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Abstract. In this paper, we study the estimation of parameters for g-and-h distributions.

These distributions find applications in modeling highly skewed and fat-tailed data, like

extreme losses in the banking and insurance sector. We first introduce two estimation

methods: a numerical maximum likelihood technique, and an indirect inference approach

with a bootstrap weighting scheme. In a realistic simulation study, we show that indirect

inference is computationally more efficient and provides better estimates in case of extreme

features of the data. Empirical illustrations on insurance and operational losses illustrate

these findings.

JEL codes. C15; C46; C51; G22.

Keywords. Intractable likelihood; indirect inference; skewed distribution; tail modeling;

bootstrap.

1 Introduction

The g-and-h distribution (Tukey, 1977) is a model for data featuring non-
zero skewness and/or excess kurtosis. It is defined by means of the following

The codes used for all the computations carried out in this paper are available at
http://marcobee.weebly.com/software.html.
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non-linear transformation of a standard normal random variable:

X = a+ b
egZ − 1

g
e

hZ2

2 , Z ∼ N(0, 1), (1)

where a ∈ R is a location parameter, b ∈ R+ is a scale parameter, g ∈ R
and h ≥ 0 are shape parameters. It is a very flexible model, since, as shown
by Dutta and Perry (2006, Fig. 3), its skewness-kurtosis region is very large
compared to other commonly used distributions. If g = 0 the distribution is
symmetric, whereas if h = 0 it becomes a scaled lognormal; see Cruz et al.
(2015, Section 9.4.1).

The g-and-h distribution is also a member of the quantile distribution
family. Hence, it can equivalently be defined via its quantile function, which
is given by (Cruz et al., 2015, p. 318)

Q(p;θ) = Q(zp;θ) = a+ b
egzp − 1

g
e

hz2p
2 , (2)

where p ∈ (0, 1) and zp is the p-quantile of the standard normal distribution.
Without loss of generality, we set a = 0 and b = 1 (Degen et al., 2007; Cruz
et al., 2015).

The g-and-h distribution is particularly important when the main pur-
pose of the analysis is the estimation of extreme quantiles or, more generally,
of quantities related to the tail of the distribution. In general, Extreme Value
Theory (EVT) is routinely used for this purpose, because under fairly mild
conditions (see, e.g., McNeil et al., 2015, Sect. 5.2) the excesses converge
to the Generalized Pareto Distribution (GPD). However, the convergence
of the g-and-h to the GPD is extremely slow (Degen et al., 2007). Hence,
as stressed by Cruz et al. (2015, Remark 9.6), if the true data generat-
ing process is g-and-h, estimating the distribution of extreme losses via the
GPD approximation may yield imprecise results, even for large sample sizes.
This distinguishing feature, with respect to other models for skewed and/or
heavy-tailed data, makes a substantial difference in applications.

Although the rationale behind the construction of (1) is quite intuitive,
practical application of the g-and-h distribution is hindered by the lack of
closed-form density. As a consequence, the literature has mostly considered
maximum likelihood estimation (MLE) as problematic, and most research
has focused on estimation approaches based on either known features of the
distribution or on computer-intensive techniques.

Along the first line, the earliest approach exploits the quantile function,
which is explicitly known: the quantile-based method (Hoaglin, 1985) esti-
mates the parameters by matching theoretical and empirical quantiles. More
recently, since the r-th moment (r = 1, . . . , 4) of the distribution exists if
h ∈ [0, 1/r) (Cruz et al., 2015, p. 320), Peters et al. (2016) estimate the
parameters via L-moments. In the second group of methods, the straight-
forward simulation procedure of the g-and-h distribution has been used to
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develop approximate maximum likelihood estimation (Bee and Trapin, 2016)
and indirect inference (Bee et al., 2019).

In recent years, the increased computing power has made feasible the
estimation of models with intractable likelihood function. These procedures
are based on the maximization of a likelihood constructed from an approx-
imation f̂ of the density. We treat f̂ as the true density and proceed to
numerical maximization of the approximated log-likelihood, as for classical
MLE. For quantile distributions, it is possible to rely on the quantile function
to compute f̂ . This idea has been exploited by Rayner and MacGillivray
(2002) and Prangle (2017) to find numerical approximations of the general-
ized g-and-h density.

One of the goals of the present paper is to extend this procedure to the
g-and-h distribution. We develop a method for approximating the density
and performing MLE of the parameters, thus establishing the feasibility of
a likelihood-based approach to estimating the g-and-h distribution.

A second aim of this paper is to assess the improvement of the II estima-
tion procedure using a bootstrap-based estimate of the optimal weighting
matrix. Bee et al. (2019) find that Indirect Inference (II) outperforms both
Hoaglin (1985) quantile-based method and Dupuis and Field (2004) robust
approach. They use the identity matrix as weighting matrix, since the prop-
erties of the estimator are asymptotically independent from its specification.
However, for finite sample sizes, the matrix does play a role, which may be
particularly relevant in insurance and risk management applications, where
the datasets are sometimes small.

Our simulation experiments suggest that II is better in terms of com-
putational cost. On the other hand, from the point of view of statistical
efficiency, an overall winner does not emerge. As for parameter estimation,
MLEs mostly exhibit a smaller root-mean-squared-error (RMSE), but in
some cases are more biased, especially when the true distribution is highly
skewed and leptokurtic. When one considers Value-at-Risk (VaR) estima-
tion, MLE is again better in the majority of setups, but with a significant
exception when both g and h are large. This is an important result since
most applications are characterized by such features.

The empirical analysis of actuarial and operational risk data confirms
this fact: when the empirical distribution of the losses exhibits extreme
skewness and kurtosis, II is more precise than numerical MLE.

The paper is organized as follows. In Section 2 we review the g-and-h
distribution and develop the MLE and II estimation approaches; in Section
3 we describe the simulation experiments and comment the outcomes; in
Section 4 we apply the methods to two real data-sets; in Section 5 we discuss
the results and conclude.
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2 The g-and-h distribution and its estimation

The g-and-h random variable X ∼ gh(a, b, g, h) is defined in (1), and we
let θ = (a, b, g, h)′ be the vector of its parameters. In this section, we
detail two estimation techniques. The first one (numerical MLE) exploits
an approximation of the density based on the quantile function (2). The
second one relies on an auxiliary model, in the idea of Gourieroux et al.
(1993).

2.1 Maximum likelihood estimation

The quantile function (2) can be used for computing a numerical approxi-
mation of the density.

Similarly to the approaches proposed for the generalized g-and-h by
Rayner and MacGillivray (2002) and Prangle (2017), we employ the fol-
lowing basic result from probability theory: if the random variable V has
density fV and h(v) is a differentiable 1-1 transformation, the density of
W = h(V ) is equal to

fW (w) =
fV (v)

h′(v)
, where v = h−1(w). (3)

Combining (1) and (3), and setting h(·) equal to the quantile function (2),
the approximated density is given by

f̂(x) =
φ(p)

Q′(p;θ)
, p = F (x;θ), (4)

where φ(·) is the standard normal density, Q′(p;θ) is the derivative of (2)
and F (x;θ) is the g-and-h distribution function.

Q′(p;θ) is known in closed form (Cruz et al., 2015, Eq. 9.33):

Q′(p;θ) = egp+
hp2

2 +
h

g
pe

hp2

2 (egp − 1).

On the other hand, F (x;θ) has to be computed via numerical inversion of
(2) using some root-finding technique.

Given a random sample x1, . . . , xn, a pseudo-code describing this proce-
dure is given by Algorithm 1 below.

Algorithm 1.

1. For each observation xi (i = 1, . . . , n):

(a) Evaluate pi = F (xi;θ) by numerical inversion of (2);

(b) Compute f̂(xi) = φ(pi)/Q
′(pi;θ).
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2. Treat f̂ as the true density and proceed to numerical maximization with
respect to θ of the approximated log-likelihood function ˆ̀(θ;x1, . . . , xn) =∑n

i=1 f̂(xi;θ).

Step 1(a) is the key computational issue, as numerical root-finding is
typically rather slow. It follows that the total computational burden, which
is almost entirely related to step 1(a), increases linearly with the number of
observations.

2.2 Indirect inference

Indirect inference is a simulation-based estimation method introduced by
Gourieroux et al. (1993). Analogously to other computer-intensive tech-
niques, it only requires the ability to sample the distribution of interest.
This makes the method particularly valuable when the density is not explic-
itly available. With respect to other simulation-based methods, its desirable
asymptotic properties are another advantage (Gourieroux et al., 1993, Sec-
tion 3; Calzolari et al., 2004).

Although II can be generalized to problems with dependent observations,
here we describe it in the iid case, since this is the relevant setup in the
present paper.

Consider a random sample yn = (y1, . . . , yn)′
iid∼ F θ from a random

variable Y with cumulative distribution function F θ, θ ∈ Θ ⊆ Rp. Let
M be an auxiliary random variable with density fM (m;ψ), where ψ is
a vector of parameters. The log pseudo-likelihood function `n(ψ|F θ) =∑n

i=1 log fM (yi;ψ) is constructed using the density of M and the sample yn
from F θ.

The auxiliary parameter vector ψ(θ) ∈ Ψ ⊆ Rq, q ≥ p, is implic-
itly defined by the relationship ψ(θ) = arg maxψ `n(ψ|F θ). The function
θ → ψ(θ) is called binding function, and the pseudo-true values ψ(θ) are
expected to be highly informative about θ. In practice, the binding function
must typically be estimated via simulation.

The description above implies that II is based on two steps. First,
one computes the pseudo-maximum likelihood estimate ψ̂(θ) by solving the
problem arg maxψ `n(ψ|F θ) using the observed data yn.

Second, one simulates ns observations ỹ1, . . . , ỹns from the true model
F θ and computes a new estimate ψ̂

s
(θ) = arg maxψ `ns(ψ|F θ) using the

simulated data. The II estimate θ̂(ψ̂(θ))
def
= θ̂ is the solution of the problem

minθ∈Θ(ψ̂
s
(θ)− ψ̂(θ))′Ξ−1(ψ̂

s
(θ)− ψ̂(θ)), where Ξ is a weighting matrix.

When the number of parameters of the true and auxiliary model is the
same, i.e. when p = q, the limiting distribution of θ̂ does not depend on Ξ
(Gourieroux et al., 1993, Proposition 5), and this result can be invoked to
justify the use of the identity matrix as weighting matrix. However, in finite
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samples, θ̂ depends on Ξ, and Gourieroux et al. (1993) show that there is
an optimal choice of this matrix.

2.3 Optimal indirect inference for the g-and-h distribution

II for the g-and-h distribution based on the skewed-t auxiliary model M ∼
St(ω, κ, λ, ν) with Ξ = I has been proposed by Bee et al. (2019). Here we
extend their approach by developing an estimate of Ξ and employing it in
the II estimation program.

In an exactly identified setup, the optimal weighting matrix is the asymp-
totic covariance matrix of ψ̂ (Jiang and Turnbull, 2004), and is given by a
sandwich formula that requires the first two derivatives of the auxiliary log-
likelihood; see Gourieroux et al. (1993, p. S112) for details.

An appealing alternative, which avoids the computation of the first two
derivatives of `n(ψ|F θ) at the expense of a modest computational effort, is
the use of the non-parametric bootstrap. Given a sample y1, . . . , yn from
Y ∼ St(θ), the bootstrap estimate of Ξ is obtained as follows:

Algorithm 2. (Non-parametric bootstrap estimate of the weighting matrix)

(i) Sample with replacement n observations y∗1, . . . , y
∗
n from y1, . . . , yn;

(ii) Use y∗1, . . . , y
∗
n to maximize the pseudo log-likelihood function and com-

pute the pseudo-maximum likelihood estimators ψ̂(θ) = (ω̂, κ̂, λ̂, ν̂)′ of
the skewed-t distribution;

(iv) Repeat steps (i)-(ii) B times;

(iv) The bootstrap estimate of Ξ (Ξ̂
∗
, say) is the empirical covariance ma-

trix of the skewed-t parameter estimates obtained in the B replications.

Jiang and Turnbull (2004) show that the II and ML estimators have
similar asymptotic properties under some regularity conditions. However,
the finite-sample behavior of the estimators is likely to be different. More-
over, in the present paper we are maximizing an approximation of the like-
lihood function, and this may to have an impact on the precision of the
MLEs. Hence, we explore via simulation the relative efficiency of the two
approaches.

3 Simulation experiments

In this section we perform a Monte Carlo analysis of the II and numerical
MLE approaches outlined above. We use some of the setups employed in Bee
et al. (2019) as well as one additional parameter configuration with values
of the parameters similar to those found in the first empirical application
(see Section 4 below).
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Skewness (sk.) and kurtosis (kurt.) are computed in closed form using
the formulas for the first four moments of the g-and-h given by Cruz et al.
(2015, p. 320). Since E(Xr) only exists if h ∈ [0, 1/r), the kurtosis is
undefined in Setup (6). All in all, we sample the gh(0, 1, g, h) distribution
in the following six configurations of the parameters.

(1) g = 0.5, h = 0.1 (sk. = 3.41; kurt. = 44.24);

(2) g = 0.8, h = 0.1 (sk. = 9.27; kurt. = 606.61);

(3) g = 0.2, h = 0.05 (sk. = 0.79; kurt. = 5.10);

(4) g = 0.2, h = 0.2 (sk. = 2.81; kurt. = 155.98);

(5) g = 2, h = 0.2 (sk. = 7.76× 1010; kurt.= 1.08× 1058).

(6) g = 2.5, h = 0.3 (sk.= 9.76× 10101; kurt.= +∞).

Note that setups (5) and (6), which according to Dutta and Perry (2006)
are likely to be relevant for operational risk modeling, are extreme in terms
of skewness and kurtosis.

All experiments are carried out with sample size n ∈ {100, 1000}; the
number of replications is B = 200 and the number of observations simulated
from the auxiliary model is ns = 5000.

3.1 Parameter estimation

Figures 1 and 2 show the bias and the RMSE respectively of the II and ML
estimators of g and h in the six setups. In both figures, panels (a) and (b)
refer to the n = 100 case, (c) and (d) are based on n = 1000.

Before commenting the results, it is worth pointing out that MLE has
failed (i.e., aborted without convergence) 6 times in Setup 6 with n = 100.
Even though, in the same instances, II has always converged, we have dis-
carded the samples and replaced them with new ones.

In terms of bias (see Fig. 1) II is better than MLE, more notably in
setups 5 and 6 and for n = 100. This is not surprising, since it is well known
that II is a bias-correction method, whereas MLEs are consistent but, in
general, biased.

On the other hand, in terms of RMSE (see Fig. 2), MLE is better for
n = 100 in all setups except 4. For n = 1000 the two approaches are
approximately equivalent in the first 4 parameter configurations, and MLE
is preferable in the last two setups.

Table 1 shows the average computational cost of the two procedures for
each of the six parameter configurations. The computing times are similar
when n = 100, whereas II is much faster than ML in all setups when n =
1000.
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Figure 1: Bias of the II and MLE estimators of g (panels (a) and (c)) and h (panel (b)
and (d)); panels (a) and (b) are based on n = 100, (c) and (d) on n = 1000.

3.2 A comparison of standard and optimal indirect inference

Figures 3 and 4 compare the performance of the II methods based on Ξ = Ξ̂
∗

(from now on “optimal”) and Ξ = I (from now on “standard”). The plots
show the RMSEs of the estimators of g and h obtained in the two cases with
B = 200 and ns = 5000, when n = 100 (Figure 3) and n = 1000 (Figure 4).

When n = 100, optimal II is better than standard in the last two setups,
especially for h. The outcomes are more similar when n = 1000, which is
justified by the asymptotic equivalence of the two approaches. The only
relevant difference is observed in Setup 3, where the RMSE of the optimal
estimator of g is approximately 30% smaller.
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Figure 2: RMSE of the II and MLE estimators of g (panels (a) and (c)) and h (panel
(b) and (d)); panels (a) and (b) are based on n = 100, (c) and (d) on n = 1000.

3.3 VaR estimation

Another interesting quantity to look at is the VaR (or quantile) estimate, for
a level far in the tail. Indeed, most applications of the g-and-h distribution
(and in particular those considered in Section 4) eventually aim at computing
such quantities.

Once the parameters of the g-and-h distribution have been estimated,
the VaR can be computed in closed form by plugging the estimates into (2).

Figures 5 to 10 show the relative bias RBα
def
= bias(V̂aRα)/VaRα and the

RMSE of the II and MLE estimators of the VaR in each of the six setups.
The RMSE graphs (panels (b)) are on logarithmic scale.

In terms of bias, according to panel (a) of figures 5 to 10, the two es-
timators are overall equivalent when n = 1000, with minor differences in
specific setups. On the other hand, when n = 100 the II estimator of VaR is
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Table 1: Computing times (in seconds) of II and MLE in the six setups.

Sample size Method Setup

1 2 3 4 5 6

n = 100
II 15.31 12.14 19.59 16.44 15.25 9.28

MLE 11.98 13.68 10.87 14.67 10.02 14.01

n = 1000
II 14.15 13.32 18.24 15.17 10.38 9.90

MLE 155.41 145.16 152.86 151.60 167.84 182.97
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Figure 3: RMSE of the optimal and standard II estimators of g (panel (a)) and h (panel
(b)) for n = 100.

biased for α close to 0 in the first 5 setups, whereas the results are reversed

in Setup 6 (Fig. 10), where V̂aR
MLE

has a large positive bias.

Figures 5 to 10 (panel (b)) suggest that, when n = 100, V̂aR
MLE

has a
smaller RMSE in the first 5 settings. On the other hand, in Setup 6, the

RMSE of V̂aR
II

is smaller than V̂aR
MLE

. When n = 1000, the outcomes
obtained with the two methods are not very different from each other: II
is better in Setup 1 (at least for the smallest values of α) and 5, MLE is
preferable in setups 2, 3, 4, whereas in Setup 6 there is no clear winner.
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Figure 10: Setup 6. Relative bias (panel (a)) and of the log-RMSE (panel (b)) of the
II and MLE estimators of the VaR for different values of α.

4 Empirical applications

4.1 AON Re Belgium fire losses

In this section we outline the results of an application to actuarial data.
The beaonre dataset from the CASdatasets R package contains 1823 fire
losses collected by the reinsurance broker AON Re Belgium and first used by
Beirlant et al. (1999). With the aim of ascertaining the difference between
the two proposed approaches when the sample size is moderately large, we
use a random sample of 700 observations of the loss amount in thousand of
Danish Krone (variable ClaimCost in beaonre). For the subsequent analysis
we standardize the observations1. A stem-and-leaf plot of the data is shown
in Figure 11 along with the empirical skewness and kurtosis.

Point estimates are obtained by means of both the II and numerical
MLE approaches presented in Section 2. Standard errors are computed via
non-parametric bootstrap with 200 replications.

Table 2 shows that the II and MLE estimates of the parameters are
quite different. In particular, h is found to be very different between the
two methods. We discuss this issue in detail at the end of the section.

1Standardized observations are given by (yi − â)/b̂, i = 1, . . . , n, where â and b̂ are the
Hoaglin (1985) quantile estimators of a and b; see, e.g., Bee et al. (2019) for details about
the computation of the estimators.
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Figure 11: AON Re Belgium fire losses.

Figure 12 shows the QQ-plot of the real data vs. observations simulated
from the g-and-h distribution with parameters estimated via II (panel (a))
and via MLE (panel (b)); both plots are restricted to quantiles larger than
0.9. The fit is better with the II estimation method.

Table 3 reports the VaR measures estimated by means of the g-and-h
distribution as well as via the state-of-the-art Peaks-over-Threshold (POT)
method (see, e.g., McNeil et al., 2015, Sect. 5.3.2).

The outcomes convey two messages. First, the II VaR is much closer to
the empirical quantile, as expected given the better fit in Figure 12. Second,
the VaR computed by means of the g-and-h distribution estimated via II is
approximately as precise as the VaR obtained by means of the POT method.

Table 2: Fire losses: Parameter estimates and bootstrap standard errors.

g h

II
2.500 0.268

(0.130) (0.097)

MLE
2.237 0.070

(0.103) (0.028)
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Table 3: Fire losses: VaR estimates and bootstrap standard errors obtained by means
of the g-and-h distribution estimated via II and MLE and by means of the POT method.
For comparison purposes, the empirical quantile is reported in the last line.

α = 0.95 α = 0.99 α = 0.995

II-VaR
35.232 292.427 658.164
(6.691) (95.780) (256.696)

MLE-VaR
18.685 95.308 173.541
(6.965) (110.288) (352.609)

POT-VaR
45.985 302.077 633.827
(9.988) (92.917) (296.564)

Emp. 42.022 270.568 491.888
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Figure 12: QQ-plot of the observed losses vs. observations simulated from the II-
estimated g-and-h (upper panel) and of the observed losses vs. observations simulated
from the MLE-estimated g-and-h (lower panel).

The large difference between the II and MLE approach is rather sur-
prising at first sight, since, in the simulation experiments of Section 3, the
outcomes are never so far away from each other. A tentative explanation is
that II might be more robust than MLE with respect to possible misspecifi-
cations of the model: the distribution of the data considered in the present
application is likely to be not exactly g-and-h, and II may outperform MLE
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in a setup where the true data-generating process is not g-and-h. Further
investigation of this conjecture is beyond the scope of this paper, but is one
of the issues in our future research agenda.

4.2 Operational risk

In this section we analyze operational risk losses recorded at the Italian bank
Unicredit; a detailed description of the data can be found in Hambuckers
et al. (2018). Here we use the 152 losses observed in business line BDSF
(Business Disruption and System Failures) between 2005 and 2014. The
data, scaled by an unknown factor for confidentiality reasons, are displayed
in Figure 13.
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Figure 13: Operational risk losses.

The II and MLE parameter estimates obtained with standardized ob-
servations are shown in Table 4. The two approaches yield quite similar
results. Figure 14 displays the quantile-quantile plot of true vs. simulated
observations. Analogously to the preceding section, the upper panel simu-
lates data from the II-based estimated g-and-h, the lower panel samples the
MLE-based g-and-h, and the plots are restricted to quantiles larger than
0.9. The graphs confirm that the two estimated g-and-h distributions are
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almost identical.
Table 5 reports the VaR measures computed via the g-and-h distribution

and the POT method as well as the empirical quantile2. In this case the two

g-and-h VaRs are similar, but again V̂ aR
II

is closer to the empirical quantile.
On the other hand, the two g-and-h VaRs have a performance comparable
to the POT VaR and in line with the empirical quantiles reported in the
last line of the table.

Table 4: Operational risk: Parameter estimates and bootstrap standard errors.

g h

II
1.969 0.029

(0.264) (0.199)

MLE
2.050 0.028

(0.140) (0.0121)

Table 5: Operational risk: VaR estimates and bootstrap standard errors obtained by
means of the g-and-h distribution estimated via II and MLE and by means of the POT
method. For comparison purposes, the empirical quantile is reported in the last line.

α = 0.95 α = 0.99 α = 0.995

II-VaR
12.933 52.997 88.506
(3.990) (32.760) (70.726)

MLE-VaR
14.259 61.500 104.708
(3.396) (25.474) (54.535)

POT-VaR
14.384 45.926 68.128
(3.818) (40.645) (83.807)

Emp. 12.461 48.940 -

5 Conclusion

In this paper we have developed two approaches to the estimation of the
parameters of the g-and-h distribution. The results of the simulation ex-
periments suggest that the numerical maximum likelihood method is more
efficient mostly in terms of RMSE, but suffers from large bias when the
distribution is highly skewed. Indirect inference performs better in the em-
pirical applications and has a lighter computational burden, in particular
when the sample size gets large.

The g-and-h distribution seems to be especially well suited for highly
asymmetric and heavy-tailed empirical distributions. For moderately skewed
data, the scaled lognormal obtained when h = 0 may be a more parsimonious

2We do not report the 99.5% empirical quantile because it makes little sense with a
sample size as small as n = 152.
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Figure 14: QQ-plot of the observed losses vs. observations simulated from the II-
estimated g-and-h (upper panel) and vs. observations simulated from the MLE-estimated
g-and-h (lower panel).

option. Hence, it would be important to devise a test of the hypothesis
H0 : h = 0, which would provide the investigator with a data-driven model
selection tool. This issue requires further research.

On the empirical front, the practicability of the proposed estimation
techniques opens the door for a wider use of the g-and-h distribution. Be-
yond insurance and operational loss data, hedge funds returns (Ding and
Shawky, 2007) or health data (Rigby and Stasinopoulos, 2005) could be
considered in future applications.
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