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Abstract 
 

One of the major global challenges of this century is to find the balance between 

the intensive agricultural production and the environmental damage that it causes by 

contributing to climate change and deterioration of water resources and soils. Agriculture 

accounts for up to one third of anthropogenic emissions of greenhouse gases (GHGs) 

which exacerbate the climate change (increase in nitrous oxide (N2O), methane (CH4), 

and carbon dioxide (CO2)) and lead to the depletion of stratospheric ozone layer (N2O).  

Recent studies have suggested that in agricultural areas groundwater systems 

might be the significant sources of GHGs emissions, especially N2O, to the atmosphere 

due to intensive application of nitrogen containing inorganic and organic fertilizers used 

to increase soil fertility. However, the dynamics of N2O, CH4 and CO2 in aquifers is still 

poorly characterized due to the insufficient insight into kinetics and controls of processes 

regulating their production, transport and consumption. That is why, it is important to 

obtain more information regarding functional zones controlling fate of GHGs in 

subsurface.  This knowledge is important for constraining the GHGs budgets, 

understanding the mechanisms behind climate change and developing mitigation 

measures to stop the rise of concentrations of N2O, CH4 and CO2.  

In this context this study focuses on evaluating the potential role of aquifers 

affected by the agricultural activities as a source of GHGs emission to the atmosphere 

and improving the understanding of the impact of the spatial heterogeneity of subsurface 

media on the dynamics of N2O production and consumption processes. In this project 

advanced techniques and methods from hydrogeological, isotope and microbiological 

fields were used for investigation of the actual subsurface conditions and analysis of their 

impact on production and consumption of N2O in groundwater. 

The study was divided into two stages: 1) regional investigations and 2) local-

scale explorations. The main aim of the regional survey was to examine the distribution 

and accumulation of GHGs in different parts of the studied aquifer across its lateral and 

vertical dimensions and to obtain better information regarding the hydrogeochemical 
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conditions of the subsurface. Meanwhile, the local scale investigations were focused on 

the occurrence of biochemical stratification in the same aquifer and analysis of its impact 

on N2O dynamics. It aimed to identify and quantify the rates of N2O 

production/consumption processes using data obtained from ambient groundwater and 

laboratory designed experiments. Since N2O production and consumption processes can 

proceed through abiotic and biotic pathways, the measurements of the activity of the 

microorganisms that accomplish biotic N transformations were conducted to obtain more 

information about N2O dynamics. 
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Introduction 
Aquifers under agricultural areas as a source of greenhouse gases 
emission 

The observed rise of the global temperature is caused by intensive accumulation 

of greenhouse gases (GHGs) in the atmosphere since the mid-20th century. In comparison 

to the pre-industrial times atmospheric concentrations of three main GHGs: CO2, N2O 

and CH4 – have increased by approximately 146 %, 122 % and 257 %, respectively, and 

now are at 410  ppm, 330 ppb and 1860 ppb concentration levels (World Meteorological 

Organization, 2018). In this context global community has started to discuss the issue of 

human-caused climate change and its dangerous consequences that are becoming evident 

throughout the world (IPCC, 2013). Nowadays, both public and academic debates pay 

particular attention to finding the ways to reverse or moderate the trend towards increase 

of the concentrations of GHGs in the atmosphere. In particular, the Paris Agreement on 

climate change anticipates a reduction, by 2030, of GHG emissions of at least 40% 

compared to 1990 emission levels. This is a challenging task, especially taking into 

account the necessity to provide for the needs of the growing global population.  

In this context much attention has been devoted to quantification and monitoring 

of agricultural emissions which contribute approximately 12% to the global 

anthropogenic GHGs emissions (Smith et al., 2014). This type of emissions is 

characterized with wider uncertainty range (± 30%) in comparison to the uncertainty 

level estimated for the largest source of GHGs emissions – the consumption of fossil fuel 

(approximately 10%) (IPCC, 2013; Tubiello et al., 2013). Agricultural activities (crop 

and livestock production) emit mainly non-CO2 gases such as methane (CH4) and nitrous 

oxide (N2O), effectively contributing around 47% and 60% share to total anthropogenic 

emissions of these gases, respectively (Tian et al., 2019; Tubiello et al., 2015).  

Agricultural emissions to the atmosphere can be divided into two groups: 1) direct 

emissions deriving from soils and animal production; 2) indirect emissions resulting from 

leaching and runoff of nitrogen (N) and carbon (C) compounds to adjacent water bodies 

(Jurado et al., 2017). While there exists an extensive body of research devoted to the 
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quantification and understanding of GHGs production/consumption mechanisms in soils, 

the GHGs budget of aquatic systems appears to be poorly constrained (McAleer et al., 

2017; Beaulieua et al., 2011). In particular, two thirds of uncertainty within the total 

indirect agricultural emissions is attributed to the imprecise quantification of N2O budget 

(Young et al., 2016).  

In agricultural areas aquifers appear to be a significant indirect source of GHGs 

emissions, especially N2O, to the atmosphere due to intensive application of inorganic 

and organic fertilizers used to increase soil fertility (Jurado et al., 2018; Mayer et al., 

2018; Anderson et al., 2014; Reay et al., 2012). The GHGs produced in the aquifers can 

be further emitted to the atmosphere in the areas of groundwater discharge to surface 

waters or released because of pumping activities. Analysis of the dynamics of GHGs in 

groundwater remains a challenging task due to the possibility of simultaneous occurrence 

of both production and consumption processes in the spatially heterogenous geochemical 

conditions of subsurface. The complexity of this task is further exacerbated by the 

difficulties of access to the aquifers, which makes the consistent monitoring of process 

dynamics in subsurface a challenging task. However, further explorations in this area are 

essential for improving the understanding of regional and global N and C cycles. In 

particular, it is important to obtain more information regarding the formation of hotspots 

of GHGs emissions (e.g. what are the geochemical conditions favorable for 

intensification of GHGs production; how the distribution of such hotspots varies in time 

and space). This knowledge is important for constraining the GHGs budgets, 

understanding the mechanisms behind climate change and developing mitigation 

measures to stop the rise of concentrations of N2O, CH4 and CO2.  

One of the promising approaches used to characterize and quantify the 

overlapping GHGs production and consumption processes is stable isotope and 

isotopomer analysis. Currently, there exists a range of studies exploiting the data about 

isotopic signatures of N and C species to disentangle different sources of their input into 

groundwater. Stable isotopes of N and C help in identification and quantification of 

transformation of N and C compounds in aquifers. However, the interpretation of 

obtained isotopic signals remains a challenging task, since it requires the profound 
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understanding of interactions between various spatially and temporally variable factors 

and processes and their effects on isotopic fractionations between different N and C 

species. Furthermore, the overlapping of isotopic signals produced by different sources 

and processes and complexity of hydrogeochemical conditions or the aquifers might 

make it impossible to distinguish between different processes of GHGs production and 

consumption.  

In order to address this challenge, recent studies have started to explore the 

possibility of application of the analysis of N2O isotopomers (molecules having the same 

number of each isotopic atom but differing in their position) for exploration of 

biogeochemical processes in the subsurface. It is expected that this method could provide 

more precise and unambiguous information about the N2O dynamics in the subsurface, 

because the difference between central and peripheral 15N enrichment, which is called 

site preference (SP), is considered to be independent of the isotopic signature of the 

precursor.  However, so far the majority of evidence about the influence of different 

microbiological processes on SP values comes from the pure culture experiments 

conducted at the lab. It is important to trace the distribution of 15N within N2O molecule 

under different environmental conditions to understand which factors control its change 

and position.  

Simultaneous application of other techniques, which can characterize subsurface 

microbial and physical-chemical heterogeneity, along with isotopomer approach will help 

to develop a detailed map of the interaction between various N transformation processes 

in aquifers. To understand better the nature of the processes in the subsurface, 

microbiological studies to detect the expression of genes used for formation of enzymes 

which are involved into biotic processes can be undertaken. The expression of genes 

means that the information carried by genes was used to create the proteins and proteins 

are enzymes that catalyze biotic reactions. It is measured by studying its mRNA pool. 

mRNA is a single-stranded molecule that is complementary to one of the DNA strands of 

a gene. Inside a cell it attracts to ribosomes the site where proteins are made. So far 

estimates of gene expression specific to denitrification and nitrification have been carried 
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out mainly during laboratory incubation and microcosm experiments. In situ field studies 

are less common and they are mainly focused on soils and sediments.  

Therefore, a comprehensive consideration of subsurface abiotic and biotic 

components is required in order to devise smart and adaptive methodologies to elucidate 

N process dynamics in groundwater. 

Research objectives 

This research aims at obtaining better insight into the biogeochemistry of GHGs 

(N2O, CH4 and CO2) in the groundwater under the agricultural areas focusing on N2O, 

since this GHG gas is emitted to the atmosphere predominantly due to agricultural 

activities.  

The objectives of this study are: 1) to estimate the variability of GHGs 

concentrations in groundwater under different hydrogeological, hydrochemical and land 

management conditions; 2) to identify and quantify the N2O processes and reveal 

conditions that governs N2O accumulation in groundwater; 3) to collect in situ evidence 

about the SP ranges of N2O and activity of bacteria involved into N2O production and 

consumption processes. 

The research is divided into two stages: 1) regional investigations and 2) local-

scale explorations. The main aim of regional survey is to examine the distribution and 

accumulation of GHGs in different parts of the chalk aquifer across its lateral and vertical 

dimensions and to obtain better information about the hydrogeochemical conditions of 

the subsurface. Local scale studies focus on the identification and quantification of the 

rates of N2O production/consumption processes within the studied aquifer using data 

obtained from ambient groundwater and laboratory designed experiments. Since N2O 

production and consumption processes can proceed through abiotic and biotic pathways, 

the measurements of the activity of bacteria that mediate biotic N transformations were 

conducted to obtain additional evidence about N2O dynamics. 
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Thesis outline 

The presented work consists of four chapters complemented by an introduction 

section and a final section presenting general conclusions and research perspectives.  

The first chapter reviews available evidence about N isotope dynamics in aquifers 

affected by agricultural activities. Section 1.1 summarizes available evidence about δ15N-

NO3, δ15N-NH4 and δ15N-N2O ranges in groundwater from recent case studies (since 

2000 year) conducted across the globe. Also, it compiles the evidence about isotopic 

signatures of principal anthropogenic sources of N compounds in subsurface. In addition, 

changes of 15N composition of NO3
-, NH4

+ and N2O under the influence of various 

biochemical and physicochemical processes and factors are characterized. Section 1.2 

describes the possibilities to use other stable isotopes (18O, 11B, 13C, 34S, 87Sr/86Sr ratio) to 

clarify the uncertainties in overlapping of δ15N isotopic signatures resulting from 

different sources and processes. 

The second chapter presents the results of regional investigations which explored 

the variability in concentrations of GHGs (N2O, CO2 and CH4) across lateral and vertical 

dimensions of the Hesbaye chalk aquifer located in the eastern part of Belgium. It starts 

with a discussion of the main challenges related to the characterization of GHGs fluxes in 

aquifers. Further, Section 2.2 describes the approach applied to the regional survey, and 

the following two sections present information about sources of N and C input to 

groundwater and processes that govern N2O, CO2 and CH4 availability in the aquifer.  

The next, third chapter, uncovers research work undertaken in order to specify the 

impact of nitrification and denitrification processes, occurrence of which was identified 

during the regional survey, on N2O dynamics in groundwater. Section 3.1 examines 

variations in the distribution of N compounds and their isotopes with depth in the studied 

aquifer in order to identify zones (hotspots) where nitrification or denitrification 

processes dominate. The following section 3.2 focuses on the estimation of the magnitude 

of nitrification and denitrification processes in the top and bottom parts of the aquifer and 

discusses the challenges encountered during quantification of N transformation processes 

in the subsurface. 
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The final chapter 4 is devoted to the discussion of the findings of microbiological 

explorations conducted within the framework of this study in order to constrain zones of 

occurrence of nitrification and denitrification in the subsurface. In particular, the activity 

the activity of bacteria that accomplish these processes was estimated. 
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Chapter 1 
This chapter is based on the following publication: 

Nikolenko, O., Jurado, A., Borges, A. V., Knӧller, K., & Brouyѐre, S. (2018). Isotopic 

composition of nitrogen species in groundwater under agricultural areas: A review. 

Science of the Total Environment, 621, 1415-1432. 

https://doi.org/10.1016/j.scitotenv.2017.10.086 

1. Isotopic composition of nitrogen species in 
groundwater under agricultural areas 
 1.1. Challenges in the interpretation of N dynamics in aquifers  

Cropland and pasture cover about 50% of the Earth’s ice-free land surface 

(Ritchie & Roser, 2020). Intensive influx of nitrogen (N) compounds from agricultural 

areas into groundwater and surface water is an issue of worldwide concern, since it leads 

to disruption of multiple vital water-related environmental services (Robertson & 

Vitousek 2009; Sutton et al., 2011; Keuskamp et al., 2012). In particular, leaching of N-

containing pollutants from arable lands into subsurface frequently has adverse effects on 

groundwater quality (Strebel et al., 1989; Directive, N., 1991; Di & Cameron, 2002, 

Ledoux et al., 2007). Moreover, it also considerably influences global N cycling because 

long groundwater residence time stimulates accumulation of N species and their 

biogeochemical transformations (Viers et al., 2012).  
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Pollution of aquifers in agricultural regions with reactive N poses multiple threats 

to sustainable development of global population. For instance, long-term exposure to 

high nitrate (NO3
-) drinking water (>50 mg/l of NO3

-) might increase human health risks 

associated with methemoglobinemia and cancer (WHO, 2008; Fewtrell, 2004, Xue et al., 

2016). At the same time, N-polluted aquifers are the indirect sources of emission of 

nitrous oxide (N2O) (Organization of Economic Co-operation and Development, 2009), 

produced by denitrification, nitrification or nitrifier denitrification processes. Since N2O 

is a greenhouse gas (GHG) that possesses the capacity to trap large amount of heat and 

destroy the stratospheric ozone layer, such emissions contribute to global climate change 

(Knowles, 2000; Bernstein et al., 2008; Weymann et al., 2008).  

Concentrations of different N species in groundwater could vary due to 

heterogeneity of N sources across the water bodies and shifting dynamics of N transport 

and transformation in the subsurface. In agricultural areas, aquifer pollution by N 

compounds might be attributed to various sources: intensive application of N-containing 

organic and inorganic fertilizers, inflow from animal manure and sewage discharge 

(Ostrom et al., 1998; Böhlke, 2002, Anderson et al., 2014). In subsurface environments, 

leached N compounds are further transformed by complex dynamics of different 

biochemical and chemical processes of the N cycle such as denitrification, dissimilatory 

nitrate reduction to ammonium (DNRA), nitrification, anammox (anaerobic ammonium 

oxidation), nitrifier denitrification, sorption and mineralization of organic matter (Fig. 1), 

which change their initial concentrations and produce new N species (Burgin & 

Hamilton, 2007; Jurado et al., 2017). 

Denitrification is a microbial respiratory process where NO3
- is used as a terminal 

electron acceptor and reduced to N2. It is considered to be the main process of NO3
- 

attenuation which prevails under anaerobic conditions in groundwater systems. 

Intermediates in this reaction might include nitrite (NO2
-), nitric oxide (NO) and N2O 

(Tesoriero et al., 2000).  

2NO3
- + 12H+ + 10e- → N2 + 6H2O (1) 
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Similar to denitrification, DNRA is also an anaerobic reduction process that leads 

to consumption of NO3
-. It is assumed that partitioning of NO3

- consumption between 

denitrification and DNRA is controlled by availability of organic matter: denitrification 

dominates when carbon (electron donor) supplies are limiting and DNRA dominates 

when NO3
- (electron acceptor) supplies are limiting (Korom, 1992; Kelso et al., 1997). 

 

2H+ + NO3
- + 2CH2O → NH4

+ + 2CO2 + H2O (2) 

 

 

 
Figure 1. N sources and transformation processes that affect N species in the subsurface. 

The enrichment values (15N-NO3
-, 15N-NH4

+) of such processes are also provided. [ 

↑

 

shows the transformation of the initial N compound;  shows sources of different N 

species. References: 1 – Sharp, 2007; 2 – Kendall &Aravena, 2000; 3 – Mariotti et al., 

1981; 4, 7 – Clark, 2015; 5 – Kendall., 1998; 6 – Well et al., 2012; 8 – Michener & 

Lajtha 2007; 9 – Bedard-Haughn et al., 2003; 10 – Hübner, 1986; 11 – Minamikawa et 

al., 2011; 12 – Brandes & Devol, 2002]. 
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Biodegradation of ammonium (NH4
+) occurs during the processes of nitrification, 

nitrifier denitrification and anammox.  

Nitrification, which is a strictly anaerobic reaction, consists of two steps: 1) NH4
+ 

oxidation to NO2
- and 2) NO2

- oxidation to NO3
- (Buss et al., 2004). 

NH4
+ + 1.5O2  → NO2

- + H2O + 2H+ (3) 

NO2
- + 0.5O2 → NO3

-  (4) 

Nitrifier denitrification is one of the nitrification pathways consisting of two 

following reactions: 1) NH3 oxidation, which is attributed to nitrification, and 2) NO2
- 

reduction via NO to N2O or N2, which is regarded as denitrification (Zhu et al., 2013).  

 As for the anammox, it occurs in the presence of NO2
- or NO3

-, which play the 

role of electron acceptors, and leads to conversion of NH4
+ to diatomic nitrogen (N2) and 

water (Burgin & Hamilton, 2007; Kuenen, 2008): 

NH4
+ + NO2

- → N2 + 2H2O (5) 

3NO3
- + 5NH4

+ → 4N2 + 9H2O + 2H+ (6) 

Though there are several microbial reactions leading to attenuation of NH4
+, it is 

considered that the key reactive process controlling subsurface transport of NH4
+ is 

sorption, which occurs as a result of cation exchange (Buss et al., 2004). Mineralization 

of organic matter, or ammonification, is the process that leads to conversion of organic N 

to NH4
+. It occurs under oxidizing conditions and is carried out by virtually all 

microorganisms involved in the decay of dead organic matter (Schimel & Bennett, 2004; 

Bernhard, 2012).  

N-fixation is the process by which atmospheric nitrogen is converted into 

ammonia (NH3) by N2-fixing organisms called diazotrophs. Some of them can fix N2 in 

the free-living state, while others fix N2 in association with plants (Brandes & Devol, 

2002; Virginia & Delwiche, 1982).  
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In order to address the risks imposed by contamination of groundwater with N 

species, it is essential to develop comprehensive scientific understanding of N species 

transport and transformation in subsurface. However, this is a challenging task, since 

various aquifers could be simultaneously exposed to multiple contamination sources and 

characterized with occurrence of different N-cycle processes along groundwater flow 

paths. Moreover, analysis of subsurface N fluxes in agricultural areas could appear even 

more complicated due to predominance of diffusive N pollution, which makes it difficult 

to calculate the total pollutant input into the aquifers. Under such circumstances, 

understanding of pollution transfer between different parts of aquifer and across 

environmental compartments of the given catchment, such as atmosphere, soil, sediment, 

groundwater, surface water and biota, might become especially difficult.  

To obtain information regarding origin, transport and transformation of N 

compounds in groundwater, many environmental researchers apply stable isotope 

analysis. This method helps to understand migration and mixing of N derived from 

multiple sources, to identify various chemical and biochemical processes involving N 

species and to explore the dynamics and effects of occurring reactions (Kaushal et al., 

2011; Robinson, 2001). Throughout several decades analysis of N isotopes in 

groundwater has been employed in denitrification studies in order to identify the origin of 

N pollution and estimate its attenuation. Nowadays, with the rising interest towards 

climate change, N stable isotope analysis method also becomes more frequently applied 

to studies of transport and production/consumption of N2O in subsurface. It is expected 

that applications of this approach in such domain should help to understand mechanisms 

controlling indirect N2O emissions via groundwater pathway, improve quantification of 

N2O fluxes and reveal the sites which are prone to such emissions, thus contributing to 

better constraint and more realistic detalization of N budget and GHG emission both on 

regional and global level. 

While analysis of variations in stable N isotope ratios (15N/14N) can potentially 

provide valuable information regarding the N fluxes in agro-ecosystems, interpretation of 

the obtained experimental evidence is challenging. Besides the continuous simultaneous 

mixing of N species derived from various N pools such as atmospheric precipitation, soil 
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organic matter, synthetic fertilizers and manure characterized with different isotope 

compositions (Kendall C., 1998), the observed patterns of isotopic enrichment factor 

(enrichment/depletion of a reaction product relative to that of the substrate) of N species 

are considerably influenced by shifting dynamics of various microbiological 

(denitrification, nitrification, DNRA, anammox, etc.) and physicochemical processes 

(upward diffusion, sorption, volatilization, etc.) resulting in isotopic fractionation – 

enrichment of one isotope relative to another in an element during a chemical or physical 

process. Consequently, for proper interpretation of isotope signatures variability it is 

crucial to: 1) understand the factors and processes that may cause it, 2) consider the 

probable magnitude of the potential alterations; 3) verify the results of observations 

across a range of ecosystems with contrasting environmental settings; 4) support the 

interpretation of observed δ15N values with results obtained using other experimental 

methods: analyses of other stable isotopes, concentration studies, microbiological 

analyses.  

So far, considerable research effort has been devoted in order to accomplish these 

goals and improve the reliability of conclusions derived using experimental data provided 

by stable isotope analysis. Up to now few studies summarize the evidence regarding the 

NO3
- isotopic signatures of different contamination sources (Choi et al., 2003), the 

variability of δ15N-NO3
- through landscapes (Bedard-Haughn et al., 2003) and the 

isotopic values of biologically produced N2O in different environments, including 

groundwater (Yoshida & Toyoda, 2015). However, there is a lack of comprehensive 

review which would concentrate on the use of stable isotopes for studies of N species 

transport and transformation in groundwater under agricultural lands and summarize the 

evidence regarding factors determining the isotopic composition of NO3
-, NH4

+ and N2O 

in subsurface in such environmental settings. The objectives of this chapter are: 1) 

summarizing the available data about the effects of sources, processes and factors on the 

δ15N-NO3
-, δ15N-NH4

+ and δ15N-N2O values in groundwater; 2) discussing the application 

of additional  stable isotopes (11B, 18O, 13C, 34S, 87Sr/86Sr ) analyses to support the data 

obtained from the 15N studies.  
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1.2. Effects of sources, processes and factors on the isotopic signatures 
of nitrogen compounds in groundwater 
 

According to previous studies conducted under various environmental settings 

across the globe, the isotopic signatures of N species (NO3
-, N2O, NH4

+) in groundwater 

under agricultural lands exhibit different ranges depending on variability of N sources, 

transformation processes and migration pathways (Hosono et al., 2013, Well et al 2012, 

Liu et al., 2012). In the cases when observed isotopic signatures of NO3
-, N2O, NH4

+ in 

groundwater are simultaneously influenced by multiple sources and occurrence of several 

N-cycle processes, interpretation of δ15N values demands thorough attention. While 

identification of the origin of N compounds in most cases still remains a relatively 

straightforward task, it might be more challenging to distinguish precisely the subsurface 

processes that cause different fractionations of N isotopes. The following section 

discusses the variability of isotope signals in groundwater, with particular emphasis on 

the agricultural areas, taking into account diversity of N sources, variety of N cycle 

processes and impact of multiple environmental parameters. 

 

1.2.1. Variability of δ 15N-NO3
- in groundwater 

According to previous studies, the isotopic signature of δ15N-NO3 in groundwater 

under agricultural areas show a considerably wide range from – 8.3‰ to + 65.5‰ (Table 

1), depending on the heterogeneity of N sources, geochemical conditions and 

groundwater flow patterns as well as on the peculiarities of agricultural practices in the 

explored regions. 
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Table 1. Analysis of NO3
- isotopic signatures in groundwater: an overview of case studies 

(UA – unconfined aquifer, CA – confined aquifer, IF – inorganic fertilizers, OF – organic 

fertilizers, SON – soil organic N, AM – animal manure, Ww – wastewater, D – 

denitrification, N – nitrification, Dom – decomposition of organic matter, Mix – mixing, 

Dl – dilution). 
Site δ15N  

(‰) 
δ18O 
(‰) 

Aquifer 
type 

Aquifer 
material  

Potential 
NO3

- 

source 

DO 
(mg/l) 

NO3
- 

(mg/l) 
pH Processes 

altering 
the δ15N 
and δ18O 
of NO3

- 
 

the Chalk 
aquifer (France) 
(Mariotti et al., 

1988) 

+3 – +7 
(s.d. 1.6) 

 

UA 

limestone IF  

3 – 10 

 

– 

+5 – +20 
boundary 
between 
UA&CA 

0.37 – 
12.2 D 

+0.9 –      
+5.8 CA 

0.01 - 
0.05 
(s.d. 
0.06) 

Dom 

the Arguenon 
watershed 
(Brittany, 
France) 

(Widory et al., 
2005) 

 

+2.7 – 
+21 

(s.d. 0.2) 
  

granitic 
gneiss and 
mica schist 

AM, 
Ww  

3.2 – 245 
(mean 

value 106 
(s.d. 78)) 

 
4.8 – 
7.8 

 

D, Mix 
(Dl) 

the “Roussillon” 
aquifer 

(Pyrénées, 
France) 

(Widory et al., 
2005) 

+5.4 – 
+23.9   

deep 
alluvial 

formation; 
three 

aquifer 
levels due 

to the 
presence of 
clay layers 

Ww, 
IF  

10 – 139 
(mean 

value 51 
(s.d. 39)) 

6.5 – 
7.9 Mix 

the “Ile du 
Chambon” 

Catchment (the 
Allier Valley, 

France) 
(Widory et al., 

2005) 

+5.1 – 
+42.4   

sand and 
gravel, 

subsurface 
alluvial 

formation 

IF, 
Ww  

<0.2 – 53 
(mean 

value 30 
(s.d. 13)) 

 D 

Fuhrberger 
Feld aquifer 

(Lower Saxony, 
Germany) 

(Well et al., 
2012) 

 

-2.1 – 
+65.5 
(mean 

6.9 (s.d. 
11.7)) 

-5.0 – 
+33.5 
(mean 

1.6 (s.d. 
5.9)) 

UA 
carbonate-
free sand 

and gravel 
IF 

0.0–9.6 
(mean 

2.4 
(s.d. 
2.9)) 

0.0 – 
43.4 

(mean 
21.9 (s.d. 

10.3)) 

4.1 – 
6.3 D 

Großenkneten 
aquifer (Lower 

Saxony, 
Germany) 

(Well et al., 
2012) 

-1.8 – 
+65 

(mean 
+8.6 (s.d. 

18.9)) 

-8.1 – 
+38 

(mean 
+0.5 
(s.d. 

12.8)) 

UA 
carbonate-
free sand 

and gravel 
IF 

0.1 – 9.0 
(mean 

2.8 
(s.d. 
3.2)) 

0.0 – 
57.6 

(mean 
15.2 
(s.d. 

18.5)) 

4.1 –
5.8 D 

Osona region 
(Spain) 

(Vitòria et al., 
2008) 

+2.2 – 
+20.9 
(mean 
+13) 

+4.6 – 
+9.7 

(mean 
+7.4) 

 
CA 

carbonate 
and 

carbonate 
sandstone; 
presence of 

pyrite 

AM, IF  
0.0 – 366 

(mean 
90) 

>7 D 
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Site δ15N  
(‰) 

δ18O 
(‰) 

Aquifer 
type 

Aquifer 
material  

Potential 
NO3

- 

source 

DO 
(mg/l) 

NO3
- 

(mg/l) 
pH Processes 

altering 
the δ15N 
and δ18O 
of NO3

- 
 

the alluvial 
aquifer of the 
Vibrata plain 

(Italy) 
(Di Lorenzo et 

al., 2012) 

in 
summer: 
+4.9 – 
+22.8 

 
in winter: 

+3.8 – 
+18.9 

in 
summer: 
+1.3 – 

+11 
 

in 
winter: 
+3.7 – 
+14.7 

UA 
gravel and 
sand with 

silty lenses 

IF (NH4
+ 

salts)  

In 
summer: 
0.1 – 148 

(mean 
value 
77.2); 

In winter: 
2 – 151 
(mean 
value 
66.3) 

 patchy D 

the Maresme 
groundwater 

(Spain) 
(Vitòria et al., 

2005) 

+6.8 – 
+9.4 

+5.1 – 
+10.2  sand IF  

23.5 – 
48.2 

(mean 
value 
33.4) 

 V + 

the Zunyi area 
groundwater 

(China) 
(Li et al., 2010) 

in 
summer: 

-1.8 – 
+20.7 
(mean 

+7) 
 

in winter: 
-4.3 – 
+22.7 
(mean 
+10.4) 

  

carbonate 
rocks 

(limestone 
and 

dolomite) 
and 

clastic 
rocks; 
sulfate 

evaporite 
(gypsum) 
and coal 

occur 
locally 

OF, IF, 
Ww  

in 
summer: 
0 – 90.5 

 
in winter: 
0 – 107.9 

6.8 – 
8.4 Mix, N 

the Sichuan 
Basin (China) 

(Li et al., 2007) 

well in 
farmland: 

-0.1 – 
+8.9 

(mean 
value 
+3.7 

(s.d. 2.1)) 
 

well in 
farmyard: 

mean 
value 
+9.7 

(s.d. 4.7) 
 

spring: 
-8.3 – 
+6.4 

(mean 
value -

0.2 
(s.d. 3.7)) 

 UA 

redbeds 
and 

mudstone 
interbedded 

with 
sandstone 

IF, Ww 
which 
might 

contain 
AM 

 

well in 
farmland: 

42.94 
(s.d. 
47.2) 

 
well in 

farmyard: 
39.8 

(s.d.42.1) 
 

spring: 
16.4 (s.d. 

13.7) 
 

 N 
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Site δ15N  
(‰) 

δ18O 
(‰) 

Aquifer 
type 

Aquifer 
material  

Potential 
NO3

- 

source 

DO 
(mg/l) 

NO3
- 

(mg/l) 
pH Processes 

altering 
the δ15N 
and δ18O 
of NO3

- 
 

Guiyang, 
(China) 

(Liu et al., 
2012) 

 

in 
summer: 

-1.4 – 
+14.9 
(mean 
4.1) 

 
in winter: 

-0.1 – 
+15.4 
(mean 
7.0) 

in 
summer: 
+2.8 – 
+18.2 
(mean 
10.7) 

 
in 

winter: 
+4.3 – 
+23.5 
(mean 
12.5) 

 

carbonate 
rocks 

(limestone, 
dolomite) 
and clastic 

rocks 
(shale, 

sandstone); 
sulfate 

evaporite 
(gypsum) 
and coal 
occurr 
locally 

in summer: 
IF (urea, 

(NH4)2SO4, 
N/P/K 
mix) 

 
in winter: 

IF, 
Ww 

 

in 
summer: 
0.29 – 
11.7 

(mean 
5.0) 

 
in winter: 

0 – 8.9 
(mean 
3.1) 

 

suburban 
areas: 

N 
 

urbanized 
areas: 

D 
 

the Wensum 
catchment (East 

Anglia, UK) 
(Wexler et al., 

2011) 

+6.2 
(s.d. 0.6) 

+0.8 
(s.d. 
0.5) 

 
UA/CA 

 
limestone OF,IF  56.1 

(s.d. 6.8)  Mix and 
N 

Kumamoto 
groundwater 
area (Japan) 

(Hosono et al., 
2013) 

 

-6 – +46 -3 – +48 

 
UA 

pyroclastic 
and alluvial 
sedimentary 

deposits 
IF, AM  0 - 73  Dl and D 

CA 

porous 
andesitic 
lava and 

pyroclastic 
deposits 

the Cretaceous 
Chalk aquifer 

(Cambridgeshire 
and 

Norfolk,UK) 
(Feast et  al., 

1988) 

+3.6 
(s.d. 1.8) 

+8.5 
(s.d. 
2.8) 

UA limestone IF, OF  
39.2 
(s.d. 
14.3) 

7.2 
(s.d. 
0.1) 

N, minor 
D 

La Pine, 
(Oregon, USA) 
(Hinkle et al., 

2007) 

+3.3 – 
+12.8 
(mean 
7.5) 

  sand Ww, 
IF 

˂0.1 –
10.7 

(mean 
1.2) 

 

6.7 – 
8.2 

(mean 
7.4) 

D 

Ichikawa city 
(Japan) 

(Li et al., 2014) 
 

+5.7  

upland 
shallow 
ground 
water 

sand IF, OF, 
AM 

in 
summer: 

9.3 

in 
summer: 

76.6 

 
 

6.1– 
6.9 N 

in winter: 
5.7 

in 
winter: 
153.8 

Sacramento 
Valleys (USA) 

(Fogg et al., 
1998) 

 

+1 – +6  SCA/UA sand and 
gravel 

IF, 
AM, Ww    – 

Salinas Valley 
(USA) 

(Fogg et al., 
1998) 

 

+4.1 – + 
5.1  SCA/UA sand and 

gravel 
IF, 

AM, Ww  32 – 74  possible 
D 

Wexford 
(Ireland) 

(Baily et al., 
2011) 

+6 – 
+32.4 

+1.4 – 
+21.2 

shallow 
ground 
water 

greywacke, 
schist and 
massive 
schistose 
quartzites 

M, IF  0 – 66.4  N,D 
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Site δ15N  
(‰) 

δ18O 
(‰) 

Aquifer 
type 

Aquifer 
material  

Potential 
NO3

- 

source 

DO 
(mg/l) 

NO3
- 

(mg/l) 
pH Processes 

altering 
the δ15N 
and δ18O 
of NO3

- 
 

the Bure River 
valley 

(Norfolk,UK) 
(Feast et al., 

1998) 

-2.1 – 
+13.7 

-7.01 – 
-8.2 UA/CA limestone IF 

  

˂0.1 – 
95.4 

(mean 
18.7) 

 Mix, 
D 

the Cedar River 
Watershed 

(Iowa, USA) 
(Gautam & 
Iqbal, 2010) 

+0.5 – 
+5.4   

shallow 
aquifer: 
sand and 

gravel 
deep 

aquifer: 
limestone 

and 
dolomite 

IF, SON 

shallow 
aquifer: 
4.9 – 7 
deep 

aquifer: 
2.9 – 6.9 

 

0 – 75.5 
(mean 
35.8) 

 – 

Slate catchment 
(Ireland) 

(McAleer et al., 
2016) 

+1.9 – 
+6.8 

(mean 
+3.3) 

-0.5 – 
+3.8 

(mean 
+0.8) 

UA slate, 
siltstone IF  

4.5 – 
11.8 
mean 
8.9 

32.8 – 
51.4 
mean 
35.9 

 Dl 

 

1.2.1.1. Isotopic signatures of nitrate sources  

The observed inflow of N into groundwater in agricultural areas can be attributed 

to multiple sources such as organic and inorganic fertilizers, manure, soil organic N, 

sewage (e.g. septic wastewater), and atmospheric precipitations. N originating from each 

source is characterized with distinct intervals of 15N-NO3 enrichment values (Fig. 2), 

which can be used to determine the origin of observed NO3
- and estimate the relative 

contribution of NO3
- sources to its content in the groundwater. 

In particular, it has been observed that the organic and inorganic fertilizers are 

characterized with different isotopic signatures, which is explained by their production 

processes. For example, synthetic fertilizers, such as urea or NH4
+ and NO3

- fertilizers, 

are usually produced by fixation of atmospheric N2 which has δ15N 0±3‰ (Kendall, 

1998). This process only slightly fractionates the isotope composition resulting in low 

δ15N range of inorganic fertilizers, from – 4 to + 4‰ (Sharp, 2007), -8 to +7‰ (Kendall, 

1998) or -6 to +6‰ (Xue et al., 2009). However, in groundwater, this typical isotopic 

composition of inorganic fertilizers frequently changes because of N isotope fractionation 

during various physicochemical or biochemical reactions (e.g. NH3 volatilization, 

nitrification or denitrification).  
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In line with these suggestions, further studies demonstrated that the δ15N-NO3 in 

groundwater of cropping areas with mineral fertilizer application may be in the range of 

+4.5 – +8.5‰ (Choi et al., 2007) or -7 – +5‰ (Danielescu & MacQuarrie, 2013). At the 

same time, organic fertilizers, such as plant compost or liquid and solid animal waste, 

generally are characterized with higher initial δ15N values and a broader range of isotopic 

composition (+6 to +30‰) than inorganic fertilizers. This is explained by the processes 

occurring in animal wastes such as excretion of isotopically light N in urine and 

accumulation of heavy 15N isotope in the residual waste as well as volatilization of 15N 

depleted ammonia with subsequent oxidation of the residual waste (Sharp, 2007).  

In comparison to both organic and inorganic fertilizers, NO3
- produced by 

nitrification of manure-N has higher δ15N-NO3
-, since during its storage, treatment and 

application, the volatilization of NH3 causes significant enrichment of 15N in the residual 

NH4
+, while most of this NH4

+ is subsequently oxidized to 15N-enriched NO3 (Widory 

et.al., 2004). Consequently, δ15N values of NO3
- originating from manure usually range 

between +5 to +25‰ (Xue et al., 2009), +10 to +22‰ (Bateman et al., 2005), +5 to 

+35‰ (Widory et al., 2005).  

Soil organic-derived NO3
- is a product of bacterial decomposition of organic 

matter originated from degradation of plants and animal wastes. The δ15N-NO3 of soil 

NO3
- may be between +3‰ and +8‰ (Kendall & Aravena, 2000). It is also particularly 

important to consider, in groundwater polluted by fertilizers, the possible mixing of N 

originating from the addition of fertilizers and N mineralized from soil organic matter 

which might not be taken up by crops if their demands are already satisfied (Li et al., 

2007). For example, Danielescu & MacQuarrie (2013) revealed that 72% of their surface- 

and groundwater samples of the Trout catchment fell into the overlapping interval of +3 

to +5‰. This indicates that the detected concentrations could be derived either from the 

use of NH4
+ fertilizers or from the presence of soil organic-derived NO3

-. The studies in 

the Cedar river basin (USA) (Gautam & Iqbal, 2014) (Table 1) also demonstrated that the 

δ15N-NO3
- range, between +0.45‰ and +5.35‰, was the result of the joint effect of 

fertilizers and soil organic Non groundwater quality. On the contrary, the isotopic 

signature of NO3
- originated from animal or sewage waste is commonly less influenced 
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by interaction with soil N because the distribution of waste is often localized at point 

sources with high concentrations. In some cases, the observation of the distribution of 

point and non-point sources of pollution can help to identify the origin of NO3
- more 

precisely. 

Another significant source of NO3
- in groundwater under agricultural lands is 

household sewage whose δ15N-NO3 range vary between +4‰ and +19‰ (Xue et al., 

2009). In many cases, experimental studies have revealed similar ranges of δ15N for both 

animal manure and sewage, for instance: +3‰ – +25‰ (Lorenzo et al., 2012), +8 – 

+18‰ (Vitὸria et al., 2008), and others. Consequently, it is often difficult to determine 

exactly the origin of NO3
- in areas characterized with simultaneous occurrence of 

groundwater pollution from livestock manure and household wastes.  

The amount of N contained in atmospheric precipitation is influenced by several 

factors: volatilization of NH3, nitrification and denitrification occurring in the soils and 

the impact of various anthropogenic sources. In general, the δ15N-NO3
- composition of 

rain is higher than that of the co-existing δ15N-NH4
+ (Bedard-Haughn et al., 2003). The 

δ15N-NO3
- isotopic signature of rain might vary between -10‰ and +9‰ – based on 

various case studies (Sharp, 2007), -11.8‰ and +11.4‰ – reported for eastern 

Canada  (Savard et. al., 2010) and -10.2 and -4.4 – reported for central China (Li et al., 

2007).  

This overview demonstrates that the sources of NO3
- pollution are characterized 

with relatively different δ15N-NO3
- isotope ranges: rain water – from -12 to +11‰, 

inorganic fertilizers – from -8 to +7‰, organic fertilizers – from +6 to +30‰, soil 

organic matter – from +3 to +8‰, manure – from +5 to +35‰, and household sewage – 

from +3 to +25‰.The lowest values of δ15N-NO3
- are typical for inorganic fertilizers 

followed by NO3
- derived from soil organic matter, while the highest values are usually 

related to the impact of manure or household wastes, both of which may overlap. 

However, the isotope composition of NO3
- from different sources might be subject to 

considerable alterations due to fractionation processes occurring under certain 

biochemical or physicochemical reactions during the migration to or within the aquifer.  
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1.2.1.2. Isotopic effects of nitrate production/consumption processes 

Previous studies showed that denitrification and nitrification alter the original 

δ15N-NO3
- isotopic composition of NO3

- in groundwater under agricultural areas (Fig. 1). 

Isotope effects of the considered N processes are presented in terms of their enrichment 

factors which show isotope enrichment of a reaction product relative to that of the 

substrate and are determined by means of the Rayleigh equation (Mariotti et al., 1981): 

[ ]initial3measured3

initial3
3

measured3
3

3

)NO(C/)NO(Cln

1)NO(10

1)NO(10
ln10

−−

−−

−−

+d

+d

=e

 (7) 

where ɛ is the isotopic enrichment factors for N or O, δ is the δ15N and δ18O 

values, respectively and C – NO3
-  concentration. 

Denitrification has attracted most considerable research effort as it plays a 

significant role in the attenuation of NO3
- pollution in the subsurface (Rivett et al., 2008). 

Experimental results suggest that it is a strongly fractionating process responsible for 

preferential conversion of the lighter isotope 14N to N2O and N2. Consequently, the 

corresponding enrichment of the residual (unreacted) NO3
- with the heavy isotope 15N is 

observed (Knӧller et al., 2011; Fukada et al., 2003). During this process the δ15N value of 

the initially produced NO3
- might be enriched in comparison to N2 or N2O by 

approximately 20 – 30‰ (Clark, 2015), or 5 – 40‰ (Kendall, 1998). For example, 

denitrification of NO3
- fertilizer that originally had a distinctive δ15N value of +1‰ can 

yield residual NO3
- with a δ15N value of +15‰ which is within the range of composition 

expected for a NO3
- from a manure or septic-tank source (Kendall, 1998). Among the 

case studies considered in this review (Table 1) the most pronounced effects of 

denitrification were reported for the unconfined sand and gravel aquifers of Fuhrberger 

Feld (Lower Saxony, Germany) and Großenkneten (Lower Saxony, Germany) (Well et 

al., 2012), for the Chalk aquifer (France) at the boundary between confined and 

unconfined zones (Mariotti et al., 1988) and for the alluvial aquifer of the Vibrata plain 

(Italy) (Di Lorenzo et al., 2012). These effects originate from: 1) microorganisms’ 

activity within the pore spaces of sediments in case of Fuhrberger Feld and 

Großenkneten; 2) local physicochemical conditions (e.g. availability of the substrate pool 
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and electron donors, concentration of the electron donors) in case of the Chalk aquifer 

and 3) the extent of hyporheic zone (groundwater/surface water flow exchange) in case of 

alluvial aquifer in the Vibrata plain. However, it should be emphasized that the rate and 

extent of denitrification processes in the considered cases as well as other cases depend of 

the combination of multiple environmental factors (section 1.2.1.3) and their mutual 

interaction. 

In contrast, nitrification reaction results in the preferential incorporation of the 

lighter isotopes into NO3
-
 and often leads to decrease in the δ15N-NO3

- (Barnes & 

Raymond, 2010). In average the difference between initial δ15N-NH4
+ and produced 

δ15N-NO3
- can reach 12 – 29‰ (Kendall & Aravena, 2000), or 5 – 35‰ (Mariotti et al., 

1981). However, evidence has been also obtained that both δ15N-NH4
+ and δ15N-NO3

- 

will increase as the NH4
+ reservoir is converted to NO3

-, with δ15N-NO3
- evolving toward 

the initial δ15N-NH4
+ value (Clark, 2015). In general, it appears that the final δ15N of 

NO3
- derived via nitrification from manure-N would be more positive than that from 

fertilizer-N (Choi et al., 2003). The influence of the nitrification on the δ15N-NO3
- of 

groundwater was detected in the Sichuan Basin (China) (Li et al., 2007), Ichikawa city 

(Japan) (Li et al., 2014), shallow groundwater in Wexford (Ireland) (Baily et al., 2011), in 

the Cretaceous Chalk aquifer in Cambridgeshire and Norfolk, UK (Hiscock et al., 2003) 

and in the hydrogeological formation in Zunyi (China) (Li et al., 2010). 
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Figure 2. NO3
- isotopic signatures in groundwater: a summary of case studies in 

agricultural areas. 

 

1.2.1.3. Factors controlling nitrate production/consumption processes and their 

impact on δ15N-NO3
- variability 

The magnitude of fractionation related to nitrification and denitrification 

processes is influenced by ambient conditions of hydrogeological systems where they 

occur, e.g. substrate concentration, availability of electron donors, concentration of 

dissolved oxygen, temperature, pH, residence time, etc. (Böttcher et al., 1990).  
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In particular, it has been demonstrated that the size of the substrate pool (the 

amount of the chemical species which reacts with a reagent to  generate a specific 

product) determines the extent of fractionation by minimizing it in N-limited systems and 

maximizing in systems with constant and high supply of N compounds (Li et al., 2007). 

For example, nitrification processes will be more intensive under the presence of a large 

amount of NH4
+ (e.g. due to application of artificial fertilizers), which would likely cause 

considerable fractionation (Kendall, 1998). However, as the NH4
+ pool is consumed, the 

overall nitrification fractionation gradually decreases. It has also been revealed that 

excessive concentrations of NO3
- might induce a termination of denitrification with the 

formation of N2O (Rivett et al., 2008). The threshold concentrations for the occurrence of 

this effect appear to be case-specific, since in some cases it has been reported that even 

low concentrations affected the ratio between produced N2O and N2. For example, an 

increase in the N2O:N2 ratio from 0.11 to 0.34 associated with an addition of 0–4 mg-N/l 

was reported by Magalha’es et al. (2003). That is why it is essential to consider the initial 

concentration of the substrate in order to achieve more accurate conclusions concerning 

the production/consumption of NO3
- and related changes in its isotopic composition.  

Availability of electron donors is mostly discussed in the context of fractionation 

effects caused by denitrification. In general, it is suggested that denitrification may not 

play an important role in increasing δ15N of NO3
- under the conditions of low contents of 

electron donors (Choi et al., 2003). Electrons needed for denitrification can originate 

from the microbial oxidation of organic C or reduced S which might be present in water 

as the S2- state in H2S, S1- in FeS2, S0 in elemental sulfur, S2+ in thiosulfate (S2O3
2-) or S4+ 

in sulfite (SO3
2-), (to the S(+VI) state as sulfate)  (Rivett et al., 2008). To consider the 

potential impact of limited availability of electron donors on isotopic composition of 

NO3
- it has been proposed to monitor their concentrations throughout the periods of 

observation of the 15N isotopic signatures. For example, the presence of DOC in waters 

has been used as an indicator of an available carbon source for denitrification. Moreover, 

concentrations of sulfate ion have also been measured to test for consistency with 

denitrifying environment (Kellman & Hillaire-Marcel, 2003). It should be mentioned that 

the amount of DOC has been shown to decrease in conjunction with an increase in sulfate 
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concentration. This effect is related to the reduced solubility of DOC under conditions of 

increased ionic strength and acidity of water (Evans et al., 2006; Clark et al., 2005).  

Concentration of dissolved oxygen (DO) in hydrogeological systems can also 

have a crucial impact on observed NO3
- isotopic signatures. It may determine the type of 

N biochemical transformations occurring, which can alternatively lead either to decrease 

or increase of δ15N of NO3
-. As a common rule, the low content of oxygen is associated 

with denitrification reactions which lead to the increase of δ15N-NO3
-. On the contrary, 

higher content of oxygen usually accompanies nitrification reactions which result in low 

δ15N-NO3
- values. From previous studies, it has become obvious that the occurrence of 

denitrification and nitrification processes could not be associated with clearly defined 

values (or narrowly constrained intervals) of DO concentrations. In particular, there is the 

range of DO concentration where both nitrification and denitrification can occur. For 

instance, denitrification cannot occur if the content of DO is above 0.2 mg/l according to 

Feast et al., 1998, above 2 mg/l according to Rivett et al. (2008) or above 4 mg/l 

according to Baily et al. (2011). At the same time, it has been reported that the rate of 

nitrification reactions is maximized for a range of DO concentrations between 0.3 mg/l 

and 4 mg/l (Stenstrom & Poduska, 1980). However, the experimental evidence is not 

conclusive, as in some cases it has been determined that a dissolved oxygen concentration 

in excess of 4.0 mg/1 was required to achieve the highest nitrification rates (Stenstrom & 

Poduska, 1980). That is why, in order to be able to distinguish these two processes it is 

important to consider thoroughly the data about pH, availability of electron donors etc. 

As the water temperature controls microbial activity and, consequently, DO 

content in groundwater, any seasonal changes could affect the δ15N of NO3
-, resulting in 

higher values of isotopic enrichment in the summer periods in aquifers where 

denitrification occurs, or lower values in groundwater influenced by nitrification activity. 

However, evidence about the impact of water temperature is not yet conclusive, as some 

reports suggested that δ15N-NO3
- values might not exhibit seasonal trends (Danielescu & 

MacQuarrie, 2013). So it is essential to study microbial communities and distribution of 

potential denitrifying genera, as this will allow to get better insight into the nature of 
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NO3
- production/consumption processes and, in particular, into the impact of temperature 

on their dynamics. (Hernández-del Amo, 2018). 

The pH range is another important factor that affects the intensity of 

microbiological reactions and influences the magnitude of fractionation effect. It has been 

reported that pH ranging between 6.5 to 8 is the optimal range for nitrification, and 

reaction rates are likely to be significantly decreased below pH 6.0 and above pH 8.5 

(Buss et al., 2004). Denitrification processes typically occur under a pH range be between 

5.5 and 8, but the optimal pH is site-specific because of the effects of adaptation on the 

microbial ecosystems (Feast et al., 1998). Anammox activity is observed in a pH range 

from 6.5 to 9.3 with the optimum pH at 8 (Tomaszewski et al., 2017; Jin et al., 2012). 

Furthermore, the hydrogeological structure of the area predetermines the 

processes of mixing of waters derived from different sources (see section 1.2.1.1 (pp. 36 

– 38)) and of different age. Therefore, it also profoundly affects the dynamics of δ15N 

isotopic signature (as demonstrated by the vast majority of considered case studies – see 

Table 1) (Einsiedl & Mayer., 2006). Therefore, comprehensive analysis of δ15N-NO3
- 

distribution in groundwater should be supported by in-depth consideration of 

hydrogeological features of the examined territories, for instance - the extent of confined 

and unconfined zones in the subsurface system, their connection and location of the 

recharge areas along the aquifer.   

While studying variations of δ15N-NO3
- in agricultural areas, it is particularly 

important to consider agricultural practices and the types of adjacent land uses, as they 

might significantly alter the isotopic signature of NO3
- in groundwater samples. In 

agricultural areas where it is common to leave crop residues on the fields over the winter 

period it is necessary to consider the seasonality of NO3
- sources. Previous studies which 

analyzed the influx of N from inorganic fertilizers into aquifer systems under intensive 

row-cropping and fertilization highlighted the significance of the intermediate N cycling 

processes of mineralization and nitrification of soil organic matter, such as crop residue, 

in the overall N cycling (Savard et al., 2010). Since resulting winter and spring load of 

NO3
- is attributed to slow mineralization and nitrification during soil organic matter 

degradation, it is hard to identify precisely the source of NO3
- in groundwater using its 
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isotopic signature, since δ15N-NO3
- values are close to those typical for fertilizers. 

Moreover, Sebilo et al. (2013) showed that the isotopic composition of NO3
- in 

groundwater might be considerably influenced by mineralization of N fertilizers 

incorporated into the soil organic matter pool several decades ago. Therefore, the 

evidence regarding the dynamics of isotopic signatures should be supported by the expert 

knowledge about the local agricultural practices.  

To summarize, the previous studies considered in this review have demonstrated 

that aquifers under agricultural areas are characterized with a wide range of δ15N-NO3
- 

determined by the variability of N sources and N transformation processes, intensity of 

which is controlled by the ambient geochemical conditions and hydrogeological settings 

(Fig. 3).  

 

 
Figure 3. Sources, processes and factors that influence the δ15N-NO3

- values: summary 

(the following arrows connect processes with factors that have decisive effect on their 

dynamics and, consequently, on resulting fractionation effects:  → availability of 

electron donors; → size of the substrate pool ; → temperature; → concentration of 

DO; → hydrogeological structure; →  pH; → land use). 
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In general, mineral fertilizers typically show the lowest δ15N-NO3
- values, 

followed by the isotopic signatures of soil-derived organic NO3
-. The highest δ15N-NO3

- 

are commonly observed in animal manure or household sewage. Among the 

microbiological and physicochemical processes influencing isotopic composition of -

NO3
- in groundwater, the highest δ15N-NO3

- values are associated with the denitrification 

activity. On the contrary, nitrification is responsible for the occurrence of NO3
- with the 

15N isotopic signature on 5 – 35‰ lower in comparison to the 15N of initial NH4
+

. While 

exploring the variability of 15N in groundwater systems, it is important to account for 

possibilities of physical mixing of water of different origins and the impact of multiple 

environmental parameters on the intensity of transformation processes as they might lead 

to change in the isotopic signature of initial N pollutants.  

 

1.2.2. Variability of δ15N-NH4
+ in groundwater 

In comparison to the amount of information regarding δ15N-NO3
- in groundwater 

under the agricultural areas, the data about distribution of δ15N-NH4
+ is less abundant. In 

general, conducted studies revealed that the δ15N values of NH4
+ in aquifers cover the 

range from -8.5‰ to +23.8‰ (Table 2), being significantly lower than the corresponding 

δ15N values of NO3
- (Li et al., 2010, Li et al., 2007, Hinkle et al., 2007, Liu et al., 2006).  
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Table 2. Analysis of NH4
+ isotopic signatures in groundwater: an overview of case 

studies (Vu – volatilization of urea, N – nitrification, V – volatilization, M – 

mineralization of organic N, s.d. – standard deviation, bdl – below detection level). 

Site δ15N (‰) Processes altering 
the δ15N of NH4

+ NH4
+ (mg/l) 

the Sichuan 
Basin 

(China)     
(Li et al., 

2007) 

well in farmland: 
-6.7 - +5.1 
mean value 
(-1.2 (s.d. 3) 

well in farmyard: 
+5.4 - +23.8 

(mean value +9.7 
(s.d. 6.1)) 
Spring: 

mean value 
-8.5 (s.d. 1.5) 

Vu 0.1 – 0.3 

Guiyang 
(China)  

(Liu et al., 
2006) 

in summer: 
+0.04 – +1. 

(mean +0.64) 
in winter: 

-1.7 – +3.9 
(mean +1.2) 

N, V 

in summer: 
0.04 – 3.6 
(mean 0.8) 
in winter: 
0.04 – 18 

(mean 4.1) 

La Pine, 
(Oregon, 

USA) 
(Hinkle et 
al., 2007) 

+2.5 – +3.9 
(mean 3.5) M >0.02 – 38 

(mean 4.3) 

the Zunyi 
area 

groundwater 
(China)    

(Li et al., 
2010) 

-1.1 – +5.2 
(mean +1.9) N 

in summer: 
bdl – 1.7 
in winter: 
bdl – 1.3 

 

1.2.2.1. Isotopic signatures of ammonium sources  

Overall, fertilizers, manure and sewage effluent are the principal anthropogenic 

sources of the NH4
+ in groundwater under agricultural areas. Rainwater and organic 

matter may also substantially contribute to NH4
+ concentration in groundwater (Hinkle et 

al., 2007). The comparison of δ15N-NH4 values of different pollution sources with the 
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isotopic signatures of groundwater samples is widely used for identification of the origin 

of detected NH4
+. 

NH4
+ fertilizers usually have δ15N values of 0‰ or lower (Kendall, 1998). 

Available data provide the following ranges: from -1.5‰ to -0.7‰ (Wassenaar, 1995); 

from -7.4‰ to +3.6‰ (median value -0.6‰) (Vitὸria et al., 2004); from +2.7‰ to 

+5.1‰ (mean value +4.2 ± 0.8‰) (Li et al., 2007); -3.9‰ (±0.3‰) (Choi et al., 2007), -

0.91‰ (±1.88‰) (Kendall, 1998). In general, the isotopic signature of δ15N-NH4
+ is 

reported to be 2.5‰ lower than the isotopic signatures of δ15N-NO3
- of synthetic 

fertilizers. 

Application of manure in agricultural fields or animal waste effluents from farms 

might increase the isotopic signature of δ15N-NH4
+ in the groundwater located under such 

areas in comparison to the aquifers effected by the fertilizer use, as animal waste is 

characterized by higher level of δ15N enrichment of NH4
+ (Fig. 3). It appears that the 

higher δ15N values observed in animal wastes are related to the increase in δ15N by 3 – 

4‰ at each successive trophic level (step in a nutritive series, or food chain, of 

an ecosystem). The most important factor contributing to this increase is the excretion of 

isotopically light urine: animal waste gets further enriched in 15N by the subsequent 

volatilization of isotopically light NH3 (Sharp, 2007). The initial δ15N-NH4
+ values of 

manure may vary between +8‰ and +10‰ for pig waste (Vitoria et al., 2003) and 

around +7.4‰ ± 3.8‰ for cow waste (Maeda et. al., 2016). 

NH4
+ is also one of the major components in groundwater contamination plumes 

originating from septic tank effluents or wastewater release from treatment plants. In 

untreated sewage, the isotopic signature of δ15N-NH4
+ is typically between +5‰ and 

+9‰ (Cole et al., 2006). The sewage effluent in Guiyang (China) showed the mean value 

of δ15N-NH4 at +5.3‰ (Liu et al., 2006), and Robertson et al. (2011) detected the δ15N-

NH4
+ value of +4.4‰ ± 4.6‰ in the septic system of the Long Point campground located 

on the shore of Lake Erie (USA and Canada). Usually, the contamination plumes exhibit 

clear stratification between the differently enriched NH4
+ species. The top of the plume is 

typically characterized with more enriched δ15N-NH4
+

 values, caused by ongoing 

nitrification, in comparison to the core of the plume, where NO3
- and NH4

+ coexist and 

https://www.britannica.com/science/food-chain
https://www.britannica.com/science/ecosystem


 

49 
 

anammox reaction enriches both compounds, and below plume where only NO3
- 

attenuated by denitrification remains (Clark, 2001). 

NH4
+ is also the most abundant N compound in rainwater which commonly 

exhibits negative δ15N values. In particular, experimental data provided by Li et al. 

(2007) in the Sichuan river basin (China) showed that δ15N-NH4
+ in atmospheric 

precipitation vary from -13.4‰ to +2.3‰ (mean value -6.6‰±4.0‰). Isotope analyses 

conducted on rainwater samples from Zunyi in China, also demonstrated negative 

(approximately -12‰) δ15N-NH4
+ values (Li et al., 2010).The inflow of NH4

+ originating 

from decomposition of organic matter in sediments and soils may also influence the 

isotopic signature of δ15N-NH4
+ in groundwater. In general, δ15N-NH4

+ in soil or 

sediments usually differs from the isotopic composition of total organic N in such 

samples only by ±1‰ (Kendall, 1998). This is explained by the small magnitude of 

fractionation effect occurring during mineralization of organic matter. Norman et al. 

(2015) revealed that NH4
+ detected in groundwater of the Nam Du area (Hanoi, Vietnam) 

originated from the overlaying peat which exhibited the isotopic signature of total N in 

the range of +2.4 to +4.1‰. In addition, Hinkle et al. (2007) (Table 2) during the studies 

of groundwater in La Pine (Oregon, USA) concluded that the observed groundwater 

NH4
+ concentration of 38 mg/l were likely due to mineralization of organic N, with 

measured δ15N-NH4
+ of 2.5 – 3.9‰. 

To sum up, the most negative values of δ15N-NH4
+ could be observed in 

rainwater, while the highest positive isotopic signatures are typical for animal manure 

and sewage. At the same time, organic matter exhibits slightly higher δ15N-NH4
+ isotopic 

composition in comparison to synthetic fertilizers. However, the available experimental 

evidence also suggests that in practice the isotopic signals of various NH4
+ sources (Fig. 

3) might overlap due to the peculiarities of environmental settings in certain areas. 

 
1.2.2.2. Isotopic effects of ammonium production/consumption processes 

The existing body of research devoted to exploration of δ15N-NH4
+ variability in 

groundwater of agricultural areas demonstrate that during the transport of contaminants 

within the hydrogeological system the initial δ15N values of NH4
+ pollution sources can 
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undergo considerable changes due to mineralization, sorption, volatilization, nitrification, 

anammox and dissimilatory NO3
- reduction to NH4

+ (DNRA). So far, significant research 

efforts have been devoted to estimation of fractionation effects of different processes 

which underlie the observed δ15N-NH4
+ variability (Normann et al., 2015, Zhu et al., 

2013; Jin et al., 2012; Michener & Lajtha, 2007; Böhlke et al., 2006, Buss et al., 2004). 

The conducted analysis showed that mineralization or ammonification usually 

causes only small fractionation (nearly ± 1‰) between soil organic matter and soil NH4
+ 

(Sharp, 2007). According to Micheher & Lajtha (2007), the term mineralization might be 

used to describe the overall process of production of NO3
- from organic matter, which 

usually involves several reaction steps. Under such definition, observed fractionation 

ranged from -35 to 0‰, depending on which step was considered as the limiting one 

(Micheher & Lajtha, 2007). However, the results of such observations should be used 

cautiously, since such large and variable range might be attributed not to the 

mineralization step itself, but rather to nitrification of NH4
+ to NO3

-. 

Small isotopic fractionations have been reported for NH4
+ sorption/desorption 

processes on charged surfaces of clays and other minerals. According to laboratory 

studies, NH4
+ sorbed from solutions by clays commonly is enriched in 15N relative to the 

NH4
+ that remains in solution (Böhlke et al., 2006). These results support the findings of 

the research accomplished by Delwiche & Steyn (1970) which showed that ion-exchange 

fractionations between kaolinite and solution are in the range of 0.7 - 0.8‰. Also, Hübner 

(1986) showed that ion-exchange fractionations are commonly in the range of 1 to 8‰ 

and stated that the actual fractionation is dependent on concentration and the fractionation 

factor for the exchange with the clay material. According to Kendall (1998) the 

fractionation factor will probably vary with depth in the soil because of changes in clay 

composition and water chemistry. These factors might retard or intensify sorption 

processes leading, respectively, to enrichment or depletion of 15N-NH4
+ in groundwater. 

Volatilization is a highly fractionating process in which the produced NH3 gas has 

a lower δ15N value than the residual NH4
+. It involves several steps that cause 

fractionation, including: 1) equilibrium fractionation between NH4
+ and NH3 in solution, 

and between aqueous and gaseous NH3; 2) kinetic fractionation caused by the diffusive 
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loss of 15N-depleted NH3. In general, the overall dynamics of the process leads to the 

enrichment of the remaining NH4
+ in 15N on the order of 25‰ in comparison to the 

volatilized NH3. However, it is noticed that the actual fractionation could depend on the 

pH and temperature (Bedard-Haughn et al., 2003). 

Nitrification of NH4
+ is a two-step process which yields 15N-depleted products 

and commonly results in a substantial increase of δ15N-NH4
+ value. As was mentioned in 

the previous section (1.2.1.2), the oxidation of NH4
+ to NO3

- enriches the remaining NH4
+ 

by approximately 30‰ in comparison to produced NO3
-. In general, the total 

fractionation associated with nitrification depends on which step is rate determining. 

Because the oxidation of NO2
- to NO3

- is rapid in natural systems, this step is usually not 

considered as the rate-determining one, and most of the observed N fractionation is 

caused by the slower oxidation of NH4
+ to NO2

- (Micheher & Lajtha, 2007). The extent of 

fractionation during nitrification is also evidently dependent on the fraction of the 

substrate pool that is consumed during the process (refer to section 1.2.2.3. for further 

details). 

Anammox or anaerobic oxidation of NH4
+ to N2 leads to a slight enrichment of 

the residual NH4
+ by 4 – 8 ‰ (Clark, 2015; Robertson et al., 2011). The low fractionation 

effect of anammox process, usually observed during field studies, could probably be 

caused by the presence of greater reservoir of NH4
+ sorbed on the aquifer that buffers the 

enrichment of δ15N in the dissolved NH4
+ in the explored cases (Clark, 2015). So far, the 

anammox process was detected mostly within the long pollution plumes (i.e., from 

several hundred meters to 1 km in length) originating from point pollution sources (septic 

tanks, industrial or residential effluents.). For example, Smith et al. (2015) and Böhlke et 

al. (2006) explored anammox activity in the contaminated groundwater plume created by 

land disposal of treated wastewater which appeared at the location of Cape Cod 

(Massachusetts, USA). Similarly, Robertson et al. (2011) explored the possibilities for 

occurrence of anammox conditions in a septic system plume originating from the 

washroom facility located on the north shore of Lake Erie (between USA and Canada). 

Since it has been discovered that, under anaerobic conditions, NO3
- may also be 

reduced to NH4
+ by a process known as DNRA, it is necessary to consider its potential 
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impact on δ15N-NH4
+ as well. In general, this process occurs under the same conditions as 

denitrification, but is less commonly observed in practice. While, to the best of our 

knowledge, the reports devoted exclusively to the investigation of the N isotope 

fractionation occurring during DNRA are yet not available, broader studies conducted so 

far have demonstrated that NH4
+ produced by DNRA has much lower δ15N than the 

substrate NO3
-, which suggests an ongoing kinetic fractionation (Micheher & Lajtha, 

2007). 

 
1.2.2.3. Factors controlling ammonium production/consumption processes and their 
impact on δ15N-NH4

+ variability 

The extent of fractionation effect caused by NH4
+ transformation processes 

depends on multiple environmental factors (Fig. 3) which, therefore, can substantially 

influence the observed dynamics of δ15N values of NH4
+ in the subsurface. Among these 

factors, pH, temperature and size of the substrate pool are the ones most discussed in the 

available research literature. 

The pH parameter defines the intensity of not only microbiological reactions, but 

also affects the rate of volatilization: it is proved that this process is intensified under the 

alkaline soil pH (Witter & Lopez-Real, 1988). For this reason, the observed high rates of 

NH3 volatilization are associated with the high carbonate content of soils (Bedard-

Haughn et al., 2003). For example, in the unconfined High Plains aquifer (USA) NH3 

volatilization was promoted by the calcareous soils of the area (McMahon & Böhlke., 

2006). At the same time, the pH values which support the development of DNRA are 

unclear. Some studies indicated that high rates of DNRA are associated with alkaline 

conditions, while the other ones revealed the negative correlation between DNRA 

occurrence and pH parameter (Rütting et al., 2011). As for N mineralization process, it 

tends to become more intensive with an increase of pH values towards more alkaline 

range (Curtin et al., 1998, Fu et al., 1987). At pH ˂ 7, NH4
+ is predominantly sorbed on 

clay surfaces, and at higher pH values it starts to be sorbed by metal oxides and 

oxyhydroxides (e.g. FeOOH, MnO2) (Buss et al., 2004). 
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The temperature variability can also have an impact on the changes in dynamics 

of δ15N-NH4
+ values. It should be particularly noticed that higher temperatures are also 

associated with the increasing rate of ongoing NH3 volatilization, since they stimulate 

growth and activity of bacteria. Consequently, it can be expected that the isotopic 

composition of N species exhibits pronounced seasonal patterns (Bedard-Haughn et al., 

2003). The optimal temperature range for mineralization is 25 - 40ᵒ, for nitrification – 15 

- 35ᵒ and for anammox – 30 - 40ᵒ (Li et. al., 2014; Guntiñas et al., 2012; Shammas, 1986; 

Jin et al., 2012). 

In addition, the extent of observed fractionation effects is assumed to be 

dependent on the size of the substrate pool (reservoir). Usually, in N-limited systems, 

fractionation associated with nitrification is comparatively small. For instance, NH4
+ 

concentration in groundwater of the Sichuan basin in China (Table 2) were low (and even 

occasionally below the detection limit (0.05 mg/l)), suggesting minimal isotopic 

fractionation during nitrification in groundwater (Li et al., 2007). 

Finally, it should also be noticed that the relative concentrations of NO3
- to 

organic C (C/NO3
- ratio) control whether NO3

- is reduced by denitrification or DNRA. In 

general, DNRA, which leads to the production of isotopically depleted NH4
+, is favored 

when NO3
- is limiting, while denitrification is favored when C (electron donor) is limiting 

(Vidal-Gavilan et al., 2013). 

The presented evidence suggests that the variability in the δ15N-NH4
+ in 

groundwater heavily depends both on the type of pollution sources as well as on the 

dynamics of microbiological and physicochemical processes (Fig.4).  
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Figure 4. Sources, processes and factors that influence the δ15N-NH4
+ values: summary 

(the following arrows connect processes with factors that have the decisive effect on their 

dynamics and, consequently, on resulting fractionation effects: → C/NO3
- - ratio; →  

pH; → temperature;  → size of the substrate pool). 

 

In general, δ15N-NH4
+ values in groundwater are lower and less variable in 

comparison to δ15N-NO3
-, which is probably explained by the high sorption potential of 

NH4
+ and it intensive involvement into oxidation processes. Among the pollution 

sources, animal wastes and household sewage contribute to the highest enrichment of 

NH4
+ in groundwater with 15N isotope. As for the processes resulting in isotope 

fractionation and respective changes in isotopic signatures of groundwater samples, it is 

revealed that volatilization and nitrification significantly contribute to higher 

accumulation of 15N in the residual NH4
+. However, the extent of fractionation effects 

due to these processes may depend on the environmental conditions. On the contrary, 

mineralization and sorption usually show small isotopic effects. Finally, there is still not 

much evidence available about the quantitative alterations in the isotopic composition of 

NH4
+ during DNRA (Micheher & Lajtha, 2007). 
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1.2.3. Variability of δ15N-N2O in groundwater 
The information about the isotopic composition of δ15N-N2O in aquifers affected 

by agricultural activity is also scarce, as in the case of data regarding the natural 

abundance of 15N-NH4
+. In general, it has been reported that the values of δ15N-N2O 

could vary from-55.4‰ to +89.4‰ (Table 3). So the isotopic signatures of N2O in 

groundwater samples demonstrate the largest variability among different isotopic 

compositions of N compounds considered in this review. It appears that such wide range 

of observed δ15N-N2O values is related to the fact that the production of N2O involves 

many reactions steps (Fig. 4) which presume diverse fractionation effects depending on 

chemical processes kinetics and heterogeneous conditions of the subsurface environment 

along the vertical and lateral groundwater flow paths. Evidently, it also reflects the 

impact of the diversity of isotopic signatures of the initial substrates (e.g., NO3
-, NH4

-) 

and their involvement into microbial processes. In particular, according to previous 

studies, δ15N values of N2O emitted from fertilized soils are predominantly negative, 

which is explained by 15N depletion during N2O production by nitrification and 

denitrification. At the same time, positive δ15N-N2O values are likely to be attributed to 

ongoing N2O reduction during denitrification (Well et al., 2005). Further discussion of 

the factors influencing variability of δ15N-N2O in groundwater will be devoted 

predominantly to shifting dynamics of various hydrobiogeochemical processes that affect 

the isotopic composition of N2O. The isotopic signatures of NO3
- and NH4

+ derived from 

various pollution sources have been described in more detail in the previous sections 

(namely, sections 1.2.1.1. and 1.2.2.1.). 
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Table 3. Analysis of N2O isotopic signatures in groundwater: an overview of case studies 

(D – denitrification; s. d. – standard deviation).  

Site δ15N 
(‰) 

δ18O 
(‰) 

Processes altering the 
δ15N and δ18O of N2O 

N2O 
(mg/l) 

Fuhrberger 
Feld aquifer 

(Lower 
Saxony, 

Germany) 
(Well et al., 

2012) 

-55.4 – +89.4 
(mean -11.0 
(s.d. 21.0)) 

+17.6 – +113.2 
(mean 57.5 
(s.d. 24.9)) 

D 0.001 – 3.7 
(mean 0.08) 

Großenkneten 
aquifer 
(Lower 
Saxony, 

Germany) 
(Well et al., 

2012) 

-40.5 – +11.7 
(mean -9.7 
(s.d. 11.2)) 

+32.6 – +87.6 
(mean 46.1 
(s.d. 13.9)) 

D 
 

0.005 – 0.2 
(mean 0.03) 

Northwest 
German 
lowland, 
(Lower 
Saxony, 

Germany) 
(Well et al., 

2005) 

-41.6 – +86.1 +20.7 –  +89.8 D 0.008 – 4.2 

shallow 
groundwater 

under the 
lysimeter 
facility 
(Japan) 

(Minamikawa 
et al., 2011) 

 
-44.7 – -16.8 

 
+39.1 – +49.4 D 

 
 
- 
 

 

1.2.3.1. Isotopic effects of nitrous oxide production/consumption and transport processes 

The experimental evidence suggests that changes in N2O isotopic signatures are 

caused by both physical and microbial processes. It is generally assumed that the 

enrichment factors of microbial processes tend to be large than those related to physical 
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processes (Goldberg et al., 2008). Among the bacterial transformations, denitrification, 

nitrification and nitrifier denitrification are the processes that seem to be the most 

discussed in the research literature in the context of the isotopic composition of δ15N-N2O 

(Jurado et al., 2017, Well et al., 2012, Clough et al., 2005). As for the impact of physical 

processes, it appears that diffusion frequently might be responsible for the alterations of 

detected δ15N-N2O values. 

In the denitrification pathway, N2O is produced as well as consumed during the 

subsequent reduction of NO3
-
 to N2 (NO3

- → NO2
- → NO → N2O → N2).  The δ15N 

values of N2O derived from denitrification depends upon the isotope fractionation during 

its production and consumption. N2O originated from the reduction of NO3
- is typically 

depleted in 15N in comparison to the initial substrate (NO3
-). The reduction of N2O to N2 

results in the enrichment of the residual N2O. It is reported that the isotope fractionation 

factors for N during both processes are of comparable order of magnitude (Ueda & 

Ogura, 1991). If N2O is accumulated as the intermediate product of steady-state 

denitrification, it is observed that, its δ15N value should become close to the value of the 

initial substrate NO3
-. Correspondingly, significant N isotope discrimination between 

N2O and NO3
- in groundwater might suggest that a large portion of N2O may originate 

from nitrification (Ueda & Ogura, 1991). 

Nitrification, which is also a multistep reaction (NH3 / NH4
+ → H2N-OH → NO2

- 

→ NO3
-), yields N2O which is isotopically light in comparison to its precursors. N2O 

derived during this process could be produced as a byproduct from the complete or partial 

direct oxidation of H2N-OH to NO or N2O (Schmidt et al., 2004). 

In addition, at low DO level, N2O production is likely to proceed via nitrifier 

denitrification, i.e. NO2
- reduction to N2O, which yields isotopic signatures similar to 

bacterial denitrification (Well et al., 2012). Consequently, these two processes cannot be 

distinguished using solely the data regarding 15N isotope natural abundance, and 

additional evidence is necessary (Wells et al., 2016; Zhu et al., 2013). 

The isotopic composition of N2O detected in the groundwater samples can also be 

significantly influenced by its upward diffusion and volatilization from shallow 
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groundwater to the atmosphere (Minamikawa et al., 2011). Available experimental data 

indicate that in the subsoil environment characterized with high diffusivity exchange with 

atmospheric N2O may diminish the effects of isotopic fractionations expected from the 

previously described microbial processes (Goldberg et al., 2008). The rate of occurring 

diffusion depends mainly on the water content in the subsoil. The higher water content 

suggests that the time required for N2O to diffuse from the soil profile to the surface is 

also increased, since diffusion of N2O in water is approximately 4 orders of magnitude 

lower than in air (Clough et al., 2005. In addition, it should be highlighted that the 

macropores and cracks can also enhance the upward N2O diffusion (Minamikawa et al., 

2011). 

To summarize, the research accomplished so far has demonstrated that both 

nitrification and denitrification processes are responsible for the depletion of 15N value of 

N2O in comparison to its substrates (Toyoda & Yoshida, 2015; Schmidt et al., 2004; 

Ueda & Ogura, 1991) . However, further reduction of N2O to N2 during denitrification 

leads to the enrichment of the remaining N2O with 15N (Clark, 2015; Knӧller et al., 

2011). In comparison to biochemical processes occurring in aquifers, diffusion usually 

results in less pronounced isotopic effects. However, the distribution of the δ15N-N2O 

values in groundwater cannot be comprehensively analyzed and clearly interpreted 

without referring to the heterogeneity of environmental factors (Fig. 4) of the studied 

hydrogeological systems. 

 
1.2.3.2. Factors controlling nitrous oxide production/consumption processes and their 
impact on δ15N-N2O variability 

Among the factors controlling the dynamics of N2O production/consumption 

processes and resulting variations in δ15N-N2O values, the residence time, DO 

concentration, availability of substrate and pH are typically considered as the most 

decisive in the literature. 

As the concentration of NO3
- within a denitrifying layer diminishes with 

increasing residence time of groundwater, it appears, that with longer residence time, 

NO3
- reduction to N2 is more likely to be complete (provided the is no additional supply 
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of NO3
-  and a sufficient amount of electron donors), which means that the isotopic 

compositions of δ15N-NO3
- and δ15N-N2O become closer. At the same time, the 

instantaneously produced N2O is typically depleted with respect to the NO3
- signature 

(Well & Flessa, 2005).  

The DO concentration significantly impacts the isotopic signatures of N2O in 

groundwater, because it determines the type of dominant microbial processes in the 

aquifer and it also affects the completeness of their reaction steps. In particular, under 

anaerobic conditions, microbial nitrification is unlikely to occur and denitrification 

usually prevails under such conditions. In particular, it is reported that denitrification 

might yield the highest N2O amounts at intermediate O2 concentrations (below 3.15 to 4 

mg/l) as most denitrifiers are facultative anaerobes (Deurer et al., 2008). That is why it is 

frequently reported that the NO3
- consumption, which is associated with the formation of 

excess N2 and intermediate accumulation of N2O, increases with the depth (Well et al., 

2012).  

In sequential reaction processes, such as denitrification, the supply of the 

members of the denitrification pathways, i.e., NO3
-, NO2

-, NO, N2O, N2, depends on the 

rate of previous reaction steps, except for NO3
- which can be introduced to the system 

from the external sources. The availability of substrate, therefore, seems to have 

considerable impact on the magnitude of isotopic fractionation occurring during N2O 

production/consumption processes. In particular, if NO3
- supply is high in relation to 

reduction capacity of the subsurface system, substantial isotope fractionation effect 

occurs, whereas the effect is low or negligible in the opposite case. Overall, the same 

fractionation control principle appears to be relevant for the other N species subject to 

reduction during further stages of denitrification, namely NO2
-, NO, and N2O. However, 

for these species the situation is even more complicated, not only because their respective 

pool sizes depend on the rates of the previous reactions, but also because some microbes 

might lack enzymes for some of the reduction steps, which implies that transport within 

denitrifying species will be a necessary precondition for further reduction in such cases 

(Well et al., 2005). As a result, the isotopic signature of N2O as an intermediate is 

influenced both by the kinetics of its production during NO reduction and consumption 
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during N2O reduction to N2 affected by the availability of reaction substrates on the 

corresponding transformation steps. 

It has been found that pH values below 5.5 seem to promote accumulation of 

N2O, most probably because N2O reductase is mostly inhibited by acid conditions that 

enable the build-up of N2O in the subsurface environment (Deurer et al., 2008), and the 

denitrification process does not proceed to the final step.  

Overall, since N2O is an intermediate product of microbial reactions, its isotopic 

composition is determined by the rates of previous reactions as well as biological and 

physicochemical conditions of the aquifer (Fig. 4). It could be summarized that 

production processes of N2O (e.g., nitrification, denitrification, etc.) lead to its depletion 

in the δ15N value, whereas consumption processes, such as reduction of N2O to N2, enrich 

it with 15N. Residence time, DO concentration, substrate availability and pH are 

important parameters that affect the intensity of N2O isotope fractionation processes. The 

large variability of δ15N value of N2O in the groundwater (Table 3) implies that N2O 

production and consumption processes in the hydrogeological system occur 

simultaneously. However, the isotopic fractionation effects of these processes might be 

diminished by the effects of upward diffusion. 
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Figure 5. Sources, processes and factors that influence the δ15N-N2O values: summary 

(the following arrows connect processes with factors that have decisive effect on their 

dynamics and, consequently, on resulting fractionation effects:  → water content in the 

subsoil; → availability of substrate; → residence time;  → concentration of DO; →  

pH). 

1.3. Complementary investigations based on other stable isotopes 
Measurements and analysis of δ15N values in groundwater are commonly 

complemented with analysis of isotope enrichment values of other isotopes in order to 

address and constrain the potential ambiguity in the interpretation of δ15N variation 

associated with overlapping of δ15N isotopic signatures resulting from different sources 
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and processes. O, B, C, S, Sr isotopes are among the isotopes most frequently considered 

for such purpose (Hosono et al. 2015; Well et al., 2012; Lorenzo et al., 2012; Otero et al., 

2009; Knöller et al. 2005; Widory et al., 2004, Choi et al., 2003; Bӧhlke & Horan, 2000). 

In the following section, discussion will be focused on their application to identification 

of N transformation processes and potential sources of N pollution, respectively.  

 
1.3.1. Analysis of δ18O values of nitrogen species in groundwater 

Combined use of the δ18O and δ15N of NO3
- may allow better separation of 

atmospheric and terrestrial NO3
- sources, including the possible separation of different 

anthropogenic sources (Xue et al., 2009). In addition, oxygen isotope ratios could be used 

for distinguishing N2O originating from nitrification and denitrification (Kendall, 1998). 

Table 1 (pp. 34 – 37) shows that the isotopic signature of δ18O-NO3
- in groundwater 

might vary in the range between -8.1‰ to +48‰, which reflects the variability of NO3
- 

sources. 

In particular, the isotopic signature δ18O-NO3
- could help to separate NO3

- 

originated from the fertilizers application from NO3
- inflow originating from other 

sources which deliver NO3
- produced by nitrification of NH4

+ or organic N. It is observed 

that synthetic NO3
- fertilizers, which are derived from the atmospheric N2, have δ18O 

value close to the atmospheric value of +23.5‰ (Moore et al., 2006). In particular, their 

isotopic composition of δ18O-NO3
- might vary from +17‰ to +25‰ (Xue et al., 2009). 

Meanwhile, NO3
- from other sources tend to have lighter δ18O values because the NO3

- 

derived from nitrification processes incorporates only one O atom from dissolved 

atmospheric O2 and the other two atoms from water (Kendall & Aravena, 2000). In 

general, isotopic signature of δ18O-NO3
- originated from nitrification can be calculated 

using the following equation (e.g. Hollocher, 1984): 

δ18Onitrate = 1/3* δ18OO2 + 2/3 * δ18OH2O  (8) 

Nitrification has been associated with the δ18O-NO3
- values in a range between -

2‰ to +6‰ (Liu et al., 2006; Sebilo et al., 2006; Smith et al., 2006) or approximately 

0‰ (Böhlke et al., 2006). However, it should be emphasized that the isotopic 

composition of NO3
- produced by nitrification depends on a range of factors which might 
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alter those numbers: 1) H2O might be enriched in 18O isotope because of evaporation 

(Hoefs, 2015; Sharp, 2007), 2) O isotope fractionation during respiration can increase the 

δ18O value of soil O2 in comparison to that of atmospheric O2 (Mayer et al., 2001), 3) the 

ratio of O incorporation from H2O and O2 is not exactly 2:1 (e.g. more O2 may be derived 

from atmospheric O2 when NH4
+ is limiting) (Knӧller et al., 2011; Kool et al., 2011), 4) 

low pH conditions might support the occurrence of another microbial process that 

consume atmospheric O2 more intensively than nitrification consequently resulting in 

suppression of nitrification (Xue et al., 2009; Liu et al., 2006), and 5) oxygen isotope 

exchange of intermediates (especially NO2) with ambient water might occur (Granger & 

Wankel, 2016; Casciotti et al., 2010; Kool et al., 2011). 

Oxygen isotopes can also be used to trace denitrification in groundwater, as 18O 

and 15N become concurrently enriched in the remaining NO3
- during bacterial 

denitrification (Petitta et al., 2009). Several studies reported constant isotope ratios that 

indicate enrichment of 15N relative to 18O as the evidence of denitrification occurrence: 

2:1 (Kendall & Aravena, 2000), 1.5:1 (Baily et al., 2011), 2.1:1 (Aravena & Robertson, 

1998) and 1.4:1 (Knӧller et al., 2011; Mengis et al., 1999). During denitrification, the 

isotopic signature of the residual δ18O-NO3
- tends to be enriched by nearly 10‰ or 8 - 

18‰ in comparison to the produced N2O (Clark, 2015; Xue et al., 2009). Therefore, N2O 

that is instantaneously produced is depleted in 18O. According to Cassiotti et al. (2002), 

the value of δ18O is also affected by oxygen exchange with water, with the exchange ratio 

varying across different microbial species (Well et al., 2005). 

It is also important to take into account that the isotopic expression of δ18O-NO3
- 

in groundwater might be influenced by atmospheric precipitation. Its δ18O values can 

vary within an interval between +30 and +70‰ (Choi et al., 2003). Williard et al. (2001) 

demonstrated a seasonal variation of δ18O-NO3
- in atmospheric NO3

- deposition. Durka et 

al. (1994) and Voerkelius (1990) have associated atmospheric NO3
- with values of δ18O 

between 52.5‰. and 73.4‰. However, usually such high values of δ18O are found in 

groundwater under forest ecosystems that are not undergoing significant anthropogenic 

impact, and are not typical for the case of arable lands (Bӧttcher et al., 1990). 
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In general, it is clear that typical δ18O values of NO3
- originated from nitrification 

(including δ18O values of NO3
- derived from NH4

+ in fertilizers and precipitation, NO3
- 

derived from soil N and NO3
- derived from manure and sewage) are lower than that of 

NO3
- from precipitation and NO3

- from application of fertilizers. Denitrification is 

responsible for the simultaneous enrichment of the remaining NO3
- with 18O and 15N 

isotopes which might be traced in accordance to certain constant ratios. Therefore, 

application of O isotopes analysis along with N isotopes measurement can help to 

understand better the nature of δ15N variability in groundwater.  

 
1.3.2. Boron as a tracer for identification of nitrogen sources 

Boron isotopes (i.e., 11B and 10B) have been used to trace sewage contamination 

in groundwater in a range of studies (Xue et al., 2009). Since the isotopic composition of 

B is not affected by the denitrification process, it also can be used as an indicator of 

mixing processes in hydrogeological systems (Widory et al., 2004). For instance, analysis 

of B isotopes was used for identification of pollution sources in the Arguenon watershed, 

the “Roussillon” aquifer and the “Ile du Chambon” catchment (Table 1; pp. 34 – 37) in 

France (Widory et al., 2005).   

At the unpolluted sites B originates either from mixing with seawater, or from 

weathering of sandstones and igneous rocks, or could be found in certain evaporates, 

such as borax (Na2B4O5[OH]4・8H2O) (Clark, 2015). In such context, natural B 

concentrations are typically only a few ppb in groundwater. However, they are 

significantly higher in liquid manure and septic tank effluents.  

The isotopic signature of δ11B of sewage reported in the literature ranges from -

7.7‰ to +12.9‰ (Xue et al., 2009). Widory et al. (2004) distinguished two types of 

sewage: a high-B/low-NO3
-/low-δ11B type that is derived from washing powders, and a 

moderate-B/moderate-NO3
- type with an isotopic signature close to animal manure 

(probably human excrement). 

The δ11B value of animal manure covers the interval from +14.5‰ to +42.5‰ 

(Widory et al., 2005). These values are, generally, higher than the ones reported for 

fertilizers whose δ11B isotopic expression might fluctuate between +8‰ and +17‰.  
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It should be mentioned that sorption on clay minerals, iron and aluminum oxides 

along groundwater flow can enrich the residual B in solution with 11B isotope at the pH 

value above 8, when the anion B(OH)4
- becomes important (Clark, 2015). However, 

Kloppmann et al. (2009) showed that at neutral pH, B transport characterized with 

predominance of B(OH)3 is nonfractionating, and could therefore be used as a reliable 

tracer of source and mixing processes. 

Thus, analysis of abundance of B isotopes appears to be useful in identification 

the sources of N contamination. The combined use of δ11B and δ15N values along with 

the data regarding concentrations of the respective compounds can help to distinguish 

between multiple NO3
- sources as well as to reveal the occurrence of mixing processes. 

Nevertheless, during the studies the possibility of the adsorption-desorption interaction 

with clay and other material should be considered as it might affect B isotopic 

composition.  

 
1.3.3. Analysis of carbon and sulfur isotopes in groundwater systems 

It is a common practice to support the results of studies of N isotope in 

groundwater, which indicated the occurrence of denitrification, with additional 

measurement of the δ13C-DIC and δ34S-SO4
2- values in order to identify which type of 

denitrification is governing the dynamics of N species (Hosono et al., 2014, Otero et al., 

2009, Aravena & Robertson, 1998). This experimental approach could be employed to 

distinquish between two main denitrification pathways that are observed in aquifers: 

heterotrophic denitrification, which requires organic C source, and autotrophic 

denitrification, which uses zero-valent iron, ferrous ions, elemental sulfur or reduced 

sulfur compounds such as pyrite (FeS2) as an electron donor (Hosono et al. 2015). While 

the former one generates CO2 as one of the reaction products, the later one produces 

SO4
2- through elemental sulfur or FeS2 (Rivett et al., 2008).  

Heterotrophic denitrification is associated with the decrease in the δ13C-DIC and 

increase in δ15N-NO3
- values. The decrease in δ13C-DIC is related to the fact that the 

organic source of carbon is isotopically more depleted in 13C compared to that of the 

dissolved inorganic carbon pool (e.g. carbonate, bicarbonate). That is why the δ13C 
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values of DIC derived from organic matter are more negative than the values of DIC 

originated from non-organic sources (Nascimento, 1997).  The values of δ13C-DIC 

originated from organic carbon are reported to vary in the range between -29‰ to -25‰ 

(Aravena & Robertson, 1998). However, in the aquifer these values can be buffered by 

dissolution of carbonate minerals which have higher isotopic signature of C. For 

example, Aravena & Robertson attributed the decrease in the δ13C-DIC values (from -1.9 

to -8.6‰) in the groundwater system to denitrification processes, the occurrence of which 

was evidenced by substantial rise in δ15N-NO3
- values (from 6.4 to 58.3‰). 

Autotrophic denitrification, through FeS2 oxidation, produces SO4
2- depleted in 

34S, since sulfur in sulphide minerals is typically characterized with smaller δ34S values in 

comparison to that of sulfate pools in earth surface environments (Krouse & Grinenko, 

1991). For instance, Otero et al. (2009) explained the detected decrease in the δ34S-SO4
2- 

values (from 10 to -20‰) accompanied by the increase in the isotopic signature signals of 

NO3
- as the result of progress of autotrophic denitrification in the polluted deep aquifer in 

eastern Spain. Similar changes of the sulfate-sulfur isotopic composition (from +10 to -10 

‰) due to the impact of autotrophic denitrification in an aquifer used for drinking water 

production were reported by Knöller et al. 2005. 

While the decline in the δ13C-DIC or δ34S-SO4
2- values in groundwater is the sign 

of heterotrophic or autotrophic denitrification, respectively, their increase is usually the 

evidence of other bacterial processes which typically occur in the anaerobic conditions 

after denitrification (denitrification → sulfate reduction → methanogenesis) (Korom, 

1992). Studying the limestone aquifer in the eastern England, Moncaster et al. (2000) 

detected significant enrichment of SO4
2- with 34S (up to +30‰) as a result of sulfate 

reduction. Hosono et al. (2014) related the enriched isotopic values of 13C-DIC (+8‰) in 

groundwater under the Kumamoto area (Japan) to the occurrence of methanogenesis. 

This idea was supported by the fact that high CH4 concentrations (up to 1 mg/l) were 

detected at the studied locations. 

Therefore, it is obvious that additional analysis of δ13C-DIC and δ34S-SO4
2- in 

groundwater can help to identify certain hydrogeochemical processes (denitrification, 

DNRA, sulfate reduction or methanogenesis) in the aquifers and understand their 
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intensity. It is especially helpful to include the measurements of these isotopes into 

experimental studies in the cases when the occurrence of denitrification processes is 

suspected, since such approach will help not only to differentiate between different types 

of denitrification pathways, but also reveal other bacterial processes that follow 

denitrification in groundwater heavily depleted in oxygen. 

 
1.3.4. Strontium isotope as a tracer of mixing processes in subsurface environment 

In contrast to N, O, B, C and S isotopes, Sr isotopes are characterized with a low 

biological and/or geological fractionation which make them effective tracers of transport 

(mixing) processes in the environment (Vilomet et al., 2001). The 87Sr/86Sr ratios in 

groundwater are predetermined by:  

1) natural sources of Sr (e.g., mineral dissolution or cation exchange 

in soils and aquifer); 

2) anthropogenic sources of Sr (e.g., mineral fertilizers or manure) 

(Widory et al., 2004; Bӧhlke & Horan, 2000). 

During the study of groundwater in the Brittany region (France) Widory et al. 

(2004) detected that 87Sr/86Sr ratios of the anthropogenic sources vary from 0.7078 to 

0.7145 with the lowest values corresponding to mineral fertilizers and the highest values 

to animal manure. However, this study showed the difficulties in distinguishing between 

different types of animal manure, which exhibited overlapping ranges from 0.709 to 

0.712. The groundwater of the studied area showed varying 87Sr/86Sr ratios (from 0.7146 

to 0.7196) suggesting the occurrence of mixing between different Sr sources, in particular 

Sr derived from animal manure and from water-rock interaction.  

Bӧhlke & Horan (2000) examined the relationship between the age of 

groundwater and the distribution of Sr. It was revealed that higher 87Sr/86Sr ratios (0.713-

0.715) are associated with younger oxic groundwater which is affected by anthropogenic 

activity, and the lower 87Sr/86Sr ratios (0.708-0.710) are typical for older suboxic 

groundwater where Sr is originated from calcareous glauconitic sediments. 

To summarize, Sr isotope ratio is the useful parameter for studying mixing 

processes in the groundwater system, as it helps to determine the behavior of pollutants 
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from different sources. In general, natural sources of Sr are typically characterized with 

lower 87Sr/86Sr ratio compared to anthropogenic ones usually exhibiting higher values of 

this parameter.  

1.4. Conclusions 

The versatility of the stable isotope analysis method enables obtaining a 

comprehensive insight into transport and transformation of NO3
-, NH4

+ and N2O in the 

subsurface: from the assessment of relative contributions of different N sources into the 

system (using distinctions between their respective isotopic signals) to the identification 

of simultaneously occurring N cycle reactions and physicochemical processes affecting 

the isotopic composition of N species. Such information is especially valuable for 

sustainable management of groundwater resources in agricultural areas typically 

characterized with considerable N loadings and frequently exhibiting adverse effects of N 

pollution.  

In order to capture the dynamics of N cycling using stable isotope analyses, it is 

necessary to understand the ranges and causes of variability of isotopic composition of 

NO3
-, NH4

+ and N2O in various environmental settings. This chapter summarizes the data 

regarding the ranges of isotopic compositions of these N species in groundwater under 

agricultural areas and provides information about the impact of N sources, 

microbiological/physicochemical processes and environmental factors on the variability 

of NO3
-, NH4

+, N2O isotopic signatures. It also discusses the application of additional 

isotopes techniques, frequently used to support the analysis of δ15N values for various N 

compounds. 

According to the reviewed literature, the isotopic signatures of NO3
- in 

groundwater are characterized with the following δ15N-NO3
- isotope ranges: soil organic 

N – from +3 ‰ to +8 ‰, mineral fertilizers – -8 ‰ to +7 ‰, animal manure or 

household waste – +5 ‰ to +35 ‰. The NH4
+ sources are characterized with the 

following δ15N values: organic matter – +2.4 – +4.1‰, rainwater – -13.4 – +2.3‰, 

mineral fertilizers – -7.4 – +5.1‰, household waste – +5 – +9‰, and animal manure – 
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+8 – +11‰. The isotopic composition of N2O is determined by the rates of previous 

reactions as well as biological and physicochemical conditions of the aquifer.  

Moreover, the δ15N-NO3
-
 values are influenced by fractionation effects caused by 

denitrification (ɛ=5-40‰), nitrification (ɛ=5-35‰) and DNRA (range of ɛ not available 

in literature). As for the isotopic signature of NH4
+, it is also affected by nitrification and 

DNRA, as well as mineralization (ɛ=1‰), sorption (ɛ=1-8‰), anammox (ɛ=4.3-7.4‰), 

and volatilization (ɛ=25‰). δ15N-N2O values in the groundwater derive from: 1) 

production processes of N2O (e.g., nitrification, denitrification, etc.) which lead to its 

depletion in 15N, and 2) consumption processes, such as reduction of N2O to N2, which 

enrich it with 15N. However, it should be emphasized that multiple environmental 

parameters regulate the extent of fractionation effects caused by the processes mentioned 

above, so the observed changes in isotopic composition of NO3
-, NH4

+ N2O could vary. 

Due to overlapping of the isotopic signatures of N sources and N cycle processes, 

interpretation of isotopic signatures of collected groundwater samples is not a 

straightforward process, and is associated with uncertainties. Moreover, the difficulty in 

interpretation of the results of N isotopes analyses are exacerbated by the lack of 

experimental data regarding variability of 15N-NH4
+ and 15N-N2O. Therefore, further 

research is required in order to address this issue and consider the isotopic composition of 

NH4
+ and N2O in different hydrogeological contexts. In addition, during interpretation of 

N isotopic signatures it is important to consider thoroughly the data obtained from 

hydrogeological, hydrochemical and microbiological studies which might help to 

elucidate N transformation and transport processes occurring in the hydrogeological 

systems. 

Though such inclusive interpretation requires extensive amount of data, it is 

crucial to integrate all these insights into a flexible interpretative framework for the 

studies N transport and transformation processes. This could help to address the 

limitations of stable isotope analysis method in the complicated study cases characterized 

with possible occurrence of overlapping isotopic signals from different N sources and 

simultaneous progress of different multistep reactions with a range of intermediate 

products in the considered aquifer.   
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As the analysis of distribution of δ15N values observed across the aquifer should 

rely on precisely determined estimations of signatures of N sources and expected 

fractionation effects caused by N cycle processes, it is crucial to facilitate the 

comparative component of the research strategies employing stable isotope analysis. 

There is a need to systematize the experimental evidence obtained from stable isotope 

analysis of groundwater samples in different studies exploring the same biogeochemical 

processes or similar issues.  

With further advancements in these areas, stable isotope analysis will allow 

researchers to capture more precisely the dynamics of N species transformations in the 

subsurface. Therefore, it will help not only to understand better the processes of 

attenuation of N pollution in agricultural landscapes, but also to address efficiently the 

emerging environmental concerns regarding estimation of the indirect effects of 

anthropogenic impact in such areas. In particular, this approach will yield valuable 

information for the studies of N2O production/consumption in subsurface environment 

and its subsequent emissions on the river-atmosphere interface. Therefore, it will enhance 

the understanding of N2O cycle and, correspondingly, of the global N cycle in general. 
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Chapter 2 
This chapter is based on the following publication: 

Nikolenko, O., Orban, P., Jurado, A., Morana, C., Jamin, P., Robert, T., Knöller,K., 

Borges, A., V., Brouyѐre, S. (2019). Dynamics of greenhouse gases in groundwater: 

hydrogeological and hydrogeochemical controls. Applied Geochemistry, 105, 31-44. 

https://doi.org/10.1016/j.apgeochem.2019.04.009 

2. Dynamics of greenhouse gases in groundwater: 
hydrogeological and hydrogeochemical controls 
2.1. Challenges in the interpretation of N dynamics in aquifers  

Due to the rising concern about global climate change, significant research efforts 

have been devoted to the refinement of the estimates of GHGs budgets (Mosier et al., 

1998; Kroeze et al., 2005; Denman et al., 2007; Battin et al., 2009, Syakila & Kroeze et 

al., 2011, IPCC 2013). Contributing to these research efforts, several studies have 

persuasively argued that it is essential to better understand and accurately quantify the 

contribution of groundwater affected by agricultural activities to N2O, CO2 and CH4 

emissions at the groundwater – surface water interface (indirect emissions) (Worrall & 

Lancaster, 2005; Johnson et al., 2008; Minamikawa et al., 2010; Jahangir et al., 2012; 

Borges et al., 2015; Jurado et al., 2018a).  
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So far, research studies have been mainly concentrated on: 1) obtaining better 

insight into the processes and factors that control the dynamics of GHGs (Clough et al., 

2007; Koba et al., 2009; Macpherson, G.L., 2009; Well et al., 2012; Bunnell-Young et 

al., 2017) and 2) calculation of GHGs emissions from aquifers in different ecosystems 

with contrasting land use and hydrogeochemical conditions (Weymann et al., 2008; 

Butterbach-Bahl & Well, 2010;  Laini et al., 2011; Vilain et al., 2012). While addressing 

the first question, for instance, von der Heide et al. (2007) examined the influence of land 

use on GHGs fluxes in the subsurface and compared the contributions of autotrophic and 

heterotrophic denitrification into resulting N2O fluxes; Minamikawa et al. (2010) 

concentrated on the influence of different cropping systems and hydrological regimes; 

Jahangir et al. (2013) studied the impact of geochemical conditions (DO, Eh, pH, 

availability of electron donors – DOC or reduced Fe2+/S2-), hydrological activity and 

biological factors. While addressing the second question, Hiscock et al. (2003) compared 

estimates of N2O emission based on the Intergovernmental Panel on Climate Change 

(IPCC) methodology and using the hydrogeological data; Jurado et al. (2018b) calculated 

indirect emission of GHGs from groundwater at the regional scale in Wallonia (Belgium) 

using the IPCC methodology.   

Nevertheless, large uncertainties remain associated with quantification of 

groundwater fluxes of CO2, CH4 and N2O and it remains a significant source of 

uncertainty in the global GHGs budgets (Weymann et al., 2008; Minamikawa et al., 

2010; Jahangir et al., 2012). Firstly, many studies so far have focused on the GHGs 

production and consumption in the soil profile and calculated the estimated groundwater 

GHGs fluxes using the concentrations of these gases in the subsoil (Beaulieu et al., 

2011). Secondly, there are difficulties related to the upscaling of point estimates of GHGs 

concentrations in groundwater to larger scale and longer time periods while taking into 

account the spatiotemporal variability of their fluxes. For example, Vilain et al. (2012) 

calculated annual groundwater N2O flux in the Orgeval catchment (France) extrapolating 

the data obtained from 3 piezometers, which could be a rough estimate for heterogeneous 

landscapes considered on the broader scale. It is important to constrain and better 

understand the scope of uncertainties related to the upscaling procedures. That is why the 

studies devoted to the distribution and dynamics of GHGs in groundwater should 
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consider the variability in hydrogeology, hydrogeochemistry and land use across the 

explored area (Choi et al., 2007; Cooper et al., 2017). 

This chapter presents the analysis of experimental data obtained during the 

regional sampling campaign conducted to improve the understanding how the interplay 

between hydrogeological and hydrogeochemical controls considered at the catchment 

scale could influence groundwater contribution into GHG emissions via rivers. It 

examines the distribution of GHGs in the subsurface in a Cretaceous fractured chalk 

aquifer extending across the border between Wallonia and Flanders in Eastern Belgium.  

The regional study attempts to: 1) explore the variability of GHGs concentration 

along groundwater flow paths taking into account spatial changes in hydrogeochemical, 

hydrogeological and land management conditions; 2) identify the sources of N and C 

loads across the aquifer; 3) reveal the processes that govern the biogeochemistry of 

GHGs under different environmental settings. The obtained information will help to 

understand how the GHG fluxes occurring on the groundwater-river interface depend on 

catchment-scale dynamics of biogeochemical process of their production and 

consumption. 

2.2. General study design 

2.2.1. Study site 

The studied aquifer is located in Cretaceous chalky geological formations in the 

eastern part of Belgium. While the southern part of the aquifer is unconfined, the northern 

part is confined under Tertiary clayey sediments. Subsurface flow is from the South to 

the North and the aquifer is mainly drained by the Geer river (Goderniaux et al., 2011). 

Semi-confined conditions may be observed under the Geer alluvial deposits close to the 

river. The piezometric map for the area (Fig. 6, p. 75) shows that groundwater discharges 

into the Geer River in its downstream part. 

The basis of the aquifer is represented with the layer of smectite clay which is 

assumed to be of low hydraulic conductivity (Orban, 2010). Below the clay layer, the 

Houiller formation (sandstones and shales with embedded coal beds) occurs (Boulvain, 

2008). The area is characterized with the presence of series of faults causing the 

fracturing of chalk, among which the major one is the Horion-Hozémont fault. 



 

74 
 

The aquifer is recharged by infiltration of rainfall through the overlying loess and 

the residual conglomerate (Orban et al., 2006). The estimated annual recharge rate is 

between 175 and 275 mm/y. Since the thick loess layer (up to 20 m) and unsaturated 

chalky zone (up to 15 m) located above the aquifer control its recharge, the resulting 

water fluxes at the groundwater table are smoothed, and seasonal fluctuations of 

hydraulic heads are attenuated, which can be more concisely observed on the multiannual 

scale (Brouyère et al., 2004). The recharge zone of the chalk aquifer mostly corresponds 

to the hydrological basin of the Geer River – tributary of the Meuse River.  

The studied area is predominantly characterized with agricultural land use (nearly 

65%). Agricultural activities are the largest source of the nitrate input into groundwater, 

followed by domestic wastewater effluents (Dautrebande & Sohier, 2004).  

The chalk aquifer is one of the most exploited groundwater bodies in the Walloon 

Region, with about 60,000 m3 groundwater withdrawal per day, which are used, in 

particular, to satisfy the drinking water needs of the city of Liège and its suburbs (Orban, 

2009). Groundwater is abstracted from the aquifer using 45 km of drainage galleries and 

pumping wells that belong to water supply companies. Groundwater consumers are 

divided between the following sectors: the public water sector (87%), the industrial sector 

(12%) and the agriculture and services (1%) (Hérivaux et al., 2013). 

 

2.2.2. Sampling network 

The sampling campaign intended to explore the distribution of GHGs within the 

chalk aquifer. To this end, groundwater samples from 29 wells were collected. The 

sampling network included existing wells across the aquifer that were selected 

considering hydrogeological conditions along the main groundwater flow path from the 

South to the North and taking into account the level of urbanization pressure (Fig. 1 of 

Annex). Consequently, after exploring the resulting groundwater sampling network and 

considering the results of previous investigations conducted within the area of the study 

by Hakoun et al., 2017, the selected wells were grouped into 4 zones taking into account 

the differences in hydrogeochemistry, hydrogeology and urbanization level (Fig. 6): 1) 

southern zone – unconfined conditions and the most urbanized land use; 2) central zone – 
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unconfined conditions and predominantly agricultural activity; 3) north-eastern zone –  

zone of groundwater recharge to the Geer river and predominantly agricultural land use 

(though sampling wells were located close to the urban areas); and 4) northern zone – 

confined conditions and mixed land use pattern. In total, the monitoring network included 

9 pumping wells (6 of them located in the confined part of the area), 2 private wells and 

18 piezometers (Fig. 6). All these sampling points are screened in the chalk aquifer, at 

depths varying from 16 meters to 70 meters (mean 39 meters) in the unconfined part of 

the aquifer in the South, and from 51 meters to 120 meters (mean 80 meters) in the 

confined part of the aquifer in the North. In addition, three of the sampling locations 

(Bovenistier, SGB and Overhaem, located in the central and north-eastern zones) are 

equipped with multilevel piezometers that provided the opportunity to sample 

groundwater at different depths (Table 5).   

 
Figure 6. Map of the studied area in the Geer basin showing river network, isopieses, 

direction of groundwater flow and sampling points (wells and piezometers). Colors 

indicate different zones used to aggregate data. 



 

76 
 

 

2.2.3. Groundwater sampling 

Groundwater sampling was accomplished between the 14th and 23rd of August 

2017. Before the start of sampling, wells/piezometers were purged until stabilization of 

field parameters (pH, conductivity, temperature, dissolved oxygen) or by pumping three 

times the volume of the water present in the wellbore (including gravel pack). The 

samples collected in the field for the analyses of the GHGs, major and minor ions, 

dissolved organic carbon (DOC), metals and stable isotopes were put on the ice inside a 

field refrigerator and transported to the laboratory at the end of the sampling day. In 

addition, in-situ measurements of pH, electrical conductivity (EC, µS/cm), dissolved 

oxygen (DO, mg/L) and temperature (ᵒC) were conducted using a portable multimeter 

HQ40d (HACH), with a closed flow cell inside which the measuring probes were 

immersed.  

Groundwater for the analyses of dissolved N2O and CH4 was collected into 50 mL 

borosilicate serum vials (two replicates per location), preserved by addition of 200 µL of 

saturated HgCl2 and sealed using a butyl rubber stopper and an aluminum seal. To 

measure the partial pressure of CO2 (pCO2), four polypropylene syringes of 60 ml were 

filled. The samples for major and minor ions were stored in 180 ml polypropylene bottles 

preventing the contact with atmospheric oxygen. For estimation of the concentration of 

DOC, groundwater was filtered through 0.22 µm polyethylsulfone filters, stored in 40 ml 

borosilicate vials and poisoned with 100 µl of H3PO4 (45%). Groundwater for the 

analysis of metals was filtered through a 0.45 µm polyethersulfone and microquartz fiber 

filter into 125 mL polypropylene vials and acidified with 1 ml of 12 N HCl for sample 

preservation.  

Groundwater for 15N and 18O isotopes of N2O was sampled into 250 mL 

borosilicate serum bottles (two replicates per location), preserved by addition of 400 µL 

of saturated HgCl2, sealed with a butyl stopper and crimped with an aluminum cap. For 
15N and 18O of NO3

-, the samples were collected into 60 ml polypropylene vials, preceded 

by filtration of the samples through the 0.22 µm nylon filters. For 34S and 18O isotopes of 

SO4
2-, 1 L of groundwater was collected into a polyethylene bottle and stabilized with 
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100 ml of zinc acetate solution (3%). Groundwater samples for 11B isotopes were 

collected into 60 ml polypropylene bottles.   

 

2.2.4. Analytical methods 

The analyses of groundwater samples for major and minor ions were performed at 

the Hydrogeology Laboratory of the University of Liège (Belgium). The concentrations 

of major (Na+, Mg2+, K+, Cl-, SO4
2- and NO3

-) and minor ions (NO2
- and NH4

+) were 

analyzed by means of aqueous phase ion chromatography via specific ion exchange resin 

and a conductivity detector. The concentration of Ca2+ and total alkalinity were measured 

by potentiometric titration in the laboratory.  

The concentrations of dissolved N2O and CH4 were measured at the Chemical 

Oceanography Unit of the University of Liège (Belgium) with the headspace 

equilibration technique (25 ml of N2 headspace in 50 ml serum bottles) and a gas 

chromatograph equipped with electron capture and flame ionization detectors (SRI 8610 

GC-ECD-FID), as described in detail by Borges et al. (2015). The SRI 8610 GC-ECD-

FID was calibrated with CH4:CO2:N2O:N2 mixtures (Air Liquide Belgium) of 0.2, 2.0 

and 6.0 ppm N2O and of 1, 10 and 30 ppm CH4. The pCO2 was directly determined in the 

field using an infra-red gas analyzer (Li-Cor Li-840) by creating a headspace with 

ambient air in polypropylene syringes (1:1 ratio of water and air). The Li-Cor Li-840 was 

calibrated with a suite of CO2:N2 mixtures (Air Liquide Belgium) with mixing ratios of 

388, 813, 3788 and 8300 ppm CO2. 

The stable isotope analyses of N2O were conducted using an off-axis cavity 

ringdown spectroscopy (OA-ICOS) (Los Gatos Research) instrument for the 

measurements of δ15Nα, δ15Nβ, δ18O of N2O at the Chemical Oceanography Unit of the 

University of Liège (Belgium), and the 15N-site preference (SP, in ‰) was calculated as 

the difference between δ15Nα and δ15Nβ (δ15Nα – δ15Nβ). A 20 ml helium (He) headspace 

was created in the 250 ml bottles ~24h before the analysis in order to assure equilibration 

between gas and dissolved N2O. Prior to the measurement of the headspace samples, the 

instrument was warmed and conditioned by a flow-through calibration using a standard 

gas mix of N2O: synthetic air (4ppm) during ~ 30 min. This gas cylinder had been 
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calibrated by Tokyo Institute of Technology (δ15NAIR
α = 0.47 ‰ ± 0.20 ‰ ; δ15NAIR

β = 

1.41‰ ± 0.26 ‰ ; δ18Ovsmow = 37.63 ‰ ± 0.18 ‰). Headspace samples were injected 

into a custom-built purge and trap device (He flow : 120 ml min-1) consisting of a CO2 

trap (soda lime), a water trap (magnesium perchlorate) and a stainless steel loop 

immersed in liquid nitrogen to trap N2O. 5 min after sample injection, the loop was 

isolated from the rest of the system by switching the position of 3-way valves 

(Swagelok), warmed at room temperature, and connected to the instrument to inject the 

sample. Volume of headspace injection was adapted as function of the N2O concentration 

in every sample in order to minimize any concentration-dependent effect (Wassenaar et 

al., 2018). Data were calibrated against standard gas mix (see above) injection following 

the approach of Wassenaar et al. (2018) using the purge and trap setup. The utilization of 

this purge and trap device helped to avoid the possible interference from CO2, H2O 

(trapped) or CH4 (flow through the loop) and allowed to minimize difference in gas 

matrix composition between different types of samples and the standard.  

The isotope analyses of NO3
- and SO4

2- were carried out at the Helmholtz Center 

for Environmental Research (Department of Catchment Hydrology, Halle, Germany). 

Nitrogen (δ15N) and oxygen (δ18O) isotope analyses of NO3
- were performed using a G-

IRMS (gas isotope ratio mass spectrometer) DELTA V plus connected to a GasBench II 

from Thermo using the denitrifier method that converts all sampled NO3
- to N2O (Sigman 

et al., 2001; Casciotti et al., 2002). In order to determine the δ34S and δ18O of SO4
2-, the 

dissolved SO4
2- in groundwater samples was precipitated as BaSO4 by adding 0.5M 

BaCl2. The δ34S-SO4
2- was measured after converting BaSO4 to SO2 using an elemental 

analyzer (continuous flow flash combustion technique) coupled with a G-IRMS (delta S, 

ThermoFinnigan, Bremen, Germany). The analysis of δ18O-SO4
2-on BaSO4 was 

conducted by high temperature pyrolysis at 1450 °C in a TC/EA connected to a delta plus 

XL spectrometer G-IRMS (ThermoFinnigan, Bremen, Germany). The notation was 

expressed in terms of delta (δ) per mil relative to the international standards for all the 

stable isotopes (V-SMOW for δ18O of NO3
-, AIR-N2 for δ15N of NO3

-, V-CDT for δ34S of 

SO4
2- and V-PDB for δ18O of SO4

2-). The reproducibility of the samples was ± 0.4‰ for 

δ15N; ± 1.6‰ for δ18O of NO3
-; ± 0.3‰ for δ34S, and ± 0.5‰ for δ18O of SO4

2-. The 

isotope results represent the mean value of the true double measurements of each sample.  
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The concentration and stable isotope composition of DOC were analyzed at the 

department of Earth and Environmental Sciences of the Katholieke Universiteit Leuven. 

Samples analysis was carried out with an IO Analytical Aurora 1030W (persulfate 

oxidation) coupled to a Thermo delta V advantage IRMS as described in Morana et al. 

(2015). Quantification of DOC concentration and correction of its stable isotope 

composition was performed against IAEA-CH6 and an internally calibrated sucrose 

standard (δ13C = -26.99 ‰ ± 0.04 ‰). Typical reproducibility for DOC analysis was on 

the order of < 5%.  

 

2.2.5. Data analysis 

2.2.5.1. Descriptive analysis 

This study explores the distribution of GHGs concentrations in the subsurface 

from two perspectives: in lateral and vertical dimensions. While analyzing the lateral 

distribution, it attempts to demonstrate the variability of GHGs concentrations along the 

groundwater flow, which helps to reveal factors and processes controlling the distribution 

of N2O, CO2 and CH4 in groundwater across four spatial zones characterized with 

contrasting hydrogeological and hydrogeochemical conditions. The analysis focusing on 

vertical dimension investigates the possible impact of variations in hydrogeochemical 

conditions with depth on GHGs dynamics. While exploring the distribution of GHGs 

concentrations in both dimensions, this chapter considers the same set of chemical and 

isotope parameters used to identify and characterize N and C sources and GHGs 

production/consumption processes (see sections 2.3.1 (pp. 81 – 83) and 2.3.2 (pp. 83 – 

85)). Moreover, during the analysis of groundwater chemistry the concentrations of such 

major ions as Na+, Cl-
 and SO4

2- were included alongside with NO3
-, since they are the 

most frequently used water pollution/anthropogenic impact indicators (Yakovlev et al., 

2015). 

 

2.2.5.2. Statistics 

For the purposes of data analysis in course of this study, Kohonen’s Self-

Organizing Map method (SOM) was applied using the Matlab software (Vesanto et al., 

2000). This approach allows projecting multidimensional data on a two-dimensional grid 



 

80 
 

and capturing complex (nonlinear) relationships between variables (Peters et al., 2007). 

In this study, it was used to develop maps of individual component planes and identify 

clusters within the obtained experimental dataset. The visual comparison of derived 

individual component planes provided an opportunity to reveal the statistical 

relationships between the analyzed variables, while k-means clustering on SOM allowed 

exploring the data properties in more detail, as it enables separating the dataset into 

different groups of similar hydrogeochemical features (Gamble & Babbar-Seben, 2012). 

Moreover, Pearson correlation and linear regression analyses were carried out with R 

software. 

 

2.2.5.3. Isotopomer and isotope maps 

Isotopomer and isotope mapping approach is used in hydrogeochemical studies to 

identify sources of N in the aquifer and characterize its subsurface dynamics (Koba et al., 

2009; Well et al., 2012; Clagnan et al., 2018; Jurado et al., 2018b). For our study, δ15N-

NO3
- (‰) versus δ18O-NO3

- (‰) and δ15N-NO3
- (‰) versus δ11B (‰) isotope maps were 

used in order to distinguish sources of N input to the aquifer. At the same time, 

Δδ15NNO3
- - N2O (‰) versus SP (site preference) (‰) isotopomer map, δ15N–N2O (‰ v. 

AIR) versus δ18O–N2O (‰ v. VSMOW) and δ34S-SO4
2- versus δ18O-SO4

2- maps were 

applied in order to identify the N2O production-consumption processes. 

The Δδ15NNO3
- - N2O (‰) versus SP (site preference) (‰) isotopomer map was 

developed taking into account Δδ15NNO3
- - N2O ranges for nitrification and 

denitrification processes proposed by Koba et al. (2009), and references therein, and SP 

intervals reported by Lewicka-Szczebak et al. (2017), and references therein. The second 

one, plotting Δδ15N–N2O (‰ v. AIR) versus δ18O–N2O (‰ v. VSMOW), was created 

considering δ18O–N2O nitrification and denitrification ranges provided by Snider et al. 

(2012), Snider et al. (2013) and Rosamond (2013). The δ15N–N2O values corresponding 

to denitrification and nitrification processes were calculated using equations proposed by 

Zou et al. (2014), assuming that NH4
+ fertilizers, sewage and manure were the main 

sources of NO3
- and NH4

+ in groundwater (the ranges of the sources were taken from the 

literature review provided by Nikolenko et al. (2017)): 

1) bacterial denitrification: 
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𝛿𝛿15𝑁𝑁𝑁𝑁2𝑂𝑂 =  𝜀𝜀𝑁𝑁𝑁𝑁3→𝑁𝑁2𝑂𝑂 +  𝛿𝛿15𝑁𝑁𝑁𝑁𝑁𝑁3    (9) 

 

2) bacterial nitrification: 

δ15NN2O =  εNH3→N2O +  δ15NNH4     (10) 

 

The enrichment factors (ε) for these processes were taken from previous pure 

culture studies: 𝜀𝜀𝑁𝑁𝑁𝑁3→𝑁𝑁2𝑂𝑂 = −45 ‰ to −10 ‰ (Snider et al., 2009 and references therein) 

for bacterial denitrification; 𝜀𝜀𝑁𝑁𝑁𝑁3→𝑁𝑁2𝑂𝑂 = −66 ‰ to −36.8 ‰ (Yoshida, 1988; Sutka et al., 

2006; Snider et al., 2009; Li et al., 2014) for bacterial nitrification.  

 

2.3. Variability of hydrogeochemical parameters and isotopes across the 
chalk aquifer 
 
2.3.1. Lateral dimension 

According to the Piper diagram, the majority of collected groundwater samples 

fell into the range typical for Ca – HCO3 water type (Fig. 2 of Annex), though several 

points located in the southern zone corresponded to the Ca – HCO3 – Cl type. The 

decrease in EC was observed from the south to the north: 980 ± 87 µS/cm in the southern 

zone,  803 ± 87 µS/cm in the central zone, 794 ± 32 µS/cm in the north-eastern zone and 

717 ± 97 µS/cm in the northern zone. The pH values varied from 6.77 to 7.23 across the 

aquifer. The concentration of DOC was lower than 2 mg/L at each of the sampled 

locations. The variability in hydrogeochemical and isotopic composition of groundwater 

between four spatial zones of the area of study is summarized in Figures 3 to 8 of Annex 

and Table 4. 
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Table 4. Hydrogeochemical and isotopic composition (mean value ± standard deviation) 

of groundwater in the chalk aquifer across spatial zones (see Fig. 1).  

Parameter Southern zone Central zone North-eastern 
zone 

Northern zone 

DO (mg/L) 6.3 ± 2.3 9.4 ± 0.6 5.9 ± 2.6 1.5 ± 2.1 

NO3
- (mg/L) 60.7 ± 8.9 38.8 ± 8.1 29.1 ± 9.0 0.2 ±0.4 

Na+ (mg/L) 30.1 ± 12.3 12.1 ± 2.5 14.8 ± 3.8 11.4 ± 3.1 

Cl- (mg/L) 73.1 ± 30.2 51.7 ± 7.2 44.4 ± 7.8 15.1 ± 10.3 

SO4
2- (mg/L) 113.9 ± 45.9 51.7 ± 17.5 38.5 ± 6.9 39.4 ± 27.1 

B (µg/L) 22.3 ± 17.0 10.7 ± 3.3 23.3 ± 6.7 39.8 ± 18.5 

N2O (µg N/L) 14.6 ± 3.2 4.9 ± 1.5 5.2 ± 2.1 0.07 ± 0.08 

pCO2 (ppm) 34032 ± 9799 24097 ± 3201 28552 ± 3327 28662 ± 4824 

CH4 (µg/L) 0.4 ± 0.5 0.6 ± 0.8 0.9 ± 1.6 19.5 ± 25.8 

δ15N-N2O (‰) ̶  14.7 ± 3.1 ̶  11.9 ± 5.6 ̶  10.2 ± 5.1 not available 

δ18O-N2O (‰) + 38.7 ± 3.1 + 36.9 ± 14.4 + 31.5 ± 9.6 not available 

δ15N-NO3
- (‰) + 6.5 ± 3.5 + 5.1 ± 0.7 + 6.1 ± 1.1 not available 

δ18O-NO3
- (‰) + 2.5 ± 1.5 + 0.9 ± 3.1 ̶ 2.4 ± 3.6 not available 

δ34S-SO4
2- (‰) + 0.6 ± 0.3 + 0.3 ± 0.5 ̶  1.7 ± 1.5 ̶ 18.1 ± 6.7 

δ18O-SO4
2- (‰) + 3.3 ± 2.1 + 2.2 ± 0.7 + 1.9 ± 1.3 + 5.7 ± 3.1 

δ11B (‰) + 28.0 ± 20.0 + 10.7 ± 7.2 + 15.1 ± 6.8 + 9.4 ± 4.4 

δ13C-DOC (‰) ̶  34.1 ± 3.4 ̶  35.5 ± 3.4 ̶  36.9 ± 3.9 ̶  32 ± 2.8 

δ2H-H2O (‰) – 49.2 ±1.4 – 49.4 ± 0.7 – 50.3 ± 0.2 – 50.1 ± 1.6 

δ18O-H2O (‰) – 7.5 ± 0.1 –  7.6 ±0.1 –  7.7 ± 0.06 – 7.7 ± 0.2 

 

In general, the decrease in the concentration of major ions and GHGs was 

observed from the South to the North along the groundwater flow. The highest 

concentrations of major ions and dissolved GHGs (except CH4) were detected in the most 

urbanized southern zone, and the lowest – in the confined northern zone. In the majority 

of groundwater samples collected from all three zones located in the unconfined part of 

the aquifer the concentrations of N2O exceeded the equilibrium with ambient atmosphere 
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concentration (0.3 µgN/L) (Hasegawa et al., 2000). On the contrary, groundwater from 

the northern, confined, zone appeared to be undersaturated with respect to N2O 

concentration. At the same time, the concentrations of dissolved CH4 were higher than 

the equilibrium with ambient atmosphere concentration (0.05 µg/L) (Bell et al., 2017) in 

all of the locations, with the highest concentration detected in the northern zone. The 

pCO2 did not vary significantly between the different zones, with groundwater being 

supersaturated with CO2 across the whole area of the study (the atmospheric equilibrium 

of CO2 is approximately 400 ppm).  

Due to the low concentration of NO3
- and N2O in the northern zone, it was not 

possible to measure their isotopic signatures in the samples collected there. At the same 

time, the data obtained from three other zones showed that the isotopic values of N2O 

varied from −18.6 ‰ to – 3.8 ‰ for δ15N and from +14.7 to +42.6 ‰ for δ18O. As for the 

isotopic signals of NO3
-, they covered the interval from + 3.8 ‰ to + 8 ‰ for δ15N and 

from − 6.6 ‰ to + 4.7‰. δ34S-SO4
2- was characterized with the most negative values in 

the northern zone, while southern and central zones exhibited values slightly above 0 ‰. 

δ18O-SO4
2- did not change significantly between different zones and varied from 

approximately +2 ‰ in central and north-eastern zones to +5.7 ‰ in the northern zone. 

The highest values of 11B were detected in the southern and north-eastern zones, while 

the lowest – in the northern zone. δ13C-DOC values were similar across all zones, and 

varied in the interval from – 41.8 ‰ to – 28.8 ‰. The isotopic signatures of δ2H-H2O 

(‰) and δ18O-H2O (‰) varied insignificantly between the four zones. 

 

2.3.2. Vertical dimension 

The hydrogeochemical conditions in the aquifer might also significantly vary with 

depth. To evaluate if this variability had an influence on the fate of GHGs in the 

subsurface, groundwater samples were collected from collocated piezometers screened at 

different depths at Bovenistier, Overhaem and SGB sites. The data about the 

hydrogeochemistry and isotopic composition of groundwater along the three vertical 

profiles are compiled in Table 5. 
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Table 5. Hydrogeochemical and isotopic composition of groundwater in the chalk aquifer 

at the Bovenistier, Overhaem and SGB sites (see Fig. 1).   

S
i

t
e

 Name Bovenistier Overhaem SGB 
Piezometer 28  27  26 12 11 10 21 22 25 

Type shallow medium deep shallow medium deep shallow medium deep 
Screen 

depth (m) 28 – 32 24 – 49 46 – 51 3 – 4 10 – 11 26 – 31 9 – 16 16 – 26 30 – 40 

P
a

r
a

m
e

t
e

r
s

 

EC 
(µS/cm) 955 859 564 1121 1068 909 765 752 665 

pH 7.0 7.01 7.11 7.03 7.15 7.0 7.0 7.08 7.12 
DO (mg/L) 8.8 9.5 1.8 0.3 0.1 1.3 6.1 9.3 8.7 

NO3
- 

(mg/L) 60.9 51.3 4.2 23.3 36.9 11.4 43.4 38.1 27.4 

Na+ (mg/L) 14.8 14.0 6.7 92.5 52.6 21.1 10.9 10.6 8.2 
Cl- (mg/L) 61.6 56.5 10.5 49.6 48.3 48.2 22.7 45.2 36.8 

SO4
2- 

(mg/L) 58.1 52.3 17.4 107.6 94.4 88.5 35.9 33.5 21.2 

B (µg/L) 11.0 9.7 12.0 21.0 33.0 9.6 20.0 8.6 8.3 
N2O (µg 

N/L) 8.5 7.4 0.7 8.5 15.1 14.2 9.2 5.1 4.6 

pCO2 
(ppm) 32540 27763 16947 48614 27896 29117 34454 25148 21253 

CH4 (µg/L) 0.09 0.17 0.19 0.21 0.19 0.39 0.59 0.19 0.60 
δ15N-N2O 

(‰) – 13.7 –  15.2 NA – 20.3 – 29.1 + 2.0 –  24.9 – 14.5 –  6.2 

δ18O-N2O 
(‰) + 38.2 + 32.8 NA + 63.1 + 53.7 + 50.4 + 47.7 + 35.7 + 36.4 

δ15N-NO3
- 

(‰) + 6.1 + 5.8 + 4.5 + 30.6 + 10.2 + 6.9 + 7.7 + 4.9 + 4.8 

δ18O-NO3
- 

(‰) –  0.2 + 1.4 –  0.2 + 17.4 + 5.0 + 4.9 + 7.5 + 3.1 + 4.7 

δ34S-SO4
2- 

(‰) + 1.2 + 0.7 –  25.1 + 2.5 + 1.4 – 0.4 + 1.5 + 0.3 + 3.0 

δ18O-SO4
2- 

(‰) + 2.5 + 2.6 + 5.0 + 5.8 + 4.6 + 3.8 + 5.0 + 1.7 + 0.9 

δ11B (‰) + 12.0 + 3.4 + 0.1 + 9.5 + 19.0 + 0.3 + 29.0 + 11.0 + 5.4 
 

N2O tended to accumulate in higher quantities in the shallow groundwater at 

Bovenistier and SGB sites, while at Overhaem its highest concentration was detected in 

the middle part of the aquifer. For all of the locations the high concentration of N2O 

coincided with the high concentration of NO3
-. The highest N2O content (14 – 15 µg N/L) 
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was revealed at Overhaem, where high NO3
- and low level of DO were detected. In all of 

the cases the amount of dissolved CO2 was the highest in the shallowest part of the 

aquifer. In Bovenistier the concentrations of CH4 were higher in the locations with the 

lower concentrations of DO, NO3
- and SO4

2-, which decreased with the depth. At 

Overhaem the concentration of CH4 did not change noticeably between different depth 

intervals. And SGB showed the highest concentrations of CH4 among the three studied 

vertical profiles, with its highest values detected at the shallowest and the deepest 

sampling locations. In general, in all of the groundwater samples collected from the 

multilevel piezometers the concentration of N2O, CO2 and CH4 exceeded the equilibrium 

with the ambient atmosphere concentration. 

As for the trends in the variation of isotopic signatures of groundwater samples 

along the vertical profile, no clear tendency comprising all analyzed cases was revealed, 

which highlights the importance of local-scale variations in the hydrogeochemical 

conditions and suggests that resulting isotope signatures could be influenced by 

simultaneous occurrence of various biogeochemical processes at different depth levels 

(see section 2.5.2 (pp. 99 – 100) for more details).  The highest δ15N-NO3
- isotopic 

signatures overall were detected in groundwater samples collected from Overhaem, 

which was also the only site that exhibited the positive value of δ15N-N2O (detected in the 

deepest piezometer). The noticeably negative value of δ34S-SO4
2- was detected in the 

deepest part of the aquifer in Bovenistier, where the low concentration of N2O did not 

allow to measure δ15N-N2O and δ18O-N2O. δ11B values increased with depths both at 

Bovenistier and SGB sites, though this tendency was not confirmed for the Overhaem 

location. 

2.4. Sources of N and C loading across the aquifer 

The sources of N within the aquifer were identified by analysis of isotopic 

signatures data, using the plots of δ15N-NO3
- versus δ18O-NO3

-, δ15N-NO3
- versus δ11B. 

At the same time, the origin of C loading was determined by analyzing the findings of 

conducted correlation analyses. Since within the distinguished four spatial zones with 

contrasting environmental settings the concentration of DOC did not vary significantly, it 

was expected that there would be no considerable differences regarding the sources of C 
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compounds in the subsurface across the studied area. Therefore, the following section 

focuses at first on the analysis of the distribution of N sources across four spatial zones of 

the studied area, and afterwards considers the results of the correlation analyses 

elucidating origin of the C compounds in the subsurface. 

The NO3
- and B isotopic signatures of samples collected in the southern zone 

suggested the presence of several NO3
- sources, including manure (locations 29 and 30 

(see Fig. 6, p.75)) and NH4
+ fertilizers or soil organic N (point 2) (Fig. 7). In addition, 

NO3
- fertilizers might also be considered as the possible primary source of NO3

- in the 

groundwater, since once applied they can in part be turned into soil organic N and 

mobilized as NO3
- later on due to the consequent ammonification and NH4

+ oxidation 

processes. The observed differences in sources of N input could be attributed to the fact 

that point 2 was located in close proximity to the agricultural areas.  

 

Figure 7. δ15N versus δ18O values of NO3
- (a) and δ15N-NO3

- versus δ11B (b) of 

groundwater samples. The shape of the points shows affiliation to different zones 
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presented in Fig. 6. Colors indicate different concentrations of NO3
- in groundwater 

samples. The isotopic compositions for NO3
- and B sources are derived from Michener & 

Lajtha (2008), Xue et al. (2009) and Widory et al. (2004). Areas in the red circles are 

zoomed and displayed in Fig. 9 of Annex. 

 

In the central zone, NO3
- and B isotopic signatures were in most cases close to the 

range typical for NH4
+ fertilizers. According to the data, sewage did not seem to be a 

dominant N source, except, likely, at Bovenistier location (points 26 and 27). Isotopic 

signal for manure was detected at point 3. Groundwater samples collected from 

multilevel piezometers at Overhaem (10, 11 and 12) and SGB (21 and 25) exhibited the 

values which showed the simultaneous presence of two pollution sources: manure and 

sewage.  

NO3
- and B isotopic signatures of groundwater samples collected in the north-

eastern zone suggested the presence of different types of pollution sources, namely 

manure (points 16, 15 and 24) and sewage (point 17). 

As for the northern, confined zone of the aquifer, the concentrations of N 

compounds detected there were too low for analysis of N isotope composition and 

identification of pollution sources. 

Pearson correlation analysis (Fig. 10 of Annex) indicated that carbonate minerals 

and organic matter were the principal sources of C compounds loading to subsurface 

system occurring across the area of study. In particular, the significant positive 

correlation between CO2 and N2O (r = 0.446, p < 0.05), CO2 and Ca2+ (r = 0.473, p < 

0.05), Ca2+ and NO3
- (r = 0.707, p < 0.05), Ca2+ and N2O (r = 0.721, p < 0.05) indicated 

the link between concentrations of the inorganic C and N compounds, which suggested 

the ongoing dissolution of carbonates following water acidification due to the production 

of protons during nitrification or bacterial respiration activities (Laini et al., 2011; Fitts, 

2002). Though the correlation between CO2 and DOC was non-significant (r = 0.353, p > 

0.05), the strong negative correlation which was observed between the δ13C-DOC and 

DOC (r = −0.42, p < 0.05) showed that the decomposition of organic matter occurs.  
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In general, the results of the isotope analyses indicated clear difference in the 

origin of NO3
-, B and SO4

2- between the northern zone, corresponding to the confined 

part of the aquifer, and three other zones, located in the unconfined part of the aquifer. 

Among the zones which belong to the unconfined part of the aquifer, it was the southern 

and north-eastern zones, which demonstrated NO3
- and B isotopic signatures associated 

with manure, which might have originated as the sewage from the residential areas or 

leakage from septic tanks. In the central zone, NO3
- was likely derived in the vast 

majority of cases from mineral fertilizers. In addition, NO3
- might have also partly 

originated from NH4
+ derived from soil mineralization processes, though the isotope 

signal of this source was muted by other large pollution sources. As for the sources of C 

in the subsurface, it was most likely derived partly from the dissolution of carbonate 

minerals, and partly from decomposition of organic matter.  

2.5. Biogeochemistry of nitrous oxide, methane and carbon dioxide 
along lateral and vertical dimensions of the aquifer 
 

2.5.1. Lateral dimension 

2.5.1.1. N2O production/consumption processes 

In order to understand which processes govern the dynamics of N2O production 

and consumption processes in the chalk aquifer, the experimental data were interpreted 

using correlation analysis along with linear regression analysis, results of examination of 

δ34S-SO4
2- versus δ18O-SO4

2- plot, self-organizing maps (SOMs), isotope and isotopomer 

maps. 

The correlation analysis and linear regression were applied to the subset of data 

representing the sampling locations in the unconfined part of the studied aquifer (the 

southern, central and north-eastern zone) in order to identify the dominant processes of N 

production/consumption occurring in this area.  

Pearson correlation analysis (Fig. 8, p. 90) revealed high positive correlation 

between SP and δ18O-N2O (r = 0.7, p < 0.05), while linear regression indicated positive 

dependency with the slope of 0.3 between these variables, which according to Ostrom et 
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al. (2007) (and references therein) should suggest the occurrence of incomplete 

denitrification in the aquifer (while the slopes close to 2.2 indicate the occurrence of N2O 

reduction in the absence of N2O production). However, the absence of correlation 

between δ15N-NO3
- and NO3

- (r = 0.25, p > 0.05) and relationship between δ15N-NO3
- and 

δ18O-NO3
- (Y = 5.557 + 0.1212X, R2 = 0.105) does not support the hypothesis about 

ongoing denitrification, because this process should lead to a strong negative correlation 

between δ15N-NO3
- and NO3

-, and a slope of regression between δ15N-NO3
- and δ18O-

NO3
- ranging from 0.5 to 0.8 (Aelion et al., 2009; Minet et al., 2017). Pearson analysis 

also indicated strong positive correlation between the concentrations of NO3
- and N2O (r 

= 0.8, p < 0.5) and between SP and N2O (r = 0.6, p < 0.05), which also does not support 

the occurrence of denitrification (Ostrom et al., 2007; Jurado et al., 2017), but rather 

indicate ongoing nitrification. Moreover, groundwater chemistry data from the 

unconfined part of the aquifer demonstrated that aerobic conditions prevail across the 

area of study (see section 2.3.1 (pp. 81 – 83)), which also supports the idea regarding 

occurrence of nitrification, and inhibition of denitrification. According to Wankel et al. 

(2006) and McMahon and Bohlke (2006), the occurrence of nitrification can be 

evidenced by the existence of correlation between δ18O-NO3
- and δ18O-H2O, while the 

absence of correlation, on the contrary, suggests ongoing denitrification. Nevertheless, as 

shown in Fig. 8, there was no correlation between δ18O-NO3
- and δ18O-H2O (r = 0.1, p > 

0.05). Moreover, the average theoretical δ18O-NO3
- nitrification values defined from the 

following equation (Aelion et al., 2009): 

δ18O-NO3
- = 2/3(δ18O-H2O) + 1/3(δ18O-O2)   (11) 

for the three unconfined zones of the studied aquifer (2.8 for the southern and 

central zones, and 2.7 for the north-eastern zone) were different from the obtained results 

of δ18O-NO3
- analyses (2.5 for the southern zone, 1 for the central zone and -2.4 for the 

north-eastern zone). However, it should be emphasized that the above equation is just a 

rough estimate, since isotope exchange of intermediates with water messes up the O-

isotope signature (Casciotti et al., 2010). 

Such mixed evidence regarding the ongoing N2O production/consumption 

processes, obtained from the application of statistical analysis to the data describing 
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unconfined part of the aquifer, suggests that the occurrence and intensity of these 

processes vary throughout the aquifer across the zones with different environmental 

conditions.  

 

 
 

Figure 8. The results of Pearson correlation and linear regression analyses for the subset  

of data representing the unconfined part of the aquifer. 

 

The values of δ34S-SO4
2- versus δ18O-SO4

2- isotopic signals were examined, since 

SO4
2- isotope measurements are a unique tool allowing revealing the connection between 

denitrification and sulphide oxidation during autotrophic denitrification (Mayer, 2005). 

Fig. 9 shows the overlap between mineralization of organic matter and oxidation of 

sulphides processes in all three zones located in the unconfined part of the aquifer. 

However, exceptions from this trend were detected for two points in Overhaem (12 and 

13), which fell into the range typical for anthropogenic sources, and one point in 

Bovenistier (26), which showed the values typical for sulphide oxidation. Samples from 

the northern zone showed SO4
2- isotope values reflecting sulphide oxidation (points 7 and 

9). So, the dominant process of SO4
2- and, consequently, N transformation in three 

unconfined zones cannot be clearly identified.  
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Figure 9. δ34S versus δ18O values of SO4
2- for groundwater samples. The shape of the 

points shows affiliation to different zones presented in Fig. 6. Colors indicate different 

concentrations of SO4
2- in groundwater samples. The isotopic compositions for the SO4

2- 

sources are derived from Krouse & Mayer (2000), Mayer (2005) and Knöller et al. 

(2005). 

Previous conclusions are supported by the examination of the component matrices 

resulting from the SOM application to the dataset (Fig. 10). Visual inspection reveals 

clear positive correlation between concentrations of Fe, Mn and CH4, which are 

negatively correlated with DO, thus indicating variations in oxido-reduction conditions 

across the aquifer. Results also show similar distribution patterns for N2O and NO3
-, 

suggesting nitrification as the production mechanism of N2O in groundwater (Hiscock et 

al., 2003; Koba et al., 2009; Minamikawa et al., 2011). However, there is no clear 

relationship between N2O and DO, which does not allow claiming that nitrification is the 

only production pathway for N2O. A positive correlation is also observed between SP and 

δ18O-N2O, which suggests the occurrence of denitrification (as N2O reduction proceeds), 

which leads to the simultaneous increase of both parameters (Well et al., 2005; Well et 

al., 2012).  
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Figure 10. The component matrices derived from the application of SOM procedure. 

 

This evidence suggests that N2O production throughout the chalk aquifer could 

not be attributed unequivocally to one pathway, as none of them seems to be omnipresent 

and clearly dominant across the whole area under consideration. Therefore, it appears that 

intensity of N2O production/consumption processes might vary spatially both in lateral 

and vertical dimensions (i.e. the simultaneous occurrence of nitrification in the shallower 

part of the aquifer and denitrification in its deeper part).  

In order to obtain better understanding into the spatial variability of subsurface 

processes, the clustering of the dataset was conducted by means of SOM, and the isotope 

signatures of samples belonging to various clusters were analyzed using isotopomer maps 

in order to consider the probable occurrence of denitrification and nitrification. 

Fig. 11 shows four different groups obtained by application of k-means clustering 

on SOM. The dark blue (Group 1), green (Group 2) and blue (Group 3) groups include all 

of the groundwater samples collected from the unconfined part of the aquifer, while 

yellow group (Group 4) covers all of the studied points from the northern confined zone. 



 

93 
 

 

 
 

Figure 11. Clustering of the groundwater samples using SOM algorithm. Group 1 – dark 

blue, group 2 – green, group 3 – blue and group 4 – yellow. The numbers of sampled 

locations are presented within each of the group. 

 

Group 1 includes locations in the unconfined zone which are characterized with 

the lowest SP (mean 11.2 ‰ ± 1.6 ‰), the lowest concentration of dissolved N2O (mean 

3.5 ‰ ± 1.2 ‰), high DO level (mean 8.2mg/L ± 1.9 mg/L) and low NO3
- (mean 28.7 

mg/L ± 3.8 mg/L). Group 2 corresponds to the highest SP (mean 26.1 ‰ ± 3.4 ‰), the 

highest concentration of N2O (mean 13.6 ‰ ± 6.3 ‰), the lowest amount of DO (mean 

5.7 mg/L ± 2.4 mg/L) and the highest concentration of NO3
- (mean 48.7 mg/L ± 18.7 

mg/L). Group 3 demonstrates intermediate values of these parameters (see Table 6). 

Finally, Group 4 shows characteristic values for groundwater from the confined part of 

the aquifer, namely lowest concentrations of NO3
- and DO (see section 2.3.1 (pp. 81 – 

83) and Table 6).  
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Table 6. Mean hydrogeochemical parameters of the groundwater samples clusters 

produced by k-means clustering on SOM.  

Group N2O (µg 
N/L) SP (‰) DO (mg/L) NO3

- (mg/L) Processes 

Group 1 3.4 ± 1.2 11.2 ± 1.6 8.2 ± 1.9 28.7 ± 3.8 
nitrification and 

incomplete 
denitrification 

Group 2 13.6 ± 6.3 26.1 ± 3.4 5.7 ± 2.4 48.7 ± 18.7 
nitrification and 

complete 
denitrification 

Group 3 6.7 ± 3.4 19.1 ± 6.7 7.2 ± 2.6 39.6 ± 16.2 
nitrification and 

incomplete 
denitrification 

Group 4 0.1 ± 0.1 not 
available 1.5 ± 2.1 0.2 ± 0.4 complete 

denitrification 
 

The majority of SP values are lower than typical SP for hydroxylamine (NH2OH) 

oxidation (nitrification) reported in previous studies. These data could support the 

hypothesis about the occurrence of both denitrification and nitrification processes with 

the following mixing of deep denitrified and shallow nitrified groundwater (which leads 

to the decrease in SP values produced by nitrification). To test this hypothesis, two 

isotopomer maps for the area of study (Fig. 12 and 13) were developed.  

From the Δδ15NNO3
- - N2O  (‰) versus SP (‰) isotopomer map (Fig. 12), it can 

be concluded that the majority of data points representing the isotopic signatures of 

respective samples in the southern, central and north-eastern zones fall into the mixing 

zone between nitrification and denitrification processes. Groundwater samples from 

Group 1 (points 17, 23 and 18) seem to be affected the most by denitrification in 

comparison to other samples, which is illustrated by their closer location to the 

denitrification box. However, in this group the denitrification in the deeper part of the 

aquifer was not complete, since Group 1 was characterized with the lowest SP, and the 

N2O reduction to N2 produces SP values close to the ones caused by nitrification (Well et 

al., 2012). This hypothesis is also supported by the fact that the corresponding 

groundwater samples show high DO concentration (see Table 4, p. 82), which would not 

be possible if mixing with anoxic waters (< 4 mg/L) occurred.  
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The isotopic signatures of Group 2 (sampling points 30, 31 and 4) indicate mixing 

between nitrified groundwater and deep groundwater where complete denitrification 

occurred. The intensive denitrification processes are evidenced by the fact that all points 

fall outside the mixing zone (Fig. 12) and are shifted in the direction corresponding to 

typical N2O reduction. In addition, the lowest DO concentration was observed in this 

group.  

In Group 3 (see Fig. 12), all samples are slightly shifted to the right of the mixing 

zone, suggesting mixing between nitrified and reduced groundwater. However, compared 

to Group 2, N2O reduction processes are probably less pronounced because of the high 

DO concentrations observed for groundwater samples from Group 3.  

 
 

Figure 12. Δδ15NNO3
- - N2O versus SP (‰) isotopomer map. The shape of the points 

shows affiliation to different zones presented in Fig. 6. Colors indicate different 

concentrations of NO3
- in groundwater samples. 

 

The second, Δδ15N – N2O (‰ v. AIR) versus δ18O – N2O (‰ v. VSMOW) (Fig. 

13), isotope map provides further evidence supporting the hypothesis that groundwater 

from the unconfined part of the aquifer is affected by both nitrification and denitrification 

processes. The majority of the samples fall close to the δ18O – N2O value of +35 ‰, 
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reported to be the boundary value between nitrification and denitrification processes 

(Koba et al., 2009; Li et al., 2014).  

 

 
 

Figure 13. Δδ15N – N2O (‰ v. AIR) versus δ18O – N2O (‰ v. VSMOW) isotopomer 

map. The shape of the points shows affiliation to different zones presented in Fig. 6. 

Colors indicate different concentrations of NO3
- in groundwater samples. 

 
Finally, in the northern zone, considering the low concentrations of DO and DOC 

as well as the data obtained from SO4
2- isotope analysis (Fig. 9), the occurrence of N2O 

could possibly be attributed to autotrophic (points 9 and 7) or heterotrophic (points 8, 14, 

19 and 20) denitrification. 

 
2.5.1.2. CH4 production/consumption processes 

The chalk aquifer was characterized with high level of CH4 accumulation despite 

the fact that there were detected high concentrations of DO, NO3
- and SO4

2- in the 

unconfined part of the aquifer, and the high concentration of SO4
2- in the confined part of 

the aquifer (except point 14; Fig. 8 of Annex), which prohibits CH4 production. 

 In the northern confined zone, characterized with low concentration of DO and 

negligible content of NO3
-, the concentration of CH4 was fifteen times higher in 
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comparison to three other zones. At the same time, the concentration of SO4
2-, which 

varied from 15 mg/L to 90 mg/L within the confined area, might have prohibited CH4 

production that usually occurs under lower SO4
2- concentrations (< 19 mg/L) (Whiticar, 

1999, Molofsky et al., 2016). Whiticar (1999) claimed that methanogenesis using non-

competitive substances (e.g. methylated amines or dimethyl sulphide) might occur in the 

media where SO4
2- exists; however, their relative importance in CH4 production is 

currently uncertain. Therefore, the high values are more likely to be explained by its 

thermogenic origin or presence of anaerobic microsites with favorable conditions within 

the aquifer. 

The concentration of CH4 in the groundwater samples from southern, central and 

north-eastern zones could be explained by occurrence of methanogenesis in the deeper 

part of the aquifer with the following mixing of deep CH4-enriched and shallow oxic 

water, which happened during the pumping activities. Moreover, the origin of CH4 in the 

deeper part of the aquifer might be related to its upward migration via geological faults 

and fracture networks from the Houiller formations enriched in coal. This last assumption 

could be supported by previous investigations conducted by the Hydrogeology and 

Environmental Geology group of the University of Liege in 2015 which showed high 

accumulation of radon (28945 Bq/m3) in the deepest part of the aquifer at Bovenistier 

which might be the evidence of its origin from the underlying layers. Consequently, this 

observation suggests the possibility of gases diffusion through the smectite clay layer 

which was previously considered impermeable.  

In general, additional investigations are required in order to obtain better insight 

into the CH4 production pathways. It will be useful to obtain data about the isotopic 

composition of CH4, δ13C-DIC and microbiological community, which have been used in 

many studies for the identification of CH4 origin (Teh et al., 2005; Molofsky et al., 2013; 

McPhillips et al., 2014; Currell et al., 2017; Iverach et al., 2017).   

 
2.5.1.3. CO2 production/consumption processes 

Groundwater in the chalk aquifer demonstrated a tendency towards accumulation 

of CO2. It is possible to suggest four pathways of the CO2 production in the subsurface, 
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namely – rhizomicrobial and root respiration, microbial decomposition of soil organic 

matter, denitrification and, possibly, methane generation (Kuzyakov & Larionova, 2005). 

First two processes lead to the production of CO2 in the soil and its leaching into 

the groundwater during the rainy periods. The occurrence of microbial decomposition 

was evidenced by the data obtained from SO4
2- isotope analysis and parameters of water 

chemistry. In particular, the observed SO4
2- isotope signals indicated the occurrence of 

mineralization processes in the subsurface, which under aerobic conditions produce SO4
2- 

and DOC (Mayer et al., 1995; Kellman & Hillaire-Marcel, 2003). However, according to 

the experimental data, the studied aquifer was characterized with low concentration of 

DOC in groundwater, which could be the consequence of its further oxidation to CO2 in 

the unsaturated or saturated zones (MacQuarrie et al., 2001). The assumption regarding 

occurrence of DOC decomposition was also supported by the obtained strong negative 

correlation between the concentration of DOC and δ13C-DOC.  

Since it was revealed that the aquifer was characterized with suitable conditions 

for the occurrence of denitrification and methanogenesis processes in its deeper anoxic 

part, their contribution to the CO2 production could also be considered.  

However, as our study was conducted in the chalk aquifer, the amount of 

dissolved CO2 in the groundwater is strongly influenced by the calcium carbonate 

equilibrium. CO2, produced within or leaked to the aquifer, reacts with H2O to form 

H2CO3, a weak acid, which stimulates the dissolution of carbonate rocks. That is why, the 

initially produced concentration of CO2 will be altered by equilibration processes. In 

particular, saturation indexes (Text 1 of Annex) varied from 0.22 to – 0.18 (mean 0.05 ± 

0.08) for calcite and from –1.25 to –0.21 (mean –0.71 ± 0.23) for dolomite, indicating 

that groundwater was in equilibrium with respect to the first mineral and undersaturated 

with respect to the second one (Table 1 of Annex) (Moore & Wade, 2013). This situation 

is attributed to the lower solubility of dolomite in comparison to calcite (Moore & Wade, 

2013). 

So, it appears that the latter two pathways of CO2 production governed the 

concentration of CO2 in the northern confined zone, while in southern, central and north-
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eastern unconfined zones the presence of CO2 was determined by the simultaneous 

occurrence of all processes discussed in this section. 

 

2.5.2. Vertical dimension 

2.5.2.1. N2O production/consumption processes 

According to the obtained hydrogeochemical and isotope data, nitrification and 

denitrification could be observed at different depths along the vertical profile of the 

studied aquifer. Also, these data provide evidence that mixing processes between the 

deep and shallow groundwater and slow infiltration of pollutants from the surface to the 

deeper parts of the aquifer affected the distribution of GHGs within the subsurface. 

The high concentrations of DO, NO3
- as well as δ15N and δ18O isotopic signatures 

of NO3
- at two shallowest piezometers at Bovenistier 28 and 27 (Table 5, pp. 84) 

provided the evidence of N2O production by nitrification processes. At the same time, the 

SP values of N2O at this site were considerably lower (19.2 ‰ and 20 ‰, respectively) 

than SP typically reported for nitrification. The analysis of SO4
2- isotopes showed that 

this location was the only one where obtained values of isotopic composition of the 

deepest groundwater (26) clearly fell into the range typical for sulphide oxidation (Fig. 9, 

p. 91), which might be associated with autotrophic denitrification (Jurado et al., 2018b). 

Such evidence suggested that the isotopic signature of N2O of groundwater samples 

collected from the shallower part of the aquifer (28 and 27) was affected by both 

nitrification and denitrification processes (see section 2.3.2 (pp. 83 – 85)).  

The anaerobic conditions and distribution of 15N and 18O isotopes of NO3
- in the 

groundwater along vertical profile at Overhaem (10, 11 and 12) (Table 5, p. 84) 

suggested the occurrence of denitrification. Since the SO4
2- isotopes did not indicate the 

occurrence of sulphide oxidation (Fig. 9, p. 91), the occurrence of heterotrophic 

denitrification could be a production mechanism of N2O in this location.  

The high level of DO, relatively high concentrations of NO3
- (Table. 5, pp. 84), 

results of NO3
- and SO4

2- isotopes analyses (Fig. 7 and Fig. 9, pp. 86 and pp. 91, 

respectively) at the SGB location (21, 22 and 25) indicated the occurrence of nitrification 
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processes. The SP value of N2O at the shallowest 21 piezometer was equal to almost 32 

‰, which also supported the idea about ongoing nitrification (Toyoda et al., 2017). 

However, the SP values of the groundwater samples collected from the deeper SGB 3 and 

SGB 1 piezometers were 14.1 ‰ and 15.2 ‰, respectively. Such data indicated that the 

production of N2O might be the result of the simultaneous occurrence of both nitrification 

and denitrification or nitrifier-denitrification processes in the groundwater system at SGB 

site. 

 
2.5.2.2. CH4 production/consumption processes 

The concentration of CH4 (between 0.09 µg/L and 0.6 µg/L) was higher than 

equilibrium with the atmosphere concentration in all locations across the vertical profile 

of the aquifer. However, no common trend in the distribution of CH4 with depth for 

Bovenistier, Overhaem and SGB sampling locations was revealed. 

The only site which showed the suitable conditions for the in situ biological 

production of methane was the deepest sampling point at Bovenistier (Table 5, pp. 84). 

As for the Overhaem and SGB, the high concentrations of NO3
-, SO4

- and DO (only in 

case of SGB) along the whole depth interval excluded the possibility of methanogenesis. 

Therefore, detected co-existence of CH4 with considerable concentrations of NO3
-, SO4

2- 

and DO might be the evidence of its thermogenic origin and vertical migration through 

the system of fractures, surface contamination or methanogenesis that occur in anoxic 

microsites within the aquifer. 

 
2.5.2.3. CO2 production/consumption processes 
 

The amount of CO2 varied noticeably within the vertical profile of the aquifer 

from the lowest concentrations in deep groundwater to the highest concentrations in the 

shallow groundwater. Such distribution might be explained by stronger effects of 

rainwater on the composition of shallow groundwater and the decrease in the microbial 

activity with depth. In particular, it is likely that rain water washes out the CO2 produced 

in the soil due to the decomposition of DOC (see section 2.5.1.3 (pp. 97 – 99)) and root 

respiration (Tan, 2010).  
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2.6. Conclusions 

In this chapter the distribution of GHGs within the chalk aquifer under 

agricultural area was explored both across lateral and vertical dimensions. Lateral studies 

focused on the variability of GHGs concentrations taking into account the differences in 

hydrogeology, hydrogeochemistry and urbanization level across the explored region. 

Vertical dimension investigations attempted to elucidate the impact of heterogeneity of 

aquifer conditions along the depth profile on GHG concentrations. 

Lateral explorations showed that among the three major GHGs it was the amount 

of N2O, which exhibited the greatest cross-zonal variability between identified zones with 

contrasting environmental settings. The highest concentration of N2O was detected in the 

unconfined aerobic part of the aquifer under most urbanized area where the concentration 

of NO3
- was the highest, while the lowest N2O content was measured in the confined 

anaerobic zone with the very low or almost absent NO3
- and/or NH4

+ concentrations in 

the groundwater. In the zone of groundwater discharge to the Geer River, the average 

concentration of N2O was of the same magnitude as in the central zone, despite the fact 

that the NO3
- content there was the lowest within the unconfined part of the aquifer. Also, 

in this zone the content of N2O varied significantly between different locations, as well as 

the level of DO, implying that the availability of N2O was governed by complex spatially 

heterogeneous pattern of different biogeochemical processes.  

CH4 revealed the high tendency towards the accumulation in groundwater. Its 

concentration was substantially higher in the northern confined zone in comparison to 

three other zones. However, even in the unconfined southern, central and north-eastern 

zones despite the oxic conditions and presence of electron acceptors with higher energy 

yield the concentration of CH4 was, in average, approximately 13 times higher than its 

equilibrium atmospheric concentration. 

Though the concentration of CO2 was high in comparison to its equilibrium 

concentration in the ambient air, it fluctuated less in comparison to N2O and CH4 

concentrations. CO2 detected in the subsurface derived from root respiration or 

decomposition of organic matter. However, the relative uniformity of its spatial 

distribution is mostly attributed to the fact that in general the amount of CO2 dissolved in 
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the groundwater was controlled by the process of dissolution of carbonate minerals which 

constitute aquifer geology.  

The spatial differences in hydrogeochemical settings considerably influenced the 

dynamics of transformation of N and C loading in the subsurface, thus making tangible 

impact on the magnitude of the resulting indirect GHGs fluxes occurring on the 

groundwater-surface water interface. It was particularly noticeable in the case of highly 

volatile N2O production/consumption processes. The production of detected N2O could 

be attributed to a combination of nitrification and denitrification processes, likely 

occurring at different depths. However, the observed isotopic signals of N2O 

demonstrated that the intensity of these processes as well as their relative contribution to 

the concentration of N2O in the groundwater varied across different sampling locations.  

Vertical dimension studies showed that different locations were characterized 

with different distribution pattern of major ions, GHGs and isotopes along the depth. 

However, in each of the cases they registered the shift in concentration of CO2 

(decreasing with depth in all cases considered) and significant changes in both isotope 

signatures and concentration level of N2O across the depth profile. The latter observation 

indicated that production/consumption dynamics of N2O was highly dependent on the 

hydrogeochemistry of the ambient subsurface environment. It was revealed that the 

variability of chemical composition of groundwater in different locations was controlled 

by different biogeochemical processes changing in intensity with depth. 

The observed heterogeneity of biogeochemical processes leading to GHGs 

production/consumption in the subsurface across the aquifer show that the magnitude of 

occurring GHGs fluxes (especially in the case of N2O in this study) could vary 

significantly due to the change in the amount of N and C inputs and distribution of their 

sources across different hydrogeochemical zones and in relation to groundwater flow 

pattern. Therefore, our study provides evidence to the assumption regarding existence of 

uncertainty of indirect GHGs fluxes related to upscaling of the point-derived estimations 

to the catchment level. In order to reduce this uncertainty, it is advised before the 

estimation of GHGs fluxes at the groundwater – river interface (and possible 

development of measures regulating their intensity) to take into account the insights 
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obtained from larger-scale investigations in order to identify the representative spatial 

zones which shape the dynamics of GHGs emissions. As demonstrated by the results of 

combined application of SOM-derived clustering and interpretation of isotopomer maps, 

combination of insights from hydrogeochemical and isotope studies is essential in this 

regard, as it helps to get more profound insight into the process dynamics within the 

underground environment where the microbiological structure and aquifer matrix might 

be additional factors that affect the transformation of N and C compounds.  
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Chapter 3 
This chapter is based on the following publication: 

Nikolenko, O., Brouyѐre, S., Goderniaux, P., Robert, T., Orban, P., Borges, A., V., 

Jurado, A., Duvivier, M., Morana, C. (2020). Dynamics of nitrous oxide with depth in 

groundwater: insights from ambient groundwater and laboratory incubation experiments 

(Hesbaye chalk aquifer, Belgium). Submitted to Journal of Contaminant Hydrology. 

(under a review) 

3. Nitrification and denitrification capacity of the 
chalk aquifer and its effect on nitrous oxide (N2O)  

 

 After the regional investigations, it was assumed that N2O dynamics in the chalk 

aquifer is governed by both nitrification and denitrification processes. Based on that 

conclusion,  it was decided to focus further explorations on upper and lower parts of the 

aquifer. Evidently they are presumably different in terms of physical-chemical and 

biochemical conditions, and those differences could be the reason explaining the mixed 

origin of N2O. Therefore, further steps were devoted to: 

1) obtaining better insight related to the distribution of N compounds and their 

isotopes with depth in the Hesbaye chalk aquifer; 

2) the estimation of the rates of nitrification and denitrification processes. 
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3.1. Vertical trends in the distribution of nitrogen compounds and their isotopes 
 
3.1.1. General study design 

Two sites (Bovenistier and SGB), allowing access to different aquifer depths, 

were selected for the studies. Both are equipped with multilevel piezometers, which 

characteristics and investigated depth intervals are shown in Fig. 14. During the 

investigations, upper and lower groundwater layers were examined in each piezometer. 

For the sake of convenience in the further discussion, the sampling points (i.e., depth 

intervals which were sampled) are numbered from 1 to 10, as indicated in Fig. 14 along 

the left side of each piezometer.  

 

 
 

Figure 14. Piezometers and sampling depths at the Bovenistier (left) and SGB (right) 

sites. Sampling points are numbered from 1 to 10, as indicated in bold and italics on the 

left side of each piezometer. The groundwater level value is not indicated, since it was nt 

stable between summer and winter campaigns. 
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Information regarding the hydrochemical conditions, concentrations of N 

compounds and their isotopic and isotopomer signals, used to describe the nature of N2O 

dynamics, was obtained by chemical and isotope analyses of groundwater samples. Those 

were collected using a low-flow sampling technique during the summer (June 2019) and 

winter (December 2019) campaigns. Samples were collected at the end of a low flow 

pumping (240 ml/min) stage performed at each location until the stabilization of 

electrical conductivity (EC) and pH, using a Solinst bladder pump model 407 SS 1.66`` 

Dia. It was assumed that stabilization occurred when five consecutive measurements for 

EC and pH did not differ by ± 2% and ± 0.1 units, respectively. 

The results of isotopic and chemical analyses of groundwater samples consist of: 

1)  total nitrate (NO3
-) and boron (B) isotope maps for both SGB and Bovenistier 

sites; 

2)  comparative vertical distribution profiles of NO3
-, N2O and N isotopes, for 

the summer and winter campaigns and for each of the studied sites 

individually. 

Isotope maps help to address the question whether changes in N isotope and 

isotopomer values along the profiles are related to the ongoing N2O 

production/consumption processes or are due to differences in the isotopic signatures of 

the initial substrate sources. The analysis of 11B was performed only for groundwater 

samples collected in summer. Consequently, the conclusions regarding the origin of N in 

winter samples will be made both by examining NO3
- isotope maps and considering the 

corresponding results of δ11B analyses from summer samples. Comparative vertical 

distribution profiles are used to examine covariations between N compounds and their 

isotopes with depth which helps to understand N2O dynamics in the aquifer. 

 

3.1.2. Depth specific distribution of N compounds and their isotopes 
According to the obtained results, the origin of N in groundwater samples at the 

Bovenistier site during the summer period (Fig. 15) was attributed to 2 major sources: 



 

107 
 

manure, the isotope signal of which was dominant at the shallowest sampling point 5 

(PzCs), and NH4
+ fertilizers identified at the deeper studied points 4 (PzCs), 3 and 2 (both 

in Pz12) (Fig. 15).  

 

 
 

Figure 15. NO3
- and B isotope maps of groundwater samples collected at Bovenistier site. 

Graph A includes the data from summer and winter and graph B includes the data from 

summer only. The letter “w” next to the number of sampling location means that the 

sample was collected in the winter. Green circles of different size indicate different 

concentrations of NO3
- in groundwater samples. The ranges of isotopic compositions for 

NO3
- and B sources (boxes drawn in the graphs) are derived from Michener & Lajtha 
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(2008), Xue et al. (2009) and Widory et al. (2004). Ratios of δ15N and δ18O of NO3
- used 

to draw denitrification lines are taken from Koba et al., 2009. 

In the absence of δ11B samples for the winter campaign, it was more difficult to 

distinguish the N sources in this dataset. For example, sample 5w indicates NO3
- isotopic 

values typical for both fertilizers and sewage while sample 4w exhibits NO3
- isotopic 

signals typical for denitrification process as 4 and 4w are located along the denitrifying 

line with a slope 1:1. As for 3w it showed NO3
- isotopic signature much different in 

comparison to summer values and typical for manure and sewage sources. At point 1 

(Pz13) NO3
- is detected only in the winter, and its isotope signature fall out of the ranges 

typically attributed to the considered N sources. 

At the SGB site (Fig.16) samples 8 and 9 (SGB3) that belong to the shallower part 

of the aquifer show isotopic values that can be attributed to different N sources, while the 

samples 6 and 7 (SGB1) that belong to the deeper part of the aquifer fall in the sewage 

interval. During the summer campaign, samples 8 and 9 can be associated with household 

sewage and manure, respectively. In winter, the same samples fall into the ranges typical 

for household sewage and NH4
+ fertilizers. Samples 7 show NO3

- and B isotope values 

typical for both NH4
+ fertilizers and household sewage during summer and winter 

periods. Sample 6w demonstrates N isotopic signatures which can be associated with 

denitrification processes as 6 and 6w fall along the denitrifying line with slope 2:1. 
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Figure 16. NO3
- and B isotope maps of groundwater samples collected at SGB site. Graph 

A includes the data from summer and winter and graph B includes the data from summer 

only. The letter “w” next to the number of sampling location means that the sample was 

collected in the winter. Green circles of different size indicate different concentrations of 

NO3- in groundwater samples. The ranges of isotopic compositions for NO3
- and B 

sources (boxes drawn in the graphs) are derived from Michener & Lajtha (2008), Xue et 

al. (2009) and Widory et al. (2004). Ratios of δ15N and δ18O of NO3
- used to draw 

denitrification lines are taken from Koba et al., 2009. 
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Fig. 17 and Fig. 18 show the change in the concentration of N compounds, N 

isotopic signatures and DO along the vertical aquifer profile at the Bovenistier and SGB 

sites in summer and winter periods.  

Groundwater samples from the SGB site show concentrations of N-N2O which 

exceed the equilibrium with the atmosphere concentration (0.3 µg N/L) (Hasegawa et al., 

2000). In winter N2O concentrations were higher (12.6 ± 2.9 µg N/L) in comparison to 

the summer (8.2 ± 1.5 µgN/L). The SGB1 piezometer showed that the concentration of 

N-N2O was higher in the deepest part of the piezometer (point 6 – 9.9 µg N/L  and 14.5 

µg N/L ) than in its upper part (point 7 – 6.4 µgN/L and 11.6 µg N/L) in the summer and 

winter campaigns, respectively. The SGB3 piezometer did not indicate any significant 

difference in N-N2O concentration with depth for the summer campaign. However, for 

the winter campaign the upper sampling location (sample 9) showed a concentration 

almost two times higher (15.5 µg N/L versus 8.6 µg N/L) compared to the deeper 

sampling location (sample 8).  

At the SGB site the concentrations of NO3
- decreased with depth, but they showed 

significant variations between the summer and winter sampling campaigns. The 

shallower sampling points 8 and 9 showed concentrations of 28.7 mg/L and 47.9 mg/L 

mg/L in the summer and 21.5 mg/L and 38.3 mg/L, in the winter. The deeper samples 6 

and 7 showed NO3
-concentrations 23.5 mg/L and 18.3 mg/L in the summer, and of 48.7 

mg/L and 1.56 mg/L in the winter. The concentrations of DO were in a range between 7.0 

mg/L to 9.6 mg/L, decreasing with depth during both sampling periods. 



 

111 
 

 
 

 

Figure 17. Vertical distribution of N compounds, their isotopes and DO at SGB site 

during summer and winter periods. 

The SP and N-N2O results (red circles, Fig. 17 A and C) changed in the same 

direction along the depth profile both in the summer and winter campaigns, with the 

exception of location 7 for N-N2O. This indicates the absence of N2O reduction processes 

(Ostrom et al. 2007). The similarity between N-N2O and δ15N-N2O evolutions (blue 

circle, Fig. 17 B) in the winter campaign also indicates that N2O is not reduced. Such a 

similarity is not observed for the summer sampling campaign, which in this case might 

evidence N2O reduction. 
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Moreover, data from the summer campaign show a strong covariation with depth 

between of δ15N-N2O and δ15Nβ-N2O (green circle, Fig. 17 C) which suggests close 

dependence between these two parameters. The δ15Nα-N2O enrichment increased with 

depth, while the δ18O-N2O (green circles, Fig. 17 C) decreased slightly.  

The winter campaign data show that δ15N-N2O, δ15Nα-N2O, δ15Nβ-N2O and δ18O-

N2O (green circles, Fig. 17 C) parameters exhibited similar vertical distribution patterns, 

along the vertical profile with more pronounced increase of δ15Nα-N2O with depth. This 

observation suggests that δ15N-N2O signature might be either influenced by production 

processes solely or influenced to the same extent with both N2O production and reduction 

processes.  

All samples collected at Bovenistier showed N-N2O concentrations exceeding the 

equilibrium with the atmosphere. Similarly to the SGB site, the concentration of this gas 

was higher in the winter (10.5 µg N/L ± 1.7 µg N/L) than in the summer (8.6 µg N/L ± 

1.3 µg N/L). For the summer campaign, samples 4 and 5 (PzCs) showed higher 

concentrations of N-N2O 10.16 µg N/L and 9.26 µg N/L, respectively, in comparison to 3 

and 2 (Pz12) where its concentrations were nearly the same (around 7 µg N/L). During 

the winter campaign, N-N2O concentrations varied vary between 10.7 µg N/L and 12.4 

µg N/L at all of the sampling points with higher concentrations observed at the bottom 

parts of piezometers – sampling points 4 and 2. During the winter campaign N2O was 

detected at a concentration of 7.7 µg N/L at the deepest sampling location 1 (Pz13) but in 

the summer campaign the concentration there was below the detection limit.  

During the summer campaign, the concentration of NO3
- did not change 

noticeably between point 4 and 5 (PzCs) (> 40 mg/L), but it varied between samples 3 

and 5 (47.8 mg/L vs 37.0 mg/L) located respectively in the shallow and deep part of 

Pz12. During this period, NO3
- was not detected in the sample collected at location 1 in 

Pz13. In the winter, the NO3
- concentration was almost two times lower at location 5 

(24.2 mg/L) than at location 4 (46.2 mg/L). At the same period, there was no significant 

difference in NO3
- between locations 2 and 3 (> 40 mg/L) and the concentration of NO3

- 

was 47.9 mg/L at point 1 in Pz13. The concentration of DO varied from 1.5 mg/L to 9.9 

mg/L. 
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At Bovenistier, variations with depth of N-N2O and SP (red circles, Fig. 18 A and 

C) were different for both winter and summer periods. However, these differences are not 

significant enough to conclude on the possible occurrence of N2O reduction. At the same 

time, the similarity observed between N-N2O and δ15N-N2O (blue circle, Fig. 18 B) 

profiles for winter (except for the deepest sampling point at Pz12 and Pz13) indicates the 

absence of N2O reduction in the shallower part of the aquifer and its occurrence in the 

deepest part. N2O reduction processes at the bottom part of the aquifer are also supported 

by the positive value of δ15N-N2O (9.2 ‰) and the high δ18O-N2O value (66.0 ‰). 

During the summer campaign, differences in N-N2O and δ15N-N2O patterns can be 

attributed to N2O reduction. 

Summer period shows nearly the same distributions of δ15N-N2O, δ15Nα-N2O, 

δ15Nβ-N2O and δ18O-N2O (green circles, Fig. 18 C), except the slight decrease in δ18O-

N2O at the interval which corresponds to sampling locations 5 and 4.  

In winter the patterns between δ15N-N2O, δ15Nα-N2O, δ15Nβ-N2O and δ18O-N2O 

(green circles, Fig. 18 C) are identical with the obvious increase at the deeper aquifer 

layers which corresponds to sampling point 1 (Pz13). This indicates that N2O reduction 

dominates N2O production in the deeper part of the aquifer. At the same time, N2O 

production exceeds its consumption or occurs to the same extent at the upper part of the 

aquifer. 
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Figure 18. Vertical distribution of N compounds, their isotopes and DO at the Bovenistier 

site during summer and winter periods. 

 

3.1.3. Evidence of N2O production and consumption processes obtained from the 

analyses of ambient groundwater samples 

According to the results, both N2O production and consumptions processes occur 

in the chalk aquifer. The fact that N as an initial substrate originates from different 

sources at different depths complicates the distinction between nitrification and 

denitrification as well as between N2O production and consumption mechanisms.  
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At SGB, the similarity between δ15N-N2O and δ15Nβ-N2O in the summer 

campaign means that the isotopic signature of N2O is not determined by N2O reduction. 

In the winter campaign, simultaneous increase in N2O isotopomers values (with more 

pronounced increase in 15Nα) and δ18O-N2O at levels 7 and 6 indicates (Park et al., 2011) 

the occurrence of N2O reduction processes at the bottom part of the aquifer. This is also 

supported by the drastic decrease in the concentration of NO3
- at sampling point 6 in 

comparison to 7. The opposite patterns of NO3
- and N2O concentrations in the deep part 

of the aquifer both in summer and winter periods provide additional evidence of 

reduction processes (Minamikawa et al., 2011). 

At Bovenistier, it could be concluded that N2O production processes dominate 

over its consumption based on the similarities in the distributions of N isotopes, 

isotopomers, and N-N2O concentrations along the vertical profile. Intensive N2O 

consumption is revealed only in the deep part of the aquifer (Pz13) during the winter 

campaign. This observation is probably related to significant NO3
- input which stimulated 

denitrification process and allowed to detect N2O at measureable levels. 

As a first conclusion, despite of the occurrence of aerobic conditions at SGB and 

Bovenistier, both production and consumption processes govern the dynamics of N2O, 

with the reduction processes being more pronounced in the deeper part of the aquifer. 

Such conclusions are supported by the fact that there is more and more evidence of 

denitrifiers being capable of using both DO and NO3
- as electron acceptors (Zhu et al., 

2019). Moreover, there are studies which suggest the presence of micro anaerobic 

hotspots in total aerobic environments capable of supporting denitrification processes 

(Well et al., 2012).  

 

 3.2. Estimation of the rates of nitrification and denitrification 
processes 
 

Stable isotope tracer experiments with enriched in heavy 15N isotope potassium 

nitrate (KNO3) and ammonium chloride (NH4Cl) were performed to measure the 

intensity of denitrification and nitrification processes, respectively.  

However, before deciding under which conditions (in situ or laboratory) tracer 

studies had to be conducted, it was necessary to obtain information about in situ 
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groundwater fluxes. This was required because the tracer needs to remain for sufficient 

amount of time in the aquifer to undergo denitritication and nitrification processes to 

detectable levels. However, if such fluxes are very high, it would be likely that the tracer 

could be transported away in the aquifer after the push phase and impossible to recover 

during the pull phase. 

In situ field investigations consisted of: 

1) estimation of groundwater flow rates using Finite Volume Point Dilution 

Technique (FVPDM). The information obtained using these measurements 

helped to adapt the incubation time for the following push-pull pre-test; 

2) push-pull pretests using potassium bromide (KBr) as a conservative tracer to 

determine dilution effects within the aquifer. 

In the end, the results showed that the in situ tracer experiments for the 

assessment of the magnitude of nitrification and denitrification processes might not be 

suitable for four (Pz12 top, PzCs, SGB3 top and SGB3 bottom) out of six locations due to 

the chance to obtain lower recoveries of tracers. That is why it was decided to perform 

lab incubation experiments. Description and results of FVPDM and push-pull studies 

conducted to determine the suitability of the application of tracer experiment in situ are 

described in Text 2 of Annex. 

 

3.2.1. Laboratory tracer incubation experiment 

3.2.1.1. General description 

Two N stable isotope labeled experiments were conducted in order to estimate the 

rates of nitrification and denitrification processes in groundwater. For this purpose, 

groundwater was collected at different depths of the aquifer at Bovenistier and SGB sites 

(see sampling points on Fig. 14 section 3.1.1. (p. 105)) during the winter campaign. From 

each sampling point, 4 water samples of 50 mL each were collected and stored in 

borosilicate serum vials sealed without headspace using a butyl rubber stopper and an 

aluminum seal. Half of them were used for nitrification incubation experiment and 

another half for denitrification incubation experiment by addition of 15N labeled 

compounds. It should be emphasized that this experiment provides the information about 

the potential rates of nitrification and denitrification because the addition of the 15N 
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labeled compounds (substrates for denitrification and nitrification processes) increases 

their concentrations relative to its in situ values. 

Nitrification rates were determined in headspace-free serum vials spiked with 15N-

labelled NH4Cl (99 atom% 15N) by measuring the changes in δ15N-NO3
- values resulting 

from the oxidation of the 15NH4
+ which is a substrate for nitrification. Since the results of 

chemical analysis showed the ambient concentration of NH4
+ in groundwater was below 

the detection limit, it was decided to amend water samples with an excess of 15N-NH4
+ in 

order to reach the final concentration of ~ 2 mg/L of NH4
+. Similarly, denitrification rates 

were determined in headspace-free serum vials amended with 15N-labelled KNO3 (25 

atom% 15N) by observing the changes in 15N-N2O and 15N-N2 isotopic signatures 

expecting the consumption of added isotopically enriched 15N-NO3
-
 (25 atom% 15N) 

which is a substrate for denitrification. Considering that the background concentration of 

NO3
- in groundwater vary from 0 to 52.5 mg/L (based on the results obtained from 

summer campaign), the amount of injected 15N-NO3
- was defined aiming to double the 

concentration of NO3
- at each location. Amendments were made by injecting the tracer 

solutions through the septa of borosilicate glass vials.  

The magnitudes of nitrification and denitrification processes were measured 

during 24 h and 48 h long experiments, respectively, each of which consisted of four time 

spans with 2 vials used for each time span (duplicates). The vials were incubated in the 

dark under 10 ºC which corresponds to the mean in situ temperature of groundwater at 

the time of sampling. Both incubations started just after tracer injections. At the 

beginning of the incubation experiments, an addition of 200 µL of a saturated solution of 

HgCl2 in two vials was performed to inhibit microbiological activity in order to have 

reference values of initial T0 15N-NO3
-, 15N-N2O and 15N-N2 isotopic values. For 

nitrification, further inhibitions of microbiological activity took place in 2 subsequent 

vials in the time course after 6 h, 12 h, 18 h and 24 h intervals. For denitrification, the 

intervals after which inhibition was performed in the respective vials were established at 

6 h, 12 h, 24 h and 48 h.  

The atom% of 15N in a substrate (15NH4
+ or 15NO3

-) for each experiment (as) was 

estimated considering the atom% of 15N in the tracer added to the vials and in NH4
+ or 

NO3
- naturally occuring in groundwater by the following formula (Hayes, 2004): 
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𝑎𝑎𝑠𝑠 = (𝐶𝐶𝑏𝑏𝑏𝑏 × 𝑎𝑎𝑏𝑏𝑏𝑏 + 𝐶𝐶𝑡𝑡 × 𝑎𝑎𝑡𝑡)/(𝐶𝐶𝑏𝑏𝑏𝑏 + 𝐶𝐶𝑡𝑡) (12) 

where Cbg is the background concentration of NH4
+ or NO3

- (nmol), Ct is the 

concentration of the tracer added to vials (nmol), abg  is the atom% of 15N in NH4
+ or NO3

- 

compounds in groundwater before the addition of a tracer, at is the atom% of 15N in a 

tracer added to the vials. 

The magnitude of nitrification and denitrification were estimated based on the 

formula provided by Hama et al. (1983) and adapted for the quantification of NO3
- or 

N2O and N2 production rates: 

𝑃𝑃 = 𝐶𝐶×(𝑎𝑎𝑖𝑖𝑖𝑖−𝑎𝑎0)
(𝑡𝑡×(𝑎𝑎𝑠𝑠 −𝑎𝑎0))

 (13) 

where P is the production rate of a particular compound (nmol/L/h), C is the initial 

(background) concentration of this compound (nmol), ais is the atom% of 15N in this 

compound in incubated samples at the end of each incubation interval, a0 is the atom% of 
15N in the studied compound at the beginning of incubation experiment (T0) just after the 

addition of a tracer, as is the atom% of15N in a substrate for nitrification (15NH4
+) or 

denitrification (15NO3
-) after the addition of a tracer at the beginning of incubation and t 

is incubation time (h).  

The concentrations of NO3
- and N2O were measured using the analytical 

procedures described in section 2.5. The 15N-NO3
- isotopes analyses was conducted using 

an off-axis cavity ringdown spectroscopy (OA-ICOS) (Los Gatos Research) instrument 

(University of Liège, Belgium) applying Cd‐Azide reduction method to quantitatively 

converts NO3
- to N2O (McIlvin & Altabet, 2005; Ryabenko et al., 2009, Wassenaar et al., 

2018). Groundwater dissolved gases (N2O and N2) from incubation samples were 

extracted using the headspace equilibration technique with helium (He) filling the 

headspace (20 ml of He headspace in 50 ml serum bottles). The 15N-N2O values were 

determined on a dual-inlet isotope ratio mass spectrometer (Stable Isotope Facility, UC 

Davis, Davis, CA) as described by Mosier and Schimel (1993). Note that only the 

samples from 5 locations out of 9 (Pz 13 (1), Pz12 (3 and 2) and SGB (7 and 6)) were 

sent for the 15N-N2O isotope analyses. The 15N-N2 was estimated by isotope ratio mass 

spectrometer (delta V plus, ThermoScientific) (volume injected in the mass spectrometer: 

50 µL). 
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3.2.1.2. Evidence of N2O production and consumption processes from laboratory 

incubation experiments 

The results of the isotope analyses of 15N-NO3
-, 15N-N2O and 15N-N2 did not 

detect any considerable enrichment of respective compounds between different time 

spans which means that both nitrification and denitrification processes did not occur in 

the bottles during the incubation experiment. The maximal analytical errors of the 15N-

NO3
-, 15N-N2O, and 15N-N2 analyses were ± 2 ‰, ± 0.14‰ and ± 0.1 ‰. The detection 

limits were: 1) for nitrification – 0.3 nmol/L/h and 2) for denitrification – 2.7 nmol/L/h 

for N2 and 0.0002 nmol/L/h for N2O. 

The results show that our previous hypothesis about the simultaneous occurrence 

of both nitrification and denitrification processes in the aquifer might not explain the SP 

values of N2O measured in groundwater samples collected during the regional and local 

investigations. Consequently, on the one hand the availability of N2O in the aquifer might 

be explained by the infiltration of N2O produced by nitrification and denitrification 

processes occurring within the other parts of the aquifer. Alternatively, there might exist 

a discrepancy between real aquifer conditions and laboratory experiments. In particular, 

in the aquifer, groundwater is in permanent contact with biofilms attached to the rocks 

materials, while groundwater samples collected in piezometers for incubation might not 

represent the real complexity of the subsurface environment. To investigate this, it would 

be needed to collect large volumes of groundwater to extract the available bacterial 

biomass and analyze it in order to determine the expression of nitrifying and denitrifying 

genes, which might help to obtain better insight into the qualitative diversity of biofilm 

biotope, since it is expected that there exists a constant flux of bacteria between biofilm 

and water layers. 
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Chapter 4 

4. Microbiological evidence of nitrous oxide 
production/consumption processes 
4.1. Functional gene expression as a key to understand nitrous oxide 
dynamics 

The analysis of hydrochemical and isotope parameters during regional campaign 

demonstrated that the availability of N2O in groundwater might be the consequence of the 

intertwining processes of nitrification and denitrification. However, based on the obtained 

data, it cannot be claimed unambiguously that both these processes actually occur in the 

aquifer. Comparison of N2O isotopomer and isotope data only gave the information about 

the occurrence of N2O consumption or production (section 3.1.3 (pp. 114 – 115)) but it 

was not sufficient to answer the question which processes of N production govern its 

dynamics (e.g. in most of the cases obtained SP values fell out of the range typical for 

both nitrification and denitrification processes). Also, it is not possible to reach definite 

conclusions regarding the completeness of these pathways and interaction between them 

using solely these data. For instance, it is possible that unsaturated zone might supply N 

compounds in different oxidation states for their further transformation to N2O and/or 

N2O by itself to the aquifer. Consequently, incomplete nitrification/denitrification or N2O 

diffusion from water free zone could be responsible for the accumulation of N2O in 
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groundwater, and the role of processes occurring in the aquifer itself would appear less 

significant. Under such scenario, the aquifers would have to be perceived as the receptor 

media that stores and/or transport N2O between different environmental compartments 

rather than as a secondary source of GHG emissions. 

Therefore, additional information about the in situ aquifer conditions is required 

in order to understand better the nature of processes in the subsurface. Since nitrification 

and denitrification can proceed through abiotic and biotic parts of environment, the 

measurements of the activity of the microorganisms that accomplish biotic N 

transformations might provide valuable insights into the dynamics of N2O 

production/consumption. Both nitrification and denitrification can be mediated by 

bacteria and archaea, yet due to the time limitations of the project this study considers 

only the role of bacteria. 

Nitrification is performed by two physiologically distinct groups of 

chemolithotrophic bacteria (use inorganic reduced compounds as electron sources (source 

of energy)): 1) the first group consists of ammonia-oxidizers (AOB) and 2) the second 

one is composed of nitrite-oxidizing bacteria (NOB). In the first step of nitrification AOB 

perform oxidation of ammonia (NH3) to nitrite (NO2
-) (Equations 14 and 15), and in the 

second one NOB carry out oxidation of nitrite (NO2
-) to nitrate (NO3

-) (Equation 16): 

NH4
+

 + 2H+ + 2e- = NH2OH +H2O  (14) 

NH2OH + H2O = HNO2 + 4H+ + 4e-  (15)  

HNO2 + H2O = HNO3 +2H+ +2e-  (16) 

In addition, there is much evidence about the existence of AOB which facilitate 

the complete oxidation of ammonia to nitrate (Daims et al., 2015; van Kessel et al., 2015; 

Koch et al., 2019).  

Hydroxylamine (NH2OH), produced at the beginning of nitrification, can be a 

substrate for further N2O production in case of its incomplete oxidation. Also, under the 

conditions of nitrosative stress AOB use NO2
- as an alternate terminal electron acceptor 

via nitrifier denitrification process which is accompanied by N2O generation (Stein, 

2011). 
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AOB can be allocated to three phylogenically different groups of the phylum 

Proteobacteria the gamma-, beta-, and delta-proteobacteria classes. The first group 

includes one genus Nitrosococcus represented by two described species: Nitrosococcus 

oceani and Nitrosococcus halophilus (Koops & Pommerening-Röser, 2001). The 

betaproteobacteria comprises two genuses, Nitrosospira and Nitrosomonas, with a total 

of 14 characterized species which have six distinct lineages of descent (Pommerening-

Röser, 1996). Finally, the last group is defined by complete ammonia oxidizers in the 

bacterial genus Nitrospira (Daims et al., 2015; van Kessel et al., 2015). Members of 

Nitrospira, which can oxidize ammonia to nitrate on their own, belong to the most 

widespread clade of this diverse genus which can be phylogenetically divided into at least 

six lineages (Daims et al., 2016).  

Nitrifiers use ammonia monoxygenase (AMO) to oxidize ammonia to 

hydroxylamine and hydroxylamine dehydrogenase (HAO) to transform hydroxylamine to 

nitrite. AMO is a multiple subunit enzyme used for the production of hydroxylamine and 

water (Eq. 14; page 121). It is active in the presence of oxygen (O2), the consumption of 

which increases with the addition of ammonia. The structural subunits of AMO are 

encoded by the genes amoA, amoB and amoC, which belong to one operon (a functioning 

unit of DNA containing a cluster of genes under the control of a single promoter) (Norton 

et al., 2002). The amoA gene is commonly used as a functional marker for bacterial or 

archaeal ammonia oxidizers (Kim et al., 2008). In aerobic environment under the 

conditions of nitrosative stress AOB can activate enzymes from nor group to reduce 

nitric oxide (NO) to N2O (Stein, 2011). Also, some studies revealed nitrite reductase 

encoded gene of denitrifiers in the genome sequences of nitrifying bacteria, namely nirK, 

which might be an integral component of ammonia oxidation pathway that protects 

bacteria from nitrite toxicity (Arp & Stein, 2003; Kozlowski et al., 2016). 

Denitrifying bacteria exhibit much greater taxonomic diversity and are more 

widespread in different environments in comparison to other functional groups involved 

in the N-cycle (Geets et al., 2007). Most of them belong to various classes of 

Proteobacteria (Philippot, 2005). Low oxygen concentration and presence of nitrogen 

oxides are prevailing factors that activate denitrification system. However, regulatory 
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networks of denitrification are variable, since more and more strains were found to be 

capable of denitrifying under both aerobic and anaerobic conditions simultaneously using 

O2 and NO3
- as electron acceptors (Ward et al., 1996; Zhu et al., 2019). That is why, the 

capability of denitrifiers to perform complete denitrification varies and, consequently, 

variable amounts of intermediates (NO2
-, NO and N2O) may accumulate due to different 

environmental factors (Braker et al., 2012).  

Denitrification is a cascade process of NO3
- and NO2

- reduction to NO, N2O and 

N2 via four enzymatic complexes: NO3
- reductase, NO2

- reductase, NO reductase and 

N2O reductase (Fig. 19). The first step of denitrification is associated with two 

homologous enzymes membrane-bound (Nar) and periplasmic-bound (Nap) NO3
- 

reductases. The genes coding for these enzymes (narG and napA, respectively) are also 

widely present in non-denitrifying bacteria, which reduces the possibility to use them to 

characterize the activity of denitrifiers (Wallenstein et al., 2006). Consequently, the genes 

coding for NO2
- reductase are typically the first ones to be used to characterize denitrifier 

community (Zeng et al., 2016). NO2
- reduction is regulated by evolutionary unrelated 

enzymes: a copper-containing enzyme encoded by nirK and a cytochrome cd 1 enzyme 

encoded by nirS, which are functionally equivalent. On the contrary to NO3
- reductase, 

bacteria can have only one of these enzymes (Philippot et al., 2007). Studies show that 

nirK bearing organisms are more susceptible to environmental changes than nirS 

denitrifiers (e.g. pH, NH4
+ and NO3

- concentrations etc.) (Dandie et al., 2011). Further, 

reduction of NO to N2O is mediated by cytochrome c nitric oxide reductase and quinol 

nitric oxide reductase encoded by norC and norB genes, respectively. The final step of 

denitrification pathway, reduction of N2O to N2, is catalyzed by the multicopper 

homodimeric (formed by two identical proteins) N2O reductase presented by nosZ gene. 

This gene is largely unique to denitrifying bacteria and its activity is the most sensitive to 

the concentration of oxygen, carbon-to-nitrate ratio and pH in comparison to the other 

denitrification genes (Cavigelli & Robertson, 2001).  
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Figure 19. Enzymes used in denitrification and the genes encoding them. 

 

Despite the fact that N-cycle organisms tend to be ubiquitous in groundwater, the 

functional expression of their genes changes depending on NO3
- and NH4

+ supply, 

availability of C or other electron donors, oxygen concentration, temperature, pH etc. 

(Rivett et al., 2008; Jahangir et al., 2013; Cocco et al., 2018). The expression 

(transcription of DNA to RNA) of genes is encoded in their mRNA and its analysis can 

indicate the actual activity of microbial cells at the time of sampling. So far estimates of 

gene expression specific to denitrification and nitrification have been carried out mainly 

during laboratory incubation and microcosm experiments (Freitag & Prosser, 2009; 

Henderson et al., 2010; Liu et al., 2010; Van Doan et al., 2013). In situ field studies are 

less common and they are mainly focused on soils and sediments (Nogales et al., 2002; 

Lee et al., 2009; Pastorelli et al., 2010). It is related to the short half-life of long mRNA 

molecules (close to several minutes), which makes detection of functional gene abilities 

difficult (Härtig et al., 1999; Rauhut et al., 1999; Philippot et al., 2001). Nevertheless, the 

information obtained from targeting the mRNAs of nitrifying and denitrifying bacteria 

can be successfully used in order to reveal the active enzymatic pathways rather than 

observe mere indication of their presence. 

This study focuses on detecting the expression of six genes which can 

characterize microbial nitrification and denitrification processes: amoA, nirK, nirS, norB, 

norC, nosZ along the vertical profile of the aquifer (Fig. 19). The following two sections 

describe the developed procedure for detection of genes expression and discusse the 

obtained results in the context of N2O dynamics, respectively. 
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4.2. Developing experimental design: essential concepts 

In our study the bacterial activity is measured by studying its mRNA pool. As was 

mentioned in the previous section, mRNA carries the coding instruction for protein 

formation, including enzymes that catalyze biotic reactions. Therefore, the activity of 

specific bacteria is determined by the presence or absence of certain enzymes in their 

cells. The availability of enzymes can be measured by targeting directly the specific 

proteins or indirectly their specific mRNAs.  

mRNA is difficult to manipulate and study due to its low stability. Moreover, 

RNA cannot be amplified by DNA polymerase in polymerase chain reaction (PCR). That 

is why a DNA copy called complementary DNA (cDNA) of mRNA is required before 

determining expressions of certain genes. The conversion of mRNA to cDNA is 

conducted by reverse transcription enzymatic reaction (RT) which uses an RNA template 

to generate a single-stranded DNA molecule complementary to the RNA (cDNA).  

Further analysis of genes requires the use of multiple copies of cDNA sequences, 

since each gene specific cDNA represents an extremely small fraction in total cDNA. 

Because each gene is tiny, it has to be amplified before it can be studied. The 

amplification of a specific segment of cDNA is carried out using polymerase chain 

reaction (PCR). PCR involves two oligonucleotide primers (short DNA molecules), 

typically between 18 and 24 nucleotides in length, which are complementary to targeted 

sequence on template. 

PCR test starts with preparing solution that includes cDNA template, Taq DNA 

polymerase, deoxyribonucleoside triphosphates (dNTPs – the substrates for DNA 

polymerase), primers and magnesium ions and other salts required for the enzymatic 

reaction. The PCR test consists of three stages, each of which is performed at different 

temperatures. In the first stage called denaturation the prepared solution is heated to high 

degrees (around 94 ºC), which leads to the separation of two strands of DNA molecules 

and production of two single-stranded templates. In the second stage, called annealing, 

test solution is cooled quickly (up to 30 º – 60 ºC), which allows the primers to bind to 

the template strands. One of the primers recognizes and binds to one of the target DNA 
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strands, and the other primer recognizes and binds to the other strand (Fig. 20 (A)). The 

temperature at which annealing of the primers occurs depends on the size of the primer, 

its nucleotide content and its affinity for the target sequence. In the last stage, called 

extension, the solution is heated typically to 72 ºC, which is a temperature optimum for 

Taq DNA polymerase binding to the 3`- ends of each primer and synthesize new cDNA 

strand in 5` to 3` direction (Fig. 20 (A)). It should be mentioned that Taq DNA 

polymerase, isolated from Thermus aquaticus which is a hyperthermophile bacteria, is 

resistant to high temperatures. It can withstand the high temperature during denaturation 

step and remains fully active. At the end of the cycle, two new double-stranded cDNA 

molecules are produced for each original molecule of targeted cDNA. The whole cycle is 

repeated several times (usually 30 – 40 cycles in total) to allow the formation of more 

than 1 billion molecules of cDNA. The results of PCR reaction (PCR products) are 

placed on agarose gel and submitted to an electrophoresis (Fig. 20 (B)) to visualize the 

amount of obtained product and examine its homogeneity. If a single, discrete band is 

formed, it means that the produced cDNA fragment is homogeneous. 

This approach allows identifying and comparing gene expression in different 

environmental samples, but because PCR amplification is exponential, it is important to 

normalize the concentration of cDNA in samples before the test, because even large 

differences in targeted concentration (100-fold or more) might result in the same intensity 

of band after 30 or 40 PCR cycles. 
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Figure 20. General scheme of ongoing PCR experiment (A) and visual presentation of its 

results (B): A – stages of PCR experiment; B – comparison of the location of three PCR 

products with a standard (Smart ladder (SL)). 



 

128 
 

Further, a DNA sequence resulting from PCR amplification must be determined 

in order to control that an amplified nucleotide sequence corresponds to a gene sequence 

initially targeted. DNA sequencing is a method used to identify the sequence of 

nucleotide bases (adenine (A), thymine (T), cytosine (C) and guanine (G)) in a DNA 

fragment. Sanger method of DNA sequencing is used for sequencing individual pieces of 

DNA, such as fragments required in DNA cloning or obtained using PCR. A fragment to 

be sequenced is replicated, and in order to know an exact composition of a DNA 

sequence a replication has to be brought to a pre-defined stop that allows identifying the 

base of the very end of this particular fragment. In order to do it, Sanger method makes 

use of specific (chain-terminating) nucleotides called dideoxyribonucleotides (ddNTPs) 

(Pierce, 2015). The ddNTPs are identical with dNTPs, but with one key difference: they 

lack a 3`- OH group (Fig. 21). In a regular nucleotide, the 3` - OH group acts as a “hook”, 

allowing a new nucleotide to be added to an existing chain and thus effectively allowing 

replication to continue. However, once a dideoxy nucleotide has been added to the DNA 

chain, there is no OH group available and the polymerase enzyme can no longer add 

normal nucleotides onto the replicated DNA fragment. The extension is stopped, and it is 

possible to identify the nucleotide chain terminating base at the end of the fragment. It is 

done by specific fluorescent dyes of a particular color depending on the base (A, T, C or 

G) that dideoxy nucleotide carries.  

 

 
Figure 21. Structures of deoxyonucleotide and dideoxynucleotide, the substances 

required for DNA synthesis during Sanger sequencing reaction. 

 

Sanger sequencing results in the formation of fragments of different lengths 

terminated with dideoxynucleotides at the 3` ends. The replicated products are then 
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separated by capillary gel electrophoresis. The reaction product is injected into a long 

thin tube containing a gel matrix. Short fragments move quickly through the pores of the 

gel, while long fragments move more slowly. As each fragment crosses the end of the 

tube, it is illuminated by a laser, allowing the attached dye to be detected. Thus, from the 

colors of the dyes registered one after another on the detector, the sequence of the 

original piece of DNA can be built up one nucleotide per one fragment that pass under 

the laser. In the end, the sequence of the DNA is shown as a series of peaks in 

fluorescence intensity as shown in the chromatogram below (Fig. 22). The DNA 

sequence is read from the peaks in the chromatogram.  

 

 
 

Figure 22. Scheme of computer-generated chromatogram showing obtained sequence 

after all fragments pass the detector. 

 

4.3. General experimental setup 

The general scheme of the experiment which was established in order to detect 

the activity-specific enzymes of nitrification and denitrification processes is presented on 

Fig. 23. Groundwater samples for analysis were obtained from different depths from 

piezometers located at Bovenistier and SGB sites during summer (June 2019) and winter 

(December 2019) sampling campaigns. Sampling depths can be seen on Fig. 14 in the 

section 3.1.1 on the page number 105. In total, 18 samples were subjected to the study: 9 

of them collected in summer, and other 9 collected in winter (further to distinguish 

between summer and winter samples winter ones are going to be indicated with an 

apostrophe next to them). In summer 3L of groundwater from each sampling point were 

filtered through 0.45 µm pore size filters. Winter samples, 5L volume each, were filtered 

through 0.22 µm filter papers (the sampling procedure was adapted due to the low 
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biomass in summer). Filters with bacterial biomass were stored in 3 ml of RNA later at -

20ºC for further manipulations.   

RNA and DNA extraction. RNA extraction was conducted using QIAGEN 

RNeasy® Mini Kit for purification of total RNA from bacteria. The manufacturer’s 

instructions were modified by adding a mixture of phehol/chloroform/isoamylalcohol 

(25:24:1) during the lysis step to promote better separation of lipids and cellular debris 

into the organic phase leaving isolated DNA in the aqueous phase.  Also, on-column 

DNase digestion was added to ensure the removal of residual DNA. In the final step, 

concentrated RNAs were diluted in 80 µL or 40 µL of RNase-free water for summer and 

winter samples, respectively. As for the total DNA purification, it was conducted using 

QIAGEN DNeasy PowerMax Soil Kit following the manufacturer’s instructions.  

 

 
 

Figure 23. Flow diagrams showing steps conducted to reveal gene expression of 

nitrifying and denitrifying bacteria in the groundwater samples collected from 

piezometers screening the chalk aquifer. 

 

The concentrations of extracted RNAs and DNAs were measured using a 

NanoDrop spectrophotometer (see Table 7). 
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Table 7. Quantities of RNA and DNA extracted from the biomass obtained from the 

groundwater samples collected from different depths at the Bovenistier and SGB sites 

during winter and summer campaigns. 

Sample 

Summer extraction Winter extraction 

Amount of RNA 

(ng/µL) 

Amount of DNA 

(ng/µL) 

Amount of 

RNA (ng/µL) 

Amount of 

DNA (ng/µL) 

1 2.5 - 7.1 3.8 

2 3.8 - 3.1 4.5 

3 3.0 12.3 4.5 1.1 

4 3.6 8.9 2.8 1.4 

5 6.8 6.7 1.0 2.4 

6 13 9.3 2.7 1.9 

7 4.8 - 2.2 1.6 

8 3.5 - 35.8 13.4 

9 59.4 53.6 1.9 1.3 

 

Screening the purity of RNAs isolates. The quality of extracted RNAs is critical 

for obtaining meaningful information about gene expression from PCR tests. That is why, 

the purity of RNAs from residual DNA contamination was checked by amplifying 16S 

rDNA in the RNAs isolates using PCR. Each PCR mixture contained 2 µL of studied 

RNA, 0.2 µL of Taq polymerase, 2 µL of 10 × Taq buffer, 1 µL of each primer, 1 µL of 

deoxynucleoside triphosphates (dNTP), 1.6 µL of magnesium chloride (MgCl2), 11.2 µL 

of nuclease-free water. Thermal cycling consisted of initial denaturation for 5 min at 94º 

C, followed by 30 cycles of denaturation at 94º C for 30 sec, annealing at 56º C for 30 sec 

and extension at 72º C for 1 min. The last step of PCR cycling was final extension at 72º 

C for 5 min. A positive control containing purified DNA from soil samples was included 

into PCR experiment along with a negative control (no DNA added). The PCR products 

were examined on 0.9% agarose gel electrophoresis (see Fig. 24). The results showed 

absence of DNA in all of the RNAs isolates. 
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Figure 24. Results of 16S rDNA amplification in groundwater samples.  From left to 

right: a standard (Smart Ladder (SL)), from 1 to 9 groundwater samples collected in 

summer, 1` to 10`groundwater samples collected in winter, a positive controls (P) and a 

negative control (N). 

 

In addition, purity of the RNAs was checked by examining A260/A280 ratios 

received during the measurement of the concentration of RNAs on NanoDrop 

spectrophotometer in the previous step. For all of the samples the values were ~ 2.0. 

cDNA synthesis. The reaction which converts RNA to cDNA is called reverse 

transcription (RT). Before carrying out RT the concentrations of RNAs were normalized 

to 30 ng/µL for summer samples and to 12 ng/µL for winter samples. RT was conducted 

using QIAGEN QuantiTect®Reverse Transcription Kit. At first template RNAs were 

prepared by elimination of genomic DNAs by adding 2 µL of gDNA Wipeout Buffer to 

12 µL of normalized RNA solutions and incubating them at 42 ºC for 2 min. RT reaction 

master mixtures were prepared according to the instructions provided by the 

manufacturer and added to the template RNAs. RT reactions were performed for 30 min 

at 42 ºC, followed by incubation for 3 min at 95 ºC. Obtained cDNA were stored at –20 

ºC until they were used in PCR experiments. 

16S Amplicon profiling. In bacteria, 16S rRNA molecules are an essential part of 

the ribosome (which is the machinery that converts mRNA into proteins) and are thus 
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ubiquitous. Moreover, its sequence is highly specific to each bacterial clade. It has been 

thus used for taxonomical purpose for more than 40 years.  16S amplicon profiling is a 

methodology combining mass amplification of specific part of the 16S rDNA from a pool 

of total DNA and the mass sequencing of individual amplicon using next-generation 

sequencer.  The resulting sequencing library are then subjected to a bio-informatic 

treatment and analysis to give a contingency table linking sequence specific taxonomic 

identification to relative abundance in the sample. In summary, it allows the identification 

of the major bacterial populations present in any biological sample without relying on 

actual microbial culture and isolation. 

In this study, the 16S bacterial profiles have been obtained from the total DNA 

extracted from both campaigns. The profiles have been used for a PICRUSt 

(Phylogenetic Investigation of Communities by Reconstruction of Unobserved States) 

analysis. In short, this software browses the bacterial genomic information available and 

tries to identify the populations present in our sample whose genomic content is known.  

From these specific populations, the program establishes the genome based theoretical 

metabolic content of each sample.  These data have been analyzed to identify the 

potential (theoretical) distribution of functional genes involved in N-cycle within 

bacterial species present at each studied location.  

Based on the obtained information the most abundant bacteria which possess 

targeted nitrifying and denitrifying genes were identified (Table 8). During the sequence 

analysis it was not possible to allocate each identified sequence to the particular bacteria 

species. Nevertheless, unknown sequences were related to already defined species based 

on BLAST (Basic Local Alignment Search Tool) similarity analysis.  
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Table 8. The most abundant nitrifying and denitrifying bacterial genus (species) revealed 

by means of 16S rRNA sequence analysis and targeted genes present in their genome 

(some bacteria carry several targeted genes, which explains the repeating records in the 

table). 

Targeted gene Bacteria genus  
The number of sequence 

in the sample 

amoA Nitrospira  45 

nirK 

Microbacterium 

Massilia  

Undibacterium 

Cutibacterium 

Burkholderiaceae 

Gemmatimonadaceae 

Janthinobacterium 

1117 

91 

136 

61 

64 

80 

39 

nirS 

Dechlorosoma 

Dechloromonas 

Burkholderiaceae 

Ferribacterium 

Gallionellaceae 

204 

148 

54 

58 

52 

norB 

Dechlorosoma 

Dechloromonas 

Massilia 

Undibacterium 

Cutibacterium 

Burkholderiaceae 

Ferribacterium 

204 

148 

91 

136 

61 

64 

58 

norC 

Dechlorosoma 

Dechloromonas 

Burkholderiaceae 

Ferribacterium 

204 

148 

54 

58 
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Pseudorhodobacter 

Gallionella  

60 

37 

nosZ 

Dechlorosoma 

Dechloromonas 

Gemmatimonadaceae 

Burkholderiaceae 

Ferribacterium 

Burkholderia-Caballeronia-

Paraburkholderia 

204 

148 

80 

54 

58 

47 

 

PCR design.  PCR design includes: 1) development or selection of primers 

suitable for targeting each studied gene; 2) identification of positive controls; 3) 

establishing conditions for PCRs that allow optimal amplification of gene sequences.  

Primers. Nucleotide sequences of six targeted genes in bacterial species 

determined by 16S rRNA sequence analyses were searched in Kyoto Encyclopedia of 

Genes and Genomes (KEGG) database. They were used for developing the primers for 

PCRs. 

Table 9 shows PCR primers used in this study. Primers for the amplification of 

amoA gene were taken based on the previous study (Pjevac et al., 2017). As for the 

primers used for targeting the denitrifying genes, it was decided to develop them based 

on the collected nucleotide sequences from KEGG, since there is evidence about high 

phylogenic diversity of denitrifiers (Geets et al., 2007, Philippot et al., 2007). Therefore, 

the selected approach allowed us to be more accurate in selecting primer sequences, since 

only the target gene sequences extracted from genome knowledge of bacteria present in 

the samples were aligned to select suitable regions for primers. The sequence alignment 

was performed using Geneious bioinformatics software platform. Due to significant 

discrepancies (low level of sequence conservation) in collected gene sequences, in some 

cases: 1) several sets of primers targeting each gene were developed; 2) some primers 

were degenerated meaning that some positions of nucleotide bases contain a number of 

possible bases that allow to encode the consensus sequence of a population of aligned 
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sequences. Degenerated base symbols in biochemistry can be found in IUPAC 

(International Union of Pure and Applied Chemistry) notation of nucleotides (Cornish-

Bowden, 1985) which provides representation for a position on a DNA sequence that can 

have multiple possible alternatives. These should not be confused with non-canonical 

bases because each particular sequence will have in fact one of the regular bases.  

 

Table 9. Primer sets used for PCR analysis. If primers are developed in this study, third 

column shows entries for nucleotide sequences in KEGG used to develop them. 

Gene Primer set 
name 

Sequence (5` – 3`) 

Amplic

on size 

(bp) 

Reference or 

Accession code in 

KEGG  

amoA 

1) comA 1) F: TAYAAYTGGGTSAAYTA 
    R: ARATCATSGTGCTRTG 

415  
Pjevac et al. (2017)  2) comB 2) F: TAYTTCTGGACRTTYTA 

    R: ARATCCARACDGTGTG 

nirK 

1) nirK_2   
 1) F: AGTGCCCATGCTCAAAGAGA 

    R : GTGTGGTCTGGTCGAGATG 218 

HMPREF0675_3095, 
TIA2EST2_00450, 
TIA2EST36_00465, 

PAZ_c00990, 
TIB1ST10_0047, 

PAC1_00475 
2) nirK_3  2) F: TACACCTTCTGGACCTTC 

    R: GATCATGCCGTACATGCC 249 
ACZ75_02345, 
DPH57_05460, 
CR152_22600 

3) nirK_4  3) F: GTCGCAGCACTTCKCCGACA 
    R: CGATGCCGCCGAGGAASACC 244 

AOA12_21000, 
BOH66_04700 

4) nirK_5  4) F: ATGTACGGCATGATCCTG 
     R: CTCGCCGATGATGTGGAA 255 

CNX70_25620, 
FJQ89_14835, 
BZG29_25290 

nirS 

 1) nirS_2  1) F: CAGGGCCGTCTGGAAAAGA 
    R: GGAAGCGGAAGTACGGGAAA 

 306 Daro_3274, , 
Dsui_3318 

 2) nirS_3 2) F: TGGACMTGATGGCSCGCT 
    R: GCCGATCACGAACAGRTA 

251 Ajs_1912, 
AG14_09250, 

Slit_1129 
 3) nirS_5  3) F: AACCTGATCGACCTGTGGAT 

     R: TSCCGGTTTCCTTCACGTT 262 Daro_3323, 
Dsui_2076 

https://en.wikipedia.org/wiki/International_Union_of_Pure_and_Applied_Chemistry
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norB 

 1) norB_3   
 1) F: TTTGTTCCTTTTCCAGACCC 

    R: TACGACGAAAGCTACTGCC 

220 

 

HMPREF0675_5039, 
TIA2EST22_09670, 

PAZ_c20630 
 2) norB_4  

2) F: ATGACSSTGTTYGCCTTCAA 
    R: AKGATRGGCATGGYGTAG 216 

EAG14_18605, 
Dsui_3110, 
Daro_3191, 

HYN24_04090, 
EJN92_21015 

3) norB_5   3) F: CCTGTGGCAGATCGGCAA 
    R: CACGCCGCCCAGCATGAA 327 Ajs_3435, 

C380_00925 
 4) norB_6  4) F: CGTCAGCCGCACCATMCA 

     R: ACCATGRCGATCAGRCCG 339 
ACZ75_02360, 
DPH57_05475, 
EJN92_21015 

norC 

 1) norC_2  1) F: GTTCCTTGCGCTGTCATTC 
    R: GCCACGATGGCRTTCAGTT 259 

HYN24_04095, 
Daro_3190, 
Dsui_3109 

 2) norC_3 2) F: CGCAAATCTTYTWCGGMGG 
     R: GSGCRAARTARGCGCCTT 161 

EAG14_18600, 
EOK75_11550, 

Dsui_3109 

nosZ 1) nosZ 1) F : TGGGGMATYACCAAYGARTC 
           R: GVADYTYGRTGATCTTGTCGCA 196 

EOK75_06080,B496
6_05785,Dtpsy_1060
,CBP33_04725,CBP3
4_04685,CBP36_051
50,CBP35_13785,DE
H84_05875,EAG14_

13765 
 

Positive controls. It was possible to select positive controls for amoA gene among 

available soil samples where Nitrospira genus was present. For this purpose the RNAs 

were extracted from soils using QIAGEN RNeasy PowerMicrobiome Kit followed by RT 

to synthesize cDNA by means of QIAGEN QuantiTect®Reverse Transcription Kit 

applying the instructions of manufacturer. Obtained cDNAs were used in PCR test 

together with comA and comB primer sets. Each PCR mixture contained 2 µL of studied 

cDNA, 0.2 µL of Taq polymerase, 2 µL of 10 × Taq buffer, 1 µL of each primer, 1 µL of 

deoxynucleoside triphosphates (dNTP), 1.6 µL of magnesium chloride (MgCl2), 11.2 µL 

of nuclease-free water. Thermal cycling was carried out with initial denaturation for 10 

min at 95º C, followed by 40 cycles of denaturation at 95º C for 30 sec, annealing at 52º 

C  for 45 sec and extension at 72º C for 1 min. Cycling was completed by final extension 

at 72º C for 5 min. The results of PCR test were visualized on 0.9% agarose gel by 
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electrophoresis (see Fig. 25). The results showed that comB primer set is suitable for 

spotting amoA gene expression in Nitrospira in selected soil samples. Therefore, it was 

decided to use only comB group for identifying amoA expression in groundwater sample. 

Moreover, it was decided to carry out additional PCR test using comB to check if a slight 

increase in annealing temperature (to 54 ºC) and time of electrophoresis will provide 

better signal of gene expression on agarose gel.  Fig. 26 demonstrates the results of this 

experiment: indeed, the temperature change allowed achieving better output. 

At the same time, it was not possible to select positive controls for any of the 

denitrifying genes, since all of the performed PCRs tests from available soil samples 

failed to detect their expression. Probably, such results are related to the fact that, as it 

was mentioned previously, denitrifying bacteria are a very diverse group of organisms, 

and the selected sets of primers was developed specifically for the bacteria communities 

established in groundwater of the explored aquifer. Consequently, it is likely that other 

sets of primers should be selected for the tested soil samples taking into consideration the 

nucleotide sequences of the bacteria present in them.  

 

 
Figure 25. Results of the PCR analysis on three soil samples tested as positive controls. 

From left to right: a standard (Smart Ladder (SL)), soil cDNAs amplified with comA 

primer set (first three undiluted, followed by three diluted and negative control (N)), a 

standard (Smart Ladder (SL)), soil cDNAs amplified with comB primer set (first three 

undiluted, followed by three diluted and negative control (N)) and a standard (Smart 

Ladder (SL)). 
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Figure 26. Results of PCR analysis after the change in annealing temperature on three 

soil samples tested as positive controls using comB primer set. From left to right: a 

standard (Smart Ladder (SL)), soil cDNAs (first three undiluted, followed by three 

diluted) and negative control (N), a standard (Smart Ladder (SL)). 

 

PCR conditions.  For detecting of the gene expressions of nitrifying and 

denitrifying bacteria each PCR mixture contained the same proportions of ingredients: 2 

µL of studied cDNA, 0.2 µL of Taq polymerase, 2 µL of 10 × Taq buffer, 1 µL of each 

primer, 1 µL of deoxynucleoside triphosphates (dNTP), 1.6 µL of magnesium chloride 

(MgCl2), 11.2 µL of nuclease-free water. The results of PCR experiments were examined 

by electrophoresis on 0.9% agarose gel. The applied conditions of thermal cycling for 

each gene and corresponding primer sets are summarized in Table 10. Number of cycles 

is related to the number of the repetitions of denaturation, annealing and extension stages. 
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Table 10. PCRs conditions used to detect the presence of nitrifying and denitrifying 

enzymes (T – temperature, t – time). 

Gene Primer 
set name 

Initial 
denaturation 

T/t 

Denaturation 
T/t 

Annealing 
T/t 

Extension 
T/t 

Number 
of cycles 

Final 
Extension 

T/t 
amoA comB 

95ºC/5min 
 

95ºC/30sec 51ºC/45sec 

72ºC/1 min 
 

40 

72ºC/5min 
 

nirK 

nirK_2 

94ºC/30 sec 

56ºC/45sec 30 
nirK_3 51ºC/45sec 45 
nirK_4 65ºC/45sec 45 
nirK_5 51ºC/45sec 45 

nirS 
nirS_2 57ºC/45sec 30 
nirS_3 57ºC/45sec 45 
nirS_5 56ºC/45sec 45 

norB 

norB_3 54ºC/45sec 45 
norB_4 56ºC/45sec 45 
norB_5 55ºC/45sec 30 
norB_6 57ºC/45sec 45 

norC norC_2 56ºC/45sec 45 
norC_3 56ºC/45sec 45 

nosZ nosZ 95ºC/30sec 51ºC/45sec 30 
 

Sanger sequence analysis of PCR products. The obtained PCR products were 

purified using Wizard® SV Genomic DNA Purification System. Some of them were 

purified directly from the PCR solution; however, the majority of PCR products were cut 

out from the agarose gel due to the occurrence of dimmers (see Annex Text 3 Figures 15 

– 29).  The concentrations of obtained PCR products were measured and the samples 

with appropriate values (excluding those exhibiting negative or unexpectedly high 

values) were prepared for Sanger sequencing. In particular, they were normalized in 

accordance with their expected amplicon size (1ng/µl for 200 – 500 bp) and sent together 

with the corresponding primers at the concentration of 5 µM to GIGA University of 

Liege (Belgium) for Sanger sequence analysis. The required volumes of PCR products 

and primers were 10 µl each.  
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4.4. Actual nitrifier and denitrifier enzymatic pathways in the aquifer 

The results of PCR tests, followed by sequence analysis of the amplified products, 

revealed actual denitrification pathway in the studied aquifer. The following section 

describes the experimental results and discusses the N2O transformations in subsurface in 

the investigated aquifer. 

Table 11 compares the results of PCR amplification targeting the cDNA of six 

genes: amoA, nirK, nirS, norB, norC and nosZ, in collected groundwater samples with the 

results of Sanger sequencing analyses of the respective PCR products. It should be 

highlighted that PCR reactions were performed with all 15 developed primer sets (Table 

9 (pp. 136 – 137)), however, it was not possible to obtain any amplification (or it was too 

slight and blurred) with 6 of them (nirK_2, nirK_4, nirS_2, norB_3, norB_5 and norB_6) 

(more details in Annex: Text 3, Figures 15 – 29). 

In the majority of cases, except nirS_5, nirK_3 and norC_2, the produced PCR 

bands were blurred (occurrence of dimmers). That is why Sanger sequence analysis did 

not produce high quality chromatograms with defined picks which corresponds for 

certain nucleotides.  

The nucleotide sequence of the different PCR products were compared to 

GenBank repository using BlastN and BlastX algorithm in order to identify the most 

similar sequences. The application of BLASTN allows comparing the available 

nucleotide sequence with the “non-redundant” nucleotide sequence database. BLASTX 

algorithm translates the DNA query sequence into the 6 possible amino-acid sequences 

and look for the nearest homolog in the Protein Database. The results of BLAST analysis 

showed that not all amplified nucleotide sequences corresponded to the targeted DNA 

(see Annex Table 6). The ones which were revealed as protein-coding for respective 

genes are marked with red cross in Table 11. 
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Table 11. Results of PCR and Sanger sequence analysis (SSA) conducted for 

groundwater samples collected during summer and winter campaigns at Bovenistier and 

SGB sites (yellow color highlights N2O production pathway and green color – the 

presence of N2O consumption mechanism). To distinguish between summer and winter 

samples winter ones are indicated with an apostrophe next to them. 

Location 

amoA nirK_3 nirK_5 nirS_3 nirS_5 norB_4 norC_2 norC_3 nosZ 

PC
R

 

SSA
 

PC
R

 

SSA
 

PC
R

 

SSA
 

PC
R

 

SSA
 

PC
R

 

SSA
 

PC
R

 

SSA
 

PC
R

 

SSA
 

PC
R

 

SSA
 

PC
R

 

SSA
 

1 (Pz13)     + +   + + + + +    + + 

2 (Pz12 bot) +                  

3 (Pz12 top)     + +     + +       

4 (PzCs bot)     + +   + + + + + +     

5 (PzCs top)         +          

6 (SGB1 bot)     + +             

7 (SGB1 top)   + + + +     + + + +     

8 (SGB3 bot)   + + + + +  + + + + + + +    

9 (SGB3 top)     + +   + +         

1`(Pz13) +        + + + +     + + 

2`(Pz12 bot)     +    +  + + + +     

3`(Pz12 top)   + +       + +       

4`(PzCs bot) +    +  +  + + + +   +    
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5`(PzCs top)     + +     + + + + +    

6`(SGB1 bot)     +              

7`(SGB1 top) +    +  +    + +   +    

8`(SGB3 bot)     +  +            

9`(SGB3 top)     +          +    

 

Despite the fact that it was possible to receive amplification after PCR targeting 

ammonia oxidizers amoA gene, Sanger sequence analysis did not confirm that the 

amplified nucleotide sequence belongs to it. As for the denitrifying genes, PCRs and 

Sanger sequence analysis revealed that they are expressed in the majority of studied 

locations, though not in all locations the sequential denitrification steps from NO2
- to NO 

reduction with following production or consumption of N2O can be confirmed. The 

presence of both nitrite (nirK and/or nirS) and nitric oxide (norB and/or norC) reductases 

were detected at locations: 3 (Pz12 top), 4 (PzCs bottom), 7 (SGB1 top), 8 (SGB3 

bottom) – for summer campaign and 3 (Pz 12 top), 4 (PzCs bottom), 5 (PzCs top) – for 

winter campaign (Table 11). It means that at these locations N2O production via the 

denitrification pathway can be suggested. N2O production due to NO reduction could 

occur at location 2` (Pz 12 top), since NO reduction genes (norB and norC) were 

expressed there. However, it is difficult to relate N2O production to particular process, 

since NO might originate from nitrification (NH2OH oxidation) and denitrification (NO2
- 

reduction) processes occurring in other parts of the aquifer. As for the N2O consumption, 

the presence of active nosZ gene was observed only at the deepest sampled location 1 (Pz 

13) for both summer and winter periods (Table 11).  

So occurrence of N2O production through denitrification pathways can be 

assumed for most of the studied locations at Bovenistier site. As for the SGB site, N2O 

production related to denitrification might occur during summer period. N2O 

consumption is sporadic and, most probably, occur only in the deepest parts of the 
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aquifer. Production of N2O through ammonia oxidation pathway cannot be confirmed, 

since Sanger sequence analysis did not show presence of amoA gene in amplified PCR 

products. 

Disentangling the N2O production/consumption dynamics using the results of 

isotope/isotopomer and microbiological studies. In comparison to isotope and 

isotopomer studies, microbiological data helped to clarify the missing points in the 

interpretation of N2O subsurface dynamics. In particular, based on isotope and 

hydrochemical data, obtained after vertical examination of the aquifer profile, it was 

possible only to understand whether the production or consumption of N2O occurs, while 

the identification of the processes governing it was still not straightforward. Moreover, 

even such preliminary conclusions in certain cases were not fully supported by 

microbiological data. For instance, it was assumed that reduction of N2O might have 

occurred at the deep groundwater at SGB site in winter due to the noticeable increase in 

δ15Nα-N2O with depth. However, the nosZ gene was detected only at the deepest sampled 

piezometer at Bovenistier. The rest of studied points confirm N2O production as the 

dominant process within the aquifer. Moreover, the expression of genes showed that 

incomplete denitrification (without further reduction of N2O to N2) has a potential to 

produce N2O within the aquifer profile. This evidence show that aquifers do not only 

accept, store and transport GHGs but also that the processes occurring in the subsurface 

affect their production and/or consumption. 

The results of tracer experiment, aimed to estimate the magnitude of nitrification 

and denitrification, partly coincide with obtained evidence of active genes abundance in 

the aquifer. For instance, both for the points 7 (SGB 1, top level) and 6 (SGB 1) bottom 

level) where N isotope measurements did not reveal denitrification activity, the actively 

expressed denitrifiers were also not detected.  

At the same time, locations 1 (Pz 13) and 3 (Pz 12 top), which demonstrated 

potential for denitrification activity based on microbiological studies, did not show any 

change in 15N-N2O or 15N-N2 during tracer experiment. It is unclear why it was not 

possible to detect the occurrence of denitrification by the analysis of isotopic signatures 

at two latter points, since the results of tracer test for location 4 (PzCs bottom) and 5 
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(PzCs top) which has a potential for producing N2O based on microbiological studies, are 

not available. It might be the case that the experimental design developed for measuring 

rates of microbiological processes does not capture the complexity of subsurface media 

where bacteria might be attached to the surface of rocks forming biofilms next to which 

N transformation occurs. Another reason might be related to the nature of enzymatic 

reactions which increase in rate until the moment when all enzyme active sites are 

occupied. Afterwards, the rate of reactions levels off at much lower rate and how fast it 

comes back to its full extent depends on the frequency at which the enzyme-substrate 

complex is converted to a product along with the original enzyme.  It might be the case 

that due to the high initial levels of NO3
- in groundwater the available enzymatic active 

sites were occupied, which is a reason why it was not possible to detect denitrification 

activity at locations 1 and 3 within 48 hours experiment. Finally, it is also possible that 

the rate of denitrification is small enough, which made it difficult to be measured. 

In general, it seems that even despite the high level of DO in groundwater, the 

mechanism triggering denitrification which lead to the production of N2O exists in the 

natural aquifer conditions. It is difficult to conclude whether this is related to the 

occurrence of anaerobic microsites within the aquifer (suggested by many previous 

studies) or to the ability of bacteria to adapt or switch on protective mechanisms against 

certain disruptions (e.g. NO2
-/NO toxicity). However, the SP values, which are assumed 

to be the most reliable evidence of the nature of N2O transformations, do not support the 

incomplete denitrification (without further reduction of N2O to N2) as a singular process 

which affects N2O availability in groundwater. Since the presence of amoA gene in the 

biomass collected from groundwater was not detected, it suggests the production of N2O 

through nitrification pathway in the unsaturated zone with its following infiltration (in its 

dissolved form in water) and/or diffusion to the aquifer where the mixing between 

denitrified and nitrified N2O occurs. However, to prove this suggestion it is important to 

conduct additional studies of N2O transformation and transport within the unsaturated 

zone as it might be the case that under natural conditions SP values differs from the ones 

reported mainly based on lab design experiments. Also, it is important to make further 

isotope and microbiological studies including both unsaturated and saturated zone to 
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understand where the extent of processes has a pronounced effect on N2O subsurface 

availability.  
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Conclusions 
This study collected evidence about the dynamics of GHGs in one of the largest 

groundwater chalk aquifers under agricultural areas in the Walloon Region (Belgium). A 

series of field campaigns at regional and local scales as well as laboratory experiments 

were carried out in order to capture the heterogeneity of aquifer conditions which 

eventually affect the formation of zones suitable for accumulation of GHGs with 

particular focus on N2O. In such a way, it attempted to bridge the gap between the two 

types of studies of N2O dynamics in the subsurface represented in the existing body of 

knowledge: 1) the estimates of the emissions of GHGs in the areas of groundwater 

discharge without the previous rigorous examination of the potential of these selected 

areas to produce and release GHGs; and 2) local-scale isolated (point) measurement of 

the rates of GHGs production and consumption processes. The conducted research 

activities aimed to evaluate the potential role of aquifers affected by agricultural activities 

as a source of GHGs emission to the atmosphere and improve the understanding of the 

impact of the spatial heterogeneity of subsurface media (in both vertical and lateral 

dimensions) on the dynamics of N2O production and consumption processes. Also, 

within the framework of this project measurement of SP values and bacterial mRNA 

studies were applied as the promising techniques in the field of N cycle studies in order to 

reveal the nature of N2O transformations in the subsurface. The application of these 

experimental methods allowed to evaluate their capability and efficiency for 

characterization of the peculiarities of N2O dynamics in subsurface. This information can 

be used in further studies aiming to model and quantify N2O fluxes.  

The data obtained during the sampling campaigns covering the studied aquifer 

revealed that the concentration of GHGs in groundwater varied in accordance to the 

change in hydrogeological conditions and the distribution of anthropogenic and natural N 

and C sources over the studied aquifer. In the majority of cases groundwater was 

oversaturated with GHGs in respect to their equilibrium atmosphere concentrations. The 

concentration of N2O was the most variable among other GHGs, which is attributed to 

the fact that its production/consumption pathways are controlled to a large extent by 

microbiological metabolism the intensity of which varies under different environmental 
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factors (e.g. presence of enzyme activity inhibitors, availability of substrate etc.). As the 

amount of N2O in the groundwater was most responsive against the spatial variations of 

the aquifer conditions, it becomes evident that the total flux of N2O originating from the 

given aquifer is associated with high level of uncertainty, particularly in comparison to 

the other GHGs. The higher concentrations of N2O were observed in the unconfined areas 

with denser human settlement network under which the highest concentrations of NO3
- in 

groundwater were detected. On the contrary, the confined areas of the aquifer with lower 

levels of N input showed the lowest concentration of N2O. Yet the overall trend remained 

recognizable and unchanged even under the lower N inputs: in general, N2O 

concentrations increased with the rise of concentrations of N compounds. As for the 

concentration of CO2, it did not change significantly in groundwater, which might be 

explained by equal distribution of organic matter across the studied area and by the fact 

that the amount of CO2 dissolved in the groundwater was controlled by the process of 

dissolution of carbonate minerals which constitute aquifer geology. Finally, the observed 

tendency towards the accumulation of CH4 even in oxic subsurface conditions might be 

related to the presence of natural sources of this gas in the Houiller formation below the 

aquifer and connected with it through the fracture network. 

Since agricultural activities have considerable influence on the concentration of 

dissolved N2O in comparison to two other GHGs, it was decided to obtain better insight 

into its production and consumption pathways within the aquifer. The data obtained from 

isotopomer and isotope analysis of groundwater collected during the regional sampling 

campaign was used to build isotope maps which suggested that N2O availability might be 

the result of simultaneous occurrence of both nitrification and denitrification processes 

within the aquifer. Direct measurement of the magnitude of respective processes within 

the aquifer was not possible for the majority of selected locations due to the high 

groundwater fluxes. The laboratory bottle incubation experiments conducted with 

groundwater samples in order to determine the potential rates of nitrification and 

denitrification did not capture the occurrence of those processes on detectable levels. 

Initially it appears that such outcome might be related to the fact that N2O availability in 

groundwater can be determined by the nitrification and denitrification processes 

occurring in the unsaturated zone. Alternatively, it might be suggested that there exists a 
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discrepancy between the real aquifer conditions and laboratory studies which does not 

allow capturing the processes of N2O production consumption occurring in situ. In 

particular, such hypothesis is supported with the following observations: 

1) while the experiment has not detected ongoing denitrification, the only 

single location among the selected sampling points that exhibited the low 

DO level (< 1.5 mg/L) also exhibited ambient groundwater SP and δ15N-

N2O values in the ranges typical for complete denitrification (with N2O 

reduction); 

2) microbiological studies detected mRNAs of denitrifiers in biomass 

obtained from groundwater at the locations sampled for incubation 

experiment, which is the evidence of active denitrifier genes present in the 

aquifer. In particular, at the location mentioned above the measurements 

of isotopomer and isotope signatures demonstrating N2O reduction 

coincide with the presence of all enzymes handling denitrification, 

including N2O reductase. As for the other locations, in the majority of 

cases the occurrence of incomplete denitrification leading to N2O 

production was supported by the results of conducted mRNAs studies. 

Therefore, it appears that the observed isotopic signatures of N2O in the aquifer 

are indeed affected by denitrification ongoing in the aquifer, though the bacteria 

conducting it were not contained in sufficient quantity in the collected samples, since the 

majority of them might have resided in the biofilm attached to the surface of the rocks 

constituting the aquifer geology. Taking into account the measurements of ambient SP 

and δ15N-N2O values in the studied locations, it appears plausible that the size of bacterial 

communities as well as reaction rates between the aquifer conditions and during the 

laboratory experiment could have differed.  Since there was no microbiological evidence 

of nitrification, it might be suggested that this process most probably occurs in the 

unsaturated zone. However, it should be pointed out that the availability of N2O might be 

also governed by abiotic processes which were not considered in the framework of this 

research. 
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In the framework of this study isotopomer analysis was applied as a tool to 

disentangle different processes of N2O production and consumption. It allowed collecting 

more information about SP ranges of N2O under in situ conditions and evaluating overall 

role of this technique in distinguishing N transformation pathways. In most of the cases 

SP values varied from approximately 10 ‰ to 27 ‰ (mean 20.2 ± 5.0 (n = 25)), which 

falls out of the ranges reported for nitrification and denitrification processes in other field 

and laboratory studies. That is why it appears that mixing between those processes affects 

the SPs of the produced N2O. Moreover, since high SP values (> 45 ‰) were not 

detected across the studied aquifer, except one location, N2O reduction occurrence is not 

likely, as it is not reflected by the observed N2O isotopic signatures. This assumption is 

supported by microbiological studies which demonstrated the presence of enzymatic 

pathways leading to N2O production, but not towards its consumption during 

denitrification in the studied aquifer. The highest SP value of 54‰ was detected in the 

deeper part of the aquifer characterized with low concentration of DO. At this location 

N2O reduction as the final step of denitrification was assumed and further supported with 

the presence of N2O reduction enzyme.  

While SP values typical for nitrification (from 30 ‰ to 37 ‰) were also detected 

in collected groundwater samples, the mRNAs studies did not reveal the presence of 

ammonia oxidizers in collected groundwater samples. Therefore, it might be the case that 

biotic nitrification which influences SP values occurs in the unsaturated zone or that 

abiotic nitrification producing same values of SP as biotic one takes place in the studied 

aquifer. To summarize, it appeared that the solitary application of SP values can provide 

information regarding the production or consumption of N2O. Yet in order to identify the 

processes occurring in situ and distinguish between different pathways of N2O dynamics 

it necessary to complement its findings with the study of enzyme activities.  

To summarize, the results of this study showed that application of 

isotope/isotopomer mapping approach together with hydrochemical evidence can give the 

general idea about the nature of processes occurring in the subsurface. However, under 

the heterogeneous conditions of subsurface the values of SP and N isotope signatures are 

the result of mixing between continuous transformation and transport processes of N 
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compounds driven from different sources. The collected experimental evidence suggests 

that spatial heterogeneity of the aquifer conditions has pronounced impact on the 

observed isotopic signature. Consequently, it is difficult to make conclusions about the 

extent of nitrification and denitrification processes based only on the dataset of the 

obtained isotope and isotopomer values. Under such condition the data obtained from 

microbiological and in situ tracer experiments should be applied to trace N transport and 

transformation processes between different subsurface compartments (e.g. subsoil, 

subsoil – bedrock interface, bedrock etc.). Moreover, it is important to emphasize that 

microbiological findings should not be focused on the evidence of abundance of certain 

organisms or enzymes, which might be misleading, but rather on determining their actual 

activity 
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Perspectives 
This project has shown that the simultaneous studies of bacterial activity involved 

into N transformations and measurements of N isotopes and isotopomers in groundwater 

samples can significantly improve our understanding on N subsurface dynamics. At the 

same time, the results obtained based on laboratory incubation N tracer experiments were 

inconsistent with the results obtained from the analysis of ambient groundwater samples, 

effectively not allowing to reach a conclusive answer regarding the role of aquifers in 

N2O dynamics. 

In order to precisely characterize the contribution of subsurface media to the 

indirect N2O emissions, it is necessary to compare the magnitude of N transformation 

processes in different parts of the “soil – unsaturated zone – aquifer” system. The results 

of current study showed that according to SP values the concentration of N2O in 

groundwater is controlled by both production and consumption processes. It is important 

to understand where exactly these processes take place in order to know which 

environmental compartment(s) (soil, unsaturated or saturated zones) is (are) contributing 

most to the produced indirect emissions of N2O. Based on this information, it will be 

possible to compare quantitatively N2O production in unsaturated and saturated zones 

with soils and to get conclusive evidence about the role of subsurface as indirect source 

of N2O emission. 

Furthermore, the study of the indirect emissions should be complemented with the 

investigations of N2O production and consumption within the riparian zones (the 

interface between land and a river) and river sediments in the areas of groundwater 

discharge.  These areas are in direct contact with both groundwater and surface water, 

and processes appearing there are critical in terms of the impact on N2O concentrations 

and, eventually, on the emission of this greenhouse gas from aquatic systems to the 

atmosphere. In particular, it is important to study how the changes of the groundwater 

table and hydrological regime (high and low discharge) can affect N loading and N 

transformations within the groundwater-river system, because these changes might cause 

temporal variability of N2O emissions to the atmosphere. 
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The understanding of the dynamics of N2O production in subsurface should be 

further enriched by studying its variability in response to the changing N loading. In this 

regards, it will be crucial to explore the subsurface N2O fluxes in the areas with similar 

hydrogeological conditions, but different sources of N input (e.g. application of NO3
- or 

NH4
+ fertilizers) in order to compare which processes (NO3

- or NH4
+ transformations) 

yield higher N2O concentrations in groundwater and which impact it has on the indirect 

N2O emissions. 

Finally, it is essential to compare the dynamics of the N2O fluxes occurring in the 

contrasting hydrological/meteorological conditions and under different agricultural 

management practices. The information obtained during such comparative studies can be 

used to refine the upscaling of point estimates of N compounds concentrations in 

different environmental compartments by developing the catchment-scale models of the 

N2O budget. Such models should be able not only to estimate the relative contribution of 

different N sources to N2O concentrations in each environmental compartment, but also 

to simulate the impact of different N2O production and consumption processes on N2O 

availability. 

So far, the existing model allow to estimate the relative contribution of different N 

sources to N2O concentrations in various environmental compartments using the isotopic 

signatures of those sources. However, in order to properly account for the in-situ 

production and consumption of N2O in the field, further information is required regarding 

the dependency of the magnitude of isotope fractionation effects on different factors (e.g. 

concentration of substrate or electron donors, DO, residence time, pH etc.) and their 

combinations. For instance, in order to study the variability of isotopic fractionation 

effects in the laboratory conditions, it will be necessary to imitate aquifer conditions and 

conduct the incubation experiments with varying environmental parameters (i.e. changing 

nutrient supply, various pH values, t etc.) in order to measure isotopic fractionation of 

different N transformations. Such information will be useful for the development of more 

informative and accurate spatially distributed modelling approaches.  
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Annex 

Figure 1. Land use map of the studied area. 
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Figure 2. Piper diagram for the chalk aquifer of the Geer Basin. 
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Figure 3. Distribution of nitrate (NO3

-) and dissolved oxygen (DO) across different zones. 

 
 

 
 

Figure 4. Distribution of B, Cl- and Na+ across different zones. 
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Figure 5. Distribution of SO4
2- across different zones. 

 
 

 
 

Figure 6. Distribution of N2O across different zones. 
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Figure 7. Distribution of CO2 across different zone. 
 
 

 
 

Figure 8. Distribution of CH4 across different zones. 
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Figure 9. δ15N versus δ18O values of NO3
- (A) and δ15N-NO3

- versus δ11B (B) of 

groundwater samples. The isotopic composition for NO3
- and B sources are derived from 

Michener & Lajtha (2008), Xue et al. (2009) and Widory et al. (2004). 
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Figure 10. Pearson correlation analysis of CO2, N2O, NO3

-, Ca2+, DOC and δ13C–DOC. 
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Table 1. Saturation indexes. 

 

Location Calcite Dolomite 

29 0.05 -0.82 

30 -0.18 -1.25 

31 0.07 -0.8 

2 -0.02 -0.92 

25 0.04 -0.75 

26 -0.04 -0.76 

18 0.01 -0.82 

23 0.05 -0.69 

3 0.01 -0.84 

1 0 -0.81 

5 0.08 -0.62 

4 0.11 -0.58 

15 0.02 -0.87 

16 -0.01 -0.97 

24 0.06 -0.72 

17 0.03 -0.79 

14 0.03 -0.66 

7 0.21 -0.33 

9 0.13 -0.46 

20 0.13 -0.42 

8 0.22 -0.21 

19 0.04 -0.63 
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Text 1. Saturation indexes. 

The saturation index (SI) was calculated by comparing the chemical activities of the 

dissolved ions of the minerals (ion activity product, IAP) with the solubility constant of the 

mineral (Ksp) as follows: 

SI = log (IAP/Ksp)          

The SIs were estimated using Diagrammes software with the embedded PHREEQC 

software (University of Avignon, France) (Simler, 2009).  

These indicators help to evaluate the state of equilibrium between water and minerals. If 

SI<0, water is undersaturated and the mineral is being dissolved. If SI>0, water is oversaturated 

and precipitation of the mineral is possible. If SI is close to 0, water is in equilibrium with respect 

to the given mineral. SIs values between –0.5 and 0.5 are considered to indicate equilibrium 

(Welch et al., 1989). 
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Text 2. Description and results of FVPDM and push-pull studies 

1. Finite Volume Point Dilution Method (FVPDM) 

1.1. General description 

The Finite Volume Point Dilution Method is a single-well tracer dilution technique that 

allows direct measurement of a groundwater flow rate in both steady and transient states 

groundwater conditions (Brouyère at al., 2008; Jamin & Brouyère, 2018). It is based on 

continuous low-flow injection of a tracer into a tested well at a controlled injection rate and a 

continuous monitoring of the change in this tracer concentration in groundwater. 

Brouyère et al. (2004) showed that the variation of a tracer concentration in the injection 

well is related to the groundwater flow in the following way: 

𝐶𝐶𝑤𝑤(𝑡𝑡) =  𝑄𝑄𝑖𝑖𝑖𝑖𝑖𝑖𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖−(𝑄𝑄𝑖𝑖𝑖𝑖𝑖𝑖𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖−�𝑄𝑄𝑖𝑖𝑖𝑖𝑖𝑖+𝑄𝑄𝑡𝑡�𝐶𝐶𝑤𝑤,0)𝑒𝑒
𝑄𝑄𝑖𝑖𝑖𝑖𝑖𝑖+𝑄𝑄𝑡𝑡  

𝑉𝑉𝑤𝑤
(𝑡𝑡−𝑡𝑡0)

𝑄𝑄𝑖𝑖𝑖𝑖𝑖𝑖+ 𝑄𝑄𝑡𝑡
  (1) 

where Qinj is the injection rate of a tracer solution (L3/T), Qt is the rate of water 

intercepted at the screen level of the well (transit flow rate) (L3/T), Cw is the tracer concentration 

in the injection well at time t0 (M/L3), Cinj is the tracer concentration in the injected solution 

(M/L3), Cw,0 is the tracer concentration in the injection well at time t0 (M/L3) and Vw is the 

volume of water in the injection well (L3). 

In order to determine the values of transit flow rates Qt in the vicinity of piezometers an 

analytical curve showing the evolution in the tracer concentration Cw(t) in groundwater have to 

be fitted to a real observations curve by adjusting Qt  from Equation 12. All other parameters in 

Equation 1 are defined based on the experimental conditions (Qinj, Cinj, Vw…).  

The transit flow rate Qt is associated to apparent Darcy flux qapp through the cross-

sectional area Sw (L2) of the tested well screens. The apparent Darcy flux qapp (LT-1) is related to 

the effective Darcy flux in the aquifer qD by a flow distortion coefficient αw that accounts for the 

convergence or divergence of the flow field in the vicinity of the borehole. The apparent Darcy 

flux qD,app
 is given by: 

𝑞𝑞𝐷𝐷,𝑎𝑎𝑎𝑎𝑎𝑎 =  𝛼𝛼𝑤𝑤𝑞𝑞𝐷𝐷 = 𝑄𝑄𝑡𝑡
𝑆𝑆𝑤𝑤

=  𝑄𝑄𝑡𝑡
2𝑟𝑟𝑤𝑤𝑒𝑒𝑠𝑠𝑠𝑠𝑠𝑠

  (2) 

where escr is the well screen length (L) and rw the radius of the well. 
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FVPDM is based on the dilution of the injected tracer solution by groundwater flow 

passing through the well screen Qt. The transit flow Qt depends non-linearly on the injection flow 

rate Qinj.  

 

1.2. Field application 

FVPDM was conducted in four piezometers at the Bovenistier site: two in Pz12, one in 

Pz13 and one in PzCs. These tests were dimensioned using the methodology proposed by 

Brouyère at al., 2008. Table 2 provides details about the depth intervals for which FVDPMs were 

carried out.  

 

Table 2. Depth intervals established for FVPDM tests at the Bovenistier site. 
 

Piezometer Depth interval (m) 

PzCs 28 – 33 

Pz12 (top) 35.3 – 36.2 

Pz12 (bottom) 47.5 – 48.4 

Pz13 46 – 51 

 

The scheme of field set up is presented in Brouyère at al., 2008. Uranine was used as a 

tracer during the tests. It was injected using a peristaltic pump to achieve controlled low flow 

injection rates. The constant mixing of groundwater with the injected solution was maintained by 

MP1 pump in order to homogenize the tracer concentration in the piezometer. The concentration 

of uranine was automatically measured every minute using a GGUN-FL30 fluorometer connected 

on the circulation loop.  

 

1.3. Results 

Fig. 11 – 14 present the results of the different FVPDM experiments and the analytical 

curves fitted to the observations.  
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Fig. 11 shows that stabilization of the tracer concentration in PzCs was reached 

approximately in 3.5 hours after the start of injection. The analytical curve showed the best fit 

with the observation curve at Qt = 4.14∙10-2 m3/h, and the calculated apparent Darcy flux qD, app 

was equal to 7.33∙10-2 m/h. 

 
 

Figure 11. Evolution of the tracer concentration and fitted analytical curve for PzCs. 

 

Fig. 12 shows the fast stabilization of tracer concentration in Pz12 (top) which is the 

evidence of fast transit flow rate. At this location, the FVPDM test was carried out in four stages 

by raising the injection rate of the tracer Qinj in order to obtain more reliable estimation of the 

transit flow rate. The estimated transient flow rate Qt is 0.16 m3/h and the apparent Darcy flux qD, 

app is 1.56 m/h. 
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Figure 12. Evolution of the tracer concentration and fitted analytical curve for Pz12 (top). 

 

Fig. 13 displays the adjustment of analytical curve to observations measured at Pz12 

(bottom). Experiment had to be terminated after almost 8 hours since all volume of the prepared 

trace solution was injected into the piezometer. The concentration evolution curve did not reach 

stabilization because of lower than expected transient flow rate at this depth. For the purpose of 

this experiment, it is not necessary to reach stabilization to adjust the analytic curve to the 

observations as it is clear that groundwater flow rate at this location is suitable for further push – 

pull tracer pretest. Certainly, the obtained curve is not perfect but representative which allowed to 

estimate Qt = 5.4∙10-3  m3/h and determine apparent Darcy flux qD, app = 5.31∙10-2 m/h. 
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Figure 13. Evolution of the tracer concentration and fitted analytical curve for Pz12 (bottom). 

 

Fig. 14 shows the change in the tracer concentration in Pz13 and analytical curves 

adjusted to observations. After around 9 hours of the experiment the concentration evolution 

curve did not reach stabilization. That is why, it was decided to increase the injection flow rate. 

As a result, two observation and two analytical curves were obtained. The best fit of the curves 

was achieved at Qt = 1.37∙10-2 m3/h and, consequently, apparent Darcy flux qD, app was equal to 

3.42∙10-2 m/h. 
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Figure 14. Evolution of the tracer concentration and fitted analytical curve for Pz13. 

 

Table 3 summarizes the values of transit flow rate for PzCs, Pz12 (top), Pz12 (bottom) 

and Pz13. The highest groundwater flow rate was observed at Pz12 (top) 0.16 (m3/h) while the 

lowest at Pz12 (bottom) 4.19*10-3 (m3/h). The same magnitude of groundwater flow rate was 

detected at PzCs and Pz13.  

Table 3. Results of FVPDM tests performed at the Bovenistier site. 

Parameter PzCs Pz12 (top) Pz12 (bottom) Pz13 

Qt (m3/h) 4.14∙10-2 0.16 5.4∙10-3 1.37∙10-2 

qD, app (m/h) 7.33∙10-2 1.56 5.31∙10-2 3.42∙10-2 

qD  (m/h) 3.66∙10-2 0.78 2.65∙10-2 1.71∙10-2 

 

As for the SGB site, it was not possible to conduct FVPDM tests due to its remote 

location. 
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2.  Push – Pull pretest 

2.1. General description 

A push-pull test consists of the injection of a tracer into groundwater at a single location 

(e.g. a well or a piezometer) followed by its extraction from the same location after a certain 

period of time called incubation time. The tracer solution is prepared using groundwater 

previously withdrawn from the aquifer at the same location and amended with conservative 

and/or non-conservative tracer(s). Conservative tracers can give an insight into the physical 

processes of advection, dispersion, diffusion, and others, while non-conservative tracers provide 

information regarding sorption, cation exchange, rates of microbiological processes etc. 

 
2.2. Field results 

In situ conservative Push-Pull pretests were conducted in order to estimate the possibility 

to conduct in situ reactive tracer tests which would have been balancing high recovery of the 

injected tracer with sufficient time in situ for microbiological processes to occur at detectable 

levels. In particular, the duration of the “rest” periods of the following tracer tests was to be 

determined as the time required to obtain >50% recovery of the conservative substance. The 

injected solution was prepared using KBr. 

At the Bovenistier site, four push-pull pretests were performed for the same piezometers 

and the same depth intervals as for the FVPDM tests (see Table 2, p. 197). The volume of 

injected solutions for each case was selected before the actual field experiments taking into 

account the fractured geology of the studied area and the volume of water in the “dead zone”.  

Incubation times were adjusted in the field taking into consideration the information about 

groundwater fluxes obtained from FVPDMs. The concentration of Br- was selected taking into 

account almost negligible concentration of Br- in the aquifer (mean 0.82 mg/L) and hypothesized 

fast groundwater fluxes. Details of the test setups are presented in the Table 4. 

At the SGB site, two push-pull pretests were conducted: one at the top of SGB3 

piezometer (17 – 18 meters) and another one at its bottom part (24 – 25 meters). The volume of 

injected tracer solution and the duration of incubation period for each case were chosen 
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considering the results of FVPDM but also based on the experience of the push-pull tests 

performed at the Bovenistier site.  

After the incubation period, groundwater was pumped from the piezometers until the 

stabilization of electrical conductivity (EC). Stabilization usually occurred after approximately 

three volumes of the injected solution were pumped out. Groundwater samples were collected 

every five minutes for further analysis of Br recovery. The injection tracer solution was also 

sampled to determine the exact concentration of Br in it.  

 

Table 4. Push-Pull test set ups for piezometers at Bovenistier and SGB sites. 

Location 
Incubation time 

(hour) 

Characteristics of the injected solution Background 
concentration of 

Br (mg/L) Volume (L) 
Concentration of 

Br (mg/L) 

Pz12 top 1 300 78.38 2.63 

Pz12 bottom 3 300 71.87 0.22 

PzCs 3 500 70.89 0.21 

Pz13 bottom 3 300 66.62 0.20 

SGB3 top 1 300 72.45 0.87 

SGB3 bottom 1 300 75.82 0.09 

 

 
2.3. Results 
 

Table 5 presents recovery factors of bromide (Br-) for the different push-pull experiments 

performed at Bovenistier and SGB. The recovery of the tracer showed that injected tracer 

solutions were dispersed steadily from the screen of Pz12 bottom and Pz13 bottom with the 

recovery 89.03 % and 65.59%, respectively, after 3 hours of the rest period. Steady dispersion 

was detected for both SGB3 top (74.28 %) and SGB3 bottom (62.81%) injection points. 

However, the incubation time for both locations was just 1 hour, which means that its further 
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increase might have led to lower recovery rates of Br-. A rapid washout of the dosing solution 

was observed at Pz12 top and PzCs with 14.15 % and 26.69 %, correspondingly.  

 

Table 5. Recovery of Br- at Bovenistier and SGB sites. 

Piezometer Recovery of Br- (%) 

Pz12 top 14.15 

Pz12 bottom 89.03 

PzCs 26.69 

Pz13 bottom 65.59 

SGB3 top 74.28 

SGB3 bottom 62.81 

 

In the end, the results showed that the in situ tracer experiments for the assessment of the 

magnitude of nitrification and denitrification processes might not be suitable for four (Pz12 top, 

PzCs, SGB3 top and SGB3 bottom) out of six locations due to the chance to obtain lower 

recoveries of tracers. That is why it was decided to perform lab incubation experiments.  
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Text 3. Results of PCR analyses of groundwater samples collected at Bovenistier and 

SGB sites during summer and winter campaigns in the framework of local scale studies of the 

chalk aquifer 

During summer and winter campaigns groundwater samples were collected from the same 

locations. 

Figure 15 shows the result of PCR targeting amoA gene in cDNA converted from total 

bacterial RNA collected groundwater samples.  Among the summer samples it was possible to 

have amplification only at location 2, while winter samples showed better signals which cover 

points, 1`, 4`, 7` and two positive controls. Due to non-appropriate concentration values of PCR 

products only samples from 4` and 7` sites were sent for Sanger sequence analyses. 

 

 
Figure 15. Results of PCR analysis aimed to reveal amoA gene expression in groundwater 

samples. From left to right: a standard (Smart Ladder (SL)), from 1 to 9 – cDNA extracted from 

groundwater samples collected in summer, from 1` to 9` – cDNA extracted from groundwater 

samples collected in winter, positive controls (P),  negative control (N), and a standard (Smart 

Ladder (SL)). 

As for the nirK gene, it was possible to amplify it using nirK_3 (Figure 17) and nirK_5 

(Figure 19) primers sets while amplification did not occur with nirK_2 (Figure 16) and nirK_4 
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(Figure 18) primer series. In particular, Figure 17 demonstrates that replication occurred at 7, 8 

and 3` and Figure 19 shows signals at 1, 3, 4, 6 – 9, 2`, 4`– 9` locations. 

 

 
Figure 16. Results of PCR analysis aimed to reveal nirK gene expression in groundwater 

samples using nirK_2 primer sets. From left to right: a standard (Smart Ladder (SL)), from 1 to 9 

– cDNA extracted from groundwater samples collected in summer, from 1` to 9` – cDNA 

extracted from groundwater samples collected in winter,  20 – negative control (N), and a 

standard (Smart Ladder (SL)). 

 

 
Figure 17. Results of PCR analysis aimed to reveal nirK gene expression in groundwater samples 

using nirK_3 primer sets. From left to right: a standard (Smart Ladder (SL)), from 1 to 9 – cDNA 
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extracted from groundwater samples collected in summer, from 1` to 9` – cDNA extracted from 

groundwater samples collected in winter,  negative control (N). 

 

 
Figure 18. Results of PCR analysis aimed to reveal nirK gene expression in groundwater 

samples using nirK_4 primer sets. From left to right: a standard (Smart Ladder (SL)), from 1 to 9 

– cDNA extracted from groundwater samples collected in summer, from 1` to 9` – cDNA 

extracted from groundwater samples collected in winter,  negative control (N). 

 

 
Figure 19. Results of PCR analysis aimed to reveal nirK gene expression in groundwater 

samples using nirK_5 primer sets. From left to right: a standard (Smart Ladder (SL)), from 1 to 9 

– cDNA extracted from groundwater samples collected in summer, from 1` to 9` – cDNA 

extracted from groundwater samples collected in winter,  negative control (N). 

 



 

208 
 

Figures 20 – 22 display the results of PCR analysis attempting to replicate nirS gene using 

three primer series: nirS_2, nirS_3 and nirS_5. PCR reaction with nirS_2 primers did not show 

any signal (Figure 20). Amplification took place under the presence of nirS_3 (Figure 21) and 

nirS_5 (Figure 22) primers. For nirS_3 points: 8, 4`, 7` and 8`showed replication while for nirS_5 

locations: 1, 4, 5, 8, 9, 1`, 2`, 4` demonstrated it. 

 

 
Figure 20. Results of PCR analysis aimed to reveal nirS gene expression in groundwater 

samples using nirS_2 primer sets. From left to right: a standard (Smart Ladder (SL)), from 1 to 9 

– cDNA extracted from groundwater samples collected in summer, from 1` to 9` – cDNA 

extracted from groundwater samples collected in winter,  negative control (N). 

 

 
Figure 21. Results of PCR analysis aimed to reveal nirS gene expression in groundwater 

samples using nirS_3 primer sets. From left to right: a standard (Smart Ladder (SL)), from 1 to 9 
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– cDNA extracted from groundwater samples collected in summer, from 1` to 9` – cDNA 

extracted from groundwater samples collected in winter,  negative control (N). 

 

 
Figure 22. Results of PCR analysis aimed to reveal nirS gene expression in groundwater 

samples using nirS_5 primer sets. From left to right: a standard (Smart Ladder (SL)), from 1 to 9 

– cDNA extracted from groundwater samples collected in summer, from 1` to 9` – cDNA 

extracted from groundwater samples collected in winter,  negative control (N). 

 

PCR analyses aiming to amplify norB genes with four primer suits: norB_3, norB_4, 

norB_5 and norB_6, resulted in replication only in the presence of norB_4 (1, 3, 4, 7, 8, 1`– 4`, 5` 

and 7`) (Figure 24). As for the norB_6 (Figure 26), it showed very slight and blurred signals so it 

was decided not to consider them.  
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Figure 23. Results of PCR analysis aimed to reveal norB gene expression in groundwater 

samples using norB_3 primer sets. From left to right: a standard (Smart Ladder (SL)), from 1 to 9 

– cDNA extracted from groundwater samples collected in summer, from 1` to 9` – cDNA 

extracted from groundwater samples collected in winter,  negative control (N). 

 

 
Figure 24. Results of PCR analysis aimed to reveal norB gene expression in groundwater 

samples using norB_4 primer sets. From left to right: a standard (Smart Ladder (SL)), from 1 to 9 

– cDNA extracted from groundwater samples collected in summer, from 1` to 9` – cDNA 

extracted from groundwater samples collected in winter, negative control (N). 
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Figure 25. Results of PCR analysis aimed to reveal norB gene expression in groundwater 

samples using norB_5 primer sets. From left to right: a standard (Smart Ladder (SL)), from 1 to 9 

– cDNA extracted from groundwater samples collected in summer, from 1` to 9` – cDNA 

extracted from groundwater samples collected in winter,  negative control (N). 

 

 
 

Figure 26. Results of PCR analysis aimed to reveal norB gene expression in groundwater 

samples using norB_6 primer sets. From left to right: a standard (Smart Ladder (SL)), from 1 to 9 

– cDNA extracted from groundwater samples collected in summer, from 1` to 9` – cDNA 

extracted from groundwater samples collected in winter,  negative control (N). 
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As for the norC gene, it was replicated using two primer sets: norC_2 and norC_3. 

Amplification occurred in both cases: norC_2 – 1, 4, 7, 8, 2`and 5`points and norC_3 – 8, 4`, 5`, 

7` and 9` locations.  Due to non-appropriate concentration values of PCR products at 1 point, it 

was not sent for Sanger sequence analyses. 

 

 
Figure 27. Results of PCR analysis aimed to reveal norC gene expression in groundwater 

samples using norC_2 primer sets. From left to right: a standard (Smart Ladder (SL)), from 1 to 9 

– cDNA extracted from groundwater samples collected in summer, from 1` to 9` – cDNA 

extracted from groundwater samples collected in winter,  negative control (N). 

 

 
Figure 28. Results of PCR analysis aimed to reveal norC gene expression in groundwater 

samples using norC_3 primer sets. From left to right: a standard (Smart Ladder (SL)), from 1 to 9 



 

213 
 

– cDNA extracted from groundwater samples collected in summer, from 1` to 9` – cDNA 

extracted from groundwater samples collected in winter,  negative control (N). 

 

 

As for the nosZ gene, it was replicated using one primer set. The replication occurred at 1 

and 1`. 

 

 
Figure 29. Results of PCR analysis aimed to detect nosZ  gene expression in groundwater 

samples. From left to right: a standard (Smart Ladder (SL)), from 1 to 9 – cDNA extracted from 

groundwater samples collected in summer, from 1` to 9` – cDNA extracted from groundwater 

samples collected in winter, 19 two negative controls (N), and a standard (Smart Ladder(SL)). 
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Table 6. Results of BLASTX and BLASTN analysis of nucleotide sequences obtained from 

Sanger sequence analysis of PCR products received by carrying out a series of PCRs using 

several primer sets. The table provides accession codes to: 1) proteins (enzymes) which are 

encoded by obtained nucleotide sequences; 2) homologue nucleotide sequences which encodes 

studied genes. Red color highlights the locations where amplified sequences do not code for 

targeted protein or gene  

№ 
Studied 

site 

Accession 

code to protein 

(BLASTX) 

Putative 

function 

E value* 

(BLASTX) 

Accession 

code to  

nucleotide 

sequence 

(BLASTN) 

Gene 
E value* 

(BLASTN) 

Target amoA amplified using comB primer set 

1 4` ELY20074.1 

hypothetical 
protein 

HALTITAN_
3299 

1.00E-47 CP022684 
 

non 
relevant 2.00E-129 

2 7` PEI34110.1 

hypothetical 
protein 

CN644_1883
5 

0.043    

Target nirK amplified using nirK_5 primer set 

3 1 RZA20239.1 

nitrite 
reductase, 
copper-

containing 

6.00E-10 KF481896 nirK 2.00E-10 

4 3 WP_156643355.1 

nitrite 
reductase, 
copper-

containing 

6.00E-21 CP040871 nirk 1.00E-19 

5 4 WP_146472229.1 

nitrite 
reductase, 
copper-

containing 

9.00E-47 MN232918.1 nirK 3.00E-74 

6 6 WP_117883142.1 

nitrite 
reductase, 
copper-

containing 

2.00E-08 XM_02441133
6.1 nirK 0.012 

 

7 7 WP_099790330.1 nitrite 
reductase, 5.00E-43 XM_02441133

6.1 nirK 5.00E-87 
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copper-
containing 

8 8 WP_083598787.1 

nitrite 
reductase, 
copper-

containing 

3.00E-19 CP026517.1 nirK 1.00E-18 

9 9 WP_045159547.1 

nitrite 
reductase, 
copper-

containing 

9 KF481896 nirK 5.00E-84 

10 2` NA   NA   

11 4` WP_147857635.1 

MULTISPEC
IES: 

glutamate--
cysteine 
ligase 

5.4 NA NA  

12 5` WP_146472229.1 

nitrite 
reductase, 
copper-

containing 

3.00E-46 CP040871 nirK 5.00E-76 

13 6` NNE81396.1 

DNA-directed 
RNA 

polymerase 
subunit beta' 

1.00E-20 CP039690 non 
relevant 1.00E-57 

14 7` WP_155138164.1 

DNA-directed 
RNA 

polymerase 
subunit beta' 

4.00E-13 CP039690 non 
relevant 

1.00E-61 
 

15 8` WP_099790330.1 

nitrite 
reductase, 
copper-

containing 

4.00E-25 XM_02441133
6.1 nirK 1.00E-61 

 

16 9` WP_007443364.1 
MULTISPEC

IES: beta' 
subunit 

1.00E-18 CP039865 non 
relevant 2.00E-46 

Target nirK amplified using nirK_3 primer set 

17 7 OGX12348.1 

nitrite 
reductase, 
copper-

containing 

3.00E-19 NA   

18 8 WP_034210261.
1 

nitrite 
reductase, 
copper-

containing 

2.00E-10 
CP049872 

 nirK 4.00E-28 

19 3` AMS24507.1 nitrite 7.00E-32 NA   
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reductase 
Target nirS amplified using nirS_3 primer set 

20 8 PJC42680.1 

hypothetical 
protein 

CO040_0315
0 

5.00E-06 
NR_076925.1 
Pseudoxantho
monas spadix 

non 
relevant 2.00E-56 

21 4` PJC42680.1 

hypothetical 
protein 

CO040_0315
0 

5.00E-06 
NR_076925.1 
Pseudoxantho
monas spadix 

non 
relevant 9.00E-59 

22 7` PJC42680.1 

hypothetical 
protein 

CO040_0315
0 

8.00E-07 
NR_076925.1 
Pseudoxantho
monas spadix 

non 
relevant 3.00E-58 

23 8` NA   
NR_076925.1 
Pseudoxantho
monas spadix 

non 
relevant  

Target nirS amplified using nirS_5 primer set 

24 1 WP_169261895.
1 

c-type 
cytochrome 5.00E-25 LN997848 

Nitrite 
reductase 
precursor 

1.00E-52 

25 4 PZU42325.1 nitrite 
reductase 1.00E-40 

CP016278.1 
Diaphorobacter 
polyhydroxybu

tyrativorans 

nirS 6.00E-69 

26 5 NA   NA   

27 8 EME68346.1 
nitrite 

reductase 
precursor 

6.00E-47 
LN997848.1 

Magnetospirill
um 

nirS 2.00E-109 

28 9 KJB91632.1 nitrite 
reductase 8.00E-39 CP021731.1 

Azoarcus nirS 1.00E-55 

29 1` PZU42325.1 nitrite 
reductase 3.00E-38 

CP001392.1 
Acidovorax 

ebreus 
nirS 4.00E-87 

30 2` NA   NA   

31 4` BAE52969.1 
nitrite 

reductase 
precursor 

9.00E-22 AY838762.1 
Thauera nirS 1.00E-31 

Target norB amplified using norB_4 primer set 

32 1 HFL64932.1 
nitric-oxide 
reductase 

large subunit 
2.00E-20 CP000089.1 norB 5.00E-81 

33 3 NA   CP014870 norB  
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34 4 NJD25131.1 
nitric-oxide 
reductase 

large subunit 
2.00E-32 CP000089.1 norB 9.00E-79 

35 7 NJD25131.1 
nitric-oxide 
reductase 

large subunit 
 

3.00E-35 
 

CP003153.1 
 

norB large 
subunit 

 
 

36 8 
NLJ12735.1 

 

nitric-oxide 
reductase 

large subunit 
 

1.00E-38 
 

Pseudomonas 
stutzeri 

 

nitric 
oxide 

reductase 
large 

subunit 
 

3.00E-69 

37 1` WP_148578267.
1 

cbb3-type 
cytochrome c 

oxidase 
subunit I 

2.00E-36 CP000089 norB 1.00E-67 

38 2` RIX45183.1 
 

nitric-oxide 
reductase 

large subunit 
 

9.00E-11 
 

CP000089 
 norB 2.00E-79 

39 3` WP_114968600.
1 

cbb3-type 
cytochrome c 

oxidase 
subunit I 

3.00E-35 CP040709 

nitric-
oxide 

reductase 
large 

subunit 

3.00E-48 

40 4` RIX45183.1 
nitric-oxide 
reductase 

large subunit 
2.00E-34 CP000089 norB 2.00E-84 

41 5` NLJ12735.1 
 

nitric-oxide 
reductase 

large subunit 
 

3.00E-17 
 

MN256668 
 

nitric 
oxide 

reductase 
 

7.00E-55 

42 7` 
WP_116679084.

1 
 

DoxX family 
protein 

 
8.6 NA   

Target norC amplified using norC_2 primer set 

 1 NA   NA   

43 4 TXT28919.1 
nitric oxide 
reductase 
subunit C 

2.00E-53 
CP031842.1 

Dechloromona
s 

nitric 
oxide 

reductase 
subunit C 

9.00E-84 

44 7 TXT28919.1 
nitric oxide 
reductase 
subunit C 

6.00E-48 
CP031842.1 

Dechloromona
s 

nitric 
oxide 

reductase 
2.00E-81 
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subunit C 

45 8 TXT28919.1 
nitric oxide 
reductase 
subunit C 

8.00E-47 
CP031842.1 

Dechloromona
s 

nitric 
oxide 

reductase 
subunit C 

1.00E-83 

46 2` TXT28919.1 
nitric oxide 
reductase 
subunit C 

2.00E-37 NA   

47 5` TXT28919.1 
nitric oxide 
reductase 
subunit C 

2.00E-13 NA   

Target norC amplified using norC_3 primer set 
48 8 NA   NA   

49 4` NBQ24606.1 
MBL fold 
metallo-

hydrolase 
0.58 NA   

50 5` NA   NA   

51 7` AQ26319.1 
putative 

uncharacterize
d protein 

0.002 NA  3.00E-13 

52 9` NA   NA   
Target nosZ amplified using norC_3 primer set 

53 1 WP_121455022.
1 

nitrous-oxide 
reductase 3.00E-18 CP049885 

nitrous-
oxide 

reductase 
6.00E-33 

54 1` NPU94037.1 nitrous-oxide 
reductase 4.00E-20 AP012320 

nitrous-
oxide 

reductase 
2.00E-37 

 

* E value is called expected value. Anything below 1*10-4 can be considered homologues or 

related to the query sequence (JHU AAP. (2010, July 29). NCBI Blast Tutorial. [Video]. 

YouTube. https://www.youtube.com/watch?v=HXEpBnUbAMo&gl=BE). 
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