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Abstract

This paper investigates the mean-variance and diversification properties of risk-based strategies per-

formed on style or basis portfolios. We show that the performance of these risk strategies is improved

when performed on portfolios sorted on characteristics correlated with returns and is highly sensitive

to the sorting procedure used to form the basis assets. Whereas the extant literature provides mixed

support for the outperformance of smart beta strategies based on scientific diversification, our de-

signed strategies outperform both the market model and multifactor model. Our testing framework

is based on bootstrapped mean-variance spanning tests and shows valid conclusions when control-

ling for multiple testing, transaction costs, and luck from random basis portfolio construction rules.

Economically, our results are supported by diversification-based properties.

Keywords: Bootstrap, Mean-variance efficiency, Portfolio sorting, Risk-based optimization, Smart

Beta, Style investing.

1. Introduction

At the core of the Modern Portfolio Theory, mean-variance portfolio optimization (MVO) poses

serious practical issues. On the occasion of the 60th anniversary of the Markowitz (1952) optimiza-

tion, Kolm et al. (2014) debate on the common challenges induced by MVO, which make portfolio

solutions often unimplementable in practice. Performing an optimization exercise à la Markowitz

(1952) on a set of individual assets indeed induces large estimation errors which leads to poor sta-

bility of the estimators. Palczewski and Palczewski (2014) make a thorough review of the sources

of the errors as well as their impact on the stability of the estimator. As a consequence, passive

investors have considered for more than 60 years, capitalization-weighted (CW) indices as a proxy

for the tangency portfolio, namely the Maximum Sharpe Ratio (MSR) portfolio. Although CW
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solutions provide a simple, cost-effective and intuitive manner to allocate stocks, they are exposed

to certain inherent weaknesses, notably their embedded momentum bias and their concentration in

large capitalization stocks. This situation has also led to the emergence of the so-called “low-risk

portfolios” – such as minimum variance (MV), maximum diversification (MD), and risk parity (RP)

– within the smart beta industry as the errors in estimating expected returns have been shown to

pose a serious threat on the efficiency of the MVO output (Best & Grauer, 1991a; Best & Grauer,

1991b). Yet the extant literature has presented mixed evidence regarding the performance of these

portfolios.

While low-risk portfolios typically outperform the CW benchmark over long horizons, Boudt et al.

(2015) show that such strategies remain highly sensitive to market downturns. Taking into account

that low-risk portfolios tend to have, by design, a low market beta, Anderson et al. (2012) note

that risk parity portfolios require a certain level of leverage to achieve the significant gains that the

academic literature associates with them. Scherer (2011) analytically show that minimum variance

optimizations also imply higher weights to low beta assets and further evidence the underperformance

of an (unleveraged) minimum variance portfolio against a combination of long-short (beta) portfolios

and the CW market portfolio.

Besides, the inflation of multifactor models and risk factors has extended the investor’s oppor-

tunity set to style portfolios.1 This context raises some questions on the performance of smart beta

solutions as they have mainly focused so far on low-risk strategies conducted on individual assets.

This paper investigates the mean-variance properties of low-risk portfolios when applied on basis

portfolios. We show that the performance of these portfolios is highly sensitive to its underlying

assets or building blocks. Directly related to our research, Grinblatt and Saxena (2018) established

a statistical technique to create a mean-variance efficient (MVE) portfolio starting from a set of

characteristics- or style portfolios. This portfolio is shown to span the opportunity set formed from

a 3-factor model (Fama & French, 1993). Ao et al. (2018) compare the properties of the MV and

MVE portfolios for a large set of individual assets augmented with risk factors using both sample and

robust estimates of the variance-covariance matrix. The authors design a new statistical approach

to reduce estimation error and show that considering risk factors together with individual assets

manages to deliver optimal risk-return properties. Both papers allow long and short positions into

the extreme portfolios and might therefore constitute an unfeasible outcome for common investors.

We differ from the previously cited works, by providing long-only investment solutions and by using

the latest advances in the portfolio sorting literature to construct the basis portfolios (Chan et al.,

2009; Chen & De Bondt, 2004; Hou et al., 2018; Kogan & Tian, 2015; Lambert et al., 2020). We

show that the combination of low-risk optimizations with advanced portfolio sorts provide long-only

1Dimson et al. (2017) record over 6,000 ETFs/ETPs with 145 smart beta equity providers across 32 different
countries in 2016. Quoted from Bloomberg, the number of ETFs reached roughly 5,000 in 2016 while outnumbering
the number of listed securities, which was slightly above 4,000 over that year. This article is accessible at the following
address: https://www.bloomberg.com/news/articles/2017-05-12/there-are-now-more-indexes-than-stocks.
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solutions with attractive risk-return properties to the smart beta industry.

We compare the standard way to allocate stocks into these basis portfolios (using an independent

scale with NYSE breakpoints) to the more recent dependent technique, which works in successive

subportfolios. Whole-sample breakpoints are jointly used with a dependent sorting to obtain our

opportunity set (Lambert & Hübner, 2013; Lambert et al., 2020). Hereafter, we refer to these two

sets of basis portfolios as the dependent and independent basis portfolios.

Our empirical study proceeds as follows. First, we build on the “diversification return” from

Booth and Fama (1992) and the extensions of Erb and Harvey (2006) and Willenbrock (2011) to

infer the diversification properties of our basis portfolios. We show that risk optimizations on de-

pendent basis portfolios outperform (in terms of Sharpe ratio and alpha) risk optimizations on

independent basis portfolios. Second, we show that the risk optimizations on dependent basis port-

folios span the traditional Fama and French (1993) three-factor model. Our empirical approach

relies on the mean-variance spanning test of Kan and Zhou (2012), which evaluates the benefit of

adding new investments to a baseline portfolio and discriminate these new investments according to

their contribution to the baseline portfolio’s mean-variance efficiency. We perform the mean-variance

spanning test in a bootstrap setting, similar to that of Fama and French (2010) and Harvey and

Liu (2019), to obtain spanning tests robust to the effect of multiple testing. Third, we apply the

factor selection technique of Harvey and Liu (2019) to conduct a horse race between the different

configurations of the sorting methods as well as the smart beta strategies. Our findings show that

the MVE of the strategy is first subject to the definition of the sorting method, then to the choice

of the risk optimization method. Our results are robust to the inclusion of transaction costs (see,

e.g., Hasbrouck, 2009; Novy-Marx & Velikov, 2016). Finally, we demonstrate that our results do not

hold for a random sort into portfolios, which suggests that efficient sorting procedures are important

when characteristics are significantly correlated with returns.

Our approach is original and important as it relies on scientific diversification methods but is

also driven by economic insights and market practice. For instance, our risk parity portfolio on

size/book-to-market opportunity sets not only delivers interesting diversification properties but also

makes sure each portfolio attribute contributes equally to the variance of the portfolio. Finally,

even though our approach has a mean-variance focus, we check the higher-moment properties of our

candidates and show that they manage to reduce left-asymmetry.2

The rest of the paper is organized as follows: Section 2 describes the data and methodology used

to construct the basis portfolios. Section 3 presents smart beta strategies and their diversification

properties. In Section 4, mean-variance spanning tests are used to compare smart strategies against

2For instance, maximum diversification optimizations on dependent portfolios offer, on average, Sharpe ratios (SR)
adjusted for skewness and kurtosis that are 1.3 greater than on independent portfolios for the period ranging from
July 1993 to December 2015. Adjusted Sharpe ratios are estimated by SR(1 + (S/6)SR − (K − 3/24)SR2) where S
and K denote skewness and kurtosis respectively. For the sake of brevity, we do not report these descriptive statistics.
However, results are available upon request.
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single-index and multifactor models. In Section 5, we test the significance of our smart strategies

to complement a multifactor model and explain the cross-section of characteristic-sorted portfolios.

Section 6 investigates the performance of smart betas on portfolios constructed randomly. Section

7 concludes the paper.

2. Investment Opportunity Set

This section describes our opportunity set; i.e., the set of portfolios that constitute our basis

assets. Our approach consists of stratifying the U.S. stocks universe in investment style portfolios

under a classical angle; namely, size, book-to-market, and momentum portfolios.

Grouping stocks into portfolios offers several advantages. First, forming groups of stocks into

style portfolios circumvents the burden of estimating a large covariance matrix of returns (Ao et al.,

2018; Berk, 2000). Moreover, our framework is consistent with the stylized facts of Barberis and

Shleifer (2003), who demonstrate the natural tendency of investors to allocate funds according to

asset categories, and Froot and Teo (2008), who also observe that institutional investors tend to

reallocate their funds across style groupings. Our objective to perform risk optimization techniques

on investment style portfolios is, therefore, in line with the reallocation practice of institutional

investors and avoids the implementation costs of working with a wide variety of individual securities.

Our stratification relies on two sorting methodologies. The first construction methodology is

based on an independent sort of stocks into portfolios with NYSE-breakpoints and has become a

standard in the asset-pricing literature for constructing characteristic-sorted portfolios (Fama &

French, 1993, 1995, 2015). The second sorting methodology follows Lambert et al. (2020) and

applies a dependent sort using whole-sample breakpoints; this strategy implies the sorting of stocks

in successive subportfolios according to characteristics. We stratify the U.S. stock universe into

six (2×3), nine (3×3) or twenty-seven (3×3×3) groups. The double sort is performed on size and

book-to-market characteristics, while the 3×3×3 split is constructed on the momentum, firm size,

book-to-market characteristics. More details of the two methodologies can be found below.

2.1. Data

The data are obtained by merging data from the Center for Research in Security Prices (CRSP)

and Compustat. The CRSP database contains historical price information, whereas Compustat

provides accounting information for all stocks listed on the major U.S. stock exchanges. The sample

period ranges from July 1963 to December 2015 and covers all stocks listed on the NYSE, AMEX,

and NASDAQ.3 For stocks listed on the NASDAQ, the data collection starts in 1973. The analysis

covers a total of 618 monthly observations. Following Fama and French (1993) to filter the database

3Data regarding Compustat and CRSP are available from January 1950 and January 1926, respectively. After
correcting the databases for survival and backfill biases, the sample starts in July 1953. For comparison purpose, we
start our empirical analyses from July 1963 onwards as in Fama and French (1993).
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and construct cross-sectional portfolios, we keep stocks with a CRSP share4 code (SHRCD) of 10

or 11 at the beginning of month t, an exchange code (EXCHCD) of 1, 2 or 3 available shares

(SHROUT) and price (PRC) data at the beginning of month t, available return (RET) data for

month t, at least 2 years of listing on Compustat to avoid survival bias and a positive book-equity

value at the end of December of year y − 1. We define the book value of equity as the Compustat

book value of stockholders’ equity (SEQ) plus the balance-sheet deferred taxes and investment tax

credit (TXDITC). If available, we decrease this amount by the book value of the preferred stock

(PSTK). If the book value of stockholders’ equity (SEQ) plus the balance-sheet deferred taxes and

investment tax credit (TXDITC) is not available, we use the firm’s total assets (AT) minus its total

liabilities (LT).

Book-to-market equity (B/M) is the ratio of the book value of equity for the fiscal year ending

in the calendar year y − 1 to market equity. Market equity is defined as the price (PRC) of the

stock times the number of shares outstanding (SHROUT) at the end of June y to construct the size

characteristic and at the end of December of year y − 1 to construct the B/M ratio. Momentum is

defined as in Carhart (1997); i.e., based on a t− 2 until t− 12 cumulative prior return.

2.2. Sorting Out Stocks

In the original Fama–French approach, portfolios are constructed using a 2×3 independent sorting

procedure: two-way sorting (small and large) on market capitalization and three-way sorting (low,

medium, high) on the book-to-market equity ratio. Six portfolios are constructed at the intersection

of the 2×3 classifications and are rebalanced on a yearly basis at the end of June. These style

classifications are defined according to the NYSE stock exchange only and then applied to the whole

sample (AMEX, NASDAQ, and NYSE).5 The authors motivate the use of NYSE breakpoints by the

need to have approximately the same market capitalization across portfolios and the same number

of NYSE firms in each portfolio.

The second sorting methodology is an extension of the Fama–French sorting methodology. Lam-

bert et al. (2020) sort stocks in successive subportfolios according to various characteristics; moreover,

they define sorting breakpoints based on the whole sample rather than considering only the NYSE.

The authors indeed uncover that these NYSE breakpoints create an imbalance in the (total) number

of stocks between small- and large-cap portfolios such that, an independent sorting leads to a higher

number of stocks in small-value portfolios (Cremers et al., 2012). As from January 1963 to December

2015, the market equity and book-to-market equity of a firm were, on average, negatively correlated

(−5%), using an independent sort on negatively correlated variables can induce, by design, a strong

4See Hasbrouck (2009, p. 1455):“restricted to ordinary common shares (CRSP share code 10 or 11) that had a valid
price for the last trading day of the year and had no changes of listing venue or large splits within the last 3 months of
the year”.

5The NYSE is represented by stocks that account for the largest capitalization in the CRSP database. The exchange
codes 1, 2 and 3 represent the NYSE, NASDAQ, and AMEX, respectively
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tilt toward the extreme categories of inverse ranks, i.e., low-high and high-low.

Another practical consequence when sorting stocks into portfolios, as already stated by Chan et

al. (2009), is that the original independent sorting with NYSE-breakpoints procedure could induce

large value stocks to be categorized as growth stocks. Supportive evidence can be found in the

recent work of Lettau et al. (2018) who characterize the holdings of value mutual funds using Daniel

et al. (1997) methodology.6 Lettau et al. (2018) show that value mutual funds tend to hold a large

proportion of their investments in growth stocks. However, the ranking into quantiles relies on NYSE

breakpoints. Lambert et al. (2020) document that the choices underlying the sorting methodology

are important to draw robust inference on firm style characteristics. In particular, the standard

procedure of NYSE breakpoints and the sequence of the dependent sort matter. If the sorting

methodology is responsible for these empirical results, we claim that forming basis portfolios using

this procedure will lead to a biased allocation of stocks into style portfolios and stratification of the

U.S. equity universe, and therefore to a misleading optimization exercise.

To better understand the problem, we compare the Morningstar style classification of 8,739

mutual funds (focused on the U.S. equity market) to the ones implied by the dependent on all

breakpoints and independent on NYSE breakpoints sorting procedures. For the dependent sort, the

classification of stocks for growth and value characteristics is obtained by applying a first sort on

the size characteristic of a firm and then performing a second sort on the book-to-equity market of a

firm. We construct a matrix of 5×5 portfolios along the size and value characteristics of a firm. For

the independent sort, the output is similar to the 5×5 size and value portfolios available on Kenneth

French’s website.

The sample of mutual funds is obtained from Morningstar and CRSP Mutual Fund databases

over the period April 2002 to December 2015. Databases are merged according to two labels:

funds’ CUSIP and a phrase matching techniques applied on funds’ name. Monthly performance

and quarterly holdings are obtained from CRSP Mutual Fund Database. Style classifications are

obtained from Morningstar. Next, we match the information of funds’ holdings with the value-

growth classification from the independent (with NYSE breakpoints) and dependent (with whole

sample breakpoints) sorting methodologies. The classification is applied according to accounting

information obtained from Compustat at the end of June for each stock. The stock universe is then

split according to a 1–5 scale: 1 represents a growth tilt, 3 represents a blend/neutral style, and 5

represents a value tilt as in the work of Lettau et al. (2018).

Figure 1 illustrates the distribution of funds along the dependent-name breakpoints (hereafter

referred simply to dependent sort) and independent-NYSE (hereafter referred simply to independent

sort) frameworks for the following Morningstar categories: growth (left), blend (middle), value

6Daniel et al. (1997) sort stocks at the end of June of each year to form 125 portfolios along a triple dependent
sort with the first sort on firms size, the second sort on firms’ industry adjusted book-to-market and the final sort on
firms’ momentum (cumulative return from t-2 to t-12).
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(right). The distributions across the growth and value styles demonstrate that the BM-score of

mutual funds computed using a dependent scale instead of an independent scale is better aligned

with the style classification of the fund. Indeed, the distribution for growth funds is more skewed

to the left for the dependent sort as shown by the 21.32% (dependent sort) vs. 9.17% (independent

sort) of the observations falling under the first quintile of the distribution. Similarly, for value funds,

the distribution is more skewed to the right for the dependent sort given that 7.30% (dependent sort)

vs. 4.81% (independent sort) of the observations falling under the last quintile of the distribution.

Lastly, the mode of the distribution of blend mutual funds under a dependent scale falls around the

third quintile as 49.42% of the observations are found in the quintile 2 and 4. Using an independent

scale, the mode is shifted to values below 3, which are representative of growth stocks. This would

wrongly indicate that these funds hold more growth than value stocks and suggest that the sorting

definition could mislead the allocation.

In summary, value (growth) mutual funds have a higher probability of being categorized as value

(growth) funds under a dependent sorting procedure than an independent sorting procedure. Blend

mutual funds also show better neutrality to the value-growth categorization using a dependent sort.

[Figure 1 about here.]

2.3. Pair-Wise Correlation of Style Portfolios

Figure 2 illustrates the stock distribution when the number of portfolios is increased either by a

larger split of the sample (from a 2×3 to a 3×3 split) or by adding a new characteristic (3×3×3).

The 3×3×3 splits are constructed based on the size, value, and momentum characteristics of a firm.

We observe that using an independent sort results in an imbalance of stocks across the portfolios,

and this effect becomes larger when more groups are constructed.

[Figure 2 about here.]

We expect the higher level of diversification induced by the dependent sort and by the higher di-

mensional space representation of the U.S. equity market to deliver additional diversification benefits

for risk-based optimizations with regard to independent basis portfolios.

To verify this hypothesis, in Table I, we compute the average correlation between the investment

style portfolios. It can be shown that the correlation is lower when stocks are sorted dependently and

are split into a larger number of groups (i.e., 3×3×3). Here, the basis portfolios are cap-weighted

portfolios to mitigate the impact of small cap stocks and rebalanced annually at the beginning of

July consistent with the approach of Fama and French (1993).7

[Table I about here.]

7Our work could be further extend as in the work of Brandt et al. (2009) who allocated the weights of stocks in
portfolios according to the level of their characteristics as to maximize an CRRA investor’s utility. However, we leave
this option to more interested readers as we are more interested to review the consequences of stock classification
methods for risk-based optimizations rather than the allocation scheme inside the basis portfolios.

7



3. Smart Investment Strategies

Table II recalls the analytic forms of the risk-based allocations that serve as a practical base

in our empirical analysis; namely, minimum variance (MV), maximum diversification (MD), and

risk parity (RP). Following Ao et al. (2018), Ardia et al. (2018), Grinblatt and Saxena (2018), and

Roncalli and Weisang (2016) among others, these risk-based allocations are rebalanced on a monthly

basis.

[Table II about here.]

To feed these low-risk investment strategies (MV, MD, RP), we form 6, 9, and 27 cap-weighted

portfolios and use 60 daily returns to estimate the covariance matrix.8 In the most extreme case (27

portfolios), we are left with 0.17 data points per parameter. Even this simplified situation might

create large sampling errors if we only consider the sample covariance matrix in our optimizations. In

our applications, we use a traditional shrinkage methodology developed by Ledoit and Wolf (2004) to

estimate the covariance matrix with lower sampling errors. Further details on the shrinkage method

used can be found in the Appendix A.

3.1. Diversification Properties

This section compares the diversification returns achieved through implementing risk-based op-

timization based on dependent and independent basis portfolios and further decomposes the diver-

sification return into its two components and performs a paired difference test.

The diversification return, according to Booth and Fama (1992), is defined as the difference

between the compound return of a portfolio and the weighted average of the compound return

of its constituent assets. This relationship assumes that the portfolios are rebalanced so that the

weights are held constant and moments higher than the second are very small. In this situation,

the diversification return increased with the spread between the individual asset variance and its

covariance with the portfolio.

Denoting the geometric average return as g, the volatility as σ, and the arithmetic average return

as µ, the geometric return of a portfolio p can be expressed as follows:

gp = µp −
σ2
p

2
(1)

8We use a range of 60-day to estimate variance-covariance matrices for two reasons; first, Fama and French (2018)
use 60 days of lagged returns to estimate the monthly variance of stocks, and second, real-life applications on tradable
assets would also impose practical constraints over the length available for time-series (Idzorek & Kowara, 2013).
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The diversification return (DR) can be written as follows (Booth and Fama (1992) and Willen-

brock (2011)):

DR = gp −
N∑
i

wigi (2)

where i stands for the ith security in the portfolio p, and g refers to the geometric return. Weights

(wi) are assumed to be constant over the estimation period. We refer to fixed-weight diversification

return using the superscript (FW).

Substituting (1) in (2), we obtain

DRFW = µp −
σ2
p

2
−

N∑
i

wi

(
µi −

σ2
i

2

)
(3)

Rearranging the terms,

DRFW = µp −
N∑
i

wiµi︸ ︷︷ ︸
DRFW

1 = 0 if weights are constant

+
1

2

(
N∑
i

wiσ
2
i − σ2

p

)
︸ ︷︷ ︸

DRFW
2 = variance reduction benefit

(4)

In the last part of the equation, we retrieve the variance reduction benefit (DRFW
2 ) of Booth and

Fama (1992) and Willenbrock (2011). Note that in theory, wi should be determined at inception and

remain constant over the life of the strategy. To implement equation (4) for rebalancing strategies

(non fixed weight), Erb and Harvey (2006) use the average of the weights over the sample period

(wi = 1
T

∑T
1 w

t
i). As the computation of the diversification return induces a comparison with a

static portfolio endogenous to each strategy, it is difficult to compare the total diversification gains

across a pair of smart beta strategies, which shift systematically assets weights. We, therefore,

extend equation (4) to consider a rebalanced portfolio p and its diversification return with regard

to an EW benchmark. We chose the equal-weighted strategy because this is the only allocation

for which we know ex-ante the value of wi, that is (1/N), as long as the amount of securities (N)

remains constant in the portfolio.9 In this alternative framework, we impose that two smart beta

strategies constructed on an equivalent number of basis portfolios (N) share the same benchmark

(1/N). We denoted the principle that the diversification return is compared to an EW strategy

9Due to the simplicity and the out-of-sample performance of the strategy, DeMiguel et al. (2009, p. 1948) also
recommend the “1/N” portfolio as “the first obvious benchmark” for evaluating other weighting schemes.

9



using the superscript (EW) as follow,

DREW =µp −
1

N

N∑
i

µi︸ ︷︷ ︸
DREW

1

+
1

2

(
1

N

N∑
i

σ2
i − σ2

p

)
︸ ︷︷ ︸

DREW
2

(5)

With this benchmark, it may not be immediately clear whether the measure departures from the

essence of diversification, which concerns the interaction among the constituents of a single portfolio.

We may see this interaction as DREW simply adds another strategic return, i.e.,
∑N

i

(
wi − 1

N

)
gi,

to DRFW , that is,

DREW =DRFW +
N∑
i

(
wi −

1

N

)
gi︸ ︷︷ ︸

DRFW
3 = gain in strategic return over EW

=DRFW +
N∑
i

(
wi −

1

N

)(
µi −

σ2
i

2

)

=DRFW +

N∑
i

(
wi −

1

N

)
µi −

1

2

N∑
i

(
wi −

1

N

)
σ2
i

=DRFW +

N∑
i

wiµi −
1

N

N∑
i

µi −
1

2

N∑
i

wiσ
2
i −

1

2

1

N

N∑
i

σ2
i

=µp −
1

N

N∑
i

µi +
1

2

(
1

N

N∑
i

σ2
i − σ2

p

)
= DREW

1 + DREW
2

(6)

where the term DRFW
3 is the spread between the weighted average and the simple average of the

geometric return of the portfolio’s assets. It can be interpreted as the hypothetical gain in geometric

return obtained by selecting a rebalancing strategy different from an equal-weighted allocation.

The term might thus be useful to measure the return attributed to the strategic decision which

allocates the opportunity set. For example, it could tell us whether a minimum variance offer a

higher strategic return than an equal-weight for allocating a set of independent-sorted portfolios (or

dependent-sorted portfolios).

To test the statistical difference in diversification return brought by a pair of strategies performed

on two opportunity sets, we follow the indirect bootstrap framework of Ledoit and Wolf (2008),

which is initially constructed to compare if a pair of strategies have statistically equivalent Sharpe

ratios. In their conclusion, Ledoit and Wolf suggest extending their model to other mean-variance

performance measures. We thus revisit their framework to a spread in diversification return between
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a pair of strategies. We provide more details on our extension in the Appendix B. In short, we aim

to compare the spread in diversification return (∆ Dep-Ind) estimated in the original sample to an

empirical distribution of spreads constructed from bootstrapped samples, and then infer the level of

significance of this spread.

We report, in Table III, the results of the diversification return for the low-risk investment

strategies based on 2×3, 3×3, and 3×3×3 basis portfolios. We observe that the spread in variance

reduction benefit (DRFW
2 or DREW

2 ) is in 8 out of 9 times statistically greater for the set of dependent

basis portfolios at the usual significance level. According to DRFW
3 , it also seems more interesting

to perform any smart beta strategy on dependent portfolios rather than independent portfolios.

For 7 out of 9 risk-based optimizations, the dependent opportunity set offers significantly higher

total diversification returns (DREW ) than the independent sort. Consistent with Grinblatt and

Saxena (2018), risk-return improvement can be achieved by allocating basis portfolios with opti-

mization techniques, which departure from the traditional equal-weight allocation. However, our

results uncover that it is only valid when advanced sorting methods are used to construct the basis

portfolios. In the Table, the dependent opportunity sets systematically outperform the independent

opportunity sets.

[Table III about here.]

The next section is dedicated to providing a methodological analysis on the mean-variance per-

formance of the smart beta strategies.

4. Mean-Variance Spanning Test

Mean-variance spanning à la Huberman and Kandel (1987) means that a set of K risky assets

spans a larger set of K + N assets if the efficient frontier made of the K assets is identical to the

efficient frontier comprising the K + N assets. We initially set R1 to a K-vector of the returns on

K benchmark assets, R2 to a N -vector of the returns on N test assets, and R to the raw returns on

K +N assets. Huberman and Kandel (1987) define the following regression test:

Rt2 = α+ βRt1 + et (7)

The null hypothesis H0 sets α = 0 and δ = 1−β = 0 and implies mean-variance spanning as the

benchmark assets dominate the test assets; both assets have the same mean, but the K benchmarks

have a lower variance than the test assets.

Considering an efficient frontier comprising K+N assets, the following two formulas express the
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optimal weights of the N assets into the tangent MSR (Qw1) and GMV (Qw2) portfolios:10

Qw1 =
QV −1µ

1
′
N+KV

−1µ
=

Σ−1α

1
′
N+KV

−1µ

Qw2 =
QV −11N+K

1
′
N+KV

−11N+K
=

Σ−1δ

1
′
N+KV

−11N+K

(8)

where Q = [0N×K , IN ] with IN , an N ×N identity matrix, Σ = V22 − V21V
−1

11 V12 which comes

from V the variance-covariance matrix of the K benchmark assets (R1) plus the N test assets (R2)

that is,

V = V ar[Rt1, R
t
2] =

[
V11 V12

V21 V22

]
(9)

The value of alpha will determine whether the tangency portfolio is improved by the introduction

of the N assets, while testing beta will determine whether a significant change is induced in the

GMV portfolio by the addition of the N assets. Huberman and Kandel (1987) jointly test these two

conditions. The rejection of mean-variance spanning could thus find two sources: an improvement

in the slope of the tangency portfolio or an improvement in the risk-return properties of the GMV

portfolio. However, beta can be estimated more accurately than alpha, as it does not depend on the

expected returns of the assets (see equation 8). Therefore, the statistical significance of the change

in the composition of the GMV portfolio can be reached without implying economic significance.

To circumvent this problem, Kan and Zhou (2012, hereafter KZ) propose to test the two conditions

separately and to adjust the significance threshold of the two tests to economic significance. If the

GMV condition is rejected more easily, the significance threshold should be reduced.

The KZ step-down test proceeds as follows: The first test defines the null hypothesis for the

tangent portfolio such that α = 0N using the OLS regression. The tangency portfolio is improved

when the null hypothesis is rejected.

H1
0 : α = 0N (10)

Kan and Zhou (2012) perform a test for the statistical significance of the hypothesis similar to a

GRS F -test. The F -test for the first hypothesis (H1
0 ) is

F1 =
T −K −N

N

[
â− â1

1 + â1

]
(11)

10To make a clear distinction between the risk-optimization that minimizes the portfolio variance and the ex-post
global minimum variance portfolio, we denote the former MV and the latter GMV in the rest of the paper. MSR will
denote the tangent portfolio, i.e., maximum Sharpe ratio.
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where T is the number of observations; K is the number of benchmark assets; N is the number

of test assets; â1 = µ̂′1V̂
−1

11 µ̂1 represents the squared Sharpe ratio of the K benchmark assets (R1),

with V̂11 denoting the variance and µ̂1 the vector of mean return of the benchmark assets; and â

takes the same notation as â but refers to the benchmark assets plus the new test asset (R).

The second test of the step-down procedure defines the null hypothesis for the GMV portfolio.

This second test is conditional on the first test, α = 0N , and verifies whether δ = 1N − β1K = 0N .

Only when both conditions are rejected does the test suggest that the GMV portfolio is improved

by adding N assets to the K benchmark assets.

H2
0 : δ = 1N − β1K = 0N |α = 0N (12)

The F -test for the second hypothesis (H2
0 ) is

F2 =
T −K −N + 1

N

[
ĉ+ d̂

ĉ1 + d̂1

1 + â1

1 + â
− 1

]
(13)

where ĉ1 = 1
′
K V̂

−1
11 1K and d̂1 = â1ĉ1 − b̂21 are the efficient set (hyperbola) constants with â1 =

µ̂
′
1V̂
−1

11 µ̂1 and b̂1 = µ̂
′
1V̂
−1

11 1K for the benchmark assets (R1). µ̂1 and V̂11 denote the vector of mean

return and the variance of the benchmark assets. â, b̂, ĉ and d̂ are the equivalent notations for the

benchmark assets plus the new test assets (R).

In Figure 3a, we graphically illustrate a significant improvement in the tangency portfolio when

a test asset (R2) is added to the benchmark assets (R1). In Figure 3b indicates a significant im-

provement in the GMV portfolio when a test asset (R2) is added to the benchmark assets (R1).

[Figure 3 about here.]

Mean-variance spanning implies that both null hypotheses hold (H1
0 and H2

0 ). The benchmark

assets R1 are said to span the test assets R2 if the weight attributed to the N test assets within the

efficient frontier comprising K+N assets is trivial. Put differently, discarding the N test assets does

not significantly change the efficient frontier of the K benchmark assets from a statistical standpoint.

By testing the two hypotheses separately, we gain understanding of the reason for mean-spanning

rejection. If the mean-variance test is rejected, the test assets improve either the slope of the

tangency portfolio or the risk-return properties of the GMV portfolio. Assuming the existence of a

risk-free rate, investors are mostly concerned by the difference in the tangency portfolios.

Our application of mean-variance spanning tests whether smart investment strategies span ex-

isting benchmarks, such as the single-factor model or the multi-factor model of Fama and French

(1993) (Section 4.1). Spanning tests between the different configurations of low-risk portfolios are

also performed to investigate the consequences of the use of different opportunity sets (Section 4.2).11

11The MATLAB code is available on Prof. Guofu Zhou’s website.
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Notice that all the following tables report the p-values of the F-tests while controlling for multiple

testing, which are more restrictive than the p-values from the original test of Kan and Zhou (2012)

(Appendix C explains in detail the steps of the multiple testing method).

4.1. Mean-Variance Spanning Test of the Traditional Multi-Factor Models

We assume the market model of Sharpe (1964) and the Fama and French (1993) 3-factor model

as our initial choices for the benchmark portfolio R1 and construct multiple scenarios to test the

superiority of portfolio sort configurations for risk-optimization strategies.

In Scenario 1, R1 comprises two assets: an investment in a 30-year U.S. treasury bond (B30)

and the market portfolio, which are both given in excess of the risk-free rate (one-month T-bill from

Ibbotson). The market portfolio and the risk-free rate are obtained from Kenneth French’s website

while the 30-year U.S. treasury bond (B30) is obtained from CRSP U.S. Treasury and Inflation

Indexes.

In Scenario 2, R1 comprises four assets: the 30-year U.S. treasury bond (B30) and the market

portfolio (Mkt), the size (SMB) and value (HML) factors obtained from Kenneth French’s data

library.

In Scenario 3, R1 comprises two assets: an investment in a 30-year U.S. treasury bond (B30)

and the gross return of one smart beta strategy while R2 is now the market portfolio (Mkt).

In all scenarios, R2 is the gross return of one smart beta strategy (taken in excess of the risk-

free rate but without taking transaction costs into account). We consider the strategies gross of

transaction costs because the risk factors used as explanatory variables are also gross of transaction

costs. We provide further evidence on the performance of the strategies net of transactions latter in

the next sub-section of the paper.

The step-down spanning test proceeds as follows: We first test the null hypothesis H1
0 that the α

is equal to 0, meaning that no improvement is obtained in the efficient frontier by adding the smart

beta strategy to the initial benchmark portfolio (R1). We consider the usual significance thresholds;

i.e., 1%, 5%, and 10%. Consistent with post-publication concerns claimed by Mclean and Pontiff

(2016), our results will be further split into two sub-periods: the period for the full sample and the

period after the publication date of the seminal Fama and French (1993) paper.

We report in Table IV the results for the dependent and independent opportunity sets. Only

bootstrapped p-values are reported as these ones control for multiple testing and are consequently

more conservative than the standard p-values found in the MVE test from Kan and Zhou (2012).

Model (1) shows that the traditional CAPM model does not span an expanded set augmented with

risk-optimization strategies. The tangent portfolio level (F1) is significantly improved when adding

the smart beta strategies using both the dependent and independent basis portfolios (all p-values

are significant, with a 99% confidence level). However, the results of Model (2) indicate that a

three-factor model spans the larger set comprising the original assets supplemented by a smart beta

factor defined using independent basis portfolios (Panel A). Yet, several smart betas performed on
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a dependent opportunity set (Panel B) improve the tangency portfolio implied by the three-factor

model: 4 strategies out of 9 improve the initial 3-factor portfolio at the 90% confidence level. Finally,

Model (3) shows that smart beta strategies performed on dependent basis portfolios span (7 out of 9

cases) the tangent portfolio made of the traditional cap-weighted market portfolio. These results do

not hold for independent basis portfolios. This evidence makes the latter sub-optimal with regard

to low-risk strategies implemented on dependent basis portfolios (i.e., 3×3 and 3×3×3).

[Table IV about here.]

Next, we present in Table V the results on the post-publication period of the Fama and French

(1993) 3-factor model. Findings suggest that all low-risk strategies performed on a dependent op-

portunity set reject the mean-variance spanning hypothesis of the CAPM and 3-factor model as

both sub-hypotheses (on alpha and delta) are statistically different from 0. This means that two

portfolios of the mean-variance frontier (the MSR and the GMV) are improved under a dependent

framework. However, the three-factor model continues to span four low-risk portfolios that are

formed on the independent opportunity, especially the strategies aiming at maximizing the portfolio

diversification, i.e., maximum diversification (MD). This last evidence is particularly important as

it confirms that the traditional independent sorting can not compete with a dependent sort when

forming basis portfolios that offer sufficient cross-sectional variation.

[Table V about here.]

In summary, our results on the post-publication period highlight the improvement brought by

considering low-risk portfolios constructed on style basis portfolios against the related multi-factor

model. These results might be explained by the increasing market diversity offering a higher potential

for diversification and the increase in volumes traded on the U.S. stock exchanges; this necessitates

performing the optimization exercise on basis portfolios or factors rather than individual stocks. Our

findings also support the outperformance of low-risk strategies performed on the dependent-sorted

opportunity set. A horse race between the two sorting approaches for constructing basis portfolios

will be performed in the next subsection.

4.2. Horse Race Between Dependent and Independent Basis Portfolios

The previous subsection suggests that dependent basis portfolios offer better properties to per-

form risk-based optimization. We, therefore, carry out a horse race between the opportunity sets

made of basis portfolios formed after dependent and independent sorting. The spanning test con-

siders whether a portfolio (R1) composed of the U.S. government 30-year bonds and a smart beta

formed on the sorting configuration A spans this set of portfolios (R1) plus the same smart beta but

performed on the sorting configuration B. In our applications, this leads to two different scenarios.

In Scenario 1, R2 is a smart beta formed on the independent-sorted portfolios (SBind) while in
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Scenario 2, R2 is the same smart beta but performed on the dependent-sorted portfolios (SBdep).

Here, smart betas are net of transaction costs. Details on the estimation of transaction costs can be

found in Appendix D. Both H0
1 (the test on the tangency portfolio) and H0

2 (the test on the GMV)

are tested and only bootstrapped p-values are reported as they control for testing both candidate

simultaneously and consequently, are more conservative than standard p-values.

Table VI presents the results for cap-weighted basis portfolios. Both scenarios demonstrate that

the dependent opportunity sets outperform the independent set. In Model (1), we test whether

the low-risk strategies formed on dependent opportunity sets span a larger universe augmented

with independent sets. For all low-risk strategies, we cannot reject mean-variance spanning at the

10% confidence level. This means that the efficient frontier comprising a low-risk optimization of

dependent portfolios and an investment in a long-term U.S. government bond cannot be improved

using an independent opportunity set. However, Model (2) indicates that the MD (2×3, 3×3, and

3×3×3) and MV (2×3, 3×3) strategies performed on a dependent opportunity set improve both the

tangency and the GMV portfolios formed on an independent opportunity set. This is evidenced by

the levels of p-values attached to F -tests on H0
1 and H0

2 when the dependent portfolio is used as R2.

Empirically, the best improvement is found for the MDdep
3x3x3 with a monthly abnormal net return

of 0.23% (2.75% annually) over a combination of the long-term U.S. bond and MDind
3x3x3.

[Table VI about here.]

5. MVE Benchmark Selection

We follow the method of Harvey and Liu (2019) to select the most appropriate (without luck)

MVE benchmark among the low-risk portfolios and the original CW portfolio for explaining the

cross-section of expected returns. Our test assets are the 2×3 and 3×3 portfolios sorted on size and

book-to-market or the 3×3×3 when the sorting procedure first pre-condition on a firm’s momentum.

The MVE benchmark should best complement a basis multi-factor model comprising a long-term

U.S. Government rate as a proxy for the risk-free rate (B30) and the size (SMB) and the value

(HML) factors of Fama and French (1993).

The method is an alternative to the test developed by Gibbons et al. (1989). It departs, how-

ever, from the GRS test as it allows the initial model to be sub-optimal and tests the incremental

contribution of the additional factor.

To measure the incremental contribution of the selected candidate, Harvey and Liu (2019) define

a scaled intercept (SI) measure and look at the spread between the scaled (by the standard error of

the estimated intercept) intercept of the augmented and initial model. Using equivalent notations

as the authors, the measure is defined as follow,

SImedew =
median({|agi |/sbi}Ji=1)−median({|abi |/sbi}Ji=1)

median({|abi |/sbi}Ji=1)
(14)
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where median(.) is the median value of the ratio |agi |/sbi or |abi |/sbi . Here the superscript b is

for the baseline model and g is for the augmented model, the subscript i refers to the i-th portfolio

among the J test assets, and s denotes the standard errors for the regression intercept a.

A negative value of the SI means that the augmented model outperforms the baseline model to

explain the variations of the J test assets returns. To define a statistical level of confidence to the

measure, Harvey and Liu (2019) use the bootstrapping method presented in Step 2 of Section C.

To orthogonalize the MVE candidates, the authors regress the returns of Ri2, where i denotes the

i-th candidate among the list of K candidates, against the baseline benchmark R1 and then subtract

the intercept from the time-series Ri2, as follows:

Ri2 = αi + βiR1 + ei

Rα,i2 = Ri2 − αi = βiR1 + ei
(15)

In our applications, R1 is composed of the 30-Year U.S. Bond (B30), the size (SMB), and the

value (HML) factors. Rα,i2 is defined as a linear combination of the benchmark assets (R1), i.e., the

30-Year U.S. Bond (B30), the size (SMB) and the value (HML) factors such that it does not bring

any additional information to the baseline model.

Then in each sample of the B bootstrap, a score for the scaled intercept SImedew can be obtained

for the K number of orthogonalized candidates (i.e, Rα,i2 with the i = {1, 2, ...,K} candidates).

Hence, the single test p-value for the i-th candidate is given by,

p-val =
#{SIo > SIb}

B
(16)

To control for multiple testing, the authors suggest taking the minimum value among K estimates

of SI in the b-th bootstrap as follow,

SIb,∗ = min︸︷︷︸
i∈{1,2,...,K}

{SIb,i}
(17)

Hence, the multiple test p-value for the i-th candidate is written as,12

p-val =
#{SIo > SIb,∗}

B
(18)

Next, our objective is to apply the method to a multiple set of MVE candidates and filter them

to find the best candidate. For example, the first natural candidate to consider is the traditional

12Note that the sign of the indicator function is important. Here, we want to count the number of bootstrapped
scaled intercepts (SIb) that have lower values (improvement of the model) than the scaled intercept from the original
sample(SIo). In other words, when the test is performed on the time-series of R2 from the original data.
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cap-weighted market portfolio. But smart beta strategies on the Fama-French’s independent 2×3

size and value portfolios or on the dependent 2×3 size and value portfolios can also constitute MVE

candidates to augment the baseline model. We also extend the 2×3 size and value grid, to a 3×3

or 3×3×3 splits with an additional sort on firms’ momentum and end up with a set of 7 candidates

as MVE portfolio. We run the test sequentially, as in Harvey and Liu (2019), until the single test

p-value of each candidate is greater than a pre-specified threshold. In our application, we set the

threshold to 10%. In each run, the selected candidate has a single test p-value but will also be

attributed with a multiple test p-value to control for data snooping. The candidate is only accepted

if the multiple test p-value is significant at a 90% confidence level.

Table VII presents the results for the different types of basis assets and smart beta portfolios.

The table shows the single-test p-value for each MVE candidate as well as the final joint p-value

for the selected candidates considering the multiple testing framework. Note that except for the

cap-weighted market portfolios, all smart beta portfolio candidates are net of transaction costs as

computed in Appendix E. For 2×3 portfolios, the optimal MVE candidate comes from the same

family as the set of basis portfolios to be explained, i.e., independent for Panel A and dependent

for Panel B. However, as soon as the dimension of the sort increases, and therefore the dispersion

between portfolios, the dependent candidates win the horse race (Panel D to F).

In summary, our results can be explained by two elements documented by recent academic

research. First, the spaces of 2×3 and 3×3 test assets are “rank deficient” as coined by Grinblatt

and Saxena (2018), which means that the dimensions are too low to provide a robust statistical

framework (Lewellen et al. (2010)). Second, the imbalance of the distribution of stocks in portfolios

under an independent sort is too sensitive to a number of macro-economic factors (Daniel and

Titman (2012)), and lead to the construction of sub-optimal basis portfolios. However, smart beta

strategies can benefit from a 3-dimensional dependent sort, which overcomes the issues of portfolio

diversification relatable to macro-economic factors (Lambert et al. (2020)).

[Table VII about here.]

6. Alphabet Portfolios

This section investigates the role of the underlying characteristics to build basis portfolios. Our

objective is to show the impact of the sorting method when the underlying characteristics command

a significant relationship with future stock returns. To that end, we construct smart betas on

“Alphabet” portfolios instead of portfolios sorted across size, value and momentum dimensions.

These “Alphabet” portfolios are formed on random characteristics, which are defined by the letters

found in the ticker of stocks. More precisely, we assign each year at the end of June a random value

obtained from a standard normal to each letter of the alphabet and allocate stocks at the beginning

of July in basis portfolios according to these random values. The first characteristic is based upon
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the first letter of the ticker while the second characteristic is related to the second letter, and so

on.13 That way, the characteristics should be time-varying in a random manner.

The underlying construction methodology for the basis portfolios follows the independent sort

with NYSE breakpoints of Fama and French (1993) and the dependent sort with whole sample

breakpoints of Lambert et al. (2020). We form cap-weighted portfolios using 2x3, 3x3 and 3x3x3

splits. Next, we allocate these basis portfolios into one final smart beta strategy, i.e., risk parity,

minimum variance, and maximum diversification, which rebalances the basis portfolios every month.

Finally, we run the bootstrap mean-variance spanning test described in the previous section and

verify whether these random allocations have significantly better Sharpe ratio than the CW market

portfolio and the 3-factor model. In short, we want to test whether the definition of the underlying

characteristics matters when constructing smart betas on basis portfolios.

By definition, the purpose of a sort into portfolios resides in factoring characteristics into returns

for which the characteristics command a linear relationship with E[R]. For instance, a positive

relationship between a characteristics and expected return would imply that E[Ri] < E[Rj ] where

i < j and correspond to the i-th and j-th portfolios. However, if the characteristic does not command

any relationship with expected return, we should get E[Ri] ≈ E[Rj ] ≈ βE[Rm] and σ[Ri] ≈ σ[Rj ] ≈
σ[Rm] when the number of basis portfolios gets larger. Consequently, any smart betas (linear

combination) of the N basis portfolios should not systematically outperform the market portfolio.

However, results displayed in Model (1) of Table VIII show that smart betas outperforming the

market portfolio can still be found when basis portfolios are formed on random characteristics, i.e.,

when alphas are positive, and F1 are significant. And that even when controlling for the Fama-

French 3-factor model as evidenced by results in Model (2). Nonetheless, contrasting these results

with the Model (2) from Table IV, we can formulate three remarks for smart betas on random

portfolios: alphas are (i) not dependent of the sorting methods, (ii) at least 2x lower than for sorts

on determinant characteristics, and (iii) greater for Risk Parity optimizations. When σ[Ri] ≈ σ[Rj ],

Risk Parity optimizations attribute a weight to each portfolio which is close to 1/N and consequently,

the source of the abnormal return earned over the cap-weighted market portfolio might be attributed

to the monthly rebalancing of the random portfolios rather than to the choice of the allocation itself

as shown in Plyakha et al. (2015).

In summary, the test demonstrates that sorting methods are important when stock characteristics

are correlated to each other and related to expected return while they are not when characteristics

are uncorrelated to each other. Also, smart betas constructed on random signals can only outperform

the cap-weighted market portfolio by maintaining constant weights and frequent rebalancing. These

evidence might thus be helpful to filter the large universe of ETFs among which some smart betas

13If the ticker is missing in the database; instead, we use the first letters of the company names from CRSP
(COMNAM).
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are potentially designed on “fake” signals and only rely on frequent rebalancing schemes.14

[Table VIII about here.]

7. Concluding Remarks

New tendencies have emerged in passive investing toward smart beta strategies and style in-

vesting as a channel to obtain mean-variance efficient portfolios through low-risk objectives. Our

paper reconciles the trends by applying long-only risk-based strategies to characteristic-sorted equity

portfolios and addresses the mean-variance efficiency of these products. The exercise is economi-

cally important for two reasons. First, the recent inflation of discovered risk factors questions the

capitalization-weighted market portfolio as a mean-variance efficient candidate. Second, there is a

common practice among institutional investors to reallocate funds across style groupings (e.g., Froot

& Teo, 2008).

We show that the methodology for grouping stocks in different style buckets has substantial

implications for the performance of the selected smart beta strategy. To categorize stocks in invest-

ment style portfolios, we stratify the universe along the academic standard dimensions of size, value,

and momentum characteristics. We implement two sorting methodologies: (a) a dependent sort on

all-breakpoints and (b) an independent sort on NYSE-breakpoints. We demonstrate through a set

of state-of-the-art mean-variance tests that risk optimizations on dependent portfolios obtain supe-

rior performance, and that after controlling for transaction costs and multiple testing. Contrary to

conventional wisdom, our results show that the trade-off between allocating more weight to smaller

capitalization stocks and transaction costs can be offset by the benefit of diversification achieved

by a sophisticated sorting method, i.e., a dependent sort. Because a dependent sort controls for

correlated variables and stratifies the stock universe in well-diversified portfolios (Lambert et al.,

2020), this sorting methodology delivers significant diversification benefits for smart beta strategies.

We substantiate this point by extending the approach of Booth and Fama (1992) on diversification

return. Economically, we infer from our findings that our method, which reconciles style investing

with smart beta strategies, not only reduces the curse of dimensionality in portfolio optimizations

but is also well-aligned with current practices in the mutual fund industry.

This study thus contributes to the development of novel sorting methods to obtain efficient basis

portfolios, which can improve the mean-variance performance of smart beta strategies.
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Figures

Figure 1. Distribution of BM-scores of Mutual Funds: Independent vs Dependent Sorts

The figure shows the kernel distribution in BM-score of mutual funds with a focused on the U.S. equity market
for which Morningstar attributes a value-growth classification. The value-growth classification applied to the
mutual funds present in the CRSP mutual funds database. For each point in time where a fund reports its
holdings, we associate a BM-score from a 1–5 scale according the Fama–French’s 5x5 size and value independent
sorting methodology or a 5x5 size and value dependent sorting methodology. The fund’s BM-score is then
calculated as the percentage of Total Net Assets (TNA) weighted average of the 1–5 scale of the securities
the fund holds. Distributions are displayed for 3 Morningstar classifications of funds: growth (left), blend
(middle), value (right). The sample period ranges from April 2002 to December 2015.
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Figure 2. Average Stock Distribution with Independent vs Dependent Sorting

These plots show the stock distribution among the 2×3 and 3×3 characteristic-sorted portfolios based on size
(low, medium and high) and the book-to-market equity ratio (low, medium and high) for the independent-
and dependent-sorting methodologies. We also report the average percentage of stock distribution among the
3×3×3 characteristic-sorted portfolios when momentum is added as a third variable. For clarity, we group
the 27 portfolios according to their size classifications (small, medium, and large). The period is the interval
from July 1963 to December 2015.
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Figure 3. Improving the MSR (a) and GMV (b) Portfolios

The figure displays the spanning illustration for opportunity sets comprising the benchmark assets (R1), i.e.,
the 30-Year U.S. Treasury Bond and Portfolio A, in the color red. The benchmark assets plus a test asset
(R2), i.e., Portfolio B, are displayed in the color blue. The x-axis reports the annualized standard deviation (in
%), and the y-axis reports the annualized average return (in %). This example is fictitious but illustrates in
Figure A (Figure B) an improvement of the MSR (GMV) portfolio after Portfolio B is added to the benchmark
assets.

(a) MSR Portfolio (b) GMV Portfolio
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Tables

Table I
Correlation Between Characteristic-Sorted Portfolios

The table reports the average correlation (in %) for the characteristic-sorted portfolios constructed using
independent and dependent sorting methodologies. The third column specifies the difference in the average
correlation between the independent and dependent sorting results. Correlations are estimated based on daily
returns, and the sample period extends from 01/07/1963 to 31/12/2015.

#Number of Independent Dependent Difference
portfolios Sort (1) Sort (2) (1)-(2)

Panel A: Cap-weighted Portfolios
2×3 84.99 78.00 6.99
3×3 84.99 75.81 9.18
3×3×3 78.38 66.8 11.58
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Table II
List of the Smart Beta Strategies’ Objective Functions

The table decomposes the smart beta strategies’ objective function applied on the constituents’ weights. The
first column refers to the common name of the strategy. The second column specifies the main authors who
have analyzed the strategy. The third column reports the objective function for minimization or maximiza-
tion. In the objective function, w refers to the weights, N is the total amount of assets introduced in the
optimization, i and j denote the i-th asset and the j-th asset, σij is the covariance between the i-th asset and
j-th asset, p refers to portfolio, and (Σw)i is the risk contribution of the i-th asset. All objective functions are

submitted to long-only budget constraints, i.e., wi ∈ [0, 1] and
∑N

i=1 wi = 1.

Strategy Referenced Authors Objective Function

Minimum Variance (MV) Clarke et al. (2013) min f(w) =
∑N

i

∑N
j wiσijwj

Maximum Diversification (MD) Choueifaty and Coignard (2008) max f(w) =
∑N

i wiσi√∑N
i

∑N
j wiσijwj

Risk parity (RP) Maillard et al. (2010) min f(w) =
∑N

i

∑N
j (wi × (Σw)i − wj × (Σw)j)

2

29



Table III
Diversification Returns: Equal-Weight Benchmark

The table reports the spread of diversification return obtained from equation (5) for the three different
strategies: MD, MV, and RP. These strategies are applied to portfolios that are sorted independently (ind) or
dependently (dep). These portfolios are rebalanced on a monthly basis and the number of portfolios is either
six (2×3), nine (3×3) or twenty-seven (3×3×3). The components of diversification return are reported in
percentage and on a monthly basis. The sample period extends from July 1963 to December 2015. We then
provide the p-value of the hypothesis that the spread in the component of diversification are equivalent for a
pair of strategies applied on independent or dependent portfolios. To extract estimate a p-value for this static
measures, we use the framework on hypothesis testing with the Sharpe ratio from Ledoit and Wolf (2008) and
substitute the Sharpe ratio by the measures of diversification return. The p-values identified by *, **, and
*** denote significance levels of 10%, 5%, and 1%, respectively.

∆ Dep-Ind
DRFW

1 DRFW
2 DRFW

3 DREW
1 DREW

2 DREW

MD2x3 0.002 0.012*** 0.079*** 0.083*** 0.011*** 0.094***
MD3x3 -0.035 0.019*** 0.091*** 0.060 0.015*** 0.075*
MD3x3x3 -0.034 0.034*** 0.112** 0.097 0.014*** 0.112*
MV2x3 -0.038 0.007 0.162*** 0.136* -0.004 0.131*
MV3x3 -0.035 0.020*** 0.119*** 0.093 0.012** 0.105*
MV3x3x3 -0.097* 0.023*** 0.089*** -0.003 0.018*** 0.015
RP2x3 0.000 0.012*** 0.035*** 0.036** 0.010*** 0.047***
RP3x3 -0.005 0.014*** 0.032*** 0.029* 0.013*** 0.041**
RP3x3x3 -0.009 0.023*** 0.031*** 0.024 0.022*** 0.046***
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Table IV
Spanning Tests with Multiple Factor: Full Sample

The table reports the results for the bootstrap mean-variance spanning test from Kan and Zhou (2012). The
mean-variance test goes as follow: we test whether a benchmark portfolio R1 have a significant improvement
at the tangent (F1), or at the GMV (F2) portfolio level when a test asset (R2) is added to the benchmark
assets (R1). The test is performed twice, given that we have two proxies for R1, that is a smart beta strategy
on independent-sorted or dependent-sorted portfolios. The outcomes of the test are the following, (i) the
abnormal return of the candidates (α), (ii) the F-tests and, (iii) the bootstrap p-values that control for
multiple testing for which *, **, and *** denote significance levels of 10%, 5%, and 1%, respectively. The
regression models are as follow:

(1) R1 =MKT +B30, R2 = SB

(2) R1 =MKT +B30 + SMB +HML, R2 = SB

(3) R1 =SB +B30, R2 = Mkt

Results presented below are composed of 1,000 simulations for each smart beta (SB) strategy, i.e. maximum
diversification (MD), minimum variance (MV), risk parity (RP). All strategies are taken in excess of the risk-
free rate except the long-short size (SMB) and value (HML) factors. B30 refers to the 30-Year U.S. Treasury
Bonds in excess of the risk-free rate. The sample period is composed of monthly returns from July 1963 to
December 2015.

Models (1) (2) (3)
α F1 F2 α F1 F2 α F1 F2

Panel A: Independent
MD2x3 0.20% 11.69*** 2.37 0.01% 0.21 1419.96*** -0.13% 5.92** 7.93**
MD3x3 0.22% 11.89*** 2.96 0.02% 0.66 1392.77*** -0.14% 5.51** 9.40**
MD3x3x3 0.19% 7.21** 1.42 -0.03% 0.65 824.06*** -0.10% 2.22 17.25***
MV2x3 0.32% 13.63*** 11.83** 0.09% 2.22 317.78*** -0.17% 3.97* 12.51***
MV3x3 0.29% 10.60*** 6.68* 0.06% 1.02 438.93*** -0.14% 2.63 18.31***
MV3x3x3 0.29% 13.60*** 10.24** 0.07% 2.22 564.35*** -0.17% 4.60** 10.31**
RP2x3 0.21% 13.03*** 1.62 0.02% 0.92 1786.24*** -0.14% 6.82** 9.52**
RP3x3 0.22% 11.57*** 0.49 0.02% 0.88 2015.93*** -0.14% 5.35** 16.33***
RP3x3x3 0.23% 12.09*** 0.25 0.03% 1.16 1895.22*** -0.14% 5.50** 19.14***

Panel B: Dependent
MD2x3 0.31% 13.00*** 13.52*** 0.11% 4.89** 578.95*** -0.16% 4.20* 8.11**
MD3x3 0.34% 10.66*** 21.30*** 0.11% 3.13 365.03*** -0.13% 1.99 10.40**
MD3x3x3 0.38% 9.45*** 19.39*** 0.12% 2.22 285.69*** -0.10% 0.92 19.97***
MV2x3 0.49% 15.55*** 23.12*** 0.22% 6.21** 249.22*** -0.16% 2.31 21.01***
MV3x3 0.44% 13.39*** 28.21*** 0.18% 4.59* 254.99*** -0.14% 1.87 15.30***
MV3x3x3 0.34% 10.02*** 19.87*** 0.10% 1.92 310.91*** -0.12% 1.45 14.54***
RP2x3 0.27% 10.60*** 7.48** 0.07% 3.21 882.21*** -0.14% 3.44* 10.80***
RP3x3 0.29% 8.70*** 8.49** 0.07% 2.36 801.67*** -0.11% 1.81 16.07***
RP3x3x3 0.31% 10.28*** 7.34** 0.10% 4.27* 811.01*** -0.13% 2.46 17.64***
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Table V
Spanning Tests with Mutliple Factor: Sub Sample

The table reports the results for the bootstrap mean-variance spanning test from Kan and Zhou (2012). The
mean-variance test goes as follow: we test whether a benchmark portfolio R1 have a significant improvement
at the tangent (F1), or at the GMV (F2) portfolio level when a test asset (R2) is added to the benchmark
assets (R1). The test is performed twice, given that we have two proxies for R1, that is a smart beta strategy
on independent-sorted or dependent-sorted portfolios. The outcomes of the test are the following, (i) the
abnormal return of the candidates (α), (ii) the F-tests and, (iii) the bootstrap p-values that control for
multiple testing for which *, **, and *** denote significance levels of 10%, 5%, and 1%, respectively. The
regression models are as follow:

(1) R1 =MKT +B30, R2 = SB

(2) R1 =MKT +B30 + SMB +HML, R2 = SB

(3) R1 =SB +B30, R2 = Mkt

Results presented below are composed of 1,000 simulations for each smart beta (SB) strategy, i.e. maximum
diversification (MD), minimum variance (MV), risk parity (RP). All strategies are taken in excess of the risk-
free rate except the long-short size (SMB) and value (HML) factors. B30 refers to the 30-Year U.S. Treasury
Bonds in excess of the risk-free rate. The sample period is composed of monthly returns from July 1993 to
December 2015.

Models (1) (2) (3)
α F1 F2 α F1 F2 α F1 F2

Panel A: Independent
MD2x3 0.20% 3.77 6.48* 0.01% 1.52 384.37*** -0.13% 0.74 3.25
MD3x3 0.22% 5.08* 7.26** 0.02% 3.71* 382.82*** -0.14% 1.10 4.15
MD3x3x3 0.19% 1.86 5.87 -0.03% 0.02 249.23*** -0.10% 0.02 7.24*
MV2x3 0.32% 9.03*** 19.93*** 0.09% 6.52** 42.73*** -0.17% 1.35 5.11*
MV3x3 0.29% 7.55** 11.39*** 0.06% 5.89** 92.31*** -0.14% 0.88 10.74**
MV3x3x3 0.29% 11.36*** 18.15*** 0.07% 11.43*** 124.93*** -0.17% 2.54 4.27*
RP2x3 0.21% 4.73* 4.94 0.02% 3.50 563.63*** -0.14% 1.15 4.53*
RP3x3 0.22% 5.02** 3.44 0.02% 5.07* 652.92*** -0.14% 1.10 7.88**
RP3x3x3 0.23% 6.19** 4.37 0.03% 7.72** 618.11*** -0.14% 1.53 7.3**

Panel B: Dependent
MD2x3 0.31% 12.7*** 16.12*** 0.11% 16.78*** 118.87*** -0.16% 3.02 5.50*
MD3x3 0.34% 9.14** 16.55*** 0.11% 9.31*** 63.08*** -0.13% 0.89 11.18***
MD3x3x3 0.38% 9.38** 16.66** 0.12% 8.88*** 39.76*** -0.10% 0.65 15.00***
MV2x3 0.49% 14.13*** 17.8*** 0.22% 14.39*** 44.38*** -0.16% 1.08 21.32***
MV3x3 0.44% 13.10*** 21.37*** 0.18% 13.19*** 43.67*** -0.14% 1.04 16.16***
MV3x3x3 0.34% 9.92*** 19.77*** 0.10% 9.86*** 51.57*** -0.12% 0.89 11.11***
RP2x3 0.27% 9.39*** 9.07** 0.07% 14.80*** 217.80*** -0.14% 2.27 7.03**
RP3x3 0.29% 6.64** 7.98** 0.07% 9.23*** 174.22*** -0.11% 0.70 13.32***
RP3x3x3 0.31% 8.69*** 9.42** 0.10% 13.91*** 158.94*** -0.13% 1.34 11.52***
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Table VI
Horse Race Boostrap Test

The table reports the results for the bootstrap mean-variance spanning test from Kan and Zhou (2012). The
mean-variance test goes as follow: we test whether a benchmark portfolio R1 have a significant improvement
at the tangent (F1), or at the GMV (F2) portfolio level when a test asset (R2) is added to the benchmark
assets (R1). The test is performed twice, given that we have two proxies for R1, that is a smart beta strategy
on independent-sorted or dependent-sorted portfolios. The outcomes of the test are the following, (i) the
abnormal return of the candidates (α), (ii) the F-tests and, (iii) the bootstrap p-values that control for
multiple testing for which *, **, and *** denote significance levels of 10%, 5%, and 1%, respectively. The
regression models are as follow:

(1) R1 = B30 + SBnet
dep, R2 = SBnet

ind

(2) R1 = B30 + SBnet
ind, R2 = SBnet

dep

Results presented below are composed of 1,000 simulations for each smart beta (SB) strategy, i.e. maximum
diversification (MD), minimum variance (MV), risk parity (RP). All smart beta strategies are net of transac-
tion costs, which are estimated as in Hasbrouck (2009). B30 refers to the 30-Year U.S. Treasury Bonds. The
sample period is composed of monthly returns from July 1963 to December 2015.

Model (1) Model (2) MSR GMV
α F1 F2 α F1 F2 Candidate Candidate

MD2x3 -0.05% 0.80 0.06 0.13% 5.82** 11.17** Dependent Dependent
MD3x3 -0.01% 0.02 0.12 0.14% 4.16* 17.58*** Dependent Dependent
MD3x3x3 0.00% 0.00 2.47 0.23% 5.96** 18.9*** Dependent Dependent
MV2x3 0.03% 0.12 6.52* 0.20% 5.25** 10.17** Dependent Dep ≈ Ind
MV3x3 -0.01% 0.04 0.09 0.19% 6.10** 24.21*** Dependent Dependent
MV3x3x3 0.08% 1.49 3.21 0.06% 0.79 9.72** Dep ≈ Ind Dependent
RP2x3 0.00% 0.01 0.30 0.06% 1.74 5.81* Dep ≈ Ind Dependent
RP3x3 0.01% 0.04 0.12 0.07% 1.50 9.12** Dep ≈ Ind Dependent
RP3x3x3 0.00% 0.01 0.09 0.08% 2.32 9.24** Dep ≈ Ind Dependent
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Table VIII
Spanning Tests with Multiple Factor: Alphabet Portfolios

The table reports the results for the bootstrap mean-variance spanning test from Kan and Zhou (2012) when
basis portfolios are based on the ”alphabet” characteristics. The mean-variance test goes as follow: we test
whether a benchmark portfolio R1 have a significant improvement at the tangent (F1), or at the GMV (F2)
portfolio level when a test asset (R2) is added to the benchmark assets (R1). The test is performed twice,
given that we have two proxies for R1, that is a smart beta strategy on independent-sorted or dependent-
sorted portfolios. The outcomes of the test are the following, (i) the abnormal return of the candidates (α),
(ii) the F-tests and, (iii) the bootstrap p-values that control for multiple testing for which *, **, and ***
denote significance levels of 10%, 5%, and 1%, respectively. The regression models are as follow:

(1) R1 =MKT +B30, R2 = SB

(2) R1 =MKT +B30 + SMB +HML, R2 = SB

Results presented below are composed of 1,000 simulations for each smart beta (SB) strategy, i.e. maximum
diversification (MD), minimum variance (MV), risk parity (RP). All strategies are taken in excess of the risk-
free rate except the long-short size (SMB) and value (HML) factors. B30 refers to the 30-Year U.S. Treasury
Bonds in excess of the risk-free rate. The sample period is composed of monthly returns from July 1963 to
December 2015.

Models (1) (2)
α F1 F2 α F1 F2

Panel A: Independent
MD2x3 0.04% 6.84** 0.57 0.03% 4.70* 0.26
MD3x3 0.04% 5.66** 0.06 0.03% 3.09* 4.66*
MD3x3x3 0.05% 3.05 3.68 0.02% 0.47 23.15***
MV2x3 0.01% 0.08 1.66 -0.01% 0.03 0.04
MV3x3 0.07% 4.70* 0.07 0.07% 4.23* 0.14
MV3x3x3 0.04% 0.65 0.18 0.02% 0.18 3.00
RP2x3 0.04% 8.87*** 0.78 0.04% 6.51** 0.20
RP3x3 0.05% 9.34*** 0.11 0.04% 5.68** 7.05**
RP3x3x3 0.07% 9.11*** 2.17 0.04% 3.69* 34.27***

Panel B: Dependent
MD2x3 0.03% 2.52 0.08 0.02% 1.38 1.28
MD3x3 0.05% 10.53*** 0.01 0.04% 7.51** 3.39
MD3x3x3 0.07% 8.71*** 6.21** 0.04% 3.46* 59.95***
MV2x3 0.03% 0.82 0.71 0.02% 0.25 1.91
MV3x3 0.05% 2.44 0.51 0.05% 2.25 0.21
MV3x3x3 0.02% 0.26 3.43 0.01% 0.02 5.63
RP2x3 0.03% 2.48 0.11 0.02% 1.37 1.22
RP3x3 0.05% 11.9*** 0.19 0.04% 8.12*** 3.96*
RP3x3x3 0.07% 11.03*** 7.96*** 0.04% 4.46* 80.98***
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Appendices

A. Estimation of the Covariance Matrix

In this section, we briefly describe a shrinkage methodology used in our applications to estimate

the covariance with lower sampling errors following Ledoit and Wolf (2004). In their model, the

authors build on Elton and Gruber (1973), who use a constant correlation coefficient to shrink the

assets’ covariance toward a global average correlation estimator.

The constant correlation coefficient is determined using

ρ̂ =
1

N(N − 1)

 N∑
i

N∑
j

ρ̂ij −N

 (A.1)

where N is the number of portfolios – in our applications, either 6, 9 or 27. The term ρ̂ij is the

historical correlation estimate between the ith portfolio and the jth portfolio. Ledoit and Wolf

(2004) then obtain an optimal structure for the covariance matrix and reduce the sampling error of

a traditional sample covariance matrix (S) as follows:

Σ = δF + (1− δ)S (A.2)

where Σ is the output covariance matrix obtained from the shrinkage estimation, and δ is the

optimal shrinkage intensity.15 S is the sample covariance matrix from our 60 daily returns, and F

is the structured covariance matrix with the assets’ covariance estimated via the constant correla-

tion estimator in equation (A.1).16 In our empirical study, the estimations of the sample and the

structured covariance matrices are based on 60-day rolling windows to accommodate for gradual

changes in the return distribution and short-term variations. A real-life application with tradable

assets (Idzorek & Kowara, 2013) would impose constraints on the historical information available to

replicate our results. For this reason - to stay as close as possible to what real-world applications

may offer - we limit our optimizations on 60-day windows. This choice is also consistent with Fama

and French (2018) who estimate the monthly variance of stocks using 60 days of lagged returns.

B. Testing the Incremental Diversification Return

Ledoit and Wolf (2008) propose an “indirect” bootstrap methodology to construct an empirical

distribution of the spread in a function of the underlying first and second moments of two time-series.

They test the significance of the spread by considering whether a 1-α confidence interval (e.g., 90%)

contains zero.

15Matlab code is available at Prof. Wolf’s website.
16The covariance of the matrix F is given by σij = ρ̂σiσj .
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The authors first consider that the difference between the true first and second moments of the

two series converge towards their sample estimate such that,

√
T (û− u)

d−→ N(0,Ω) (B.1)

where û = (µ̂i, µ̂j , σ̂i
2, σ̂j

2) are the sample estimates of u = (µi, µj , σ
2
i , σ

2
j ),

d−→ refers to the

convergence in distribution of the parameters, T is the length of the time-series, and Ω refers to

variance of the estimator distribution.

Considering the sample uncentered second moments instead of the sample estimated variances,

i.e., γ̂i = E(r2
i ) and γ̂i = E(r2

j ), and taking into account non-normality and auto-correlation in

returns, the relationship (B.1) becomes

√
T (v̂ − v)

d−→ N(0,Ψ) (B.2)

where v̂ = (µ̂i, µ̂j , γ̂i, γ̂j) is the sample estimates of v = (µi, µj , γi, γj).

The estimator Ψ is estimated through a heteroskedasticity and autocorrelation (HAC) robust

kernel method. We refer to the paper of Ledoit and Wolf (2008) for a more detailed discussion on

the computation of this estimator.

The standard error of the spread ∆̂ in a function f(v̂) can be defined as,

s(∆̂) =

√
∇′f(v̂)Ψ̂∇f(v̂)

T
(B.3)

where ∇′
f(v̂) is the gradient function of f(v̂) and T is the length of the time-series.

To obtain a confidence interval attached to ∆̂, we resample the original time-series using the

block-bootstrap method of Politis and Romano (1992) and construct an empirical (bootstrap) dis-

tribution of a studentized test statistic (db) defined as

db =
|∆̂b − ∆̂|
s(∆̂b)

(B.4)

where the superscript b denotes the b-th bootstrap sample and where s(∆̂b), for the b-th boot-

strap is obtained by using both the gradient of f(v̂b) and the HAC kernel estimator Ψ̂b and defined

as follows,

s(∆̂b) =

√
∇′f(v̂b)Ψ̂b∇f(v̂b)

T
(B.5)

The boostrap 1-α confidence interval is defined as:

[
∆̂− zb|.|,1−α/2s(∆̂), ∆̂ + zb|.|,1−α/2s(∆̂)

]
(B.6)

37



with zb|.|,1−α the quantile of the distribution function of the studentized statistic estimated from

the bootstrap and denoted L(db).

In our applications, we use a block-bootstrap of 10 observations and runs 4999 simulations.17

The bootstrap process works as follow: First, we set a length for the block of observations (e.g., 10)

that we want to resample in order to capture serial autocorrelation. Second, we match the length

of the original time-series in the bootstrap samples to preserve the uncertainty and the degree of

freedom from the original data. Third, we randomly resample (with replacement) the sequence

of time-series for the b-th bootstrap and keep the same sequence for resampling the time-series

of the strategies and their underlying opportunity sets. This way, we make sure to preserve the

cross-sectional correlation across the assets (see, e.g. Fama & French, 2010; Harvey & Liu, 2019).

Lastly, we repeat the operation B times, e.g., 4999, to construct an empirical distribution of centered

studentized test statistics in which the standard error,

Defining a studentized test statistic (d) on the original time-series as follows,

d =
|∆̂|
s(∆̂)

(B.7)

The p-value attached to the test of the spread ∆̂ in a function f(v̂) is computed as,

p-val =
#{db ≥ d}+ 1

B + 1
(B.8)

Ledoit and Wolf (2008) apply this framework to a test of Sharpe ratio for a pair of strategies.

They consider the following function:

f(a, b, c, d) =
a√
c− a2

− b√
d− b2

(B.9)

Where a = µ̂i, b = µ̂j , c = γ̂i, and d = γ̂j .

The gradient of the function is defined as ∇′
f(v̂) =

(
c

(c−a2)1.5
,− d

(d−b2)1.5
,−1

2
a

(c−a2)1.5
, 1

2
b

(d−b2)1.5

)
is the gradient function of f(v̂).

Our estimates of ∆̂ are defined as follows,

∆̂(DR) = DRDep −DRInd

∆̂(DR1) = DRDep1 −DRInd1

∆̂(DR2) = DRDep2 −DRInd2

(B.10)

17Our results are not sensitive to the choice of the block length. As a matter of fact, we run the test with blocks
of length {2, 4, 6, 8, 10} and found very similar results (available upon request). Also, we run 4999 simulations to stay
aligned with the recommendations of Ledoit and Wolf (2008, p. 858).
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However obtaining the gradient for these functions is cumbersome because additionally to the pair

of strategies, we are left with a number N of dependent-sorted and independent-sorted portfolios.

Given that in our applications, this amount N can take the value of 6, 9 or 27, finding the gradient

for this large amount of parameters is difficult. Consequently, we make the assumption that if there

are large deviations in the spread of diversification return for a pair of strategies, then there should

also be large deviations in their spread of Sharpe ratio. This assumption is helpful as we can now

only substitute the numerator in equations (B.4) and (B.7) by the spread in diversification return

while keeping the standard error from the spread in Sharpe ratio derived in the initial framework of

Ledoit and Wolf (2008). To test the sensitivity of this assumption, we also substitute the standard

error from the spread in the Sharpe ratio by the standard error from the spread in geometric

return, and also by the standard error of the spread in geometric return scaled by the standard

deviation. Their gradient function (∇′
f(v̂)) are respectively given by (a + 1,−b − 1,−0.5, 0.5) and(

0.5a3−0.5ac−c
a2−c

√
c−a2 ,−0.5b3+0.5bd+d

b2−d
√
d−b2 , −0.25a2+0.5a+0.25c

a2−c
√
c−a2 , 0.25b2−0.5b−0.25d

b2−d
√
d−b2

)
. We obtained qualitatively similar

results under all robustness tests. Results are available upon request.

C. Multiple Test: A Bootstrap Approach

To test the robustness of our results, we extend the mean-variance spanning tests to address the

multiple testing concern. We implement the bootstrap method used in Harvey and Liu (2019). The

method proceeds in 4 steps:

Step 1: Orthogonalization Under the Null

The goal of this step is to modify the original times series of R2 such that the null hypothesis

appears to be true in-sample (Harvey & Liu, 2019; White, 2000). To do this, we perform the

following regression,

Rt2 = α+ βRt1 +Rt2,e (C.1)

Then we can work on last equation to obtain an orthogonal time-series, denoted by the subscript ⊥,

that satisfies Qw1 = 0 and Qw2 = 0 while preserving the dependence between R2 and R1 as follow,

Rt2,⊥ = β⊥R
t
1 +Rt2,e (C.2)

where the term β⊥ = β
β1K

is a simple re-scale of the original vector of slopes (β) that satisfies

δ = 1 − β⊥1K = 0. Moreover, one can easily identify that last equation also satisfies α = 0. We

use this new time-series R2,⊥ in our bootstrap to estimate the statistical validity of the F-values
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from both hypothesis tests (H1
0 and H2

0 ).Note that only H2
0 is a joint test that δ = 1N − β1K = 0N

conditional on α = 0N .

Step 2: Bootstrap

The bootstrap procedure is a random selection of monthly observations of the strategies with re-

placement (i.e., R1 and R2,⊥). We jointly resample the monthly observations to preserve the cross-

sectional correlations across strategies, as in Fama and French (2010). Also, we make sure that

the new time-series have the same size as the original time frame (630 months) to ensure that the

degrees of freedom in the measurements of the bootstrap F-tests remain equal to the F-test from

the original sample (Harvey & Liu, 2019).

Step 3: MVE spanning test

We apply the mean-variance spanning from Kan and Zhou (2012) on the bootstrapped samples

according to the benchmark assets (R1) and the test asset (R2,⊥). We repeat the operation B times

(1,000) to construct an empirical distribution of the performance measures. In these bootstrap

samples, the null is valid in-sample, and a significant value for the F-tests simply arises from the

resampling (or luck). The empirical distribution serves as a threshold for the critical value of the

F-tests. Each bootstrap contains four F-tests: two for the tangent (F b1,ind and F b1,dep) and two for

the GMV (F b2,ind and F b2,dep), with the subscript b denoting the b-th bootstrapped sample while ind

and dep denote independent and dependent-sorted portfolios.

Step 4: Controlling for multiple testing

To control for multiple testing, we follow the framework of Harvey and Liu (2019) and adjust the

confidence intervals of the original F-tests by keeping for each bootstrap the maximal measure of

each hypothesis (tangent and GMV). For instance for the tangent hypothesis, the reference point

for the b-th bootstrap is F b1 = max(F b1,ind, F
b
1,dep). Hence, we take care of the multiple testing issue

by comparing the distribution of the B maximal statistic measures to the ones found in the original

sample F o1,ind and F o1,dep, where o denotes the original sample.

The frequency of observations in the bootstrap sample that are greater than the F-test under the

original sample defines the bootstrap p-value. Thus, the p-value is the sum of indicator value

I{F o1 < F b1} divided by the total number of bootstraps B.

D. Transaction Costs

To consider transaction costs, we follow an approach similar to that of Novy-Marx and Velikov

(2016) and use the individual stock estimates from the Gibbs sampling developed in Hasbrouck

(2009). This approach is practically useful as we trade stocks on NYSE-NASDAQ-AMEX exchanges

and consequently have to differentiate between transaction costs for small and large-cap stocks.
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Novy-Marx and Velikov (2016) uncover a minor drawback to Hasbrouck’s estimation technique,

which requires relatively long series of daily prices to perform the estimation (250 days), resulting

in a number of missing observations (mostly for non-NYSE stocks), for which the authors perform

a non-parametric matching method and attribute equivalent transaction costs to the stock with a

missing value according to its closest match to a stock with non-missing value according to their size

and idiosyncratic volatility. However, according to the authors, these missing observations represent

only 4% of the total market capitalization universe. Instead, we replace the missing values with

a transaction cost of 0.50%. We employ this value because (1) we see from Figure E.4 that only

a very little amount of estimates from Hasbrouck’s algorithm have breached a trading cost of 50

bps since 1963, (2) this choice will more strongly impact illiquid stocks with a small number of

daily observations (small-capitalization stocks), and (3) Plyakha et al. (2015) also choose to set this

threshold for transaction costs from 1993 onwards.

In Figure E.4, we show the annual box-and-whisker plot for the CRSP/Gibbs estimates of trans-

action costs (variable c from equation (E.4)) from 1963 to 2015.

[Figure 4 about here.]

The next subsection describes the estimations process of the effective costs as in Hasbrouck

(2009).

E. Transaction Costs: Gibbs Estimates

A traditional model to estimate the trading costs of a security is documented by Roll (1984)

and simply use the autocovariance of the change in trade price (∆pt) to find an effective estimate of

spread such that,

cRoll =


√
−Cov(∆pt,∆pt−1) if Cov(∆pt,∆pt−1) < 0

0 if Cov(∆pt,∆pt−1) ≥ 0
(E.1)

In the last equation, we see that when the autocovariance is positive, the model fails to provide

a fair estimate of effective costs. For this reason, Hasbrouck (2009) extends the measure under Roll

(1984)’s framework on the price dynamics in a market with transaction costs. In this framework,

the model only requires information about the daily trade price, the prior midpoint of the bid-ask

prices, and the sign of trade to perform the estimation. Formally, the price dynamic is written as

follows:

mt = m(t−1) + ut

pt = mt + cqt
(E.2)
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where mt is the log midpoint of the prior bid-ask price (the efficient price), pt is the log trade

price (the real price), qt is the sign of the last trade of the day (+1 for a buy and −1 for a sale), c

is the effective cost, and ut is assumed to be unrelated to the sign of the trade (qt).

Since we use the logarithm for the price variables in equation (E.2), the daily change in price is

given by

∆pt = pt − pt−1

= mt + cqt −mt−1 − cqt−1

= c∆qt + ut

(E.3)

Hasbrouck (2009) extends Roll (1984)’s model with a market factor to capture a larger part of

the changes in prices not due to transaction costs. They estimate the effective trading costs using

Bayesian Gibbs sampling applied to the daily prices of U.S. equities retrieved from CRSP data.18

The market-factor model is presented as follows:

∆pt = c∆qt + βrmrmt + ut (E.4)

where rmt is the market return on day t and βrm is the parameter estimate obtained from a

Bayesian regression on the market return.

The Bayesian methodology estimates the effective costs (c) based on a sequence of iterations

where the initial prior for c is strictly positive and follows a normal distribution with a mean of 0.01

and variance equal to 0.012, denoted N+ (µ = 0.01, σ2 = 0.012). This initial prior of βrm follows

a normal distribution with mean and variance of 1, i.e. N (µ = 1, σ2 = 1) and the prior of σ2
u

follows an inverted Gamma distribution initiated at IG (α = 10−12, β = 10−12).19 The objective of

the Gibbs sampling is to estimate the value of the parameters c and βrm conditional on the values

drawn for qt, which is based on the sign of trade (∆pt), and the error term (ut). Initially, q1 is set

to +1 and σ2
u is set to 0.001. Next, the sampler runs as follow,

for 1 to 1,000 sweeps

1. Perform a Bayesian OLS regression on a 250-day of lagged observations to estimate the new

values of c and βrm, update the posterior distribution of the parameters and make a new draw

of the coefficients.

18The SAS code is available on Prof. Hasbrouck’s website.
19These initial values of the priors are the ones found in the SAS code made available by Prof. Hasbrouck. According

to Hasbrouck (2009), the initial values of the prior should not impact the final estimate of the effective cost of a stock
because the first 200 iterations (of 1,000) are disregarded to compute the average of the estimated values for the trading
cost (c).
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2. Back out ut from the values of c, βrm, ∆pt, rmt, ∆qt as follow,

ut = ∆pt − βrmrmt − c∆qt (E.5)

3. Update the posterior σ2
u according to the series of ut,

4. Draw new series of qt knowing the new value of σ2
u. Given that ut = ∆pt−βrmrmt−cqt+cqt−1,

estimate ut if qt = +1 or qt = −1. Find the probability of ut(qt = +1) and ut(qt = −1) given

that ut ∼ N(0, σ2
u) and compute the odds ratio for a buy order as follow,

Odds =
f(ut(qt = +1))

f(ut(qt = −1))

qt = +1 if Odds > 1

qt = −1 if Odds < 1
(E.6)

end

The process is repeated 1,000 times and the final value for c is the average of the last 800 esti-

mations of the procedure (“burn in” the 200 first observations). For more information on simulating

the probability distributions of qt and ut as well as on the iterative process, interested readers should

refer to Hasbrouck (2009, p. 1449-1951).20

20Further details regarding the application of the estimation technique can also be found in Marshall et al. (2011)
and Novy-Marx and Velikov (2016).
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Figure E.4. Variation of Transaction Cost Estimates

The figure presents a boxplot of the distribution of individual stock transaction costs estimated as in Hasbrouck
(2009). The sample period is the interval from 1963 to 2015. The whiskers represent the distribution of the
5th to 95th percentile, and the upper and lower edges of the boxes correspond to the 25th and 75th percentiles.
The gray dots represent outliers.
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