
Ipv6 In-Situ Operations, Administration, and
Maintenance

J. Iurman, B. Donnet
Université de Liège, Montefiore Institute – Belgium

Abstract

In-situ Operations, Administration, and Maintenance (Ioam) is cur-
rently under standardization at the Ietf. It allows for collecting telemetry
and operational information along a path, within the data packet, as part
of an existing (possibly additional) header. This paper introduces the very
first implementation of Ioam for the Linux kernel with Ipv6 as encapsu-
lation protocol and discusses several use cases in which Ioam can find a
suitable usage.

Keywords— Ioam, Ipv6, Linux, Telemetry

1 Introduction
Operations, Administration, and Maintenance (Oam) refers to a set of techniques

and mechanisms for performing fault detection and isolation, and for performance
measurements. Throughout the years, multiple Oam tools have been developed for
various layers in the protocol stack [1], going from basic traceroute [2] to Bidirectional
Forwarding Detection (BFD [3]). Recently, Oam has been pushed further through In-
Situ Oam (Ioam) [4, 5]. The term “In-Situ” directly refers to the fact that the Oam
and telemetry data are carried within packets rather than being sent through packets
specifically dedicated to Oam. The Ioam traffic is embedded in data traffic, but not
part of the packet payload.

In a nutshell, Ioam gathers telemetry and operational information along a path,
within the data packet (see Fig. 1), as part of an existing (possibly additional) header.
It is included in Ipv6 packets as an Ipv6 HopByHop extension header [6, 7]. Typically,
Ioam is deployed in a given domain, between the Ingress and the Egress or between
selected devices within the domain. Each node involved in Ioam may insert, remove, or
update the extension header. Ioam data is added to a packet upon entering the domain
and is removed from the packet when exiting the domain. There exist four Ioam types
for which different Ioam data fields are defined. (i) the Pre-allocated Trace Option,
where space for Ioam data is pre-allocated; (ii) the Incremental Trace Option, where
nothing is pre-allocated and each node adds Ioam data while expanding the packet
as well; (iii) the Proof of Transit (Pot) and, (iv) the Edge-to-Edge (E2E) Option.
Trace and Pot options are both embedded in a HopByHop extension header, i.e., they
are processed by every node on the path. On the contrary, E2E option is embedded
in a Destination extension header, i.e., it is only processed by the destination node.

Ioam data fields are defined within Ioam namespaces, that are identified by a 16-
bit identifier. They allow devices that are Ioam capable to determine, for example,
whether an Ioam option header needs to be processed or ignored. Ioam namespaces
can be used by an operator to distinguish different operational domains. They also

1



header payloadOAM

Nod
e-I

D

Ing
res

s/E
gre

ss-
IF

Tim
est

am
p

Dela
y
…

IOAM domain

Figure 1: Oam data within data packet.

provide additional context for Ioam data fields, ensuring Ioam data is unique in case of
several identical Ioam options, as well as allowing to identify different sets of devices.

We provide the very first Linux kernel implementation of Ioam, available online [8]
and mainly based on the following two drafts: (i) the Ioam Ipv6 draft [7] that defines
how Ioam is carried by Ipv6 and (ii) the Ioam data draft [5] that defines available
data fields for Ioam. The implementation is compliant with RFC8200 [6] as it handles
both the encapsulation and the inline insertion of Ioam. It is also per Linux network
namespace oriented, i.e., it works with containers (e.g., Docker, Kubernetes) and vir-
tual machines (VMs) too. A first official and more recent version [9] has been posted
upstream. This is an improved version of the implementation proposed here, as an
attempt to make Ioam part of the kernel. Ioam key impacts on the industry have
the potential to be huge. Indeed, with Ioam, operators have now the opportunity to
benefit from an efficient and lightweight tool for helping them to quickly detect and
react to a network issue [10]. In this paper, through multiple use case scenarios (see
Sec. 2), we describe those benefits and impacts for the industry

2 Interesting Ioam Use Cases
Ioam can find a suitable usage in multiple scenarios, increasing so its potential

impact [10] on the industry. Among others, we can cite SLA verification, proof-
of-transit, and geolocation. In this section, we discuss in particular three specific
use cases: failure detection (Sec. 2.1), service selection (Sec. 2.2), and Cross-Layer
Telemetry (Sec. 2.3).

2.1 Smart Traceroute: Failure Detection
Traditionally to detect and isolate network faults, ping and traceroute, or even

BFD, are used. But in a complex network with micro-services or a large number
of Unequal/Equal-Cost Multipath (U/E-CMP) being available, it would be difficult
to detect and isolate such faults. Currently, failure detection takes tens of seconds
in large networks, while failure isolation (using ping and traceroute) takes several
minutes [11, 12]. Indeed, probing based on traceroute is slow as it typically requires
2 × (n − 1) packets for n nodes (i.e., two packets are generated for each TTL value,
one from the sender, one from the intermediate node along the path). Therefore, one

2



Figure 2: Failure Detection with Ioam.

Figure 3: Service Selection and load balancing with Ioam

key impact is to significantly improve failure detection and isolation through efficient
network probing, specially for hyper giant distribution networks (HGDNs, such as
Facebook, Google, or Netflix) and large data center networks (DCNs).

This is exactly a context in which an active network probing relying upon UDP
probes with Ioam can find a suitable usage. If one encounters connectivity issues
between individual nodes, then Ioam tracing could be enabled between those nodes
to understand where things are going wrong.

With Ioam, one can identify the exact path at a low probing cost [10] as it only
requires n packets for n nodes. Indeed, Ioam injects a single packet in the network
towards the destination, while each intermediate node along the path sends a copy
back on the return path. Fig. 2 illustrates this. Node A sends a packet with Ioam to
node F , through the path A − B − C − F . Each in turn, B (see step 1) and C (see
step 2) send a copy back to A. Since there is a link failure between C and F , A do
not receive anything from F . At this point, a failure is detected. To isolate it, repeat
the same process for other paths (see steps 3-4-5). Step 5 allows A to detect that F
is healthy and so exclude a node failure, leading to the conclusion that the failure is a
link failure and can be isolated between C and F .

3



Figure 4: Cross-Layer Telemetry with Ioam.

2.2 M-Anycast: Service Selection
Another Ioam key impact is the possibility to provide an intelligent service selec-

tion. Let us take the example of highly redundant micro-services (e.g., video-chunk
servers) hosted as containers in multiple public clouds, each service having an Ipv6
address and sharing the same secondary anycast address. Access latencies, server load,
service load, service liveliness, etc. differ from one to another. Therefore, the client
needs to choose an appropriate service to connect to. Thanks to M-Anycast [13], as
illustrated in Fig. 3, the client does not have to choose anymore. Indeed, the best ser-
vice at that precise moment is provided by the server, acting as a proxy, to the client
by leveraging Segment Routing [14] to steer traffic and Ioam for optimized service
selection. This is something ping, traceroute, or even BFD cannot do, as Ioam also
carries useful data and is designed for that purpose [10].

As a first step, the client initiates a TCP session with the service represented by an
anycast address by starting the TCP three-way handshake (TCP SYN packet). Once
received by the M-Anycast server, the packet is augmented with Ioam meta-data and
replicated to a subset of available service instances. Doing so, telemetry information
can be measured and propagated back to the M-Anycast server. In a second time, each
service responds back in the TCP three-way handshake (TCP SYN+ACK). The optimal
service is then selected by the M-Anycast server upon the Ioam meta-data received.
The M-Anycast server is then responsible for forwarding the packet from the selected
service back to the client. All others half-open connections are dropped and the con-
nection states are cleaned up . Thirdly, the client receives a packet that contains
Segment Routing policy that reveals its source (in this case, Service 4), avoiding so
subsequent regular traffic to go through the M-Anycast server. The client then com-
pletes the three-way handshake process directly with the selected service (TCP ACK).
Finally, once the TCP three-way handshake is completed, a TCP session is directly
established between Service 4 and the client.

2.3 Cross-Layer Telemetry
Cross-Layer Telemetry (Clt) aims at making the entire network stack (L2 →

L7) visible for distributed tracing tools (e.g., Jaeger), instead of the usual L5 → L7
visibility, leading so to a big impact on the industry as is allows for more efficient
application debugging. Fig. 4 illustrates how it works. The Ipv6 Ioam domain is
where the magic happens. When a client request arrives, Ioam headers are inserted
in the Ioam domain traffic by the “API entry point” (see Fig. 4) server and processed

4



by each Ioam node on the path. Both the trace and span IDs from the tracing tool
are injected in Ioam headers to allow for a future correlation. Then, an Ioam agent
running on the end point server is responsible for gathering Ioam data and for sending
everything to the Ioam collector, which one will correlate high level traces and network
packets thanks to Ioam and send the result to the trace collector. Traces are stored
on a database from where an operator can monitor them through a graphical user
interface.

With Clt, an operator is now able to detect lower level issues. Take the example
of an SQL request that takes ages and the service operator wants to debug. Thanks to
Clt, the operator is now able to detect for instance a link failure, an interface miscon-
figuration, a heavy load on a queue, etc. associated to that SQL request issue. For that,
Ioam is used to carry the trace and span IDs of the tracing tool in the dataplane, so
that a correlation between network packets and high-level OpenTelemetry [15] traces
can happen. The Clt code is available online [16] as well as a video to demonstrate
what it looks like in action.

Declaration of Competing Interest
The authors declare that they have no known competing financial interests or

personal relationships that could have appeared to influence the work reported in this
paper.

Acknowledgments
Mr. Iurman’s work has been funded by a Cisco grant CG# 1343155.

References
[1] T. Mizrahi, N. Sprecher, E. Bellagamba, and Y. Weingarten, “An overview of

operations, administration, and maintenance (OAM) tools,” Internet Engineering
Task Force, RFC 7276, June 2014.

[2] V. Jacobson et al., “traceroute,” UNIX,” man page, 1989, see source code: ftp:
//ftp.ee.lbl.gov/traceroute.tar.gz.

[3] D. Katz and D. Ward, “Bidirectional forwarding detection (BFD),” Internet En-
gineering Task Force, RFC 5880, June 2010.

[4] F. Brockners, S. Bhandari, and D. Bernier, “In-situ OAM deployment,” Inter-
net Engineering Task Force, Internet Draft (Work in Progress) draft-brockners-
opsawg-ioam-deployment-01, March 2020.

[5] F. Brockners, S. Bhandari, and T. Mizrahi, “Data fields for in-situ OAM,” Internet
Engineering Task Force, Internet Draft (Work in Progress) draft-ietf-ippm-ioam-
data-10, July 2020.

[6] S. Deering and R. Hinden, “Internet protocol, version 6 (ipv6) specification,”
Internet Engineering Task Force, RFC 8200, July 2017.

[7] S. Bhandari, F. Brockners, C. Pignataro, H. Gredler, J. Leddy, S. Youell,
T. Mizrahi, K. A., G. B., P. Lapukhov, S. M., K. S., and A. R., “In-situ OAM ipv6
options,” Internet Draft (Work in Progress) draft-ietf-ippm-ioam-ipv6-options-02,
July 2020.

[8] J. Iurman, “IPv6 IOAM patch for the linux kernel v4.12,” 2019, see https://
github.com/iurmanj/kernel_ipv6_ioam.

5



[9] ——, “Data plane support for ioam pre-allocated trace with ipv6,”
June 2020, see https://lore.kernel.org/netdev/20200624192310.16923-1-justin.
iurman@uliege.be/.

[10] J. Iurman, B. Donnet, and F. Brockners, “Implementation of ipv6 ioam in
linux kernel,” in Proc. Technical Conference on Linux Networking (Netdev 0x14),
August 2020. [Online]. Available: https://netdevconf.info/0x14/pub/papers/32/
0x14-paper32-talk-paper.pdf

[11] Facebook, “Udppinger,” see https://github.com/facebook/UdpPinger.

[12] ——, “fbtracert,” see https://github.com/facebook/fbtracert.

[13] Cisco, “M-anycast,” August 2017, see https://github.com/CiscoDevNet/iOAM/
tree/master/M-Anycast.

[14] C. Filsfils, S. Previdi, L. Ginsberg, B. Decraene, S. Litkowski, and R. Shakir,
“Segment routing architecture,” Internet Engineering Task Force, RFC 8402, July
2018.

[15] OpenTelemetry, “Vendor-neutral APISs and instrumentation for distributed trac-
ing,” 2020, https://opentelemetry.io.

[16] J. Iurman, “Cross layer telemetry,” 2020, see https://github.com/iurmanj/
cross-layer-telemetry.

Required Metadata

Current Code Version

Nr. Code Metadata Description
C1 v1.1
C2 https://github.com/iurmanj/kernel_ipv6_ioam
C3
C4 GPL v2.0
C5 git
C6 C
C7 Linux kernel v4.12
C8 https://github.com/iurmanj/kernel_ipv6_ioam/blob/master/README.md
C9 justin.iurman@uliege.be

Current Executable Software Version

6



Nr. Executable Software Metadata Description
S1 1.1
S2 https://github.com/iurmanj/kernel_ipv6_ioam/blob/master/kernel_4_12.patch
S3
S4 GPL v2.0
S5 Linux kernel v4.12
S6 Linux kernel v4.12
S7 https://github.com/iurmanj/kernel_ipv6_ioam/blob/master/README.md
S8 justin.iurman@uliege.be

7


