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Abstract—Despite the important role transmission line outages
play in power system reliability analysis, it remains a challenge
to estimate individual line outage rates accurately enough from
limited data. Recent work using a Bayesian hierarchical model
shows how to combine together line outage data by exploiting how
the lines partially share some common features in order to obtain
more accurate estimates of line outage rates. Lower variance
estimates from fewer years of data can be obtained. In this
paper, we explore what can be achieved with this new Bayesian
hierarchical approach using real utility data. In particular, we
assess the capability to detect increases in line outage rates over
time, quantify the influence of bad weather on outage rates,
and discuss the effect of outage rate uncertainty on a simple
availability calculation.

I. INTRODUCTION

Transmission line outage rates are fundamental to electric
power system reliability calculations. However, individual
line outages are infrequent (roughly one per year), so that
estimating the line outage rate in a straightforward way by
dividing the number of outages by the time elapsed gives
an annual outage rate estimate that is often too uncertain to
be useful. Alternatively, a better estimate can be obtained by
recording outages of an individual line over decades, but then
the outage rate is averaged over such a long time that it is again
not useful. This problem is commonly addressed by grouping
or pooling together data for similar lines. This gives a much
better estimate for an annual outage rate, but this outage rate is
now averaged over that group of lines. For example, the annual
outage rate for all lines of 230 kV in a region can be calculated,
and this is useful for detecting reliability problems of that
group of lines and for giving a typical value for those lines
for reliability calculations. However, variations in individual
line reliability within the group cannot be addressed.

It is intuitive that combining data for lines that are similar
in some way should enable better estimates of individual line
reliability. But the similarities are partial, and there are mul-
tiple ways in which individual transmission lines are partially
similar, including their length, rating, geographical location,
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and proximity. Pooling does not work when there are multiple
partial similarities. However, recent work [1] shows that the
Bayesian hierarchical model can leverage multiple partial sim-
ilarities to get better estimates of individual line outage rates
from utility data. Typical results are that, for the lines with less
frequent outages and using one year of data, the annual outage
rate estimated with Bayesian methods has less than half the
variance of the straightforward estimate. Another way to state
this typical result is that the Bayesian hierarchical model for
one year of data gives the same accuracy as the straightforward
estimate for two years of data. Thus the Bayesian hierarchical
model mitigates to some extent the problem of estimating
individual line outage rates. This paper explores how much
advantage can be gained from applying our method to give
these improved line annual outage rates from utility data. In
the following paper sections, we consider three problems:

1) Detecting lines with reduced reliability: We determine
with statistical validity which lines have deteriorated reliability
over time to better discriminate which lines should be consid-
ered for further analysis and maintenance or upgrade.

2) Storm and no storm data: We often want to partition the
data set to get more specific information, and we illustrate the
capability of our proposed method in this regard by comparing
line outage rates during storms with line outage rates when
there is no storm.

3) Effects on reliability calculations: The Bayesian hierar-
chical model not only gives better estimates of individual line
outage rates but also gives the uncertainty of these estimates.
We discuss a simple example of an availability calculation to
illustrate the impact of these advantages on a system reliability
calculation.

Bayesian methods use probability distributions to model
uncertainty in parameters — for our application this means
that rather than producing point estimates for the outage rate
of each line, a probability distribution is estimated. These
probability distributions incorporate knowledge of the outage
rates and their uncertainty [2]. The mean of the probability
distribution (the posterior mean) can be used as a point
estimate of the outage rate. The probability distributions are
estimated starting from a prior distribution (i.e., a distribution
that incorporates any prior knowledge about the outage rates)
and then updated to also incorporate the utility data by using
Bayes’s rule. If there is a line with frequent outages producing
a lot of outage data, then the calculated outage rate will be
mostly determined by the outage data, and the effect of the
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prior distribution will be small. If, more typically, the line has
infrequent outages and the data is sparse, Bayesian methods
can calculate a more accurate outage rate than non-Bayesian
methods because any available prior information can be taken
into account. The Bayesian method in [1] is a hierarchical
model — data is shared across lines that have some partial sim-
ilarity, such as similar location, proximity, rating, or length. As
shown in [1], sharing data in this way can improve estimates
of line outage rates. This is because the hierarchical model can
learn from similar lines when estimating the outage rate for a
line with little associated data. There is much more explanation
of the Bayesian hierarchical model and the detailed results of
applying it to estimate line outage rates in [1].

It is an advantage of Bayesian methods that they calculate
probability distributions of line outage rates. The distribution
of the line outage rate contains valuable information about
the uncertainty of the point estimate, such as the standard
deviation or credible interval of the estimate. This gives
engineers insight into how much to trust the point estimates
of line rates. Moreover, the distribution of the line outage rate
can easily be sampled in Monte Carlo simulations of system
reliability, ensuring that the uncertainty of the line rates is
accounted for in the system reliability calculation.

There is previous research estimating outage rates using
Bayesian methods. [3] and [4] use Bayesian methods to predict
outage rates in a district given the system weather conditions.
[5] presents a Poisson-gamma random field model to estimate
outage rates of the 230 kV transmission lines within rectangu-
lar subdivisions of the utility area. [6] proposes a hierarchical
Bayesian Poisson regression to estimate individual failure rates
of distribution lines, considering their dependence on age, tree
density and loading. [7] gives interval estimates of outage rates
of individual transmission lines given weather conditions using
a credal network with imprecise priors, which is an extension
of Bayesian networks. Other researchers estimate individual
line outage rates based on analytical methods. [8] models the
line outage rate based on physical outage mechanisms, and
[9] uses an exponential function model for the failure rate
considering the unexplained factors in the outage data.

Transmission line outage rates are correlated with each
other in several ways. Lines in the power grid interconnect
at substations, and some faults or substation arrangements
may trip several lines at once. Multiple line outages can
occur because of protection schemes. Moreover, lines in the
same area experience similar weather conditions. There is
some previous work on these correlations. Li [4] and Dokic
[10] study pooled outage rates and model the dependence on
the district. IeSmantas [5] models geographical dependencies
between the outage rates per kilometer of 230 kV lines in
rectangular subdivisions of the area, and concludes that there
is weak geographical correlation between these outage rates.

II. BAYESIAN HIERARCHICAL METHOD

This section summarizes from [1] the inputs and outputs
of the Bayesian hierarchical method of estimating line outage

rates and some typical results. For reasons of space and com-
plexity, all explanations and details of the Bayesian method
itself are referred to [1].

A. Utility line outage data input to Bayesian model

This section outlines the utility line outage historical data
and the line parameters and spatial dependencies that are input
to the Bayesian hierarchical model. For more details, see [11].

Detailed outage data are routinely collected by utilities.
For example, NERC’s Transmission Availability Data System
(TADS) collects outage data from North American utilities.
Here, we use some publicly available historical line outage
data recorded by a North American utility [12] for 14 years
since 1999. The data record forced and scheduled line outages,
including names of outaged lines, outage start and end times
and dates, names of the end buses of lines, line attributes such
as length, voltage level, districts in which a line is, and outage
cause codes. Some lines cross several districts. There are 549
lines outaging in the data with rated voltages of 69, 115, 230,
287, 345, and 500 kV.

We neglect the scheduled outages and momentary outages
and only consider the forced non-momentary outages. If a line
fails and recloses several times in one day, it only counts once.
Table I shows an example of the outage data. Attributes for a
line are voltage level, line length, and the utility district(s) in
which the line is. We can also compute the network from the
outage data [11] and calculate the distances along the network
between any two lines. Two aspects of line proximity are
modeled by matrices 337 and 35. 37 is based on the utility dis-
tricts. Lines in the same district are more likely to experience
the same weather conditions. X5 is based on network distance
between lines, which reflects both geographic proximity and
the physical and engineering interactions in the network.

B. Bayesian model outputs and sample results

The Bayesian model produces probability distributions for
the outage rate of each transmission line. An example is shown
in Figure 1. The mean outage rate of all lines is 0.60.

Figure 2 shows the 95% credible interval of annual outage
rates \; fori = 1,2, ..., 549. (As discussed in [13], the credible
interval is in multiplicative form; that is, the multiplicative
factor ¢ is determined so that P[)\;/¢ < \ < Xig] > 95%.)

III. DETECTING OUTAGE RATE INCREASES

It is desirable to examine historical transmission line out-
ages and judge whether the outage rate has increased and the
reliability of the line has deteriorated. If there is a high chance
that the outage rate has increased significantly, then the con-
dition of this line should be evaluated and decisions about its
maintenance, operational limits, or upgrade could be consid-
ered'. This section applies Bayesian estimates to this problem.

We divide the 14 years of utility data into the first 7 years
and the last 7 years. Applying the Bayesian method for each
line k, we obtain an outage rate probability distribution /\,(cl)

!'Similarly, we note that detecting significantly decreased outage rates could
be used to verify previous reliability investments.



TABLE I
SAMPLE OF THE OUTAGE DATA

Outage counts in different years

LinnlD T 2 3 4 5 6 7 8 0 10 11 12 13 14 Voltage(kV) Length(mile) District
T 02 0 0 1T 0 0 1 1 4 2 0 1 0 300 3843 WEN
2 1 2 0 00 00 00 0 0 0 0 0 230 7.62 cov
49 0 0 0 1 0 0 0 0 0 0 1 0 1 0 230 0.48 SAL
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Fig. 1. Probability distribution of the outage rate for line number 12. The
mean of the distribution is 0.42 per year and is used for a point estimate of
the outage rate. The standard deviation is 0.15 and is used to quantify the
uncertainty of the point estimate of outage rate.
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Fig. 2. 95% credible intervals (blue bars) of outage rates and posterior means
(black dots). Lines are ordered by the upper bounds of credible intervals.

for the first 7 years and an outage rate probability distribution
)\,(f) for the last 7 years. An example is shown in Figure 3.
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Fig. 3. The distribution of outage rates for one line in the first 7 years and
in the second 7 years.
We are interested in the probability

pe = PP > Al (1)

of the line k£ outage rate increasing by more than some factor
. We will show results for k = 1, Kk = 1.5, and Kk = 2. If
)\,(f) > Ii)\g), a larger value of « indicates a more significant
increase in the outage rate.

We evaluate the probability (1) empirically by sampling
10000 times from the probability distributions )\S) and )\f),
which are assumed to be independent. That is,

2

pE = [number of samples with )\22) > /{)\g)]

10000

Figure 4 shows the probability p; for each line k. We
choose a significance level 0.05; that is, if p; > 0.95, /\Ef)
is significantly greater than /<;)\,(€1), and we conclude that the
outage rate for line k increases significantly in the last 7 years.
According to this rule, we identify 31 lines with increased
outage rates for k = 1, 8 lines for 1.5, and 1 line for
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Fig. 4. The probability p;, that the outage rate increases by at least a factor
of x in the second half time period from the first time period for each line
k. Lines are ordered by the x = 1 probabilities.

After identifying those lines with significant increases in
outage rates, it is worthwhile checking the outage records
to find out more about the possible specific causes of the
increases, such as the cause codes for each outage. Utilities
have much richer information about the outage and the grid
conditions and can investigate much further. To illustrate this,
we check the top three lines with the highest probability of
outage rate increases. Table II shows the observed counts for
these three lines, and there is an obvious increase in counts
during the last 7 years. Outage causes for line 151 are mainly
recorded as foreign utility and foreign trouble. Given the lack
of outages in years 1 through 6, it should also be checked
whether the line was newly installed in year 7. Line 138 has



various cause codes during the last 7 years, such as tree blown,
line material failure, foreign trouble, and vegetable manage-
ment. Line upgrade or tree-trimming may help lower the
outage rate. Most of the causes for line 539 are wind related,
so weather variations have a big influence on this line, and the
line spacers, damping, and icing could also be reviewed.

TABLE II
OBSERVED OUTAGE COUNTS OF THE TOP THREE LINES WITH HIGHEST
PROBABILITY OF INCREASES IN ANNUAL OUTAGE RATES

Line Outage counts in different years

ID 1T 2 3 4 5 6 7 9 10 11 12 13 14
51 060 0 00000 1 2 9 0 1 2 0
383 0 0 01 2 1 2 25 5 2 0 3 6
53% 0 0 01 0 0 0 2 2 2 1 1 1 1

We compare the results with the conventional method,
which estimates mean annual outage rates of individual lines
by simply evaluating the average outage counts in a year. The
standard deviation of the annual counts is also estimated. Then
we fit a Gamma distribution for each line in each 7-year period
using the method of moments. (Here we prefer the method of
moments to maximum likelihood estimation because there are
only 7 data points, and several of them are zeros; maximum
likelihood estimation would exclude the zero observations,
which reduces the information further and the optimization
to find the maximum likelihood may fail.)

Note that the conventional method cannot deal with the lines
with all zero counts in a 7-year period, while the Bayesian
hierarchical model can solve this case. So we compare the
two methods for lines with at least one nonzero count.

For each line in each 7-year period, we sample from the
fitted Gamma distribution and use the same sampling method
described at the beginning of this section to estimate the
probability pi. We call this procedure the “basic method”
(the mean estimation is conventional, but we are not sure to
what extent industry computes uncertainty of the conventional
mean estimate). This basic method identifies 2 lines with
increased outage rates for k = 1, 1 lines for k = 1.5, and
no lines for k = 2. Thus the increased uncertainty for the
basic method detects significantly fewer lines with statistically
verified increased outage rates.

The two lines identified by the basic method are line 539
and line 32. Line 539 is also identified in the above Bayesian
method. The basic method does not identify line 151 because
this line has no outage in the first 7 years. Line 138 is not
identified by the basic method but is identified by the Bayesian
method. The posterior distribution of the outage rate for line
138 has mean 0.81 and standard deviation 0.29 in the first 7
years, and mean 2.93 and standard deviation 0.62 in the second
7 years. Whereas in the basic method for line 138, the Gamma
distribution has mean 0.86 and standard deviation 0.90 in the
first 7 years, and mean 3.29 and standard deviation 2.14 in
the second 7 years. The standard deviation of the posterior
distribution is obviously lower than the standard deviation of
the Gamma distribution. This low standard deviation makes
the distributions in the two 7-year periods sufficiently different,

while the two Gamma distributions overlap due to their larger
standard deviation.

Figure 5 compares the means and standard deviations of the
posterior distribution in the Bayesian method and the Gamma
distribution in the basic method. Although the two methods
have close means, the posterior distribution has a smaller
standard deviation. This observation confirms the result in our
journal paper [1] that hierarchical Bayesian estimates of outage
rates have a lower standard deviation than the conventional
estimates. The lower uncertainty of the Bayesian estimates
explains why the Bayesian method more effectively detects
lines with significant outage rate increases.
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Fig. 5. Comparing means (left panel) and standard deviations (right panel)
of the posterior distribution and the Gamma distribution in two methods.

IV. EFFECT OF STORMS ON OUTAGE RATES

Since the proposed Bayesian hierarchical method mitigates
the limited data problem in estimating individual outage rates,
we can study further by investigating a subset of the outage
data. For example, we can evaluate the effect of weather on
outage rates.

We define a line outage as a storm outage if it occurs
during a storm, otherwise it is called a non-storm outage. Then
the annual storm outage rate is the number of storm outages
divided by the total storm time in a year; similarly, the annual
non-storm outage rate is the number of non-storm outages
divided by the total non-storm time in a year. (Note that the
Bayesian model does not directly produce the storm/non-storm
outage rate. It outputs the average storm/non-storm outages
over a year without considering the storm/non-storm time.
So we need to divide the average storm/non-storm outages
over a year by the storm/non-storm probability, which is the
storm/non-storm time divided by the total time.)

The weather data is from the USA National Oceanic and
Atmospheric Administration (NOAA) which includes storm
events and other significant weather phenomena [14]. Using
the method described in [15], we classify outages as storm
outages and non-storm outages.

Figure 6 compares the storm and non-storm outage rates
estimated using the Bayesian hierarchical model. 93% of lines
have storm outage rates greater than non-storm outage rates
(using the posterior mean as point estimation). The average
storm outage rate is 4.5 per year which is nine times greater
than the average non-storm outage rate 0.5 per year. This result



confirms the finding in [15] and provides more information due
to the lower uncertainty of the Bayesian estimates.
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Fig. 6. 95% credible intervals of outage rates and posterior means (sorted
according to the upper bound of storm outage rates). Orange crosses are storm
outage rates, and black dots are non-storm outage rates.

The BPA data records the cause code reported for each
outage. We now summarize how storms affect the cause
codes. The proportion of cause codes “tree blown”, “wind”,
“weather”, “ice”, “power system condition”, ”SCADA”, and
“galloping conductors” for storm outages are at least one
order of magnitude greater than that for non-storm outages;
while the proportion of causes “equipment/miscellaneous”,
“RAS initiated”, “human element”’, “foreign utility”, “fire”,
“smoke”, and ‘“maintenance” for non-storm outages are at
least one order of magnitude greater than that for storm
outages. Fewer human errors are reported during storms, as
“human element” is a cause for 0.08% of storm outages,
compared to 1% for non-storm outages, and the proportions of
“dispatcher” are about the same. Storms increase the outages
caused by “SCADA” and “galloping conductors”, but do not
increase other equipment causes such as “improper relaying”,
“terminal equipment failure”, and “arc while switching”.

V. EFFECT OF OUTAGE RATE VARIATION ON A SIMPLE
UNAVAILABILITY CALCULATION

This section shows how variation and uncertainty in outage
rates affect an elementary transmission system reliability cal-
culation. One of the simplest idealized availability calculations
has 3 lines that minimally satisfy the N-1 criterion; that is, the
system is available if all lines or 2 out of 3 lines are operating,
and unavailable otherwise. The 3 lines are independent with
exponential failure rates \;, A2, A3 and exponential repair rate
. State 1 is no lines out, states 2,3,4 are one line out, states
5,6,7 are two lines out, and state 8 is three lines out. The
Markovian transition rate matrix () is

[“a—x-2s A A2 As 0 0 0o o]
“w —A2—Az3—pu 0 0 Ao 0 A3 0
“w 0 —A1—Az—p 0 A1 A3 0 0
o 0 0 —A1—A2—pn O A2 A1 0
0 " n 0 —A3—2p 0 0 A3
0 0 o " 0 —X1—2p O A1
0 o 0 o 0 0 —X2—2u A2

L 0 0 0 0 nw nw n —3/1_

The steady state probability distribution of states is given by
the row vector 7, where w() = 0 and the entries of 7w add to
one. The probability of unavailability is the sum of the last 4
entries of 7. It is convenient to express the unavailability as
the expected number of minutes of unavailability in a year by
multiplying the probability of unavailability by 525600, the
number of minutes in a year.

In our raw line data, the mean outage rate is A = 0.6 per
year, and the standard deviation is 0.7. The mean restoration
time is 907 minutes [16], which corresponds to the restoration
rate of p = 579 per year that we use throughout this section.

We consider the effect of using an average outage rate for
all three lines when their outage rates differ. A parameter
« is used to control the variation of the line outage rates
while keeping the mean outage rate constant. The outage
rates in Table III satisfy Ao = aX;, A3 = A1/, and
Mean{\1, A2, A3} = 0.6 for several values of «. & = 5 gives a
plausible variation of outage rates (one standard deviation from
the mean is 0.6£0.7) and approximately half the unavailability.
That is, if the outage rates do vary according to o = 5, then
using an average outage rate for all three lines approximately
doubles the unavailability.

TABLE III
UNAVAILABILITY FOR SEVERAL ANNUAL OUTAGE RATES

e A1 A2 A3 unavailability
1 0.6 0.6 0.6 1.7 min
2 0.51 1.03  0.26 1.4 min
5 029 145 0.06 0.8 min

We consider the effect of uncertainty in the estimated line
outage rates on the unavailability. We model the uncertainty
in estimates of A1, Ay, A3 by three independent Gamma dis-
tributions, each with mean 0.6 and standard deviation o.
The resulting probability distributions in the unavailability are
shown in Figure 7 for 0 = 0.7 and 0 = 0.17. ¢ = 0.7 is the
average of the standard deviations of individual transmission
lines used in the basic estimation in section III. ¢ = 0.17 is the
average of the standard deviations of individual transmission
lines in the Bayesian estimation.

If we neglect the uncertainty in the estimated outage rates,
the deterministic calculation with \; = Ay = A3 = 0.6 gives
an unavailability of 1.69 minutes. If we use the average uncer-
tainty o = 0.17 that is typical of the Bayesian estimates, the
95% probability interval for the unavailability is {1.25,3.01}.
If we use the average uncertainty o = 0.7 that is typical of that
used in the basic method of section III, the 95% probability
interval for the unavailability is {0.24, 8.63}. For this example,
a typical uncertainty in the line outage rates appreciably affects
the unavailability. The smaller uncertainty provided by the
Bayesian estimates is clearly advantageous compared to the
uncertainty provided by the basic method in section III.

We note that either the Bayesian or basic method considered
above of estimating the standard deviation of individual line
outage rates is better than conventionally estimating the outage
rates of all the lines and computing the mean and standard de-



viation of this combined data. This procedure gives a standard
deviation of 1.14, which is larger because it includes not only
the uncertainty of individual line estimates but also the varia-
tion in individual line outage rates from their combined mean.
In the unavailability calculation, the larger standard deviation
o = 1.14 gives unacceptably large variation in the calculated
unavailability, with a 95% probability interval {0.02, 14.27}.

0.8}
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probability density function

0.0F
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Fig. 7. Probability distributions of calculated unavailability for several values
of standard deviation o for the estimated line outage rate. The distribution of
unavailability has standard deviation 2.6 for ¢ = 0.7 and standard deviation
0.56 for o = 0.17. The mean unavailability is 1.69 minutes per year.

VI. CONCLUSIONS

The Bayesian hierarchical model can process standard trans-
mission line outage data routinely collected by utilities to
give improved estimates of individual line outage rates [1].
When the outage counts are low, the Bayesian hierarchical
model estimates have lower variance than the conventional
calculation of outage rate that simply divides counts of outages
by the observation time elapsed. The Bayesian model does this
by combining line data with data from other lines with partial
similarities in rating, length, and proximity. This paper uses
real utility data to explore several ways in which the improved
performance of the Bayesian outage rates for individual lines
can be exploited.

It is useful to be able to detect deterioration in line outage
rates so that corrective action can be taken. We use the
Bayesian outage rates to calculate the probability that an
individual line outage rate has increased in a second 7-year
period compared to a first 7-year period. Since the Bayesian
outage rates have lower uncertainty, they can better detect
significant outage rates increases in more lines than a basic
conventional method. The significant increase in outage rate
can be used to select lines that are likely to have deteriorated
reliability in a principled way, so that these lines can be further
investigated to inform upgrade, maintenance, modification, or
derating decisions.

It is useful to split historical data sets for separate analyses
to investigate the effect of factors such as storms. We illustrate
the performance of the Bayesian method in distinguishing
storm and no-storm outage rates. For our utility data, the
average storm line outage rate is 4.5 per year, which is nine
times the average non-storm line outage rate of 0.5 per year.

Bayesian methods calculate probability distributions of line
outage rates, so that the mean gives a point estimate of the out-
age rate and the standard deviation indicates the uncertainty of
the point estimate. It is desirable to account for the uncertainty
of outage line rate estimates in transmission system reliability
calculations, and the Bayesian uncertainties are smaller than
the conventional uncertainties. To start to discuss and quantify
the effect of this on system reliability calculations, we contrast
Bayesian hierarchical models and conventional methods for an
elementary availability computation for a 3-line system. For
this computation, using individual line outage rates as opposed
to average outage rates for pooled data can halve the unavail-
ability. Moreover, the reduced uncertainty of the Bayesian
outage rates compared to conventional uncertainties gives
significantly smaller probability intervals for the unavailability.

Overall, our results indicate that the reduced uncertainty
in individual line outage rates enabled by the Bayesian hier-
archical model can be useful. We also expect that routinely
quantifying the uncertainty in individual line outage rates will
help to better justify decisions based on reliability calculations
that depend on these outage rates.
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