24.11.2020

Isotopic and microbiologic evidence of greenhouse gases transformation mechanisms in groundwater

by Olha Nikolenko

Supervisor: Serge Brouyère Co-supervisor: Alberto V. Borges

Background of the study

1

Fig. 2. The historical change in the atmospheric concentrations of GHGs

Source: http://www.ehso.com/climatechange/climatechangecausesgreenhouseeffect.php

Fig. 1. The greenhouse effect of solar radiation on the Earth's surface

Background of the study

2

Source: Jurado et al., 2017

Fig. 3. Types of GHGs emissions from agricultural areas

Main challenges

3

Fig. 4. Heterogeneous subsurface

Source: Hartmann et al., 2017

Approaches applied

4

Stable isotope and isotopomer analysis.

Isotopomers are molecules having the same number of each isotopic atom but differing in their positions.

Fig. 5. N₂O isotopomer representation

Nitrification

> Denitrification

Fig. 6. Biotic nitrification and denitrification pathways

Approaches applied

6

Source: Campbell et al., 2019

Fig. 7. Schematic representation of a protein formation

Objectives of the study

Theoretical part:

 review available information about the variability of ¹⁵N isotopes in groundwater under agricultural areas.

Practical part:

- 1. to estimate the **variability of GHGs concentrations** in groundwater under different hydrogeological, hydrochemical and land management conditions;
- to identify the N₂O production and consumption processes and reveal conditions that govern N₂O accumulation in groundwater;
- 3. to collect in situ evidence about the SP ranges of N₂O and activity of bacteria involved into N₂O production and consumption processes.

N stable isotopes

8

Source: Nikolenko et al., 2018

Fig. 8. N sources and transformation processes that affect N species in the subsurface

N stable isotopes

9

Fig. 9. N Sources, processes and factors that influence δ^{15} N-N₂O values

Complementary isotope studies: O, B, S, C

10

heterotrophic denitrification

autotrophic denitrification

Practical part

11

regional scale investigations:

The aim:

- 1) examination of the distribution and accumulation of GHGs in different parts of the studied aquifer across its lateral and vertical dimensions;
- 2) collecting information about hydrochemical conditions of the subsurface.

Iocal scale explorations:

The aim:

 identification and quantification of the rates of N₂O production and consumption processes within the studied aquifer using in situ and laboratory designed hydrogeological, isotope and microbiological experiments.

Regional studies: objectives

- 1) explore the variability of GHGs concentration along groundwater flow;
- 2) reveal the sources of N and C loads across the aquifer;
- 3) identify the processes that govern biogeochemistry of GHGs under different environmental settings.

Regional studies: description of the area

13

Peculiarities of the studied area:

- area: 480 km²;
- 65% of agricultural activities;
- high fracturing of chalk aquifer;
- unconfined the South;

semi-confined – near the Geer river;

confined – the North-West.

Fig. 10. Map of the studied area in the Geer basin

Source: Nikolenko et al., 2019

Regional studies: analyzed parameters

- hydrogeochemical controls (DO, DOC, SO₄²⁻, HCO₃⁻, pH etc.);
- concentrations of N-species (NO₃⁻, NH₄⁺, NO₂⁻ and N₂O);
- isotope signatures of N₂O, NO₃⁻, SO₄²⁻, ¹¹B, ³H.

Fig. 11. Distribution of NO₃⁻, DO, Cl⁻, SO₄²⁻along groundwater flow

Regional studies: distribution of GHGs

Fig. 12. Distribution of N_2O , CH_4 and CO_2 along groundwater flow

Regional studies: N sources

16

Fig. 13. Sources of N loading across the aquifer

Regional studies: N sources

17

Fig. 14. Land use map of the studied area

Regional studies: CO₂ and CH₄ biochemistry

18

- tendency towards accumulation of CO₂
- \checkmark the subsurface dynamics of CO₂ is governed by two processes:
- 1) dissolution of carbonate minerals;
- 2) degradation of DOC derived from the mineralization processes in the soil.

CH₄ accumulation

- \checkmark northern zone is characterized with the higher tendency towards CH₄ accumulation;
- presence under aerobic conditions in southern, central and north-eastern zones suggests its thermogenic origin.

Regional studies: N₂O biochemistry

19

Group 1 – dark blue, group 2 – green, group 3 – blue and group 4 – yellow.

Source: Nikolenko et al., 2019

Fig. 15. Clustering of the groundwater samples using SOM algorithm

Group	N ₂ O (μg N/L)	SP (‰)	DO (mg/L)	NO ₃ - (mg/L)	Processes
Group 1	3.4 ± 1.2	11.2 ± 1.6	8.2 ± 1.9	28.7 ± 3.8	nitrification and incomplete denitrification
Group 2	13.6 ± 6.3	26.1 ± 3.4	5.7 ± 2.4	48.7 ± 18.7	nitrification and complete denitrification
Group 3	6.7 ± 3.4	19.1 ± 6.7	7.2 ± 2.6	39.6 ± 16.2	nitrification and incomplete denitrification
Group 4	0.1 ± 0.1	not available	1.5 ± 2.1	0.2 ± 0.4	complete denitrification

Local studies: description of the area

20

Fig. 16. Piezometers and sampling depths at the Bovenistier and SGB sites

Local studies: vertical profile SGB

Fig. 17. Vertical distribution of N compounds, their isotopes and DO

Local studies: vertical profile Bovenistier

22

Fig. 18. Vertical distribution of N compounds, their isotopes and DO

Local studies: isotope labeled experiment

23

Fig. 19. Scheme of laboratory ¹⁵N stable isotope labeled experiment

Local studies: summary

24

N₂O produced by nitrification and denitrification processes occurring within the other parts of the aquifer

OR

discrepancy between real aquifer conditions and laboratory experiments.

Loc: (<mark>S</mark> /	aı	moA	nirł	K_3	nir	K_5	nir	S_3	nir	S_5	nor	B_4	nor	C_2	nor	C_3	nc	osZ			
ation W)	PCR	SSA	PCR	SSA	PCR	SSA	PCR	SSA	PCR	SSA	PCR	SSA	PCR	SSA	PCR	SSA	PCR	SSA			nitrifiers genes
1 (Pz13)					+	+			+	+	+	+	+				+	+			
2 (Pz12 bot)	+																				denitrifiers gene
3 (Pz12 top)					+	+					+	+									-
4 (PzCs bot)					+	+			+	+	+	+	+	+							
5 (PzCs top)									+												
7 (SGB1 ton			+	+	+	+					+	+	+	+							N ₂ O production
8 (SGB3 bot	/)		+	+	+	+	+		+	+	+	+	+	+	+						
9 (SGB3 top)				+	+			+	+											N ₂ O consumpti
1`(Pz13)	+								+	+	+	+					+	+			
2`(Pz12 bot))				+				+		+	+	+	+							
3`(Pz12 top))		+	+							+	+									
4`(PzCs bot)) +				+		+		+	+	+	+			+						
5`(PzCs top))				+	+	 				+	+	+	+	+						
6 (SGB1 bot)				+																
7`(SGB1 top) +				+		+				+	+			+						
8`(SGB3 bot)				+		+														
9`(SGB3 top)				+										+						

Conclusions

- The concentration of N₂O is the most variable which is attributed to the fact that its production/consumption pathways within the studied aquifer are controlled to a large extent by microbiological metabolism:
- consequently, the total flux of N₂O originating from the given aquifer is associated with high level of uncertainty, particularly in comparison to the other GHGs.
- 2. The concentration of **CO₂ does not change** significantly in groundwater which might be explained by:
- equal distribution of organic matter across the studied area;
- > aquifer geology controls the amount of CO_2 dissolved in groundwater.
- 3. CH₄ is accumulated despite oxic subsurface conditions which might be related to the presence of natural sources of this gas:
- coal formations below the aquifer.

Conclusions

- 4. within the framework of this study it was not possible to obtain the complete understanding about dynamics of N_2O within the aquifer:
- nevertheless, there is evidence that show that isotopic signatures of N₂O in the aquifer are affected by ongoing denitrification.
- application of isotope/isotopomer mapping approach together with hydrochemical evidence can give the general idea about the occurrence of N₂O production and consumption mechanisms but it cannot differentiate which exactly microbiological processes occur in the aquifer:
- the observed N₂O isotopic signatures are affected by mixing between different subsurface compartments.
- 6. in order to **identify the processes** occurring **in situ** it necessary to complement subsurface findings with the study of enzyme activities.

Perspectives

30

Further steps in studying N₂O dynamics:

- 1. comparison of GHGs transformation processes in the "soil unsaturated zone aquifer" system;
- 2. studying GHGs production and consumption processes within the riparian zones and river sediments;
- 3. comparison of N₂O fluxes in the areas of similar hydrogeological conditions but different sources of N loads;
- 4. comparison of GHGs fluxes occurring in contrasting hydrological/meteorological conditions and under different agricultural management practices.

THANK YOU!

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 675120.

www.inspirationitn.eu