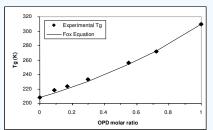
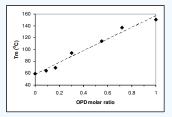

2-Oxepane-1,5-dione: A Precursor of a Novel Class of Versatile Semicrystalline Biodegradable (Co)polyesters.

Jean-Pierre Latere Dwan'Isa, Philippe Lecomte, Philippe Dubois¹, Robert Jérôme

Center for Education and Research on Macromolecules (CERM), University of Liège, B6 Sart-Tilman, B 4000 Liège, Belgium: http://www.ulg.ac.be/cerm

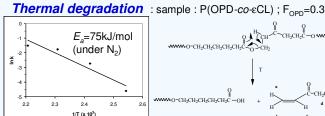

¹Current address: University of Mons-Hainaut, Place du Parc, 20, B-7000 Mons, Belgium

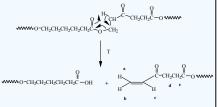


OPD and &CL Copolymerization

Sn(IV) alkoxides are very efficient initiators. Al(OiPr)₃, Y(OiPr)₃ are not suitable because of detrimental complexation of the initiator to the C=O group of the OPD units

Thermal properties : $P(OPD\text{-}co\text{-}\varepsilon CL)$, a semicrystalline copolymer




Cell parameters (Å)	PCL	P(OPD)	
A	7.49	6.80	
B	4.98	5.18	
C	17.05	17.17	
£	6.2	6.2	
δ	2.98	2.82	

Regular and continuous increasing T_m

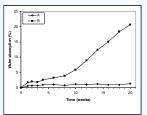
PCL and P(OPD) units are isomorphous

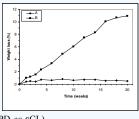
 $P(OPD-co-\epsilon CL)$ containing 30 mol% OPD exhibits a $T_m = 90^{\circ}C$, which opens up new opportunities for applications that require a higher service temperature than PCL, i. e., packaging applications

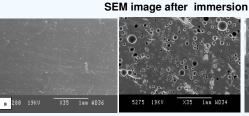
k (%/min) determined by Isothermal TGA

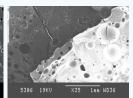
Degradation of P(OPD-co-εCL) is faster than PCL (E_a=92kJ/mol) because of the ketone group of the OPD units

P(OPD-co-εCL) containing 30 mol% of OPD is stable up to 140°C under nitrogen for one hour, such that processing by extrusion is possible.


Mechanical properties


Copolymer	Mn	ε _b	σ _b	σ _y
	(K)	(%)	(MPa)	(MPa)
P(OPD-co-OPD), F _{OPD} =0.33	42	800	26	15
CAPA 650	50	1000	36	13
P(OPD-co-OPD), F _{OPD} =0.34 P(OPD-co-OPD), F _{OPD} =0.33 P(OPD-co-OPD), F _{OPD} =0.33	33K 42K 50K	Impact energy (kJ/m²) 18-20 No breaking No breaking		


Above a critical molecular weight, the tensile and impact properties are comparable to those ones of commercially available PCL (CAPA, Solvay)


Hydrolytic degradation

Conditions: pH=7.4 at 37°C; P(OPD-co-\varepsilonCL) (Mn=35000; 30 mol% of OPD)

A = PCL; $B = P(OPD-co-\varepsilon CL)$

After 0 days

After 9 days

After 20 weeks

The C=O group imparts higher hydrophilicity, which has a key role in the increase of the hydrolytic degradation rate compared to PCL

Crosslinking under UV Exposure of P(OPD-co-εCL) (F_{OPD}=0.3) to UV induces loss of solubility. Frequency sweep experiments show higher elasticity above T_m . An increased brittelness was shown by tensile properties. No significant effect on T_m and ΔH_m was observed. The C=O group of the OPD units is at the origin of this behavior.