Foams of Polyurethane/MWNT Nanocomposites
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Introduction
Due to the steady growth of communication technology and the adverse effects of electromagnetic radiations on the human body and electronic devices, it is

critical to reduce the electromagnetic interference (EMI) and its impact on medical apparatus and electronic engineering. In that context, polymer/multi-walled
carbon nanotubes (MWNT) nanocomposites are proposed for their high EMI shielding performance.'-!" The strategy is to render the polymer conductive by
adding MWNTSs and to promote wave absorption by foaming the polymer-based composite. These MWNT/PU polymeric foams thus show a promising EMI
shielding efficiency due to their high capacity to absorb electromagnetic radiation at low MWNT content.

1. Absorption of electromagnetic waves 2. Nanocomposite preparation
1 and 2 wt% MWNT (NC7000, Nanocyl™, Belgium)/PU(Desmopan 2590A, Bayer, Germany) composites were

-, prepared by melt blending in a twin-screw internal mixer (180°C, 60 rpm, 5 min) and then molded into 2mm thick
Reflected EM v“v ‘ sheets under a hot press (180°c) for 5min.
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Fig 3: Characterization of non-foamed MWNT/PU nanocomposites; a) homogeneous dispersion of MWNTSs observed
‘ by TEM, b) rheological behavior of pure PU and PU/MWNT nanocomposites with an increasing MWNT content.
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The MWNT/ponmer foam can eﬁeptlvely pr_otect an electronic device (1wt%), as proved by rheological analysis.
from waves interference thanks to its capacity to absorb the waves In fact, the nanocomposites show solid-like behavior at low frequency range.

instead of reflecting them.

4. Electrical properties

High electrical conductivity is directly related to good EMI shielding effectiveness, while low
permittivity is required in order to avoid wave reflection and promote wave absorption. Therefore,
accurate foaming conditions must be found to reach both high conductivity and low permittivity.

Effect of MWNT addition on electrical properties

3. Nanocomposite foams preparation

The nanocomposite is saturated in scC , for 24h at 40°C and 60-300bar. The vessel is then quickly
depressurized and the sample is transferred in a hot press (120°C) for 2min in order to allow cell

growth. The foam is finally quenched in an ice/water bath.
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Fig 5: a) cell diameter decreases with increase of saturation pressure'and MWNT content, b) foam result in excellent EMI shielding performance.

ensity decreases and then increases with the pressure and is higher for nanocomposite foams.

Conclusions
MWNT/PU composites with an uniform porous structure have been successfully prepared by melt blending and accordingly foamed with scC ,. We have shown

that the cellular morphology and foam density can be controlled by varying the foaming parameters. The electrical properties, which are directly related to EMI
shielding effectiveness, are improved by adding MWNTSs (conductivity) and foaming (permittivity). Although the results obtained here still need optimization in
order to be competitive, these MWNT/PU polymeric foams are very promising EMI shielding materials due to their high capacity to absorb electromagnetic

radiation at low MWNT content.
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