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Abstract— Pain is a protective physiological system essential
for survival. However, it can malfunction and create a debilitat-
ing disease known as chronic pain (CP). CP is primarily treated
with drugs that can have negative side effects (e.g., opioid
addiction), and lose efficacy after long-term use. Electrical stim-
ulation of the spinal cord or peripheral nerves is an alternative
therapy that has great potential to reduce the need for drugs
and has fewer negative side effects; but has been associated
with suboptimal efficacy because its modulation mechanisms
are unknown. Critical to advancing CP treatment is a deeper
understanding of how pain is processed in the superficial and
deep layers of the dorsal horn (DH), which is the first central
relay station for pain processing in the spinal cord. Mechanistic
models of the DH have been developed to investigate modulation
mechanisms but are non-linear and high-dimensional and thus
difficult to analyze. In this paper, we construct a tractable
computational model of the DH in rats from LFP recordings
of the superficial layer network and spiking activity of WDR
neurons in the deep layer. By combining a deterministic linear
time-invariant model with a stochastic point process model,
we can accurately predict responses of the DH circuit to
electrical stimulation of the peripheral nerve. The model is
computationally efficient, low-dimensional, and able to capture
the stochastic nature of neuronal dynamics in the DH; and is
a first step in developing new therapies for CP.

I. INTRODUCTION

Acute pain is an early-warning physiological signal trig-
gered in the nervous system, which is essential for survival.
However, pain processing is fragile since inflammation, in-
jury, and nervous system malfunction may divert its function,
creating a debilitating disease known as chronic pain (CP).
CP affects about 100 million adults in the US, with $600
billion in annual medical expenses and lost productivity [1].

The primary treatment for CP is drugs, which have nega-
tive side effects (e.g., opioid addition), and lose efficacy after
long-term use [2]. Alternatively, electrical stimulation of the
spinal cord or peripheral nerves is associated with signifi-
cantly less negative side effects, but successful outcomes are
limited due to the poor understanding of its mechanisms [3].

To improve neurostimulation pain therapies, a critical but
complicated question is “how does the dorsal horn process
pain?” This remains an open question because the pain sys-
tem is difficult to probe (experimental barriers) and difficult
to analyze (computational barriers). External sensory inputs -
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Fig. 1. An illustration of the dorsal horn in the spinal cord. Afferent fibers
enter the superficial lamina and the WDR neuron (W) in the deep lamina
projects the impulse to the brain.

noxious and innocuous - are processed first in the superficial
and then deep layers of the dorsal horn (DH). The superficial
layers (lamina I-II) contain inhibitory and excitatory neurons,
which receive and integrate sensory inputs primarily from the
Aδ and C afferent peripheral nerve fiber (Figure 1).

The deep layers (lamina III-V) consist of convergent
neurons that receive noxious (Aδ and C fibers) and innocu-
ous (Aβ fibers) inputs, and thus are also known as wide-
dynamic-range (WDR) neurons. The superficial and deep
layers form a modulatory circuit that partially regulates the
ascending pain transmission through the centrally located
WDR neurons. Electrophysiological recordings of these neu-
rons provide important dynamic information about changes
in neurophysiological responses to disease, injury, neurostim-
ulation, or drug treatment for CP. However, differentiating
subsets of DH neurons while recording the dynamics is
challenging because the neuron’s neurochemical identity is
unknown prior to recording since tracing the staining of
injected dye is complicated and inefficient.

A complement to conducting challenging biological ex-
periments is to construct realistic mathematical models of
the DH circuit. In 1965, Melzack and Wall proposed the
first static model of pain modulation in the DH, known as
the “gate-control theory” of pain [3]. It describes how DH
inhibitory interneurons act as a functional gate that “opens”
or “closes”, thereby relaying or blocking, respectively, pain
transmission to the brain. This model was timely as it showed
the need for models, however, gate control theory fails to
explain the dynamics in firing patterns that emerge under
certain conditions (e.g. wind up, endogenous bursting) and
the relationships between these patterns and pain conditions.

Since then, various detailed conductance-based dynamical
models of inhibitory, excitatory, and WDR neurons in the
DH and interconnections between these neurons have been
built [4], [5], [6]. These models can reproduce some observed
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behaviors, but they assume a fixed circuit topology, are high-
dimensional, and nonlinear. Therefore, they are not amenable
to analysis, i.e., analytically characterizing a set of sensory
stimuli, model parameters, and treatment parameters that
produce the observed firing patterns it is nearly impossible.

In this paper, we construct, for the first time, a tractable
computational model of the DH circuit by combining de-
terministic and stochastic models. The model is constructed
from a novel set of experimental data from the DH in rats
generated using state-of-the-art electrophysiological tech-
niques. Our results show that the dynamics of the local
field potentials (LFP) from the superficial layers can be
correctly estimated with a linear time-invariant (LTI) transfer
function model and spiking activity of WDR neurons can be
accurately predicted using a point process model.

II. METHODS

A. Rodent Electrophysiology Recordings

Electrophysiological measurements are recorded in vivo
from four healthy adult male rats (all procedures approved
by the Johns Hopkins University Animal Care and Use
Committee). Fine-tip microelectrodes are used to measure
neuronal activity in the superficial lamina and the deep
lamina of the DH, which correspond to the LFPs and spiking
activity from the WDR neurons, respectively (Figure 2a). The
sampling frequency of the dataset is 500 Hz. To perturb the
DH, a pulse input is applied to the peripheral sciatic nerve.
Each pulse is 5mA, biphasic, and 0.5 ms long. For the LFP
recordings, a paired-pulse input is applied using the same
parameters with a 400 ms delay between the 1st and 2nd

pulse. In total, ten trials are recorded for each animal. Due
to the difficulties of simultaneously measuring from various
subsets of DH neurons, the LFP and WDR responses are
recorded individually. Thus, each of the trials is time-locked
to the first pulse input for model construction (Figure 2b).

B. Dorsal Horn Model

The objective of the proposed DH model is to predict
the superficial and deep lamina responses from only the
stimulation pulse input. The LFP and WDR responses are
modeled using a 2nd order LTI discrete-time transfer function
and a point process model, respectively. Figure 2c shows the

Fig. 2. a) A biophysical representation of the DH. The grey triangles
represent the recording microelectrodes. The WDR neuron (W) projects the
impulse to the brain. b) Ten trials of LFP and WDR recordings time-locked
to the input. c) A generalized block diagram representation of the DH.

generalized block diagram of the full model. To predict more
accurate responses, the biphasic pulse input is transformed
into a parameterized pulse input, u(t), which is described in
Section II-C. We delay u(t) by σA and σC seconds before
it enters the multi-input, single-output transfer function. The
two transfer functions represent the Aβ fiber, xA(t), and C
fiber, xC(t), components of the LFP response. Then, u(t),
xC(t), and xA(t) are incorporated into the point process
model to estimate the WDR spiking activity.

C. Discrete-Time Transfer Function Estimation and Analysis

Fig. 3. Parameterized input
representation of the pulse.

For each of the four rats, 70%
of the LFP data are used to fit the
2nd order LTI discrete-time trans-
fer function. To identify the best
fits, five parameters are optimized
over a grid search listed in Table
I. The parameterized input (Figure
3) is defined by three parameters
(τ1, τ2, and delay), and is delayed by σA and σC seconds.

TABLE I
PARAMETER SEARCH GRID

τ1,τ2 {0.1ms,0.9ms,0.19ms} σA {0.05ms,0.13ms,0.2ms}
delay {1ms,2ms,3ms,4ms} σC {130ms,160ms,190ms}

For each parameter combination, the coefficients of the
transfer function listed in (1) are fit using the tfest
Matlab command. The root-mean-squared error (RMSE) is
computed between the last 30% of the recorded LFP data and
the predicted LFP response using the fitted transfer function.
For each rat, the final parameters are chosen such that the
RMSE is minimized over all parameter combinations.

XA(z)
U(z)

=z−σA
a0A +a1Az−1

1+b1Az−1 +b2Az−2

XC(z)
U(z)

=z−σC
a0C +a1Cz−1

1+b1Cz−1 +b2Cz−2

(1)

D. Point Process Model Estimation and Analysis

We formulate a point process model to relate the spiking
propensity of each WDR neuron to factors associated with
the LFP response and features of the neuron’s spiking history.
A point process is a series of 0 – 1 random events that
occur in continuous time. For a neural spike train, the
1-s are spike time events and the 0-s are the times at which
no spikes occur. Neural spiking activity can be defined using
a point process model in which we consider an observation
interval (0,T ], and count the number of spikes, N(t), in the
interval (0, t] for t ∈ (0,T ]. A point process model of a neural
spike train can be completely characterized by its conditional
intensity function (CIF), λ (t|Ht), which is defined as:

λ (t|Ht) = lim
∆→∞

P(N(t +∆)−N(t) = 1|Ht)

∆
, (2)

where Ht denotes the spike history up to time t. It follows
from (2) that the probability of a single spike in a small
interval (t, t +∆] is approximately

Pr(spike in(t, t +∆]|Ht) = λ (t|Ht)∆. (3)
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Details can be found in [7], [8]. When ∆ is small, (3) is
approximately the spiking propensity at time t.

The CIF generalizes the rate function of a Poisson process
to a rate function that is history dependent. A spike train
can be completely characterized by a CIF. Therefore, if we
define a model for the CIF, then, as a result, we define a
model for the spike train [9], [10]. For these analyses, we
use generalized linear models (GLM) [11] to fit each CIF
estimate framework to conduct statistical inferences [12].

Specifically, for each WDR neuron, the CIF is modeled
as a function of the input pulse, the LFP response in the su-
perficial layers, and the spiking history of the WDR neuron.
For each neuron, the CIF has a multiplicative structure [13]:

λ (t|Ht ,xA,xC,u,Θ) = eαt
λ

x(t|γ,xA,xC,u)λ 0(t|H0
t ,β ), (4)

where α is a constant history-independent term, λ x is the
effect of the superficial lamina, and λ 0 describes the effect
of the WDR neuron’s own spike history (H0

t ) on the neural
response. The parameter vector Θ ≡ [α,γ,β ] is estimated
from the data. Both λ x and λ 0 are dimensionless.

The full CIF model (4) is composed of distinct CIFs for
each different kind of covariates, in order to assess how much
each component contributes to the spiking propensity of the
neuron. The superficial layer CIF, λ x, is given by

λ
x(t|γ,xA,xC,u) = exp

{
βuu(t)+βAxA(t)+βCxC(t)

}
, (5)

where γ = [βu,βA,βC], u(t) is the parameterized input, xA(t)
is the Aβ fiber response, and xC(t) is the C fiber response.
The WDR spiking history CIF, λ 0, is defined as

λ
0(t|H0

t ,β ) =exp
{ 12

∑
i=1

βiN(t− i+1 : t− i)

+β13 ∑N(t−63 : t−13)

+β14 ∑N(t−980 : t−750)
}
,

(6)

where β = {βi}14
i=1 and N(a : b) is the number of spikes

observed in the time interval [a,b). For all parameters, the
chosen bin length is 0.02 ms. The short-time (ST) history
parameters, {βi}12

i=1, measure the effects of the spiking
history in the previous 0.24 ms and therefore can capture
refractoriness and/or bursting on the spiking probability. The
summed short-time (SST) history parameter, β13, and the
summed long-time (SLT) history parameter, β14, instead,
measure the effects of the spike history from 0.26 ms to 1.26
ms and from 15 ms to 19.6 ms prior the time t, respectively.
Because of its optimality properties, we choose a likelihood
approach for fitting and analyzing the parametric model of
the CIF. The parameters are efficiently computed using the
iterative reweighted least squares algorithm.

In order to determine which factors are necessary for
accurate spiking prediction, we compare three different point
process models: M1 (λ = eαtλ x), M2 (λ = eαtλ 0), and M3,
which is the full model described in (4). To evaluate the
predictive power of the point process models, we employ
a receiver operating characteristic (ROC) curve analysis. To
compute the ROC curve, the λ for each model is thresholded

from 0 to 1 by steps of 0.001. At each threshold step, for
each point that λ is above the threshold it is considered a
spike, while everything below it is not. The computed true-
positive rate and false-positive rate create the ROC curve.

The time windows for the ST, SST, and SLT covariates
(i.e N(t−63 : t−13) for the SST) are chosen such that the
area under the ROC curves (AUC) is optimized over a search
grid. The search values for the time windows are ST (2 time
bins to 30 time bins), SST (2 time bins to 70 time bins
starting after the current ST value), SLT (500 time bins to
1000 time bins). The combination of time windows listed in
(6) maximize the AUC values over all four rats.

Leave-one-out cross-validation is used to evaluate the
performance of each point process model. For each of the ten
folds, nine trials are used for training and a different single
trial left out to be used for validation. For each rat, a one-
way ANOVA is applied to determine if significant differences
exist between the AUC values for each model. The Tukey
HSD test evaluates the pairwise comparisons (α = 0.05).

III. RESULTS

A. Predicting the Superficial Lamina LFP Response

A 2nd order LTI discrete-time transfer function is used to
capture the dynamics of the superficial lamina in response
to the paired-pulse parameterized input. Figure 4 shows a
comparison of all ten recorded LFP trials (displayed in black)
and the optimized transfer function output (shown in red)
for each rat subject (S). The RMSE between the recorded
and estimated LFP responses are 0.142, 0.058, 0.116, 0.162,
respectively. Tables II and III list the optimal values for
the parameterized input and the corresponding fitted transfer
function coefficients, respectively. Therefore, using an LTI
system can quickly and accurately predict the LFP response
to a paired-pulse input.

TABLE II
THE OPTIMAL PARAMETERS FROM THE GRID SEARCH.

S τ1 τ2 delay σA σA
1 0.19 ms 0.09 ms 3 ms 0.2 ms 190 ms
2 0.19 ms 0.09 ms 3 ms 0.2 ms 190 ms
3 0.19 ms 0.01 ms 4 ms 0.2 ms 160 ms
4 0.19 ms 0.01 ms 4 ms 0.2 ms 160 ms

TABLE III
THE FITTED COEFFICIENTS FOR THE OPTIMAL TRANSFER FUNCTION

S a0A a1A b1A b2A a0C a1C b1C b2C
1 .042 -.049 -1.891 .891 -.011 .011 -1.999 .999
2 .004 -.006 -1.946 .946 -.006 .006 -1.999 .999
3 -.083 .082 -1.990 .990 -.007 .007 -1.999 .999
4 -.084 .083 -1.992 .992 -.006 .006 -1.999 .999

B. Predicting the WDR Neuron Spiking Activity

A single point process model is able to efficiently provide
an accurate estimation of the WDR neuron spiking activity.
Comparing the ROC curves in Figure 5, we see that the full
point process model (M3) can more accurately predict the
WDR spiking activity when compared to the M1 (only LFP
response) and M2 (only spiking history) models because it
is farther away from the diagonal line representing chance.
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Fig. 4. A comparison of the recorded and estimated LFP responses from
the optimized transfer function for each rat subject.

Fig. 5. The ROC curves for the three point process models of WDR activity.
The thick line and shaded area indicate the mean and standard deviation over
the 10 folds, respectively. The diagonal line represents chance.

To quantify the differences between the point process
models, the AUC values from all ten folds are compared
in a one-way ANOVA to determine if the model type is
a significant factor. The results shown in Figure 6 indicate
that the AUC values for the models are significantly different
(p < 0.0001). The F-statistic value is shown for each respec-
tive ANOVA. Pairwise comparisons of the models show that
the AUC values for the full model (M3) is significantly much
higher than M1 (p < 0.0001), over all of the rats. For three
of the four rats, M3 is also significantly higher than M2.

Fig. 6. A statistical comparison of the AUC values, from the ROC curves
for all ten folds in Figure 5, for the three point process models. * p < 0.05,
** p < 0.0005, *** p < 0.0001.

Therefore, in order to fully capture the neural dynamics of
the WDR neurons then the input, LFP responses, and the
spiking history must be taken into account.

IV. DISCUSSION
In this paper, we construct a tractable computational model

of the DH in healthy rats based on LFP and WDR recordings
obtained from the superficial lamina network and the deep
lamina, respectively. We can accurately predict responses
of the DH circuit to electrical stimulation of the peripheral
sciatic nerve by combining a deterministic LTI model with
a stochastic point process model. The model is computa-
tionally efficient, low-dimensional, and able to capture the
stochastic nature of neuronal dynamics in the DH. Future
work includes estimating this model for the nerve-injured
or CP animal, and then applying closed-loop stimulation
strategies to steer the CP model to mimic a healthy model.
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