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Abbreviations
ANN Artificial neural networks
DBSCAN Density-based spatial clustering of applications with noise
FOV Field of view
FPA Focal plane array
k-NN k-nearest neighbors
LCTF Liquid crystal tuneable filter
LDA Linear discriminant analysis
MCR Multivariate curve resolution
MLP Multi-layer perceptron
MSC Multiplicative scatter correction
NIR Near infrared
NIR-HSI Near infrared hyperspectral imaging
PC Principal component
PCA Principal component analysis
PCR Principal component regression
PLS Partial least squares
PLS-DA Partial least squares discriminant analysis
PMSC Piecewise multiplicative scatter correction
RGB Red green blue
RMSEP Root mean square error of prediction
ROI Region of interest

q
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RPD Ratio between the standard error on reference values of the validation set and the RMSEP
SNV Standard normal variate
SVM Support vector machines

4.14.1 Introduction

In the last two decades, multispectral and hyperspectral chemical imaging have become powerful analytical approaches in several
areas including remote sensing to tackle environment, agricultural or mineralogy challenges, assessment of painting features, and
for a variety of applications for troubleshooting and quality assurance of pharmaceutical,1,2 chemical3,4 and biological5,6 products,
medical and forensic analysis7,8 or for archeological issues,9,10 among other.

In the agrofood sector, these optical imaging techniques are increasingly considered the preferred tools in the design of non-
destructive food/feed inspection instruments with applications in sample characterization, the measurement of chemical species
distribution, the safety evaluation and quality control and the detection of contamination and defects in agrofood products.11–13

Of particular interest from a public health standpoint are instruments designed for multispectral or hyperspectral near-infrared
(NIR) imaging analysis, which already play and will increasingly hold a key role for automatic food and feed inspection.

This technological advances introduced with the imaging analysis are such that much data is currently easily collected on indi-
vidual samples. These data are therefore heterogeneous due to their origin. They can be quantitative, qualitative/categorical,
repeated in time and space, etc. They may also be highly dependent on each other. This complex set of data, acquired quickly
and stored in large volume, is commonly referred as massive data (also defined usually as big data).

A few years ago, the factor limiting the use of this massive data was the computer power. But improvements in storage and calcu-
lation make this constraint obsolete. For analysts and chemometricians, this is something of a revolution with hundreds or thou-
sands of spectra (including tens or hundreds of variables) being collected for each sample, instead of the unique average spectrum
typically collected with classical spectroscopic instrumentation. The challenge is to handle, extract, and exploit the relevant infor-
mation contained in this large amount of data now available.14–17

The aim of this article is to discuss the integration of chemometric processing tools for studying NIR imaging data. The first part
of this article briefly introduces NIR hyperspectral imaging (NIR-HSI) including the factors of success of this technology. The second
part is related to the integration of chemometric processing tools for the study of NIR imaging data. Some of the most popular
supervised and unsupervised chemometrics tools are reviewed. The third part of this article explains how images and spectra are
acquired and finally processed. Finally, a number of applications of chemometrics in the development of NIR imaging analytical
methods are explored, with a focus on agricultural crops and products.

4.14.2 Introduction to NIR Imaging

Near infrared imaging instruments probe the spatially resolved chemical composition of samples. The spectral range of the instru-
ment depends on its illumination source, wavelength selection mechanism and detector. Long wavelength infrared imaging systems
probe the combination, first and second overtone bands of NH, CH, and OH bonds; intermediate-wavelength instruments measure
the first, second and third overtones; short-wavelength systems access only the third overtone. The chemical specificity of the spectral
information, greater in the combination bands and gradually decreasing through the first, second and third overtone bands, is the
key to the value of this family of techniques aptly named chemical imaging. The success of NIR chemical imaging can be attributed
to a combination of different factors: (1) nondestructive method, (2) high performance and availability of uncooled NIR-sensitive
two-dimensional array detectors, (3) digitally tuneable infrared optical filters and (4) drastic increase in both speed and capacity of
laboratory computing platforms. The integration of these elements has already shown promising results in the determination of
quality parameters for complex matrices such as pharmaceutical blends (e.g., Lyon et al.,18 Reich19), food products such as the detec-
tion of apple surface defects (e.g., Lu20) and contaminations (e.g., Mehl et al.21) or for the feed industry (e.g., Fernández Pierna
et al.,22 Fernández Pierna et al.23). Indeed, it differs from classical NIR spectroscopy in that the quality attributes can be assessed
from both spatial and spectral (and therefore chemical) information. This makes the hyperspectral imaging technique better
than classical NIR spectroscopy in extracting details on a smaller scale with the objective of obtaining a better quality evaluation.

Hyperspectral images or hypercubes are three-dimensional data sets containing light intensity measurements where two dimen-
sions (x and y) represent spatial pixel coordinates, while a third dimension (l) represents spectral variation such as wavelength
(Fig. 1). They can be interpreted as stacks of typically hundreds of two-dimensional spatial images at different wavelengths, or
tens of thousands of absorbance spectra, aligned in rows and columns. Three instrumentation approaches are used to acquire hyper-
spectral images. These different approaches can be termed ‘point’, ‘line’ or ‘plane’ scan, based on the orientation of the scanning
dimension relative to the two-dimensional spatial sample axes. These three acquisition modalities are described in detail later.

Regardless of the scanning acquisition technique, instruments may be multispectral and hyperspectral in nature. With multispec-
tral instruments, only a limited number of wavelengths (below 10) are collected. Typically, these make use of a set of interference
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filters to measure the radiation of a fixed or predefined number of spectral bands. The band pass of the filters used may vary from
a few tenths up to hundreds of nanometres. On the contrary, hyperspectral instruments allow collection of continuous spectral
information frommany contiguous or discrete wavelengths (typically>100 wavelength channels) within a specified spectral range.

4.14.3 Chemometrics in NIR Imaging

Traditionally, chemometrics are used with spectroscopic data to yield a measure of composition. The advent of imaging spectrom-
eters adds a new dimension to the data set and it is imperative that the chemometric tools be designed to use this information as
well. Structurally intricate samples are well suited for chemical imaging because of spatial and chemical complexity.
Pharmaceutical products are a good example of chemically complex architectures and they have become one of the most prolific
fields of use of NIR chemical imaging (e.g., Veronin et al.,24 Dubois et al.,25 Lee et al.,26 Lewis et al.27). Combining the spatial and
chemical information brings about a need for different data-processing modalities in order to exploit the information that is present
in the chemical imaging data set. In the following sections, the multistep chemometric approaches that attempt to include the
spatial information present in the image as well as the chemistry to better describe and segment complex mixtures are presented
and discussed.

The fundamental requirement for NIR chemical imaging experiments is that sample building blocks possess different chemical
and physical properties. A chemometric model is used to segment the image based on chemical parameters that are specific to that
system, just like it would be used on individual spectra from regular NIR spectroscopy. The contrast contained in the results of the
chemometric approaches allows a segmentation of the sample into smaller parts that are characterized by their chemistry and phys-
ical parameters such as texture and particle size (like the example of sugar and salt later in this article); these segments may further be
measured and described with size and shape parameters such as their elongation, circularity, and convexity. In this article we
explore how this processing applied to individual samples can provide valuable phenotypic information or insight into plants
and roots.

The strength of chemical imaging resides in the availability of a massive amount of information in the data set; it can never be
overemphasized that carefully designed data processing is required for accessing this information. Image-processing techniques can
be applied to individual images measured at single-wavelength channels (or combinations of channels) to obtain spatial informa-
tion content such as feature recognition. Chemometric techniques can also be applied to the spectra from complete hyperspectral
data sets as well as subsets of spectra measured within spatial regions of interest (ROI’s).

Overall, the purpose of using Chemometrics in NIR Imaging can be summarized into three categories:

- Clustering aiming to create subgroups of samples based on their similarities;
- Classification aiming to explain a qualitative variable based on explanatory variables and lists samples into different classes;
- Regression aiming to explain a quantitative variable from data and provides a prediction;

Mentioned in this way, clustering and classification seem to be very similar but are nevertheless distinguished by a major fact. The
first is an unsupervised method and the second is supervised. In other words, regression and classification define their data model/
structure based on a target to be reached that corresponds to the variable to be explained. For clustering, there is no target. This
method will highlight the links between the different samples.

Fig. 1 The three-dimensional image hypercube.

Chemometrics in NIR Hyperspectral Imaging: Theory and Applications in the Agricultural Crops and Products Sector 363

Comprehensive Chemometrics, Second Edition, 2020, 361–379

Author's personal copy



4.14.3.1 Unsupervised Data Analysis

Unsupervised methods refer to methods not needing any reference information for modeling. In this article, the applications of
unsupervised methods are focused on exploratory or clustering purposes.

In pattern recognition problems (e.g., discrimination of incoming batches, authentication of food/feed products, or detection of
contaminants), all the variables used to describe the data may not be equally distinctive and informative. In terms of hyperspectral
imaging data, it means that it is not difficult to get overwhelmed by the high dimensionality of the data set, which leads to the so-
called curse of dimensionality. For this reason, optimal variable selection and variable combination methods are important topics in
these fields.

In chemometrics, the most widely used method for exploratory analysis is the PCA.28,29 PCA is simple, easy to use and amply
discussed, especially for its use as a pattern recognition and data compression method for signal processing. In the case of image
processing, volume reduction is a common objective of the PCA. PCA is a way of identifying patterns in data by reducing the
number of dimensions without much loss of information. In other words, PCA is a linear transformation that tries to reduce the
dimensionality. This is performed in such a way that the reduced number of dimensions captures most of the informative variance
of the data. The new variables are called principal components (PCs) and correspond to the largest eigenvalues of the covariance
matrix that account for the largest possible variance in the data. In other words, PCA is based on a decomposition of the data matrix
X into two orthogonal matrices: the scores (T) matrix and the loadings (P) matrix. The loadings can be understood as the weights for
each original variable when calculating the principal component. The scores matrix contains the original X data in a rotated coor-
dinate system.

Applied on hyperspectral imaging, scores can be displayed as score maps or as density scatter plots (as options to represent indi-
vidual pixel information). Fig. 2 shows a PCA scheme using a NIR hyperspectral image of a mushroom represented by the hyper-
cube in 3D (X). This hypercube is first unfolded into a 2D matrix before performing PCA and the determination of scores and
loadings. As observed, the overlapped PC1-PC2 score map allows putting into evidence the differences between the mushroom
itself and the presence of soil. The loading plot of the associated score map describes the most relevant spectral features. The
1450 and 1950 nm wavelengths are the absorption bands with larger peaks, which are mainly related to water content.

Applied on digital photographs, PCA performs a coordinate transformation of the color image represented in the space of funda-
mental colors (i.e. red, green, and blue, known as RGB). After this transformation, the new axes are the largest eigenvalues of the
covariance matrix of the three input images. Then three new images are obtained by projecting the RGB axes onto the three resulting
axes. The first axis corresponds to the largest eigenvalue. The two other axes, which must be orthogonal to the previous axis, are
linear combinations of the input images that lead to the remaining variability or information that is not correlated to the first
axis or to any other PC of higher order.

Fig. 3A represents a digital photograph of sizeMxNx3 of a worldwide known Belgian scene. The picture includes the information
about intensity of color components stored in three planes. These R, G, and B components are represented in Fig. 3B. Fig. 3C repre-
sents the pseudocolor maps of the three reconstructed components for each eigenvalue and of the PCA residuals. The first PC
contains most of the intensity information. The other two PCs have a lower signal-to-noise ratio and they would require a filter
in order to improve the visualization; this is clear when looking at PC 2.

Owing to the recent availability of imaging spectrometers with high spectral resolution, hyperspectral image compression has
become increasingly important.30 In these cases, the hyperspectral image cube can be considered as a high- dimensional feature

Fig. 2 PCA representation using a NIR hyperspectral image of a mushroom.
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space where each feature is represented as a spectral image. The (reduced) dimensions obtained after PCA are defined as the ones
that preserve the most information among the hyperspectral data cube, that is, the ones that present the best representation of the
original data.31 Examples of the use of PCA in chemical image analysis of agrofood products are presented later in the article.

Even if the applications of unsupervised methods presented in this article are specially focused on exploratory purposes, other
techniques must be mentioned as MCR, which is also an unsupervised method with the aim of unmixing pure compound signal
and distribution maps out from the sole hyperspectral image information.32,33

4.14.3.2 Supervised Data Analysis

Supervised methods refer to methods needing a reference information for modeling, e.g., classification methods, using qualitative
class information, and calibration methods, using quantitative reference information. NIR-HSI is used mainly in qualitative/clas-
sification studies.

NIR image supervised methods can be performed on the minimum image unit, i.e., the pixel and thus are called per-pixel super-
vised models. Classical chemometric methods, such as Partial Least Squares (PLS)34 or Artificial Neural Networks (ANN)35 are well-
known, proven techniques for both classification and regression analysis of multivariate data, such as NIR spectra.36 More recently,
Support Vector Machines (SVM) has been introduced in the hyperspectral imaging treatment. The use of SVM as a chemometric tool
applied to spectroscopic data has been proposed by Cogdill and Dardenne37 among others.38,39 The use of SVM in the analysis of
hyperspectral imaging data is still sparse and the focus is on discrimination problems.22,23,40–43 Because the theory about all those
supervised methods has been explained elsewhere in this book, only examples of their applications are presented in this article.

In contrast to per-pixel methods, object-based image classification methods first segment image pixels into homogeneous
objects and classify them into classes.44 A popular method for this is the density-based spatial clustering of applications with noise
method (DBSCAN).45,46 This technique groups together pixels/spectra that are closely packed together in the original or in the score
space, i.e., with many nearby neighbors, and marking as outliers all those points that lie alone in low density regions, i.e., whose
nearest neighbors are too far away. In other words, DBSCAN locates regions of high density that are separated from each other by
regions of low density. The density at a point P is defined as the number of points within a circle of a certain radius from point P; and

Fig. 3 A worldwide known Belgian scene: (A) digital image; (B) R, G, and B components; and (C) pseudocolor score maps of the three recon-
structed components for each eigenvalue and of the PCA residuals.
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a dense region is considered when, for each point in the cluster, the circle with the defined radius contains at least a minimum
number of points previously fixed. After segmentation, features as mean and standard deviation of spectral values can be extracted
and used as input for the supervised modeling.

Independently of the method used, the results of the classification/discrimination models are expressed in a confusion matrix in
terms of sensitivity and specificity. Sensitivity refers to the percentage of samples (pixels or objects in the NIR-HIS context) from the
class studied that have been correctly classified by the model. Specificity refers to the percentage of samples (pixels or objects) not
from the class studied that have been correctly classified by the model.47

In the case of quantitative analysis, the performance of the models must be assessed in terms of the root mean square error of
prediction (RMSEP) and the ratio between the standard error on reference values of the validation set and the RMSEP (RPD).

4.14.4 Image and Spectra Acquisition

Spectroscopic data typically comprise variations in sample illumination and systematic throughput dependencies on wavelengths
that must be accounted and corrected for; this is especially true when working with spectroscopic imaging systems. Equally impor-
tant are any variations due to spatial differences not linked to the chemical composition of the sample, for example, variations of
physical origin such as density or glare, and they must be corrected for to focus the chemometric analysis on the chemical informa-
tion. Moreover and because of the nature of the detectors in the imaging systems, there is a need to use one-dimensional,
two-dimensional or three-dimensional references for dark and white in order to perform instrumental calibration prior to further
analysis. For this, a dark image is collected by blocking the access of light to the camera and a white image using a standard white
reference board. The reflectance is calculated for each pixel at each wavelength using the following equation:

R ¼ Sample�Dark
White�Dark

where Sample ¼ image of the sample, Dark ¼ dark current image, and White ¼ white current image.
This is performed to remove noise and to compensate for offset (bj) due to dark current, light source temperature drift, and

spatial lighting non uniformity across the scene.
As introduced earlier, there are different approaches to collect hyperspectral image data (Fig. 4). The process of converting instru-

ment measurement signals to units of reflectance or absorbance depends on the type of instrumentation used for image acquisition.
A point scan instrument (Fig. 4A) acquires a spectrum at a single spatial location using a Fourier transform or grating-type spec-

trometer. Hyperspectral images are obtained by successively measuring spectra while the sample is repositioned in the X and Y
spatial dimensions. Assuming the lighting source remains fixed relative to the spectrometer, a one-dimensional (spectral) instru-
mental calibration reference for dark and white is performed. This instrument configuration is often used in microscopy utilizing
a high-precision X-Y motion stage.

For line-scan imaging systems (Fig. 4B), which project a line of light onto a two-dimensional focal plane array (FPA), a two-
dimensional (spatial-spectral) instrumental calibration reference for dark and white is needed to account for variation in sample
illumination and instrument throughput. This instrumentation is best suited for remote sensing by aircraft or online process
measurement since the Y spatial axis may be arbitrarily long.

Finally, plane-scan imaging systems (Fig. 4C) position the measurement camera parallel to the sample surface, obtaining X-Y
spatial images with fixed sizes limited by the dimensions (pixels) of the camera detector. Hyperspectral images are obtained by
modulating the radiation reaching the camera using band pass or tuneable filters positioned in front of the camera. In this config-
uration, a complete three-dimensional (spatial-spatial-spectral) instrumental calibration reference for dark and white must be deter-
mined. This instrumental calibration typically uses only two points (dark and bright images), but calibrations with intermediate
values have also been designed to account for system nonlinearity.48

Fig. 4 Modes of acquisition used for hyperspectral image data collection: (A) single-point mapping; (B) line-scan imaging and (C) plane-scan
imaging. Vermeulen, P. (2018). Analytical Tools For The Monitoring Of Food Fraud CRA-W INFO 58, 2.
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After instrumental calibration and NIR image acquisition, the next step consists to extract, from the image, the different ROI
related to the problem to be studied. For instance, in Fig. 5A, a RGB picture displaying 16 wheat kernels on a conveyor belt is shown.
A first mask can be constructed based on the detection of pixels/spectra in the image showing a saturation of the absorbance cor-
responding to the conveyor belt (Fig. 5B and C).

Moreover, the unsupervised technique PCA can be used to get information on the different spectra present in the image allowing,
then, to extract the ROI and therefore build specific spectral libraries. Fig. 6A shows the RGB picture of a young sugar beet plant
spread between a tile and a glass, all laid on a conveyor belt in front of a line-scan NIR hyperspectral system. Fig. 6B shows the first
PC score, which explains 96.8% of the variance, and is suitable for identifying the background (conveyor belt, tile, glass), the soil
and the plant (root, stem, leaves). Spectral libraries can be, then, built by selecting spectra on each ROI (Fig. 6C). Fig. 6D shows the
specific mean NIR spectral profiles of each part of the image.

To improve spectral identification, DBSCAN could be applied to study the neighborhood of the pixels detected as ROI. As previ-
ously explained, this technique is one of the most common clustering algorithms. It allows grouping together pixels/spectra in clus-
ters and, at the same time, removing the isolated pixels out of the ROI, grain or plant for example.

One final consideration in data conditioning is that an FPA detector may contain a small number of bad or “dead” pixels orig-
inating from sensor elements that either fail to respond or respond erroneously. The type of imaging instrumentation setup implies
a different impact of such bad sensor pixels on the data set and dictates different approaches to their detection and removal.49

A bad sensor element in a line scan configuration affects only the part of the spectrum imaged onto that element. Removing this
data value would require eliminating either a complete wavelength channel or the affected spatial channel from the entire hyper-
cube. Such “bad” data elements are routinely simply replaced instead, using median filters that examine the surrounding neighbor-
hood of data values.

Bad pixels in a plane scan image system affect all values within a single spectrum. Correction steps depend on the type of anal-
ysis. In the case of chemometric processing of sets of spectra, bad spectra can be detected as outliers and removed. In the case of
spatial image processing, bad pixels can be replaced with the median value of neighboring pixels. The impact of the number of
bad pixels must be considered both as a function of their spatial distribution and a proportion to the total number of detectors.
Clusters of tens of bad pixels greatly impact the image by removing all spatial resolution for the entire area of the cluster, while
tens of isolated bad pixels in an array containing tens of thousands of pixels have relatively no impact.

How are bad data values detected? Simple thresholding will identify sensors stuck “on” or “off.” For example, with 12-bit digital
data values ranging between 0 and 4095, data values <100 or >4000 may be suspect. PCA score plots of image spectra will often
reveal significant outliers where an individual sensor may give an erroneous result that otherwise lies within the acceptable data
value range. For example, Fig. 7 shows PC1-PC2 score plots (Fig. 7A) before and (Fig. 7B) after replacement of bad line scan
data with neighborhood values. The data are taken from 160,000 reflectance spectra of a single cheese sample. Each line scan image
(320 � 256 pixels) contained 298 bad pixels. The strange clustering of points observed is due primarily to sets of spectra containing
individual values near 0 or 4095. These extreme outliers have very significant leverage and must be detected and removed to obtain
accurate PCA or PLS calibration models. Because hyperspectral images often contain tens or even hundreds of thousands of spectra,
outlier spectra can be liberally removed while retaining quality spectra representative of the true sample nature.

Fig. 5 Wheat kernel: (A) RGB image, (B) NIR image after applying a mask based on the saturation of the absorbance (C) of the conveyor belt.
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4.14.5 Spectral Processing

As with conventional spectroscopy, hyperspectral image reflectance spectra can be further transformed or filtered to remove
unwanted nonlinear, additive, and multiplicative effects. Transformation to absorbance units estimated as the base 10 logarithm
of reflectance, or application of the Kubelka-Munk transform50 may help to “linearize” diffuse reflectance spectra making them
proportional to chemical constituent concentrations, which is frequently the objective of spectroscopic analysis.

Changes in sample orientation, particle size distributions, packing, instrumentation hardware, and/or analytical environment
such as lamp intensity, temperature, or detector response may result in background signal that is added throughout the spectrum.
The application of first and second derivative Savitzky-Golay transforms51–54 can compensate for constant additive effects.

Multiplicative Scatter Correction (MSC)55,56 can be applied to correct for particle light scatter effects when sample preparation or
data acquisition tools cannot be adapted to limit this effect. Since the scatter effect may not be exactly the same for all wavelength
ranges, Isaksson and Kowalski57 proposed correcting the spectral value at each wavelength with independent offset and slope correc-
tion terms. This technique is called Piecewise Multiplicative Scatter Correction (PMSC). Alternatively, the Standard Normal Variate
(SNV) transform was proposed by Barnes et al.58 and has been shown to be equivalent to the MSC transform, differing only in
scaling factors.59

Other preprocessing methods (smoothing, detrend, etc.) could be used but they are not the subject of this article.60

Hyperspectral imaging offers unique opportunities to closely examine the interaction between preprocessing treatments, instru-
mentation, and sample problems. Fundamental particle scattering effects can be explored, for instance, by examining the large pop-
ulations of spectra contained within individual hyperspectral images. Large population statistics and data visualization tools can be
employed to compare the effectiveness of different preprocessing treatments.

A series of hyperspectral NIR images (960–1662 nm) were acquired of ordinary table salt and sugar, separated into eight
different particle size fractions ranging between >400 and <63 mm. From each image 250 spectra were randomly selected from
the two sets of images (salt and sugar), thereby providing a combined spectral data set containing 4000 spectra. PCA was applied
to mean-centered data, following different spectral preprocessing treatments. The results are shown in Fig. 8A, where the plus
symbols represent sugar and the circles represent salt. The arrow indicates the direction from small to large particle size fractions.
Each size fraction has been color coded as well.

Sugar has a much stronger NIR absorbance than salt; consequently, the scattering effects are greater. This is indicated in the first
plot for absorbance spectra (Fig. 8A). The variation in score values for each particle size fraction is much greater for the sugar
samples, and increases with particle size. The first derivative transform (Fig. 8B) reduces the variance in sugar relative to that in
salt; however, the trend in particle size group clusters is still clearly evident. The second derivative transformation (Fig. 8C) results
in a similar reduction in relative variance in the sugar samples.

One approach to MSC corrections was based on first computing individual mean spectra for each of the eight size fractions of
both sugar and salt samples. These 16 spectra then became the target spectra for the respective size fraction MSC corrections. As
indicated in Fig. 8D, this technique greatly reduces the within-fraction variancedeach cluster is significantly tighter when compared
to the untreated absorbance (Fig. 8A). The general trend between different size fractions is the same. Fig. 8E indicates the results
when a single target spectrum is used for each salt and sugar (the mean of the eight respective size fraction spectra) and piecewise
MSC is applied. Here, the variation in sugar spectra has been dramatically reduced. Compared with sugar, the salt has very little
absorbancedconsequently, the piecewise MSC models a much higher noise contribution indicated by the larger relative cluster
sizes. The overall trend in particle size dependency has been reduced for both salt and sugar.
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To indicate the exploratory nature of this process, Fig. 8F shows the results of applying MSC with targets based on particle size
fractions as in Fig. 8D, but to spectra first transformed using the Kubelka-Munk transformation on reflectance spectra. As with the
second derivative transform (Fig. 8C), the size dependency of the salt fractions has been nearly completely removed. These figures
indicate some of the possible ways to combine exploratory analysis with preprocessing and PCA to examine the group populations
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of spectra obtained with hyperspectral imaging. Such exploratory analysis of class populations is realistically possible only with the
immense number of spectra available from hyperspectral images.

After pre-processing methods, classification models can be developed based on the spectral libraries as reference, defined by
previous knowledge or by PCA for instance, in order to discriminate plant from soil, classes of grains, . Depending on the study,
additional libraries can be built to identify germ, starch and hull in a kernel, to identify impurities in grain, to identify stresses on
plants. Models can be developed and applied in a dichotomist way.61

4.14.6 Applications on Agricultural Products and Crops

4.14.6.1 Cereal Grains

The following examples of NIR images aim to demonstrate the potential of this technique to assess damaged kernels and identify
kernel types. Fig. 9 shows a NIR chemical image at 1430 nm following processing with a second derivative using the Savitzky-Golay
algorithm (third polynomial degree and a gap of 15 points). The image shows three maize grains with different characteristics: The
grain at the left part of the image corresponds to a damaged grain containing an insect (weevil larvae), the grain in the middle is
a damaged empty grain, and the grain at the right is a healthy grain. An enlargement of the image at the left that contains the grain
with the insect allows to study the spectral difference between the “healthy” part and the damaged part (containing the insect) of the
grain.

NIR imaging and PCA can also be used for the detection of the presence of rot in cereals. Fig. 10 shows an example of this prob-
lematic with two grains of maize, one of them being rotted (the left part of the image) and the other being healthy. This figure shows
the images taken at two different wavelengths: At 1160 nm, the difference between the two grains is enhanced as it is also shown in
the spectra, and at 1560 nm, the rotten part of the grain becomes clearer. PCA, and mainly the seventh PC, is also useful in order to
put in evidence the rotten part of a grain mainly because of the large loading at 1560 nm as indicated in Fig. 11.
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NIR chemical imaging has shown the potential to provide both speed for high-throughput analysis of large numbers of kernels
for quality assessment and a high content of chemical information, two important criteria for plant breeding studies (e.g., Smail
et al.62; Weinstock et al.63). The selection of a larger field of view to image multiple kernels to extract average measurements per
unit described previously highlights the value of the spectroscopic image for high throughput analysis. If kernels are spectroscop-
ically imaged using a smaller field of view, i.e., at greater magnification, the data acquired may contain a breath of additional valu-
able information, which may help establish phenotypic differences. The previous examples made this point clear.

In the next example, a barley kernel was sequentially sectioned and imaged slice by slice in the NIR spectral range 1100–
2400 nm for 29 times. Each image is 50 mm deeper into the barley kernel than the previous one. It is noteworthy that a single image
acquired from a cross-section of the core of the kernel could be enough to access a large amount of phenotypic information. The
interest of the multiple slices is to follow slice after slice, the chemical composition of the kernel in relation to the known structures
of the kernel. Fig. 12A shows the RGB picture of a barley kernel sliced at 1 mm displaying the germ, the endosperm, and the hull.
Fig. 12B shows the corresponding predicted image by partial least squares discriminant analysis (PLS-DA) displaying the three main
fractions: in red the pixels predicted as lipid, in blue the pixels predicted as starch, and in yellow the pixels predicted as cellulose.
Fig. 12C shows the percentage of each component for each slice from top to inside the kernel by thickness of 50 mm.

Another application of supervised approaches is the use of PLS regression to perform quantitative analysis of chemical compo-
nents on the ROI identified previously. To illustrate this, the next application is dedicated to define a new cereal sorting scale based
on the quality at the kernel level, as requested by the food/feed sector. For this, several sets of 96 single kernels were analyzed indi-
vidually by reference chemical analysis for protein content and images were acquired using a NIR hyperspectral system. After
applying a mask on the images (Fig. 13A), the mean spectra by kernel was calculated and a PLS model was developed. Fig. 13B
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shows the performance of the PLSmodel on a validation set: RMSEP ¼ 0.35% and RPD ¼ 3.3. This application has proved that NIR-
HSI can do what it is usually performed by classical NIR spectroscopy but at kernel level.64

Another application aimed to show the potential of NIR-HSI to assess the quality of pesticide coating treatment on cereals seeds.
The application of the correct chemometric tools offers new future prospects for the quality control of the coating efficiency of pesti-
cides on seeds. Vermeulen et al.65 have shown that PLS-DA models allow sorting the seeds based on the species, on the treated/
untreated status and in some cases on the type of pesticide. On another hand, PLS regression models allow classifying the treated
seeds in two groups according to the average dose of pesticides: underdosing and overdose against the target dose. This method-
ology allows also to assess the pesticide coating homogeneity between seeds inside one batch but also to assess the pesticide coating
homogeneity at the seed level. Fig. 14 shows a RGB picture and a predictive NIR hyperspectral image of a wheat seed displaying the
treated area in white and the non-treated area in gray.

Other studies performed on that topic concern mainly quality parameter determination in the case of single kernel analysis. Cog-
dill et al.66 have used hyperspectral imaging spectroscopy for the study of single maize kernel analysis. After comparison of different
spectral preprocessing methods, they have developed predictive calibrations for moisture and oil content using PLS and principal
component regression (PCR). The most accurate results were obtained for moisture calibration using PLS on the raw data. The
results for the oil content calibration were worse not as accurate as the moisture calibration mainly due to the reference method
rather than the spectrometer. In their paper, Stevermer et al.67 have designed an automated single kernel analysis and sorting system
that allows them to construct models for protein determination. The performance of this system has been tested by predicting
constituents using PLS and comparing the predicted values with the reference values. Gorretta et al.68 proposed a combination
of a hyperspectral system with PLS-DA for the classification of durum wheat kernels according to their vitreousness in order to create
an automatic method to replace the visual method stipulated by the European Union regulations. They obtained a classification rate
of up to 94% when separating two nonvitreous classes, and a 100% separation when separating vitreous and nonvitreous kernels.
More recently, Vermeulen et al.,69 were able to discriminate with high level of confidence between durum and common wheat
analyzed using hyperspectral imaging kernel by kernel. For this, different criteria were combined in a data fusion based method-
ology including visual and morphological information, the protein content calculated with a reference method as well as the
NIR spectral profile.

In the cereal domain, recent studies include the characterization of specific cereals as fonio,70 the online detection and quantifica-
tion of fusarium, as dangerous impurity, in cereals,71–73 the assessment of salt stress tolerance,74 cereal classification according to hard-
ness75 or according to grading regulations76 or the quantification of protein in wheat using hyperspectral imaging,77 among others.

4.14.6.2 Plants

Plant phenotyping refers to a quantitative description of the plant’s anatomical, physiological and biochemical properties. Today,
rapid developments are taking place in the field of non-destructive, image-analysis-based phenotyping that allow for a characteriza-
tion of plant traits in high-throughput.78 Discrimination of plants according to botanical families,79 tracing of plant disease symp-
toms,80 estimation of quality control parameters81 or root detection in soil samples82 are some of the most recent applications

Fig. 11 Left: The seventh principal component of Fig. 9. Right: The blue line represents the loading of the 7th PC and the red line is a raw spectrum
of the healthy grain.
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where hyperspectral imaging has been performed proving the performance of this technique in combination with chemometrics for
the plant characterization and phenotyping.

As example for plant characterization, a sugar beet plant represented in Fig. 15A, was analyzed using a line scan hyperspectral
camera. The spectral libraries were selected and used to develop PLS-DA models for identifying leaves in the images in order to
assess biotic/abiotic stresses. Fig. 15B shows the plant after applying a mask defined using a PLS-DA model “background (conveyor
belt, tile and glass) vs. soil and plant” and after applying DBSCAN. Two clusters were identified: A small one corresponding to a frag-
ment of soil (cluster 2), and a big one corresponding to the object of interest (cluster 1). Successive PLS-DA models were applied in
a dichotomist way to discriminate underground from aerial parts of the plant (Fig. 15C), roots from soil (Fig. 15D) and finally,
stems from leaves (Fig. 15E).

The following study case is an example of supervised data analysis applied in hyperspectral images for plant characterization. In
this case, NIR-HSI and chemometrics were used in order to reduce the time needed to study root systems of legume plant, in partic-
ular the composition of nodules present on the roots of peas (Pisum sativum L.).83

Legume plants can fix atmospheric nitrogen thanks to a symbiosis with bacteria enclosed in nodules, special organs located on
their roots. This nitrogen fixation is possible thanks to leghaemoglobin, a protein synthetized in nodules and keeping O2 concen-
tration in an optimal range in order to supply bacterial respiration and protect nitrogenase enzyme from oxidation.
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Fig. 14 Coated wheat seed: (A) RGB image, and (B) predictive NIR image displaying the treated area in white and the untreated area in gray.

Fig. 15 Sugar beet plant: (A) RGB image, (B) mask applied on NIR image to separate plant from background, (C) predicted image after applying
PLS-DA “soil-root vs. stem-leaf,” (D) predicted image after applying PLS-DA “soil vs. root,” and (E) predicted image after applying PLS-DA
“stem vs. leaf.”
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Leghaemoglobin content being linked to nitrogen fixing activity of nodules, its quantification gives information on the ability of
nodules to fix atmospheric nitrogen.

SVM was used in order to discriminate roots and nodules and PLS was used to quantify leghaemoglobin content in nodules
using NIR hyperspectral images acquired using a line-scan instrument. Fig. 16A shows a RGB image of a root system to be analyzed
by NIR imaging. With PLS, it was possible to predict the leghaemoglobin content of a single nodule. This single nodule prediction
allows then the study of leghaemoglobin repartition among nodules present on a same root system. It can be visualized by con-
structing a false color image with a color scale linked to leghaemoglobin content (Fig. 16B).

With this method, nodules are evaluated based on NIR hyperspectral images and do not need to be previously separated manu-
ally from roots before leghaemoglobin quantification. Leghaemoglobin content is evaluated rapidly and do not need laborious
chemical extraction with toxic reagents and the repartition of leghaemoglobin content can be visualized on the false color image
of the root system.

4.14.6.3 Other

Another important area of work in the use of hyperspectral imaging and chemometrics in the agronomical domain is the food
sector, in particular for the quality control of fruits and vegetables as well as for meat and fish products.84–90 For instance, in
a work aiming to study the ripeness of tomatoes, Polder et al.91–93 used PCA and Fisher’s linear discriminant analysis (LDA; a clas-
sical classification method) in order to visualize the data and calibrate the instrument, respectively. The technique, based on NIR-
HSI to determine the maturity stage of preclimacteric apples,94 applied PCA in order to distinguish the starch concentrations within
one apple and among several apples during maturation. In the same direction, Menesatti et al.95 have also applied multivariate
analysis to determined starch index in apples using hyperspectral NIR images. Mehl et al.96 demonstrate that hyperspectral imaging
system allowed them to determine scabs, fungal and soil contamination and bruising using either PCA or the absorption intensities
at a specific frequency.

Lawrence et al.97 demonstrated the usefulness of PCA for distinguishing the contaminants inside poultry carcasses. In their study
to detect poultry skin tumors, Chao et al.98 used PCA to select useful bands for detecting tumorous regions. Different studies have
been performed for the authentication as well as tenderness estimation in meat and fish.99–103
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Fig. 16 (A) Pea roots with nodules and (B) image of the same root sample constructed in false color with the predicted leghaemoglobin content of
nodules (expressed in mg leghaemoglobin* g�1 fresh nodule) after analysis of the hyperspectral image with discriminant and regression models.
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Hyperspectral imaging combined with SVM were also used in the development of an automatic system for pollen identification
based on its texture classification.40 In this study, a texture feature extractor computes image properties on selected ROIs; these
texture features are then used for pollen load classification. In a comparison of the classification ability of k-NN (k-nearest neigh-
bors), MLP (multilayer perceptron), and SVM using optical microscopy, SVM showed a 76% classification rate for the discrimina-
tion of the different geographical origin compared to 69% for MLP and 67% for k-NN.

Other study tried to automatically sort the different parts of onions, dry peel outer skin and onion bulbs, produced during
specific industrial processes based on PLS-DA.104 Also several studies have been published where hyperspectral imaging is applied
for the detection of melamine and cyanuric acid in feed105 or in milk powder,106 for the authentication of spices,107 and cacao,108 or
for the origin of rice,109 among others.

4.14.7 Conclusion

Spectroscopic imaging, in particular chemical imaging, has rapidly developed over the last two decades into a technology that is
deployed in numerous fields of endeavor. In this particular section, we have described a few applications in the area of agricultural
science; which has proven to be a fruitful area for the exploitation of this particular technology. One of the reasons for this is the
significant spatial/chemical heterogeneity that exists in this area, where structure-function relationships drive performance. On the
contrary, because of the complexity/diversity of the data, this presents challenges for the traditional data mining methodologies. It
must be solved by adding a completely new multivariate descriptor of the data, which relies, for instance, on the shape and size of
intrinsic “objects” within a complex chemical system as an additional discriminator.
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