Fernandez et al., 2012; Wiechmann & Pallagst, 2012). A simulation and projection model 

of urban expansion based on a multi-density approach (4 urban density classes) will be used. This approach 

appears to be fundamental and novel for a context characterised by urban sprinkling or an urban expansion in 

the absence of population growth. Therefore, for urban expansion modeling, , built-up density maps were 

generated on the basis of three regional building datasets (1989, 1998 and 2013) with four density classes: 

non built-up, low density, medium density and high density and used for the calibration, validation, and 

simulation phases. The transition probability for calibration (1989-1998) was calculated with MLR for the built-

up causative factors and with multi-objective genetic algorithm (MOGA) for CA neighborhood interactions. 

Among the causative factors considered, are those concerning the physical, socio-economic, proximity and 

constraints factors. The calibrated parameters were used for the simulation of the 2013 map which was 

compared with the actual map of 2013 (validation). The final objective is to simulate business as usual urban 

pattern in 2030. 

2. Relevant features of urban expansion models 

Why model future urban expansion scenarios? Undoubtedly, to understand the spatial processes of urban 

development dynamics over time and to serve as tools to project future policies focused on the principles of 

sustainable development. Geographic Information System (GIS) and remote sensing techniques are used to 

feed and construct urban expansion models. Among the common approaches: cellular automata, logistic 

regression, geographic weighted regression, Markov Chain integrated with cellular automata methods and 

agent-based. The ability of the cellular automata approach to simulate and predict land use changes assumes 

that any previous urban expansion, influences future characteristics through local and regional interactions 

between different types of land use. 

CA models are easy to apply, can simulate complex models, have an open structure, integrate with other 

models and can simulate spatial and temporal models (Aburas et al., 2016). They overcome their limit of not 

being able to include drivers for urban expansion simulation, by integrating with other quantitative and space-

time methods such as Analytic Hierarchy Process (AHP) and MLR. Table A lists 19 scientific articles on urban 

expansion modeling from 2014 to 2020. Due to the presence of several recent reviews of prediction models 

(Aburas et al., 2016; Dang & Kawasaki, 2016; Poelmans & Van Rompaey, 2010; van Vliet et al., 2016; Wahyudi 

& Liu, 2016), articles published before 2014 have not been considered in this summary. The search was 

conducted on February 2020, in the Scopus website and was carried out considering one of these keywords: 



“Urban growth”, “Model prevision”, “Prediction”, “Cellular Automata”, “Logistic regression”, “Scenario”, “Urban 

expansion”. Only articles from scientific journals in the disciplines of urban and territorial sciences, 

environmental engineering and earth sciences were selected. A further selection was made by reading the 

abstracts and finally 119 papers were collected.  

In conclusion, for each year, the papers with the most citations were analyzed in detail and synthetized. Table 

1 shows a summary of the main elements collected in Table A in the appendix where the following elements 

are reported: 

- Authors: reference is made to the first author of the paper and the year of publication; 

- Study case: the area of study analyzed is reported; 

- Application: the type of application that was carried out in the paper such as: simulation and forecasting 

of urban expansion, study of the drivers that regulate the dynamics of transformation, flood risk 

mitigation, modelling of urban densification processes and others; 

- models and techniques: used in research. Among the most common are certainly the models with 

cellular automata, logistic regression and artificial neural networks; 

- predictive variables: this includes all variables that affect the dynamics of urban transformation. They 

have been divided into 6 categories: physical factors, proximity factors, social factors, neighborhood 

interactions and urban policies. For each article the box corresponding to the driver taken into 

consideration is highlighted in grey and, in most cases, the drivers are specified (with text); 

- population trends and urban dynamics: in this column the demographic growth and urban expansion 

dynamics of the various case studies have been included. Population growth rates and urban 

expansion dynamics are highlighted. 

Table 1 Summary table of the 19 collected papers.  
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(Hua et al., 2014) SLEUTH   

  

        ++ 

(Puertas et al., 2014) CA, Markov and LR 

        

  

  

+ 

(Basse et al., 2014) CA and ANN             + 

(Rienow & Goetzke, 2015) SLEUTH, BLR and SVM             + - 

(Halmy et al., 2015) Markov - CA 

    

        na 

(Han et al., 2015) CLUE-S and Markov  

            

+ 

(Chen et al., 2016) SA-Patch-CA  

            

+ 

(Ku, 2016) SR and CA             ++ 

(Vermeiren et al., 2016) ABM             + 

(Mustafa et al., 2017) LR, CA and ABM 

            

ns 

(Shafizadeh-Moghadam et al., 2017) ANN, SVR, RF and other 

            

++ 

(Aburas et al., 2017) CA and Markov based on AHP and FR 

            

+ 

(C. Li et al., 2017) GWR and CA 

            

++ 

(Martellozzo et al., 2018) SLEUTH and AHP 

            

+ 



(G. Li et al., 2018) SEM - Probit and SAR – Probit 

            

++ 

(Mustafa, Heppenstall, et al., 2018) MLR, CA and GA 

            

na 

(Y. Yang et al., 2019) SSP and LUSD-urban 

            ++ 

(J. Yang et al., 2020) CA and TMC 

            

+ 

(Feng & Tong, 2020) 
CA, statistical analysis and heuristics 
analysis             

na 

*Acronyms: Slope, Land Use, Exclusion, Urban Extent, Transportation and Hillshade (SLEUTH), Cellular Automata (CA), Logistic 

regression (LR), Artificial Neural Network (ANN), Binomial logistic regression (BLR), Support Vector Machines (SVM), Conversion of Land 

Use and its Effects at Small regional extent (CLUE – S), Survival Analysis (SA), Spatial regression (SR), Agent Based Model (ABM), 

Support Vector Regression (SVR), Random Forest (RF), Analytical Hierarchy Process (AHP), Frequency Ratio (FR), Geographical 

Weighted Regression (GWR), Spatial Error Probit Model (SEM - Probit), Spatial Log Probit Model (SAR – Probit), Genetic algorithm (GA), 

Multinomial Logistic Regression (MLR), Shared Socioeconomic Pathways (SSP), Land Use Scenario Dynamics (LUSD), Time Monte 

Carlo (TMC). 

**Symbol: ++ very high positive demographic trend; + positive demographic trend; - negative demographic trend; ns not significant 

demographic trend; na not available data on demographic trend. 

The articles analyzed (16 papers out of 19) show a positive demographic trend and high population density 

indices, which confirm that urban expansion is usually associated with population growth. Only in the article 

by Rienow et al. (Rienow & Goetzke, 2015) is there a negative growth rate, here the case study was analyzed to 

be compared with another case study with positive population growth in the same article. Other cases of non-

significant population growth concern the work of Mustafa et al. (Mustafa et al., 2017) which analyzes a case 

study with a low population growth rate and the article by Halmy et al. (Halmy et al., 2015) which contains no 

information on population growth. Concerning drivers influencing urban transformation dynamics, physical 

factors have been considered in all papers except in the Ku (Ku, 2016) and Halmy et al. who consider only 

proximity factors and urban planning policies. Elevation and slope are the most used physical factors. The 

case of Yang et al. (J. Yang et al., 2020) is particular as it also considers soil quality (in terms of habitat quality) 

among the physical factors. With the exception of Hua et al. (LIU & MA, 2011) and Martellozzo et. al 

(Martellozzo et al., 2018) who used the SLEUTH model (Slope, Land Use, Exclusion, Urban Extent, 

Transportation and Hillshade), all the others considered proximity as a factor. The proximity to road networks 

is certainly amongst the most utilized. Among those used less, one can find the proximity to highway entrances 

(J. Yang et al., 2020) to irrigation canals (Halmy et al., 2015). Social and economic factors are not always 

considered as drivers for urban transformation dynamics. Among those most frequently used are population 

density, access to jobs, gross domestic product (GDP) and richness rates. Eleven papers in all consider 

interactions between neighbors from different neighborhood sizes ranging from 3x3 to 5x5. Only 10 papers 

consider urban planning policies as a driving force. On the basis of this data collection, the study area was 

modelled using a logistic regression with driving forces belonging to each identified category of the predictive 

variables. 

3. Materials and Methods 

3.1 Study area  

The urban expansion model was applied to the entire territory of the Basilicata region in the south of Italy. It is 

a region characterized by a low population density and settlement. With 56 inhabitants per square kilometer it 

is the second to last Italian region, followed only by the mountainous Aosta Valley region with 39 inhabitants 



per square kilometer (data from the 15th national census of National Institute of Statistics -ISTAT - 2011 

(Istat.it, 2011)). The territory is affected by a decoupling phenomenon (Li et al., 2019; Song & Liu, 2014). As 

shown in a previous study (Manganelli et al., 2020; Saganeiti et al., 2018; Scorza et al., 2020), the demographic 

rate has been negative since the 90s and, in contrast, the expansion rate of new residential buildings is 

substantially increasing. To give an example, in the time interval from 2006 to 2013 there is a decrease in 

population of 2.2% and an increase of 4.5% in the number of buildings for residential use.  

Figure 1 shows: on the left, a schematic map of Italy with the identification of the study area in black, and on 

the right the Basilicata region. The territory of the Basilicata region is mainly mountainous, the highest peaks 

reach 2000 meters and the percentage of mountainous land is 46.8% with an altitude higher than 700m above 

sea level. The remaining 45.1% of the territory is hilly and only 8% is lowland. There are only two larger urban 

agglomerations: the Potenza and Matera municipalities (the two provincial capitals). The urban areas are 

indicated in red. The other agglomerations are small and dispersed throughout the whole territory.  

 

Figure 1 On the left, the Italian territory with the study area in black. On the right, the Basilicata region with the Digital 

Elevation Model and urban areas as at 2013. 

This diffusion and expansion of the urban and rural areas occurred according to an urban sprinkling 

transformation dynamic, a characteristic of those areas with a low settlement density, with the expansion of 

small urban agglomerations far from the existing ones and scattered in the territory without following specific 

planning rules.  

3.2 Building density maps  

In order to generate built-up density maps, we used the regional technical map, made available by the regional 

geo portal (RSDI – Geoportale Basilicata, n.d.) in a vector format. This dataset includes the footprint of all 

buildings, whatever their use (residential, industrial, commercial or other) as at 2013. Following a comparison 

between the vector of the buildings in 2013 and the orthophotos of several years, the vector of buildings in 

1998 and 1989 were obtained. These three vector maps (1989, 1998 and 2013) were then rasterized at a 2x2 



m pixel resolution and have been aggregated to a 100x100 pixel resolution in which every pixel has a range 

density value from 0 to 2500 (counting the 2x2 m pixels within each 100x100 m pixel). We then classified the 

urban density continuum into four classes: non built-up, low density, medium density and high density. The 

geometric classification was used to identify the ranges between the density classes. It is a classification 

method to represent/display data that is not normally distributed. Compared to other classifications (for 

quantiles, logarithmic or equal intervals), it shows more variations on the data due to class breaks that occur 

at a constant geometric interval than the interval before the breaks (Arlinghaus & Kerski, 2013). Table 2 

summarizes the ranges of values for the building density classes. The density 18.75 is the limit below which 

the pixel is considered “not-built-up”. This value corresponds to a building of 75 square meters which is the 

minimum size (established by Italian legislation) for a building to be declared inhabitable by 4 people.  

Table 2 Buildings density classes. 

Class 
Density 
classes 

Density values Built surface/ha Coverage ratio [%] 
% of cells in the 

study area ( 1989) 

Not-built up 0 from 0 to 18.74 Less than 75 m2 - 93.62% 

Low density 1 from 18.75 to 54 Less than 220 m2 from 0.75% to 2.1%  2.82% 

Medium density 2 from 55 to 329 Less than 1320 m2 from 2.2% to 13.19% 2.91% 

High density 3 from 330 to 2500 Until 10,000 m2 from 13.20% to 100% 0.65% 

Density values must always be related to the context under analysis. If we compare these values with the ones 

obtained in Mustafa, Van Rompaey, et al., 2018 we notice that there is a strong disparity: the first three density 

classes of this work are positioned between the intervals corresponding to the first two classes of Mustafà's 

work (Mustafa, Van Rompaey, et al., 2018). This is highlighted by the lower limit of the high-density class which 

corresponds to an area of 1320 sq.m of buildings per hectare and a coverage ratio of only 13%, in the reference 

area of 1 ha. The percentage of cells in the high density class over the entire study area is 0.65% and in 

comparing them with the urban aggregates of Saganeiti et al., 2018, we observe that they correspond to the 

largest urban aggregates of each municipality in the region, i.e. compact urban centers, for a percentage equal 

to 66%.  

Table 3 shows the amount of change that occurred in the study area between the various density classes and 

during the two temporal periods: 1989-1998 and 1998-2013.  

Table 3 Cells changed from one class to another and percentage of change for each class based on total transformation. 

  1998 

  Class 0 Class 1 Class2 Class 3 

1
9

8
9
 Class 0 - 5895 (42.76%) 3725 (27.02%) 532 (3.86%) 

Class 1 - - 2850 (20.67%) 54 (0.39%) 

Class 2 - - - 731 (5.30%) 

      

  2013 

 
 Class 0 Class 1 Class 2 Class 3 

1
9

9
8
 Class 0 - 5353 (40.49%) 3451 (26.11%) 630 (4.76%) 

Class 1 - - 2831 (21.41%) 75 (0.57%) 

Class 2 - - - 880 (6.66%) 

The changes from density class 0 to classes 1, 2 and 3 are considered as expansion processes and, in the 

two phases examined, are dominant: 73.64% and 71,36% respectively for the periods 1989/1998 and 



1998/2013. Differently, changes from density class 1 to classes 2 and 3 and from class 2 to 3 are considered 

as densification processes and correspond, for the two temporal phases, to 26.36% and 28.64% respectively 

on the basis of total changes. Since the changes from density class 1 to density class 3 interest an irrelevant 

number of cells (0.39% and 0.57% for the two temporal phases) they will not be considered in the further 

analysis.  

Dominant over all the changes, for both time phases, is the expansion of the low-density class (greater than 

40%). The low-density class has coverage percentages that correspond to the sprinkling ones, which therefore, 

can be considered the dominant transformation in the study area. 

3.3 Built – up causative factors 

The drivers considered to have an impact on the settlement system are listed in Table 4, and will be used to 

model the transition rules, with the MLR. The drivers were chosen following the literature review and the 

principal characteristics of the study area. The expected results of the MLR are, for example, a negative 

correlation between the proximity driver from cities and the urban transformation, since the general trend is to 

build new urban agglomerations close to existing ones so as to minimize/contain the costs of infrastructures 

and public services (Allen & Lu, 2003; G. Li et al., 2018; Poelmans & Van Rompaey, 2010; Wu et al., 2006). 

A negative correlation with the proximity drivers from roads is also expected, because the probability of 

expansion in the vicinity of existing roads, is generally higher (Hu & Lo, 2007; Luo & Wei, 2009; Mustafa, 

Rienow, et al., 2018). 

Drivers related to social and economic factors are continuous data that is distributed by the municipalities and 

is available through ISTAT. The other drivers are derived from data available on the regional geo portal. In 

particular, the slope was obtained from the elevation raster. Proximity factors from roads and railway stations 

were derived from a vector dataset and were calculated using the Euclidean distance method. Roads were 

classified into three categories: highways, suburban roads, and local roads. Proximity factors also included 

distances to large (X7) and medium-sized cities (X8). Considering the characteristics of the study area, large 

cities are those with a population > 50,000 inhabitants, i.e. the two provincial capitals (Potenza and Matera); 

medium-sized cities are those with a population between 10,000 and 50,000 inhabitants, cities that cover an 

important role at regional level from the point of view of economy, industry, agriculture or tourism. For the 

urban policy factors, all strict constraints on possible urbanization existing in the territory were considered, 

such as mountains above 1200m, buffers for rivers, lakes and coastal territories, archaeological heritage, 

forests, road and rail buffers and hydrogeological risk (0: non-urbanizable area, 1: urbanizable area). 

Table 4 Built-up causative factors. 

Driver Name Datum Unit 
Predictive 

variables 

X1 Elevation  continuous meter 
Physical factors 

X2 Slope continuous percent 

X3 DISTANCE to Railway Station  continuous meter 

Proximity factors X4 DISTANCE to road 01-highways continuous meter 

X5 DISTANCE to road 02-suburban roads continuous meter 



X6 DISTANCE to road 03-local roads continuous meter 

X7 DISTANCE to large city  continuous meter 

X8 DISTANCE to medium city  continuous meter 

X9 Population density  continuous percent Social factors 

X10 Employment rate  continuous percent Economic factors 

X11 Zoning categorical Binary (0-1) Urban policies 

All drivers were rasterized with a 100x100 pixel resolution, and standardized, except for the zoning driver which 

is a binary map. 

3.4 Methods 

Built-up density maps were used for the calibration phase (1989-1998) and validation phase (1998-2013). Two 

components were considered for the calculation of the transition potential from one density class to another 

for the calibration phase. The first component concerns the built-up development causative factors, calibrated 

with the MLR. The second component was the CA neighborhood effects that were calibrated using a MOGA 

as in Mustafa et al. (Mustafa, Heppenstall, et al., 2018). The calibrated parameters were used to simulate the 

built-up pattern of 2013. We then validated our model by comparing the simulated 2013 with the actual 2013.  

3.4.1 Transition potential and calibration process 

The general goal of the calibration process is to obtain the best set of parameters that are well adapted to the 

urban expansion of a specific area.  

The estimation of the transition potential (P) of a cell (ij) changing its state from not-built up to one of the other 

density classes (or from one density class to another) is carried out by Mustafa, Heppenstall, et al., 2018 as 

follows: 

Eq a 

𝑃𝑖𝑗 = √(𝑃𝑐)𝑖𝑗x(𝑃𝑛)𝑖𝑗 

where (𝑃𝑐)𝑖𝑗 represents the transition probability based on the drivers affecting the expansion process (see 

Table 4), and (𝑃𝑛)𝑖𝑗 represent the neighborhood effect on the ij cells for each density class. The (𝑃𝑐)𝑖𝑗 will be 

determined using MLR. The latter, is an extension of the binary logistic regression and it returns more than 

two response categories that are considered simultaneously to describe the relationship between one or more 

independent variables (Aravkin et al., 2018). In this study MLR was performed for class 0, class 1 and class 

2; the dependent variables (Y) represent, respectively for the classes analyzed, the change from class 0 to 

classes 1, 2 and 3, the change from class 1 to class 2 and the change from class 2 to 3. Considering the 

general form of MLR, the probability of change for each k class is obtained by the Eq b: 

Eq b 

((𝑃𝑐)𝑖𝑗 , 𝑌 = 𝑘0) =
1

1 + exp(𝛼𝑘1 + 𝛽𝑘11𝑋1 +⋯+ 𝛽𝑘1𝜈𝑋𝜈) + ⋯+ exp⁡(𝛼𝑘𝑛 + 𝛽𝑘𝑛1𝑋1 +⋯+ 𝛽𝑘𝑛𝜈𝑋𝜈)
⁡ 

… 



((𝑃𝑐)𝑖𝑗 , 𝑌 = 𝑘𝑛) =
exp⁡(𝛼𝑘𝑛 + 𝛽𝑘𝑛1𝑋1 +⋯+ 𝛽𝑘𝑛𝜈𝑋𝜈)

1 + exp(𝛼𝑘1 + 𝛽𝑘11𝑋1 +⋯+ 𝛽𝑘1𝜈𝑋𝜈) + ⋯+ exp⁡(𝛼𝑘𝑛 + 𝛽𝑘𝑛1𝑋1 +⋯+ 𝛽𝑘𝑛𝜈𝑋𝜈)
 

Where: (𝑃𝑐)𝑖𝑗 represents the probability that in a ij cell, the dependent variable Y changes from the reference 

class to the specific class 𝑘𝑛; (𝑋1…. 𝑋𝜈) constitutes the set of independent variables; ⁡𝛽 is the regression 

coefficient for each independent variable;  𝛼 is a coefficient representing the intercept between a specific class 

kn and the reference class. In order to obtain the best coefficients, MLR uses the maximum likelihood 

estimation method.  

The MLR provides a set of coefficients 𝛽 which expresses the relationship between the independent variables 

and the expansion and densification processes. Using these coefficients, we generated a probability map for 

each class according to eq b. The goodness of the MLR fit is expressed by the relative operating characteristic 

(ROC) coefficient, according to which values of the coefficient are between 0.5 (random fit) and 1 (perfect fit) 

(Pontius Jr & Batchu, 2003; Pontius & Schneider, 2001). A multicollinearity test, variance inflation factor (VIF), 

was performed to verify that there are no driving forces measuring the same phenomenon among all the 

independent variables (Belsley, 1991; Montgomery & Runger, 1994; Salem et al., 2019). The presence of 

multicollinearity between the variables is expressed by VIF values greater than 4. Figure 2 shows all the 

predictive variables (standardized) for the temporal step 1989-1998 and used in the MLR. 



 

Figure 2 Maps of predictive variables. 

The (𝑃𝑛)𝑖𝑗, the neighborhood effect, was evaluated through a 3x3 moving window. It will be determined using 

the CA approach, with the method proposed by White & Engelen (1997, and already applied in Mustafa, 

Heppenstall, et al. (2018), expressed with Eq c. Mustafa, Rienow, et al., (2018), Chen et al., (2014) and 

Poelmans & Van Rompaey, (2009) examined several square sizes and found that the model runs with the 3x3 

neighborhood moving window and produced a land-use pattern that best fits the actual pattern. Furthermore, 

Mustafa, Rienow, et al., (2018) used a 100 m resolution, similar to that of this research, and found that a 3x3 

neighborhood moving window outperformed other window sizes (5x5, 7x7, 9x9, and 11x11).   

Eq c 

(𝑃𝑛)𝑖𝑗 = ∑∑∑𝑊𝑘𝑥𝑑*𝐼𝑘𝑥𝑑

𝑑𝑥𝑘

 

Where: 𝑊𝑘𝑥𝑑 is the weighting parameter assigned to a cell ij with class k, which represents one of the building 

density classes, at position x at distance zone d; 𝐼𝑘𝑥𝑑 is 1 if a cell in distance zone d is occupied by class k or 

0 otherwise. Eq. c parameters are calibrated with multi-objective genetic algorithm (MOGA) for expansion and 

a genetic algorithm (GA) for densification. The output of the optimization process consists of a set of solutions 



defined Pareto front (Sun & Shen, 2008). It is a set of optimal solutions consisting of all the points that are not 

dominated. The optimal pareto font solution is achieved when the allocation of resources is such that it is 

impossible to make improvements to the system (Deb, 2001).  

For both MOGA and GA the parameters used to set the optimization process are described below. At the 

initialization process, the algorithm creates a random population of 200 individuals. Each new generation is 

initiated by selecting parents from the former generation. The algorithm randomly picks 2 individuals, and then 

selects the best individual according to its fitness score. A new individual is then generated by crossing over a 

couple of parents according to a binary tournament at 0.8. The Gaussian function was chosen to mutate every 

new individual by adding a random number to each vector entry of an individual. This random number is taken 

from a Gaussian distribution centered on zero. The standard deviation of this distribution is controlled with two 

parameters: the scale parameter (2.00) and the shrink parameter (1.00). The number of generations is flexible. 

However, we set a convergence stopping criterion when the fitness score for the succeeding 25 generations 

is less than 0.001. The parameter values that maximize the objective function will be selected as the best 

calibration outcome. The objective function for the calibration is a fuzzy membership function. 

3.4.2 Model performance and fitness function  

The model's ability to predict the transition from one density class to another is verified (tested) by comparing 

the 2013 map obtained with the calibration process (simulated map) with the 2013 actual map. The comparison 

considers only the new built-up transition from 1998 to 2013 and it is calculated with a fuzziness similarity 

index calculated as follows (Eq d) (Mustafa, Heppenstall, et al., 2018). 

Eq d 

𝐴𝑘 =
∑ |𝐼𝑥𝑘0(

1
2⁄ )0 2⁄ , 𝐼𝑥𝑘1(

1
2⁄ )1 2⁄ , … , ⁡𝐼𝑥𝑘𝑑(

1
2⁄ )𝑑 2⁄ |

𝑚𝑎𝑥
⁡𝑥𝑘∈𝑋𝑘,𝑠𝑖𝑚

𝑋𝑘,𝑎𝑐𝑡𝑢𝑎𝑙
∗ 100 

𝐴𝑘 is the average fuzziness index (between 0 and 100) for each class k; 𝐼𝑥𝑘 is 1 if cell ik in the simulated map 

at zone d (between 0 and 4) has a similar building density class to one cell at zone d in the actual map, or else 

0. 𝑋𝑘,𝑠𝑖𝑚corresponds to the number of class k changes in the simulated map and 𝑋𝑘,𝑎𝑐𝑡𝑢𝑎𝑙 in the actual map. 

4. Results  

In this section the results of the MLR, calibration and validation processes are listed and discussed. The VIF 

index was used for the multicollinearity test among the independent variables, with values < 2.58 implying no 

collinearities, so that all the 11 variables presented in Table 4 were introduced in MLR. The X9 and X10 variables 

refer respectively to the population density and employment rate for 2001. This data is collected at a municipal 

level and, in particular, the employment rate was calculated by dividing the employed population by the resident 

population in each municipality.  

Figure 3 shows the MLR coefficients with the respective level of significance for each transition analyzed 

(expansion and densification process) for the period 1989-1998. Since the amount of change was marginal, 

the densification process from class 1 to 3 has not been considered. 

For the expansion process, the most influential factor is the distance to local roads for transition to density 

class 0 to class 1 and 2 and, the slope for the transition from class 0 to class 3. The most important factors for 

the densification process, are the slope for transition from class 1 to class 2 and proximity to local roads for 



transition from class 2 to class 3. As regards the correlation between the dependent variable and the predictive 

variables, the correlation with the proximity factors from roads and stations was negative for the expansion 

processes. Therefore, as anticipated in section 3.3, the probability of cells changing their state from non-urban 

to urban, increases by decreasing distance to roads and railway stations. This trend, i.e. more urban 

transformation in the vicinity of train stations and major roads, is usually considered a key component of a 

sustainable settlement system. Only for the transition from class 1 to class 2 of the densification process, the 

correlation with the proximity of medium-sized cities was negative. Interestingly, for all other transitions the 

correlation between urban transformations and proximity variables from cities was positive. Therefore, instead 

of building new urban agglomerations close to the existing ones to minimize/contain the costs of infrastructure 

and public services, in this case study the trend is to build further away from existing cities, away from roads 

and train stations, in an ever increasing scattered pattern that dramatically increases social costs. This is 

precisely what we defined as urban sprinkling, as opposed to urban sprawl that rather tends to develop and 

consolidate along existing urban cores even though with lower densities than in central areas. 

 

Figure 3 MLR coefficients for the expansion and densification process for the first temporal step 1989-1998. 

The correlation with variables X9 and X10, which represent socioeconomic factors, is positive but poorly 

correlated for almost all transitions. This is in contrast to other research which has shown that, in both high 

(Han et al., 2015; Hua et al., 2014) and low settlement density contexts (Vermeiren et al., 2016), the drivers 

that most influence urban expansion are those related to population density and employment rate.  

The correlation between the urban transformation processes and the physical factor of elevation is positive. 

This is due to the high altimetry in which most of the municipalities of the Basilicata region reside, as highlighted 



in the research conducted by (Cillis et al., 2019), rural buildings (abandoned or not) in the Basilicata region are 

found at an average altitude of 500 meters above sea level.  

The ROC values of MLR for the expansion process are: 0.89 for transition from class 0 to class 1 and 2, and 

0.85 for transition from class 0 to class 3; for the densification process, the ROC values are 0.67 for 

densification from class 1 to class 2 and 0.73 for densification from class 2 to 3.  

The optimization for the expansion process, stopped at generation 122 and returned a set of Pareto front 

solutions from which the best solution was selected. The calibrated map of 1989-1998 was used for the 

validation of the 1998-2013 map. The accuracy rates for the validation process are 55.80%, 34.14% and 

23.75% for class 0 to 1, 0 to 2 and 0 to 3 respectively. The GA optimization for densification from 1 to 2 stopped 

at 58 generation and for densification from 2 to 3 at 61 generation with an accuracy rate for the validation 

process of 47.64% and 40.47% respectively. Figure 4 shows the optimal weights obtained for all transformation 

processes that define the neighborhood interaction. The results show that the probability of expansion of the 

low-density class increases with the expansion of the existing urbanized cells (density classes 1,2 and 3) in 

particularly class 1. The probability of expansion of class 2 is remarkably correlated with the presence of high-

density cells. The expansion of class 3 is strongly correlated with the presence of high-density cells. The 

probability of transition from class 1 to 2 is positively linked with the existence of low-density cells and 

negatively with the others. The densification process from class 2 to 3 shows a strong negative relation with 

non-urbanized and low-density cells and a positive link with medium density cells. 

 

Figure 4 Weighting values of neighborhood parameter values for all transformation processes 

These results show that the trend is to develop new buildings near low-density areas increasing fragmentation 

and fueling urban sprinkling. Furthermore, densification processes take place near low and medium density 

cells leading to the development of settlements that are located far from high density areas (medium and large 

cities), and that will require new services and infrastructures. 



The results of the 2030 projections show a loss of 7649 hectares of non-urbanized land. This is almost half the 

administrative surface of the city of Potenza (17543 hectares (Istat.it, n.d.)). In the study area, the estimated 

loss of area between 2013 and 2030 corresponds to 450 hectares per year. This area is scattered over the 

territory because major changes mainly concern the low-density class - which correspond to urban sprinkling 

– whose variation amounts to 73% of the total change. Low-density cells increased 17% compared to 2013. 

In the 2030 prediction, the medium density class is affected by a percentage of change of 22% of the total 

variation, while the remaining part (5%) concerns class 3. Figure 5 shows some of the most significant places 

in the study area through a comparison between the actual 2013 maps and those of 2030 as predicted by the 

model.  



 

Figure 5 Some examples of the study area. On the left, the maps of 2013 (actual) and on the right those of 2030 

(predicted). 



A disaggregation of the data on the basis of the two provincial territories (province of Potenza and province of 

Matera) shows that the province of Potenza undergoes a greater change in terms of absolute values equal to 

83% of the total change. The biggest changes concern: (i) the city of Potenza, which in 2030 increased its low-

density area by 925 hectares and three near municipalities: Tito, Picerno and Pignola, with an increase in each 

municipality, of 180, 207 and 139 hectares respectively, of low-density areas (see Figure 5 c); (ii) the 

municipality of Melfi, located in the extreme north-west of the province of Potenza (see Figure 5 d), affected 

by a substantial increase (compared to other municipalities) of the medium density areas of 185 hectares (75% 

of the total changes in the municipality). 

For the territory of the province of Matera the total change in 2030 is equal to 17% of the total regional variation. 

Most changes are located along the coast and mainly concern density classes 2 and 3. With reference to 

Figure 5a, the major changes from 2013 to 2030 are recorded in the municipality of Policoro and concern the 

medium density class for an area of 164 hectares. The municipality of Scanzano Jonico, registers an increase 

in the medium density area of 59 hectares (54% of the total) and an increase in the high-density area of 45 

hectares; only 5% of the total change affects the low-density class. In the municipality of Pisticci, instead, the 

transformations concern, in the same quantity, density class 1 and class 3 for a total of 54 hectares. As regards 

the city of Matera (Figure 5 b), the provincial capital, the biggest changes concern the low-density classes (211 

hectares) and medium density classes (200 hectares), with a total change of 1.19% since 2013, 

5. Discussion 

The model applied in this study addresses the dynamics of urban expansion through a multi-density approach. 

It was possible to assess the different relationships between built-up causative factors and built-up density 

classes for each transition, with specific factors derived from MLR and CA coefficients for each density class. 

Specifically, it allows to read and analyze the different impacts of drivers on the transformation modalities, 

especially on the expansion and densification processes.  

One of the limitations of this study is that built-up density does not consider building heights and use. This 

could lead to misreading the expansion process. An example concerns the predicted expansion along the 

coastal area (figure 5a) which has certainly undergone an increase in expansion due to the development of 

the tourism sector. In fact, even if it is not the dominant development sector in the Basilicata region, the tourism 

sector has greatly influenced the expansion of the Ionian coast with the development of numerous tourist 

resorts and holiday flats (especially in the municipalities of Policoro and Pisticci ((Amato et al., 2014) - figure 

5a). However, in the municipality of Scanzano Jonico a strong expansion of the high-density class emerges in 

the projection map of 2030, resulting from the expansion over the years of agricultural structures (greenhouses, 

barns and warehouses). In this case a distinction of use of the buildings would have allowed to discriminate 

the buildings of purely industrial use and would have improved the final result of the 2030 projection. 

Considering the variable height of the buildings, this would have made it possible to make further 

considerations on the number of floors per building, on the population density within the building complexes 

and therefore assess the final projection not only on the shape and size of the building but on its effective 

capacity. 

A possible future research in the construction of the model could consider only residential buildings. In addition, 

the variables concerning population density and employment rate were used at a municipal level (due to the 

unavailability of other data). Certainly, more detailed data in the cadastral sections or on the working 

compartments would give inclusive results. Since the results of the forecast for 2030 mostly concern density 



class 1, i.e. the one corresponding to sprinkling, possible developments in this study could concern the 

application of the model to predict the variation in the sprinkling index. 

6. Conclusions 

Simulating future urban expansion scenarios is fundamental to understand the spatial model in action in a 

given territory. It can help policy makers adopt urban policies aimed at containing expansion. The aim of this 

work has been to project future business-as-usual scenario in urban sprinkling contexts in order to control and 

regulate urban transformation processes.  

An innovative aspect of this study consists in considering urban expansion not in a dual way (built-up/not built-

up) but along four density classes (not built-up, low, medium and high density). This multi-density approach 

allowed to evaluate, through the MLR, the different correlations of each density class with the built-up causative 

factors taken into consideration. Both the expansion and densification processes were explored. From the 

results of the MLR a scarce significance of the socioeconomic variables on all the expansion processes has 

emerged. The observed urban expansion is inversely proportional to the demographic growth. This trend is 

typical at a national scale not only in the regional context of Basilicata (Amato et al., 2016). This phenomenon 

leads to new urban expansion in the absence of real estate demand and therefore to an unnecessary waste 

of land with all its consequences. The results of the MLR show that the most important factor influencing urban 

expansion is the proximity to roads. In particular, the correlation between the proximity variable from local 

roads and urban expansion, is most significant for the expansion process (transition from class 0 to all other 

classes). This corresponds to the typical phenomenon of urban sprinkling in which new settlements tend to be 

built close to local roads (with less availability of services) and far from the main public service centers with a 

subsequent increase in social costs (Manganelli et al., 2020; Romano, Zullo, Fiorini, Marucci, et al., 2017).  

The results of the CA neighborhood effects, show that the general trend is to construct new buildings (in the 

low-density class) in the vicinity of low-density areas, which further increases the sprinkling effect. In addition, 

densification processes take place close to low and medium density areas. In a sustainable urban 

development, it is appropriate to encourage densification processes close to medium and high-density cells 

where more services are concentrated, thus limiting further dispersion of urbanized cells on the territory.  

From the 2030 simulation, it emerges that the greatest change occurs in the class corresponding to sprinkling 

(density class 1) and mainly the territory of the province of Potenza. In the territory of the province of Matera, 

most changes are concentrated along the coast and does not primarily concern sprinkling but, on the contrary, 

density classes 2 and 3. For this reason, and for other factors linked to the different physical characteristics of 

the two provincial territories, in terms of altitude, road infrastructure, number of railway stations and territorial 

extension, it would be appropriate to carry out the analysis on the two territories considering different built-up 

causative factors. By distributing the total area lost - i.e. the area that has changed from "not built-up" to the 

other classes of density - for the total regional population in 2019 (562,869 inhabitants (Istat.it, n.d.)), we will 

obtain a loss of about 136 square meters per capita in 2030. This area is subtracted from its natural use at the 

expense of a non-existent demographic demand. 

Starting from the assumption that in the context of the Basilicata region the main transformation dynamics 

correspond to urban sprinkling and the demographic trend is constantly decreasing - completely eliminating 

the real demand for the real estate market - we ask the following question: why build a prediction model? 

Certainly, a prediction model in this context could be a valid instrument of the decision-making support system 

to identify, on the basis of prediction: (i) the most vulnerable areas to transform and where to develop ad hoc 



regulations to limit transformation or to transfer development in the proximity of areas suitable for 

transformation (those with a greater presence of public services); (ii) the areas that are susceptible and 

threatened by anthropic transformations  on which to implement measures for the protection and conservation 

of biodiversity and the naturalness of lands. 
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Appendix A 

Table A Collection of scientific articles on urban expansion models from 2014 to 2020. The symbol █ indicate the symbol indicates the presence of the considered predictive 

variable. 
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(Hua et al., 

2014)  

South-east 

coast of China 

Simulate urban 

growth 

and historical 

urban expansion 

in a coastal city. 

SLEUTH █    █ █ 
Population 

increase 

(duplicated in 

12 years – from 

2000 to 2012) 

(Puertas et al., 

2014) 

 

Santiago 

metropolitan 

area – Latin 

America 

Spatial 

dynamics of 

urban expansion 

and prediction 

Cellular 

automata, 

Markov chain 

and Logistic 

regression 

█ 

Elevation 

█ 

Proximity 

to: main 

roads, 

population 

centers 

and 

commercial 

centers 

█ 

Population 

variation 

█ 

Real estate 

factors 

 █ 

Availability 

land for 

urbanization 

Population 

increase 

Annual 

average 

growth rate: 

1,01% 



(Basse et al., 

2014) 

 

Luxemburg 

with a greater 

area of border 

Simulation of 

Land Use Land 

Cover change 

Cellular 

automata and 

artificial neural 

networks 

█ 

Slope 

█ 

Proximity 

to: 

highway, 

bus station, 

train 

station 

  █ 

Neighborhood 

(3x3): water 

urban, 

industrial, 

forest, 

commercial, 

agricultural. 

 

Population 

increases  

(not available 

specific 

information) 

(Rienow & 

Goetzke, 2015) 

 

Germany, 2 

areas with 

high density 

urbanization 

(Cologne and 

Düsseldorf); 1 

rural area with 

dispersed 

settlement 

patterns 

(Bergisches 

Land) 

Combine the 

simulation 

strengths of 

SLEUTH and 

SVM 

SLEUTH, 

binomial logistic 

regression and 

Support Vector 

Machines 

(SVM) 

█ 

Elevation, 

slope 

█ 

Proximity 

to: airport, 

big city, 

highway 

river 

█ 

Population 

density, 

variation 

population 

density, 

migration 

rate 

█ 

Land price, 

unemployment, 

number of jobs 

in different 

sector, income, 

per capita net 

dwelling area 

and change, 

cars 

█ 

 

█ 

 

Increasing 

population in 

Cologne and 

Düsseldorf. 

Population 

decline in 

Bergisches 

Land 

(Halmy et al., 

2015) 

 

Egypt Prediction of 

land use change 

in 2011 and 

project changes 

in 2023 by 

extrapolating 

current trends. 

Markov – 

Cellular 

automata 

 

█ 

Proximity 

to: road, 

coast, 

residential 

centers, 

irrigation 

canal 

system 

   █ 

 

 



(Han et al., 

2015) 

 

Beijing, China Predict and 

simulate the 

evolution 

tendency of land 

use spatial 

patterns under 

two different 

scenarios: 

development 

and protection. 

CLUE-S 

(Conversion of 

Land Use and 

its Effects at 

Small regional 

extent) and 

Markov models 

█ 

Elevation, 

slope 

█ 

Proximity 

to: river, 

urban 

center, 

local road, 

railway, 

highway 

█ 

Population 

density, 

urbanization 

█ 

GDP 

  Built up area 

expansion of 

about 3 time 

from 1980 to 

2013. The 

population rate 

is continuously 

increase. 

(Chen et al., 

2016) 

 

Shenzhen, 

China 

Simulation 

(2013) and 

prediction (2018) 

of the urban 

expansion. 

SA-Patch-CA 

(Survival 

Analysis-Patc-

Cellular 

Automata) 

█ 

Slope 

█ 

Proximity 

to: airport, 

city center, 

highways, 

railway 

station 

road 

networks, 

town 

centers, 

port 

    Rapid 

urbanization 

and urban 

expansion 



(Ku, 2016) 

 

Tainan City, 

Taiwan 

Model simulation 

through the 

integration of 

spatial 

regression into 

the CA model 

Spatial 

regression and 

CA 

 █ 

Proximity 

to: roads, 

schools, 

existing 

settlement 

█ 

Population 

density 

 █ 

Neighborhood 

(5x5) 

█ 

Land use 

policies 

Population 

growth with a 

density of 

4375,58 

inhabitants per 

square 

kilometers 

(Vermeiren et 

al., 2016) 

 

Kampala, 

Uganda 

(Africa) 

Simulate urban 

expansion and 

social 

segregation 

which aims to 

serve as a tool 

for decision 

support in the 

development of 

rapidly 

expanding cities. 

ASSURE: 

Agent-based 

simulation of 

social 

segregation and 

urban 

expansion) 

Agent-based 

model (on the 

basis of 4 group: 

extremely poor, 

poor, middle 

income, rich) 

█ 

Elevation, 

slope, 

wetland 

█ 

Proximity 

to: roads, 

city centre 

█ 

Population 

density 

█ 

Middle income 

█ 

Random 

 Horizontal city 

with relatively 

low population 

density and 

population 

increase. 



(Mustafa et al., 

2017) 

 

Wallonia 

region, 

Belgium 

Simulation of 

urban expansion 

between 1990 

and 2000 

through a hybrid 

urban expansion 

model (HUEM) 

Logistic 

regression, 

Cellular 

Automata and 

Agent-Based 

model (on the 

basis of 3 group: 

developer, 

farmer and 

planning 

permission 

authority) 

█ 

Slope 

█ 

Proximity 

to: cities, 

roads (4 

kinds),  

 █ 

Access to job 

 

█ 

Zoning 

Urban sprawl, 

not significative 

increase in 

population 

(Shafizadeh-

Moghadam et 

al., 2017) 

 

Tehran, Iran Simulate urban 

expansion 

through the 

comparison of 

six land use 

change models 

Artificial Neural 

Networks, 

Support Vector 

Regression, 

Random Forest, 

Classification 

and Regression 

Trees, Logistic 

Regression and 

Multivariate 

adaptive 

Regression 

Splines. 

█ 

Elevation, 

slope, 

Northing 

and 

Easting 

parameters 

█ 

Proximity 

to: 

agriculture 

areas, 

open 

lands, built-

up areas, 

green 

spaces, 

roads. 

  █ 

Neighborhood 

(5x5) 

 Very fast 

growing in 

population and 

artificial land. 

High density 

population. 



(Aburas et al., 

2017) 

 

Negeri, 

Malaysia 

Simulating and 

predicting urban 

expansion trend 

Cellular 

Automata 

Markov Chain 

based on 

Analytical 

Hierarchy 

Process (AHP) 

and on 

Frequency 

Ratio (FR) 

█ 

Elevation, 

slope, soil 

texture, 

Land cover 

█ 

Proximity 

to: 

commercial 

area, 

educational 

area, 

residential 

area, 

industrial 

area, roads 

highway, 

railway, 

power line 

and rivers 

█ 

Population 

density 

 

 

 Given the 

geographical 

location of the 

study area 

(proximity to 

cities with great 

economic 

power) it is 

expected to 

become an 

incubator of 

urban 

development in 

Malaysian 

peninsular. 

(C. Li et al., 

2017) 

 

Xuzhou, China Analysis of the 

relationship 

between the 

driving factors 

and urban 

expansion. 

Geographically 

weighted 

regression 

(GWR), and 

cellular 

automata (CA) 

█ 

Slope 

█ 

Proximity 

to: district 

centres, 

major 

roads, 

minor 

roads. 

█ 

Population 

density 

 █ 

Neighborhood 

variable 

█ 

Environmental 

protection 

areas, 

subsidence 

areas 

Large 

population 

density and 

rapid growth of 

urban area 



(Martellozzo et 

al., 2018) 

 

Italy Investigate the 

loss of natural 

and agricultural 

land to urban 

areas. 

SLEUTH and 

AHP 

█ 

 

   █ 

 

█ 

Exclusion 

layer building 

through multi 

criteria 

decision 

makers 

(MCDM) 

process 

Population 

increase of 

about 4% (from 

1990 to 2012). 

(G. Li et al., 

2018) 

 

China Study of drivers 

of urban 

expansion and 

their effects 

across different 

regions in China 

in different 

periods and at 

different scales. 

Spatial Error 

Probit Model 

(SEM - Probit) 

and Spatial Log 

Probit Model 

(SAR – Probit) 

█ 

Elevation, 

slope 

█ 

Proximity 

to: lake, 

river, city 

center, 

country 

center, 

highway, 

national 

way, 

railway 

█ 

Population 

density 

█ 

GDP 

█ 

Neighborhood 

(3x3): urban 

area 

 Rapid growth 

in population 

and in built-up 

area 

(Mustafa, 

Heppenstall, et 

al., 2018) 

 

Wallonia 

region, 

Belgium 

Model to 

simulate built-up 

expansion and 

densification 

process. 

Multinomial 

Logistic 

Regression, 

Cellular 

Automata and 

Genetic 

Algorithm 

█ 

Elevation, 

slope 

█ 

Proximity 

to: roads (4 

kinds) 

railway 

station, 

large sized 

cities 

 █ 

Employment 

rate and 

Richness index 

█ 

Neighborhood 

(3x3): for 

density 

classes 

█ 

Zoning 

Expansion rate 

of built-up area 

very low 



(Y. Yang et al., 

2019) 

 

Changbai 

Mountain 

(TACM), 

ChinaSCS 

Modelling urban 

expansion in 

different 

scenarios 

Shared 

Socioeconomic 

Pathways 

(SSPs) and the 

zoned Land Use 

Scenario 

Dynamics-

urban (LUSD- 

urban) 

█ 

Elevation, 

slope 

█ 

Proximity 

to: National 

roads, 

provincial 

roads, 

railways, 

city center 

█ 

Urban 

population 

 █ 

 

 Rapid growth 

of urban 

population and 

urban area 

(J. Yang et al., 

2020) 

 

Ezhou, China The model links 

the quantitative 

composition of a 

territory with the 

spatial 

configuration of 

urban expansion 

by incorporating 

a trade-off 

mechanism that 

adaptively 

regulates the 

combined 

suitability of the 

event for non-

urban terrain 

types based on 

transition 

intensity 

analysis. 

Cellular 

Automata and 

Time Monte 

Carlo (TMC) 

█ 

Elevation, 

slope, soil 

quality 

█ 

Proximity 

to: lake, 

city center, 

highway 

entrance, 

railway 

station, 

adjacent 

city, sub 

center, 

town 

center 

 █ 

Kernel density 

of Point of 

Interest (POI) 

█ 

Neighborhood 

(3x3) 

█ 

 

Very fast 

growth of 

urban land and 

with 

uncontrolled 

manner. 

Growth of 

population 



(Feng & Tong, 

2020) 

 

Shanghai, 

China 

Model to 

simulate urban 

epansion 

Cellular 

automata, 

statistical 

analysis and 

heuristics 

analysis 

█ 

Elevation 

█ 

Proximity 

to: city 

centers, 

road 

networks, 

subway 

█ 

Population 

density 

█ 

GDP 

 

 Very rapid 

urban 

expansion 

(3,8% per year) 

 

 

 

 


