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Cynthia Steinhardt1, Pierre Sacré1, Sara K. Inati2, Sridevi V. Sarma1, Kareem A. Zaghloul3

Abstract— Electrical brain stimulation is used clinically to
target pathological regions of the brain for treatment of
diseases, such as Parkinson’s disease, epilepsy and depression.
Conventional treatments involve chronic implants that disrupt
activity through a fixed periodic train of pulses or bursts of
pulses applied to the affected region. However, stimulating one
region of the brain necessarily affects other structurally and/or
functionally connected areas. Understanding how connected
regions of the brain are affected by stimulation at the implant
site could improve treatment efficacy by informing optimal
placement and stimulation patterns. In this study, we build
predictive input-output models from intracranial recordings
obtained from 10 epilepsy patients implanted with electrodes.
Specific contacts within each subject were electrically stim-
ulated (inputs), and evoked responses were simultaneously
captured from all contacts (outputs). From these data, we
constructed and compared four different dynamical models
that contain causal linear and nonlinear components. All
model architectures successfully predicted evoked responses to
stimulation with single pulses and sequences of pulses. Results
suggest that a linear time-invariant model in series with a
quadratic non-linearity best captures the relationship between
stimulation amplitudes and evoked responses.

I. INTRODUCTION

Neural modulation studies using electrical brain stimula-
tion (EBS), stimulation of brain with current pulses from
internal electrodes, have increased in the last few decades.
EBS has been shown to affect cognitive processes, such as
decision making [1], or disrupt pathological neural activity
[2], [3]. Other studies used EBS to uncover functional con-
nectivity by stimulating in one region and recording evoked
responses from other brain regions [4], [5].

While these studies have indicated causal effects of stim-
ulation, which have inspired treatments, such as deep brain
stimulation for Parkinsons disease [6] and depression [7], the
effects of EBS on large scale neural circuit activity is less
understood. Consequently, clinical implant placement and
programming is based on relative improvement of perceived
symptoms and safe levels of stimulation. Then, the fixed-
amplitude stimulation settings are typically used throughout
the course of treatment [6], [8]. For example, when pro-
gramming deep brain stimulation in a Parkinson’s patient, the
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pulse width, pulse amplitude, and pulse frequency are tuned
to reduce tremor and bradykineasia. The goal is to suppress
such symptoms and avoid undesirable side effects (i.e. im-
pulsivity, paresthesia) that occur when neighboring regions
are affected [6]. More precise treatments could be made if
one could test all combinations of stimulus parameters, and
measure the behavioral and neural responses. Unfortunately,
this is a combinatorial search and thus impractical.

In such scenarios, predictive models can play an important
role. If one can construct an input–output model, wherein the
model computes the neural responses in multiple neighboring
regions (output) to stimulation in a target region (input), then
one can formally optimize stimulation parameters to achieve
specific patterns in the neural network. Clinical treatment
of medically refractory epilepsy (MRE) patients has created
an opportunity to develop such models. Some MRE patients
undergo invasive monitoring, wherein electrode contacts are
implanted intracranially and stimulated for clinical evaluation
of seizures. Past studies involving MRE subjects used fixed,
high amplitude pulses, cortico-cortical evoked potentials
(CCEPs), to induce evoked responses in other regions to
understand connectivity and evoked responses shape [9].

In a previous study, we considered a two system model
in which the response to negative (N) / cathodic-anodic
biphasic pulses, and positive (P) / anodic-cathodic biphasic
pulses of amplitude drawn from a uniform distribution,
were modeled as two separate linear time-invariant systems
[10]. This study aims to improve on this previous study by
finding a model that can better predict the response to any
amplitude of current within a safe range for stimulation. A
distribution of amplitudes of current pulses were used to
stimulate one site in the brain while recording from all other
implanted electrodes in MRE patients. Criteria were made
for determining whether the population of neurons close to
an electrode was responsive to stimulation at the stimulation
site. Then, four model architectures were compared for their
ability to predict the response to single pulses and sequences
of pulses of varying amplitudes.

II. METHODS

A. Participants

Ten individuals (8 male; 32.5± 0.9 yr) with drug resistant
epilepsy underwent a surgical procedure in which platinum
recording contacts were implanted subdurally on the cortical
surface. Placement of the contacts was determined by the
clinical team in order to best localize epileptogenic regions
for resection. Data were collected at the Clinical Center at the
National Institutes of Health (Bethesda, MD). The research
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protocol was approved by the Institutional Review Board,
and informed consent was obtained from all participants.

B. Stimulation and Recording Protocol

While participants were monitored in the Epilepsy Mon-
itoring Unit, we electrically stimulated two adjacent sub-
dural contacts with biphasic pulses using a programmable
neurostimulator (CereStim, Blackrock Microsystems, LLC.,
Salt Lake City, UT) and a custom built GUI (Fig 1a). In
two individuals, we performed the same experiments at two
separate stimulation locations. Thus, we considered there to
be 12 independent stimulation datasets.

This experimental setup is similar to previous studies with
CCEPs [5]. However, each pulse consists of a square-wave
biphasic pulse, where each phase has a duration of 0.3 ms
and was separated by a 0.05 ms gap (Fig. 1b). We used a
biphasic pulse to avoid charge buildup on the cortical surface
(for safety) and polarization of the electrode contacts which
could reduce current density [11].

We chose stimulation sites based on two criteria. The
clinical team verified that the locations were not directly
involved in seizure activity and were relatively central to
the entire set of implanted electrodes in a participant. These
criteria maximize the chances of observing evoked responses
at other contacts. Evoked responses were recorded from all
other electrodes.

Electrodes with variance over a standard deviation away
from the average variance of all electrodes were excluded
from future analysis. A common average correction followed
by filtering with a notch filter at 60 Hz (line noise), a high
pass filter at 2 Hz to remove effects of electrode drift, and a
200 Hz low pass filter (at the upper bound of neural activity)
were used to pre-process the data before further analysis
[12]. The stimulation artifact zone was considered to be
the 10 ms after stimulation and ignored in future analysis.
Electrodes were divided into responsive and non-responsive
categories using two criteria. The average evoked response to
the training data needed to cross zero at least twice, and the
energy within 11 to 311 ms of stimulation was significantly
greater than the energy 312 to 612 ms after stimulation by
a threshold determined using a knee point algorithm. This
required the response to have at least a unimodal shape and
to have a stronger response in the range of a typical evoked
response than afterwards. This resulted in 52 responsive
electrodes.

C. Training and Testing Experiments

To characterize the responses to EBS, we applied se-
quences of individual biphasic pulses to a pair of neighboring
electrodes, while recording from the remaining electrodes
(Fig. 1a). In most participants, we delivered pulses once
every 800–1000 ms with a random jitter of 10 ms, result-
ing in average inter-stimulus interval across all participants
of 867.0± 41.3 ms. For each individual pulse, we used a
stimulation amplitude that was randomly drawn from a
uniform distribution between approximately 8 and −8 mA
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Fig. 1. (a) Stimulation site in one patient. (b) Sequence of biphasic pulses
and resulting evoked responses on another electrode. Evoked responses to
pulses of the same amplitude overtime and overlaid. Evoked responses to
pulses of opposite polarity overtime and overlaid. The energy of response to
a five minute training session, (c) showing asymmetric scaling of response
to P and N pulses and (d) overlaid with a linear and quadratic fit.

(−7.93± 0.07 mA to 7.84± 0.16 mA). In the training ses-
sion, we stimulated for five minutes, using approximately
300 individual stimulation pulses (Fig. 1a).

In the test session, we presented a novel sequence of indi-
vidual pulses for two minutes (approximately 120 individual
stimulation pulses). We used this novel sequence of pulses
and their responses to test how well each model could predict
the evoked response to novel stimulation.

Five participants received stimulation with multiple pulses
per trial instead of one pulse per trial, where two to seven
pulses could be given within 20 to 50 ms of one another per
trial. These sessions were used to determine the ability of
each model to predict the response to a signal comprised of
a single pulse and multiple pulses.

D. System Models

The system was modeled with variations on a time in-
variant (TI) model due to the similarity of outputs to the
same stimulation amplitude. Two shifted pulses of the same
amplitude u1(t) = u2(t − τ), where τ = 110.1 s, resulted
in nearly identical evoked responses y1(t) and y2(t). This
indicates a TI system (Fig. 1b). Two pulses u+(t) and u−(t),
where u−(t) = −u+(t) were considered to be time shifted
versions of each other modulo a sign (Fig. 1b). Evoked re-
sponses to both inputs were also nearly identical, indicating a
rectifying nonlinearity with amplitude. Nonlinearity selection
was also data driven. Some electrodes showed asymmetric
scaling based on pulse polarity (Fig. 1c). Additionally, the
energy of evoked responses showed near linear and quadratic
increase with amplitude (Fig. 1d). Models possessing various
combinations of these features were probed to find the best
explanatory model. All models share an LTI block and
transform stimulation input x(t) into evoked response y(t).

1) Modeling the stimulation inputs: The biphasic stim-
ulation input was idealized as a train of impulses with
amplitudes drawn from a uniform distribution between −8
and 8 mA.
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Fig. 2. (a) The architecture for the 2S model. (b) The architectures for
NL-L models including how x(t) transforms to v(t) for the SL, AL, and
AQ models. (c) Finding the beta ratio by grid search optimization.

TABLE I
NONLINEARITIES IN NL-L CASCADE MODEL HNL-L .

symmetric β = 1 asymmetric β 6= 1

linear F (x) = |x| HSL HAL
quadratic F (x) = |x|2 – HAQ

2) Modeling the evoked responses: We consider two
classes of models (Fig. 2).

The first model class is the parallel interconnection of two
rectified linear time-invariant subsystems, a two subsystem
(2S) model (Fig. 2a):

y(t) = h+(t) ∗ f+(x(t)) + h−(t) ∗ f−(x(t))

with f+(x) = max(0, x) and f−(x) = max(0,−x). This
model structure is motivated by an initial assumption that P
and N pulses evoked entirely different responses from the
neural population.

The second model class is the cascade interconnection of
a static nonlinear block and a linear time-invariant system

y(t) = HNL-L{x(t)} = h(t) ∗ fNL(x(t))

with

fNL(x) =

{
F (x), if x ≥ 0,

β F (x), otherwise.

Depending on the value that β takes and the nonlinearity
F (x), we have three models (see Table I): the symmetric
linear (SL), the asymmetric linear (AL), and the asymmetric
quadratic (AQ).

We assumed that each LTI block is causal and has a finite-
duration impulse response, that is, h(t) = 0 for all t < 0 and
t > T .

E. System Identification

Our goal is to estimate a model based on observing the
response y(t) of our system to an input x(t). A widely used

method, called minimum mean-square estimator (MMSE), is
to choose the model H such that

HMMSE = argmin
H

E(H{x(t)} − y(t))2 (1)

that is, to choose as our estimate a value that minimizes the
mean-square error (MSE). See [13], [14] for details. When
it is not fixed, β was found by gridding over values between
10−3 and 102 and by choosing the value of β that minimized
the mean-square error.

F. Model Comparison

To compare the fit of the models on the data, predictions
were made with each model by transforming the test input
xtest(t) by the optimal function found during the training
session to produce a prediction of the evoked response
ŷtest(t). We then computed the mean-square error of the
predicted response as follow

MSE =
1

N

N−1∑
t=0

(ŷtest(t)− ytest(t))2. (2)

The distribution of MSE across responsive electrodes was
compared across models through their mean and SEM. A
lower and upper bound on error was measured. The lower
bound MSnoise was the mean of the squares of the trace in
the last 300 ms after stimulation, when no evoked response
should occur; this is the contribution of noise to error.
The upper bound MSsignal was the mean of the squares
of the trace in the first 300 ms after stimulation, which is
proportional to the energy of the signal. Normalized Percent
Signal Explained (NPSE) for some model was calculated as:

NPSEmodel = 1− MSEmodel −MSnoise
MSsignal −MSnoise

(3)

which assess prediction similarity, discounting effects of
noise.

Additionally, models were compared with coefficient of
determination (R2) and nAIC for robustness of model fit
and overparameterization.

III. RESULTS AND DISCUSSION

Twelve sites in MRE patients were stimulated with a
sequence of P and N pulses of varying amplitudes, while
evoked responses were recorded from the remaining elec-
trodes. A training session of pulses was used to derive im-
pulse response functions and optimize nonlinearities. These
functions were then used to predict evoked responses to
single pulses and sequences of pulses of stimulation.

The consistency of evoked responses over time and scaling
of energy with stimulation amplitude inspired the assumption
of a time-invariant model with a linear component. Prediction
accuracy was considered the amount of the signal above the
noise threshold that was predicted by the model (3) [10].

When predictions were made for evoked responses to sin-
gle pulses, the SL model, which assumed identical responses
to negative and positive stimulation, performed significantly
worse than all models, but it captured over 60 % of the signal
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Fig. 3. Comparison of MSE of all models to error bounds for (a) single
pulse test sessions across responsive electrodes and (b) multiple pulse test
sessions with significance (right), where green is significant (p < 0.05) and
white is not. A sample prediction of response to (c) a single pulse and (d)
multiple pulses for all models.

TABLE II
MODEL COMPARISON METRICS

Single Pulses Multiple Pulses
R2 nAIC NPSE

[%]
R2 nAIC NPSE

[%]
Two Subsystem 0.288 8.45 65.3 0.359 8.44 81.2
Asymmetric Linear 0.286 6.45 63.7 0.356 6.45 79.8
Asymmetric Quadratic 0.302 6.44 65.6 0.387 6.42 84.8
Symmetric Linear 0.287 6.45 63.9 0.358 6.45 79.9

(Fig. 2b). This indicates a significant portion of the responses
to N and P pulses are identical. The AL and AQ models add
a degree of freedom via asymmetric scaling. The AL model
has PSE slightly higher than the 2S model. However, the AQ
model significantly outperforms the 2S model.

The PSE for predictions of the response to a sequence
of pulses increases, indicating the the TI assumption holds.
Performance differences between the SL, AL, and 2S model
decrease to within 1 %. Meanwhile, the AQ model out-
performs the other models by about 5% (Table II). The
outperformance of the 2S model indicates overfitting. nAIC
values also show the 2S model is relatively overparameter-
ized. Asymmetric scaling does not have a large effect on
PSE, given insignificant differences between SL and AL
models. Instead, quadratic scaling has a significant effect that
implies a quadratic scaling more closely reflects the local
field response to EBS of increasing amplitude.

The success of the AQ model likely captures the difference
between a biphasic P and N pulse. A biphasic P (N) pulse is
an anodic (cathodic) pulse, followed by a cathodic (anodic)
pulse. Cathodic and anodic pulses of the same current level
have an axonal activation function with trimodal shape,
which occurs at the same locations and has a central peak
with polarity opposite the two side lobes. Cathodic pulses are
shown to create an activation function that activates centrally
and suppresses distally (which prevents an action potential)
[15]. Thus, a P pulse leads to activation then suppression
of the most local axons and activation of most distal axons,
while N pulses activate both populations. This explains how
P and N pulses lead to different responses, as in our model.

Current is thought to fall off with Euclidean distance
from the stimulation site, a linear scaling. The quadratic
nonlinearity could related to connectivity of neurons in this
activated population to multiple neurons which drives expo-
nential increase in activation that appears locally quadratic.
Studies with two-photon stimulation have shown quadratic
dependence on the probability for channel opening based on
the intensity of stimulation, so this nonlinearity could also
relate to higher current being more likely to drive the internal
voltage of the axon higher and open channels [16].

The relative success of our AQ model indicates a static
non-linearity functional neural responses to EBS across the
brain. This more realistic model of neural responses across
the brain to EBS offers a more accurate method for exploring
how to induce desired effects when modulating brain activity
when designed stimulation-based treatments for neurological
disorders.
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