
Steady Transonic Aerodynamic and Aeroelastic
Modeling for Preliminary Aircraft Design

by

Adrien Crovato

Submitted in Partial Fulfillment of the
Requirements for the Degree of

Doctor of Philosophy in Aerospace Engineering
at the University of Liège

in October 2020

Steady Transonic Aerodynamic and Aeroelastic
Modeling for Preliminary Aircraft Design

A thesis submitted in Partial Fulfillment of the
Requirements for the Degree of

Doctor of Philosophy in Aerospace Engineering
at the

University of Liège
in

October 2020

by
Adrien Crovato

M.Sc.Eng, University of Liège, 2015
B.ASc., University of Liège, 2013

Jury :
Prof. Grigorios Dimitriadis, University of Liège (adviser)

Prof. Vincent E. Terrrapon, University of Liège (co-adviser)
Prof. Koen Hillewaert, University of Liège (president)

Dr. Romain Boman, University of Liège
Prof. Laurent Joly, ISAE-SUPAERO
Dr. Carlos Breviglieri, Embraer S.A.

Dr. Marco Carini, ONERA

Department of Aerospace and Mechanical Engineering, University of Liège
Academic Year 2020-2021

c©University of Liège, 2020

Per i miei nonni e le mie nonne

Abstract
Modern aircraft usually have light and flexible wings with large aspect ratio, which are subjected

to significant deformations. The aeroelastic behavior of such wings is of paramount importance

as it affects both the structural design and the aircraft performance. The present thesis aims at

assessing the impact of aerodynamic modeling on transonic aerodynamic and aeroelastic com-

putations performed in the preliminary stage of the aircraft design process, and at developing

an aerodynamic modeling tool performing such computations with low computational cost.

First, the different levels of fidelity commonly used for aerodynamic modeling in aircraft design

are investigated. The aerodynamic loads predicted by the different models and the compu-

tational cost of the solutions are compared using two rigid wings simulated in transonic flight

conditions. The results show that linear modeling is not suitable for transonic flow calculations

as it cannot capture shocks, and that higher-fidelity models are too computationally expensive

to be used routinely in the preliminary design stage. On the other hand, nonlinear potential

solutions offer an excellent trade-off between accuracy and computational cost. Accordingly,

the main full potential formulations and their solution techniques are subsequently reviewed.

Two specific methods for solving the full potential equation are then developed and imple-

mented. The first is the field panel method, an extension to the widely used and computationally

effective panel method. Numerical calculations show that the iterative field panel approach im-

plemented during this work yields satisfactory results for subcritical flows, but smears shock

waves and thus cannot model transonic flows accurately. Moreover, the computational cost of

the method is prohibitive for such computations. The second method is based on a continuous

Galerkin, unstructured, finite element formulation. The code developed in the context of this

work, Flow, is compared to a commercial state-of-the-art solver, Tranair, using various two

and three-dimensional cases. In practice, Flow’s accuracy and computational cost are similar

to Tranair, but the code is open-source.

The modular design of Flow allows the code to be easily coupled with CUPyDO, an in-house

fluid-structure interaction code, which is then used to perform static transonic aeroelastic com-

putations. In this context, the different aerodynamic levels of fidelity are compared using a

flexible benchmark wing. For the wing shape considered in the present work, the results illus-

trate that linear potential methods yield sufficiently reliable static deformations, provided they

model wing camber. On the other hand, nonlinear methods yield more accurate aerodynamic

predictions but their computational cost is significantly higher. Consequently, static aeroelastic

computations could be efficiently performed following a multi-fidelity approach, whereby a lin-

ear model would first be used to obtain the deformed wing shape, and a nonlinear model would

then be used to compute the aerodynamic loads on that deformed wing shape.

i

Acknowledgments
A PhD thesis is usually considered as the accomplishment of one researcher. However, it is

often, if not always, the result of many people’s contributions, who sometimes even work in the

shadows. I would like to take a few lines to express my deep gratitude to these people.

I would first like to thank my adviser, Grigorios Dimitriadis, and my co-adviser, Vincent Ter-

rapon, for giving me the opportunity to carry out a thesis in their research groups. Greg and

Vincent were always available to answer my questions and to share their insights on the vari-

ous research topics that I am interested in. I could always count on them whenever I needed

advice. I would also like to thank the Aeroelastic Tailoring group at Embraer for setting up such

an ambitious project and giving us the opportunity to join them. I am also deeply grateful to the

members of the Research and Development team, and specifically to Alex, Carlos, Eduardo,

Gustavo, Hugo and Pedro, for their warm welcome during my research stay at São José dos

Campos. Finally, I would like to thank the members of the jury, namely Koen Hillewaert, Laurent

Joly and Marco Carini for the time they spent reading and evaluating my dissertation.

I would like to thank the colleagues that I directly worked with during the past five years. More

specifically, I first want to thank Romain Boman. He played a major role in the development

of the different codes that I implemented during my PhD. Romain was always there to answer

the tons of questions I had about computer science, and to discuss various ideas and projects

that could improve software development and teamwork. I am also grateful to Luc Papeleux,

who was of precious help regarding various programming aspects. I also would like to thank

Hüseyin Güner, with whom I took part in the Embraer’s aeroelastic tailoring journey. I am also

grateful to David Thomas and Marco-Lucio Cerquaglia, the lead developers of CUPyDO, for their

help with the code. Finally, I am thankful to Ludovic Noels, for our joint work in the Aerospace

Design Project, to Christophe Geuzaine, for his help and advice with the gmsh software, and to

Maarten Arnst and Vincent Denoël, for our collaboration during the Stochastic class.

I am deeply grateful to my family who always stands besides me. I specifically think about my

parents, grandparents and my uncle, who always supported me regardless of my choices. I am

also thankful to my martial arts instructors, Arnaud Lejeune and Léo Tamaki, who taught me,

through commitment and kindness, how to adapt to and overcome adversity. I would also like to

thank my friends, and more specifically Sophie, Benoit, Thomas, Baptiste, Benoit, Sébastien,

and the Coco&co group, for their support. I am also thankful to my fellow PhD colleagues:

Amaury, Pantoufl, Mariano, Sébastien, Arnaud, Nayan, Dominik, Kim, Joffrey, Kévin and Juan.

I finally would like to gratefully acknowledge the Fonds National pour la Recherche Scientifique

which partly funded the present doctoral thesis through a Funds for Research training in Indus-

try and Agriculture grant.

iii

Contents

Abstract i

Acknowledgments iii

Contents v

1 Introduction 1

1.1 Motivation . 1

1.2 Aeroelastic modeling in preliminary aircraft design 2

1.2.1 Aerodynamic modeling . 3

1.2.2 Structural modeling . 8

1.2.3 Aerostructural coupling . 9

1.3 Thesis overview . 10

2 Comparison of aerodynamic models 13

2.1 State-of-the-art . 13

2.2 Methodology . 14

2.3 Onera M6 . 15

2.3.1 Mesh convergence . 16

2.3.2 Aerodynamic loads . 18

2.3.3 Computational performance . 21

2.4 Embraer benchmark wing . 22

2.4.1 Aerodynamic loads . 24

2.4.2 Computational performance . 29

2.4.3 Cruise flight conditions . 30

2.5 Discussion . 31

v

3 The full potential equation 33

3.1 Potential formulations . 33

3.1.1 Equations and solution methods . 33

3.1.2 Main challenges . 34

3.2 Field potential solvers . 35

3.2.1 Early work on the transonic small disturbances equation 35

3.2.2 Early work on the full potential equation 36

3.2.3 Transonic computation techniques . 38

3.2.4 Kutta condition implementation . 39

3.2.5 Commercial software . 40

3.2.6 Research codes . 42

3.3 Field panel methods . 44

3.3.1 Early coupling between boundary elements and finite differences 44

3.3.2 Recent field panel methods . 45

3.4 Discussion . 46

4 Field panel solution of the full potential equation 49

4.1 Theory . 49

4.1.1 Formulation . 49

4.1.2 Panel method . 50

4.1.3 Field module . 51

4.1.4 Influence coefficients . 52

4.2 Implementation . 55

4.2.1 Geometry treatment . 55

4.2.2 Numerical treatment . 58

4.2.3 Solution procedure . 61

4.3 Validation . 63

vi

4.3.1 Incompressible flow . 63

4.3.2 Subcritical flow . 64

4.3.3 Supercritical flow . 66

4.3.4 Challenges and attempted solutions . 67

4.4 Discussion . 68

5 Finite element solution of the full potential equation 69

5.1 Theory . 69

5.1.1 Weak formulation . 69

5.1.2 Finite element discretization . 75

5.2 Implementation . 81

5.2.1 Geometry modeling and meshing . 81

5.2.2 Numerical scheme . 82

5.3 Validation . 88

5.3.1 Domain and mesh convergence analyses 88

5.3.2 Aerodynamic loads . 89

5.3.3 Computational performance . 94

5.4 Sensitivity analysis . 95

5.4.1 Wake inclination . 96

5.4.2 Grid density . 99

5.5 Discussion . 101

6 Static aeroelastic computations 103

6.1 State-of-the-art . 103

6.2 Methodology . 103

6.3 Agard 445.6 . 105

6.3.1 Aerodynamic loads . 106

6.3.2 Wing deflection . 107

vii

6.4 Embraer benchmark wing . 107

6.4.1 Aerodynamic loads . 109

6.4.2 Wing deflection . 111

6.4.3 Computational performance . 112

6.5 Discussion . 113

7 Conclusion 115

7.1 Summary and conclusions . 115

7.2 Suggestions for future work . 116

7.2.1 Improvements of aeroelastic computations 116

7.2.2 Development of new features for Flow . 118

Bibliography 127

A Additional computations for the Embraer benchmark wing 143

A.1 Effect of the turbulence model on viscous computations 143

A.2 Additional flight points . 145

A.2.1 Low-speed cruise . 145

A.2.2 Nominal cruise . 148

A.2.3 High-speed cruise . 151

B Aero - field panel code 155

B.1 Organization of the code . 155

B.1.1 Input and output files . 157

B.1.2 Structures . 157

B.1.3 Functions . 158

B.2 Minigrid . 159

viii

C Flow - finite element code 161

C.1 Code architecture . 161

C.1.1 Input and output files . 163

C.1.2 C++ classes . 163

C.1.3 Python classes . 164

C.2 Line search algorithms . 164

C.2.1 Quadratic line search . 165

C.2.2 Bank and Rose line search . 167

C.3 Integration . 167

D Flow sensitivity analysis 169

D.1 Tip vortex singularity . 169

D.2 Linear solver . 170

D.3 Line search . 172

ix

Chapter 1

Introduction

1.1 Motivation

Air traffic is increasing dramatically fast. Over the past fifteen years, the number of passengers

traveling by air worldwide has increased from 2.5 billion to 4.7 billion (+150%) and is expected

to reach 16 billion (+200%) by 2050 [1, 2]. In Europe, the number of flights per year is ex-

pected to increase from 10 million in 2011 to 25 million in 2050. To compensate this rise, and

for the air transport sector to remain economically competitive, aircraft fuel consumption must

be reduced. Moreover, this will allow the sector to keep its rather low environmental impact1.

For example, Flightpath 2050 - Europe’s Vision for Aviation [2] prescribes a reduction of 75%

in CO2 and of 90% in NOx gas emissions, as well as a 65% noise reduction with respect to

engines made in the year 2000. Various strategies are being investigated to reduce aircraft fuel

consumption and environmental impact, such as increasing aircraft engine efficiency, using

new types of fuel, improving aircraft operations and air services, reducing structural weight, im-

proving aerodynamic efficiency, etc. The combination of the last two approaches usually leads

to the design of light and very flexible, highly loaded composite wings with high aspect ratios

and complex shapes. For such wings, aeroelastic deformations cannot be ignored as they will

yield highly different wing shapes depending on the flight condition. These wing shapes are

constrained by various requirements. For example, the jig shape, i.e. the shape of the wing

on the ground, must respect a given clearance between the wing and the ground. The flight

shape must be designed so that it has low drag in cruise conditions. The wing shape obtained

during a maneuver must withstand higher loads while allowing the aircraft to remain control-

lable. Aeroelasticity must therefore be integrated early in the aircraft design process2, typically

in the preliminary stage, during which aero-structural design and optimization are performed.

Moreover, taking fluid-structure interaction into account in this early design stage also allows

other fuel reduction strategies to be used, such as actively deflecting the control surfaces dur-

ing flight to minimize the aerodynamic loads. Introducing such computations in the preliminary

stage might also prevent future failures resulting from complex aeroelastic behaviors, hence

making the design process more robust. During the preliminary design stage, many design

1In 2018, the air transport sector was responsible for 12% of CO2 emissions of the transport sector, while road
transport’s share was of 74%. The transport sector represented 20− 25% of the total CO2 emissions [3].

2The aircraft design process is usually split into three stages: conceptual, preliminary and detail. The conceptual
stage aims at defining an aircraft configuration which meets the mission requirements. The preliminary stage aims
at refining the design and optimizing the aircraft performance. The detail stage aims at finalizing the design, and
manufacturing, testing and certifying the aircraft.

1

Chapter 1. Introduction

parameters and configurations are considered. Moreover, aeroelastic modeling involves both

aerodynamic and structural computations. As a consequence, low-fidelity modeling methodolo-

gies are usually favored so that results can be obtained quickly [4]. These models are linear and

their range of validity is theoretically restricted to the subsonic regime, where the velocity of the

entire flowfield is lower than the speed of sound. However, modern transport aircraft fly in the

transonic regime, for which the oncoming freestream flow is subsonic and accelerates locally

to velocities beyond the speed of sound, hence creating pockets of supersonic flow. Nonlinear

compressible and viscous effects become important in transonic flight conditions and cannot

be properly captured by low-fidelity aerodynamic models.

The present thesis has two main objectives. The first objective is to assess the effect of the

aerodynamic level of fidelity on steady aerodynamic and static aeroelastic computations typ-

ically performed in preliminary aircraft design. More specifically, the model offering the best

trade-off between accuracy and computational cost will be identified. To this end, different

models based on the linear and nonlinear flow equations are compared on rigid and flexible

benchmark wings. Only steady computations are considered in the present work. The second

objective is to develop a fast but accurate aerodynamic modeling tool which can be used to

perform aerodynamic and aeroelastic computations for preliminary aircraft design. The tool will

be based on the model identified through the first objective.

1.2 Aeroelastic modeling in preliminary aircraft design

The main purpose of static aeroelastic modeling in preliminary aircraft design is to predict the

deformations of the lifting surfaces, which will in turn affect the aerodynamic loads acting on

these surfaces. Static aero-structural computations have various applications. For example, as

the wing is first designed in cruise conditions, the deflections yielded by such a computation

are used to recover the wing shape in other conditions, such as on the ground or during a

maneuver. Another and more recent application is aeroelastic tailoring, which was initially

defined by Shirk and Hertz in 1986 as "the embodiment of directional stiffness into an aircraft

structural design to control aeroelastic deformation, static or dynamic, in such a fashion as

to affect the aerodynamic and structural performance of that aircraft in a beneficial way" [5].

Aeroelastic tailoring is particularly relevant when the structure is designed using orthotropic

materials, such as composite materials, which have low weight and high resistance, and are

becoming more and more widely used in aerospace applications.

Static aeroelastic modeling usually follows a process known as fluid-structure interaction com-

putations. For a given flight condition and an initial wing shape, the aerodynamic loads are

first computed using an aerodynamic model. The loads are then passed to a structural model,

which calculates the wing deflections. The two models are coupled using a coupling scheme

and the process is iterated until convergence is achieved.

2

1.2. Aeroelastic modeling in preliminary aircraft design

1.2.1 Aerodynamic modeling

Aerodynamic models can be categorized according to their level of fidelity, i.e. their ability to

properly represent the physics of a given flow. The highest level of fidelity consists in solving

the Navier-Stokes equations and is referred to as Direct Numerical Simulation (DNS). Such

computations require very fine meshes, because all scales of turbulence need to be resolved,

hence making the computation extremely expensive. To lower the computational cost, the small

turbulence scales can be filtered out and coarser grids can be used. This kind of computation

is called Large Eddy Simulation (LES). While DNS and LES capture flow physics accurately

and are suitable for studying specific benchmark cases, they are not used in preliminary air-

craft design because of their prohibitive computational cost. Moreover, DNS and LES both

capture the chaotic nature of turbulence, which is not of practical interest in the early design

stages. The highest level of fidelity considered in such early design stages is therefore the

Reynolds-Averaged Navier-Stokes (RANS) equations, in which all the turbulence is modeled

instead of being resolved numerically. With recent increases in computational power and re-

sources, RANS computations are now performed routinely in aircraft design. However, they

remain expensive and their predictions might not be totally relevant, as the aircraft shape is usu-

ally not sufficiently refined in the early design stages. Consequently, lower levels of fidelity are

often considered. To simplify the RANS equations, the viscosity of the fluid can be neglected.

This is valid for the aeronautical flows considered in preliminary aircraft design, because the

boundary layer, in which the viscous effects are predominant, is very thin and develops close

to the body’s surface. As a consequence, the rest of the flow can be considered as inviscid. An

alternative to solving the RANS equations, and to taking viscous effects into account, is to use

an inviscid model coupled to the boundary layer equations. These equations can be readily

derived from the Navier-Stokes equations. The inviscid form of the Navier-Stokes equations

is known as the Euler equations. The full potential equation is obtained by further assuming

that the flow is isentropic and therefore irrotational. Finally, the full potential equation can be

linearized to obtain the linear potential equation.

Five levels of fidelity are considered in the present work: the Reynolds-Averaged Navier-Stokes

equations, the Euler equations, the full potential equation, on its own or corrected by the bound-

ary layer equations, and the linear potential equation.

High-fidelity modeling

The unsteady Reynolds-Averaged Navier-Stokes equations can be written as

∂U

∂t
+∇ ·Fc −∇ ·Fd = 0, (1.2.1)

where U is the vector of the conservative flow variables defined as

U =


ρ

ρu

ρe

 . (1.2.2)

3

Chapter 1. Introduction

The convective fluxes Fc and the diffusive fluxes Fd are defined as

Fc =


ρu

ρu⊗ u + pI

ρeu + pu

 , Fd =


.

τττ

τττ ·u + µ?cp∇T

 (1.2.3)

where ρ is the density, u the velocity vector, p the pressure, e the total specific energy, cp the

specific heat capacity at constant pressure, and T the temperature. The stress tensor for a

Newtonian fluid is given by

τττ = µ

(
∇u +∇uT − 2

3
I∇ ·u

)
. (1.2.4)

The total viscosity µ and µ? in Equations 1.2.3 and 1.2.4 can be expressed as

µ = µd + µt,

µ? =
µd

Prd
+

µt

Prt
,

(1.2.5)

where Pr is the Prandtl number. The subscript d refers to dynamic quantities, which are prop-

erties of the fluid, while the subscript t refers to turbulent quantities, which are given by a

turbulence model. In the present work, the Spalart-Allmaras model [6], commonly used and

specifically developed for aeronautical flows, has been used. Computations using the Menter’s

k−ω Shear Stress Transport model [7] have also been performed and are given in appendix A.

However, the Spalart-Allmaras model has been favored over Menter’s due to its better rate of

convergence for the considered cases. The system of equations needs to be closed with the

state equations

e = cvT +
1

2
‖u‖2,

p = ρRT,
(1.2.6)

where cv is the specific heat capacity at constant volume and R is the ideal gas constant.

Medium-fidelity modeling

The Euler equations are the inviscid counterpart of the Navier-Stokes equations and are ob-

tained by neglecting the diffusive fluxes, Fd in Equation 1.2.1, yielding

∂U

∂t
+∇ ·Fc = 0, (1.2.7)

where the unknown vector U is defined by Equation 1.2.2, and the vector of convective fluxes

Fc is given in Equation 1.2.3.

The steady full potential equation assumes that the fluid is inviscid, and that the flow is steady

and isentropic. The flow is then irrotational and the velocity derives from a potential φ such that,

u = ∇φ, (1.2.8)

4

1.2. Aeroelastic modeling in preliminary aircraft design

and the mass conservation can therefore be cast into

∇ · (ρ∇φ) = 0. (1.2.9)

The density ρ is given by the isentropic flow relationship

ρ = ρ∞

[
1 +

γ − 1

2
M2
∞
(
1− |∇φ|2

)] 1
γ−1

, (1.2.10)

where ρ∞ is the freestream density, γ is the heat capacity ratio and M∞ is the freestream Mach

number. Note that the term |∇φ| in Equation 1.2.10, which is the magnitude of the total velocity,

has been normalized by the freestream velocity. The entropy produced through a shockwave is

related to the normal Mach number just upstream of that shock, Mn, using

∆SE = O(M2
n − 1)3. (1.2.11)

Therefore, the isentropicity assumption restricts the use of the nonlinear potential equation to

transonic flows with embedded weak shocks only. A common upper limit for the upstream

normal Mach number is Mn < 1.3 [8]. Additionally, the Kutta condition must be enforced in

order to allow a potential (irrotational) flow to generate aerodynamic loads. Mathematically, the

pressure on the upper and lower sides of the trailing edge of a wing are imposed to be equal.

Numerically, the potential is discontinuous across a wake extending from the trailing edge of

any lifting body to the downstream boundary, and the Kutta condition is enforced by prescribing

the continuity of the mass flux and velocity magnitude on both sides of the wake such that

[[ρ∇φ]] = 0,

[[|∇φ|2]] = 0,
(1.2.12)

where the double squared bracket indicates a jump through the wake surface. The exact imple-

mentation of this boundary condition depends on the method used to discretize the potential

equation and on the grid type. Finite volume implementations of the Kutta condition have been

proposed by Neel [9], Liegl [10] and Lyu et al. [11], while finite element formulations can be

found in Nishida [12], Galbraith et al. [13] and Crovato et al. [14].

Low-fidelity modeling

The full potential equation can be transformed into an integral equation by integrating Equa-

tion 1.2.9 and using Green’s third identity. The resulting expression can then be linearized,

such that

φ = φ∞ −
∫
S

[∇φ ·nK − φn · ∇K] dS, (1.2.13)

where φ∞ is the freestream potential, K is a kernel function depending on the geometry and the

freestream conditions, and n is the outward unit vector normal to the surface S of the geometry.

The terms appearing under the integral in Equation 1.2.13 represent the linear part of the flow,

and are modeled by sources and doublets, which are fundamental solutions of the equation.

5

Chapter 1. Introduction

Viscous-inviscid coupling

The boundary layer equations are derived by simplifying the Navier-Stokes equations to the

two-dimensional boundary layer region using order of magnitude analysis. For high Reynolds

numbers, the continuity, momentum and energy equations read,

∂ρu

∂ξ
+
∂ρv

∂η
= 0,

u
∂u

∂ξ
+ v

∂u

∂η
= −1

ρ

∂p

∂ξ
+

1

ρ

∂

∂η

(
µ
∂u

∂η

)
,

∂p

∂η
= 0,

u
∂h

∂ξ
+ v

∂h

∂η
=
u

ρ

∂p

∂ξ
+
µ

ρ

(
∂u

∂η

)2

+
1

ρ

∂

∂η

(
µ

Pr

∂h

∂η

)
,

(1.2.14)

where ξ and η are the coordinates in the tangent and normal directions to the solid surface

over which the boundary layer exists, and u and v are the velocity components along these two

respective directions. The enthalpy h, is related to the other variables through the equation of

state

h =
γ

γ − 1

p

ρ
. (1.2.15)

In practice, the boundary layer equations are not solved directly, but an integral formulation

is used instead. A frequent choice consists in solving the integral momentum and the kinetic

energy shape parameter equations,

dθ

dξ
+ (2 +H −M2

e)
θ

ue

due
dξ

=
Cf
2
,

θ
dH?

dξ
+ [2H?? +H?(1−H)]

θ

ue

due
dξ

= 2CD −H?Cf
2
.

(1.2.16)

The shape parameter is defined as

H =
δ?

θ
. (1.2.17)

The displacement and density thicknesses are defined as

δ? =

∫ (
1− ρu

ρeue

)
dη,

δ?? =

∫
u

ue

(
1− ρ

ρe

)
dη.

(1.2.18)

The momentum and kinetic energy thicknesses are defined as

θ =

∫
ρu

ρeue

(
1− u

ue

)
dη,

θ? =

∫
ρu

ρeue

(
1− u2

u2
e

)
dη.

(1.2.19)

6

1.2. Aeroelastic modeling in preliminary aircraft design

The following dependencies for the skin friction and dissipation coefficients, as well as for the

kinetic energy and density shape parameters, are assumed in order to close the set of equa-

tions,
Cf = Cf (Hk,Me, Reθ),

CD = CD(Hk,Me, Reθ),

H? = H?(Hk,Me, Reθ),

H?? = H??(Hk,Me),

(1.2.20)

where the momentum thickness Reynolds number and the kinematic shape parameter are

defined as
Reθ =

ρeueθ

µe
,

Hk =

∫ (
1− u

ue

)
dη∫

u
ue

(
1− u

ue

)
dη
.

(1.2.21)

In the above equations, note that the subscript e denotes inviscid variables at the edge of the

boundary layer, and that all the integrals are performed over the boundary layer thickness.

While the equations presented in this section are inherently two-dimensional, the viscous-

inviscid interaction method can be extended to three dimensions. More details about the for-

mulation can be found in several works by Drela and Mughal [15, 16, 17, 18].

Various techniques can be used to couple the viscous integral equations to an inviscid model.

A direct coupling scheme cannot be used for aeronautical flows, since they can be partly de-

tached. In such a case, the semi-inverse, quasi-simultaneous and fully-simultaneous coupling

techniques are usually favored, since they are able to deal with both attached and detached

flows, as demonstrated by Veldman [19]. In the semi-inverse method, the inviscid and viscous

equations are solved iteratively by separate solvers and a correction is applied to couple the

two solutions. In the quasi-simultaneous technique, the inviscid computation is first performed

separately, and then the viscous equations are solved simultaneously with an interaction law,

representing the inviscid equations. The process is iterated until convergence. Finally, the fully-

simultaneous technique consists in coupling the inviscid and viscous equations in the same set,

and solving them together. The different methods are schematically depicted in Figure 1.2.1.

In Figures 1.2.1a to 1.2.1c, the term SV denotes the effect of a viscous solution on an invis-

cid computation. Two general methods exist to compute this effect. The first is to thicken the

body shape by the displacement thickness of the boundary layer, so that the momentum deficit

generated by the presence of the boundary layer can be felt by the inviscid flow. The second

is to compute a blowing velocity, based on the displacement thickness, and enforce it in place

of the impermeability boundary condition on the body surface. Although the second method

requires more computations, it is usually favored because it allows the geometry and the mesh

to remain unchanged. More details about the coupling schemes can be found in Veldman [19]

and Lock [20].

7

Chapter 1. Introduction

Direct
inviscid

Direct
viscous

𝑑𝑢𝑒
𝑑𝜉

𝑆V

(a) Direct method.

Direct
inviscid

Inverse
viscous

𝑑𝑢𝑒
𝑑𝜉

𝑆V
Correction
formula

𝑑𝑢𝑒
𝑑𝜉

(b) Semi-inverse method.

Direct
inviscid

Direct viscous
+

Interaction law

𝑑𝑢𝑒
𝑑𝜉

𝑆V

(c) Quasi-simultaneous method.

Direct
inviscid + viscous

(d) Fully-simultaneous method.

Figure 1.2.1: Coupling schemes (adapted from Lock [20]).

1.2.2 Structural modeling

Two techniques for structural modeling are considered in the present work: a physical space-

based approach and a modal approach. Neglecting internal damping, the equilibrium equations

of a solid are obtained by balancing the inertial and internal forces in the solid with the external

forces applied to it. The structural equations can be written as

ρs
d2us

dt2
−∇ ·σσσs = fs, (1.2.22)

where ρs is the solid density, σσσs is the stress tensor, fs are the external forces and us are the

displacements.

The displacements of the solid can also be expressed in the modal space by splitting them in a

spatial and a time-dependent term,

us = φφφs(x, y, z) exp(iωt), (1.2.23)

where φφφs are the mode shapes of the solid depending solely on the spatial coordinates x, y,

8

1.2. Aeroelastic modeling in preliminary aircraft design

z, and ω is a frequency of vibration. Injecting the modal decomposition into Equation 1.2.22

and solving the associated eigenvalue problem allows to recover the mode shapes and their

associated modal frequencies. Then, noting that the energy related to the displacements is

usually contained in the lowest frequency modes further allows to work with a reduced set of

modal coordinates qs, defined such that

qs = ΦT
s us, (1.2.24)

where Φs is the modal matrix, containing the first mode shapes of the solid. By neglecting the

time dependent terms, since only steady computations are considered, equation 1.2.22 can be

further discretized into

Kqqs = −fq, (1.2.25)

where Kq is the modal stiffness matrix and fq is the vector of modal forces, obtained by multi-

plying the vector of forces by the mode shape matrix.

1.2.3 Aerostructural coupling

The aerodynamic and structural models can be coupled using a monolithic or a partitioned

approach [21, 22]. In the monolithic approach, both the fluid and the structure are modeled

within the same mathematical and numerical framework, and are solved by the same solver.

While this approach allows to easily couple both physics, it lacks generality and modularity,

since the solver has usually been implemented to deal with a given type of coupled physics. In

the partitioned approach, the aerodynamic and the structural models are handled by different

solvers, which are then coupled through an interface. This allows to take advantage of the effi-

cient solution strategies available in the individual solvers and developed to target their specific

physics, but requires an efficient communication procedure to be implemented in the interface.

Since several different aerodynamic solvers are compared in the present work, the partitioned

approach will be used.

The partitioned approach can be implemented using a Dirichlet-Neumann procedure, as de-

scribed by Kuttler and Wall [23]. In this context, the loads at the fluid interface, f I
f , are obtained

by applying a nonlinear Dirichlet operator F on a given fluid interface displacement xI
f ,

f I
f = F

(
xI

f

)
. (1.2.26)

Similarly, the displacement of the solid interface, xI
s, is related to the loads on this interface, f I

s ,

using a nonlinear Neumann operator S, such that

xI
s = S

(
f I
s

)
. (1.2.27)

The coupling of the fluid and the structure can be formulated as a fixed-point problem,

xI = S
(
F−1

(
xI
))
⇔ xI = T

(
xI
)
, (1.2.28)

9

Chapter 1. Introduction

where T is a nonlinear transfer operator. Several techniques exist to solve Equation 1.2.28,

such as explicitly iterating over the fluid and solid problems, the Block Gauss-Seidel (BGS)

algorithm [24] and the Interface quasi-Newton Inverse Least Squares algorithm originally pro-

posed by Degroote et al. [25]. The BGS algorithm, used in the present work, is described in

Figure 1.2.2. The interface displacement at a given iteration, xI
n, is first used to update the

fluid domain and its boundary conditions. The updated fluid variables, Uf
n+1, are subsequently

computed. The loads on the interface, f I
n+1, are then updated and used as new boundary con-

ditions in the structural solver to compute the new displacement field, Us
n+1. This process is

repeated until convergence is reached. The convergence criterion is usually defined by using

the difference either in the displacements or in the loads between two consecutive iterations.

𝑼𝑛
f 𝑼𝑛+1

f𝑼𝑛−1
f

𝑼𝑛−1
s 𝑼𝑛

s 𝑼𝑛+1
s

𝒇𝑛
I 𝒇𝑛+1

I

𝒙𝑛
I 𝒙𝑛+1

I𝒙𝑛−1
I 1

2

3

4

Figure 1.2.2: Block Gauss-Seidel algorithm (adapted from Wood et al. [24]).

1.3 Thesis overview

The present thesis is organized as follows. In chapter 2, the different levels of fidelity used

for aerodynamic modeling in preliminary aircraft design are investigated using two benchmark

wings. The aerodynamic pressure and loads distributions, as well as the computational cost of

the different models, are analyzed with the aim of identifying the fastest method yielding con-

sistent and reliable results. In chapter 3, the nonlinear potential equation and the methods for

solving it are reviewed. Three of the main approaches for solving this equation are presented

and discussed, namely the finite volume, finite element and field panel methods. The formu-

lation and implementation of the field panel method are described in chapter 4. Computations

are performed on various three-dimensional wings to validate the method. A finite element

method is then developed and presented in chapter 5. The code is tested on several two and

three-dimensional configurations. In chapter 6, the finite element code is first validated in the

context of static fluid-structure interaction computations. Then, the different levels of fidelity

used for aerodynamic modeling in aircraft design are compared in this context. The aerody-

10

1.3. Thesis overview

namic loads distributions and the static deflections, as well as the computational cost of the

different models, are analyzed. Chapter 7 summarizes and concludes the present dissertation,

and suggests research directions for future work.

11

Chapter 2

Comparison of aerodynamic models
The effect of the different levels of fidelity on steady aerodynamic computations is assessed

in the present chapter. Previous comparisons performed by various authors are first briefly

reviewed, and the levels of fidelity presented in chapter 1 are then compared on two benchmark

wings in terms of solution accuracy and computational cost.

2.1 State-of-the-art

Various comparison analyses have already been performed on rigid geometries. For example,

Bhateley and Cox [26], Verhoff and O’Neil [27], and Rubbert and Saaris [28] used transonic

small disturbance and linear potential theory to compute transonic flows over fighter configu-

rations, and compared their results to nonlinear potential modeling or experimental data. In

particular, Verhoff and O’Neil already suggested to resort to multi-fidelity modeling to extend

transonic prediction capabilities by combining panel methods to nonlinear potential solvers.

Flores et al. [29] compared full potential to Euler solvers using two-dimensional airfoils and

showed that the nonlinear potential formulation was noticeably faster than the Euler formula-

tion, for a similar accuracy in the integrated aerodynamic coefficients, as long as the shocks

were weak. Klopfer and Nixon [30] further showed that adding a non-isentropic correction to

the full potential formulation greatly improved the results for strong shocks. Several authors,

such as Le Balleur [31], Melnik et al. [32], and Van Muijden et al. [33], also added an interactive

boundary layer modeling capability to full potential solvers and were able to match experimental

data. Validation of various full potential codes with respect to higher-fidelity data can be found

in the survey work by Holst [34]. Drela et al. [35], Potsdam [36], and Aftosmis et al. [37] also

extended various Euler solvers with viscous-inviscid calculations. The latter compared their

results to both Reynolds-Averaged Navier-Stokes computations and experimental data.

Some authors also performed surveys to assess the capabilities and limitations of the different

aforementioned aerodynamic levels of fidelity. For example, Jameson [38], and more recently

Johnson et al. [39], regrouped and analyzed the comparison studies performed by various

authors using different solvers. However, the computations are based on different geometries

and are scattered across different years, which makes direct comparison difficult. Moreover,

the emphasis is usually placed on model or methodology validation rather than on the tradeoff

between accuracy and computational time. A systematic and extensive comparative study

of all major aerodynamic modeling methods for transonic flow on the same benchmarks was

13

Chapter 2. Comparison of aerodynamic models

performed by Crovato et al. [40].

2.2 Methodology

In the present chapter, the RANS equations 1.2.1 and the Euler equations 1.2.7 are solved

using SU2 [41, 42, 43], an open-source code for multiphysics simulations and design optimiza-

tion. The equations are spatially discretized on an unstructured dual-grid using a finite volume

method with a cell-vertex based approach and a second-order accurate Jameson-Schmidt-

Turkel scheme [44]. The fluxes are reconstructed using a Green-Gauss procedure. The time

dependent terms are discretized using an Euler implicit scheme, and steady state is reached

through a time marching procedure. Different acceleration techniques can be used in SU2. For

the Euler computations, the Courant-Friedrich-Levy number is set to 5 and a multigrid with a W

pattern and 3 coarsening levels is used, while for the RANS computations, the CFL number is

kept close to 1 and no multigrid is used. The solution is considered converged when the relative

residual of the equations drops below 10−6.

The full potential equation 1.2.9 is solved using Tranair [45, 46], a commercial software

for aircraft design and optimization developed by NASA1 and The Boeing Company2 in the

last two decades of the 20th century, and distributed by Calmar Research3 since 2004. The

equation is discretized using finite elements on a rectangular Octree Cartesian grid, which is

refined automatically by the software using a solution adaptation procedure. The equation is

solved with a quasi-Newton procedure combined with the Bank and Rose line search [47].

Tranair also offers the possibility to model the effect of the boundary layer on body surfaces

by coupling the inviscid solution to an integral solution of the boundary layer equations. The

coupling between the inviscid and viscous equations is performed using the fully-simultaneous

and wall transpiration approaches, as described in chapter 1. Details about the formulation can

be found in several works by Drela [15, 16, 18]. The solution is considered converged when the

relative residual of the equations drops below 10−6.

The integral form of the linear potential equation 1.2.13 is solved using Panair [48, 49] and

NASTRAN [50, 51]. Panair is a high-order panel method developed at NASA during the eight-

ies. The body is discretized using first-order source and second-order doublet panels, allowing

Panair to account for both the thickness and camber of a body with relatively few panels.

The impermeability boundary condition, applied at the center of each panel, allows to compute

the singularity strengths from which the potential can be recovered. NASTRAN is distributed

by MSC Software4 and uses the doublet-lattice method to solve the integral potential equa-

tion. The mean plane surface of a lifting configuration is discretized into a flat sheet containing

panels with constant doublet line segments at their quarter chords, and the impermeability

condition is imposed at the three quarter-chord of each panel. As a result, the doublet-lattice
1https://www.nasa.gov/
2https://www.boeing.com/
3http://www.calmarresearch.com/NF/home.htm
4https://www.mscsoftware.com/

14

https://www.nasa.gov/
https://www.boeing.com/
http://www.calmarresearch.com/NF/home.htm
https://www.mscsoftware.com/

2.3. Onera M6

approach ignores the thickness and camber of the body but NASTRAN offers the possibility to

apply corrections using geometric, numerical or experimental data [52, 53]. In the present work,

the Euler solution obtained with SU2 is used to build the FA2J matrix required by NASTRAN to

correct the doublet-lattice pressure loads. The computations are performed by means of the

elastic trim analysis, also known as SOL 144.

The different aerodynamic models, their abbreviations and the corresponding software pack-

ages are summarized in Table 2.2.1.

Name Solver Equations
PAN Panair Linear potential
NAS NASTRAN Linear potential
NASC NASTRAN Linear potential corrected by Euler
TRN Tranair Full potential
SU2 SU2 Euler
TRNV Tranair Full potential and boundary layer
SU2V SU2 Reynolds-Averaged Navier-Stokes

Table 2.2.1: Naming convention and equations solved in the present chapter.

The different models and methods are first compared on the Onera M6 wing, a standard tran-

sonic flow test case for which experimental data are available [54]. The solvers are then used

to study the Embraer benchmark wing, which is provided by Embraer S.A.5 and representa-

tive of a regional jet wing model used in preliminary aircraft design [40, 55]. Both wings are

considered to be rigid.

2.3 Onera M6

The Onera M6 wing model is depicted in Figure 2.3.1 and its geometric parameters are given

in Table 2.3.1. Note that a thin sharp trailing edge has been considered. Wind tunnel measure-

ments are available and documented by Schmitt and Charpin [54] for several Mach numbers

ranging from 0.7 to 0.92, and various angles of attack up to 6◦. The present simulations are

set up according to test number 2308, i.e. with a Mach number M = 0.839 and an angle of

attack α = 3.06◦, as this test is commonly used in the literature and that the flow conditions

correspond to those typically encountered in transonic aircraft design.

5https://embraer.com/

15

https://embraer.com/

Chapter 2. Comparison of aerodynamic models

Figure 2.3.1: Onera M6 wing model.

Parameter Value
Aspect ratio 3.8
Taper ratio 0.56
Sweep angle 30◦

Root chord 805 mm
Semi-span 1196 mm

Table 2.3.1: Geometrical properties of the Onera M6 wing.

2.3.1 Mesh convergence

A surface grid made of rectangular surface panels is used in Panair and NASTRAN. In Tranair,

the wing is enclosed in a box-shaped computational domain with boundaries placed 2 chord

lengths away from the wing in the chordwise and normal directions, and a half-span length from

the wingtip in the spanwise direction. The final grid, built automatically by Tranair, consists

of hexahedral cells with a minimum size of 1/200 of the chord at the shock and leading edge.

The inviscid SU2 grid is built using gmsh [56, 57]. It is based on an unstructured O-grid topol-

ogy extending 50 root chords away from the wing. The mesh has a characteristic cell size of

1/200 and 1/100 of the local chord at the leading edge and at the trailing edge, respectively.

The viscous SU2 grid is built in ANSYS ICEM [58] using a multiblock structured C-grid topology

extending 50 root chords away from the wing. The grid has 150, 75 and 25 hexahedra in the

chordwise, normal and spanwise directions respectively. SU2’s implementation does not offer

wall function. As a result, the grid must be resolved up to the wall, and the height of the first

mesh cell y must be set so that y+ =
√
ρτwy
µ ∼ 1, where ρ is the fluid density, τw are the wall

shear stress and µ is the dynamic viscosity of the fluid. Experimental results consist of surface

pressures measured at 271 locations distributed on 7 spanwise sections, and were gathered by

Schmitt and Charpin [54].

16

2.3. Onera M6

A convergence study was performed to find a suitable mesh size for each model. Table 2.3.2

shows the convergence for the lift and drag coefficients of the Onera M6 wing at M = 0.839 and

α = 3.06◦ for the different models. Note that NASC and TRNV use the same grid as NAS and

TRN, respectively. Also, note that NASTRAN does not provide any value for the drag coefficient.

In each case, the selected grid is the one for which the results did not change significantly when

the number of cells was increased, that is the medium density grid indicated in Table 2.3.2. The

final meshes are displayed in Figure 2.3.2.

Model n. cells CL CD
360 0.246 0.0055

PAN 1 000 0.247 0.0047
1 440 0.247 0.0045

125 0.258 -
NAS 500 0.248 -

2 000 0.245 -
50 000 0.272 0.0137

TRN 500 000 0.288 0.0111
1 000 000 0.288 0.0111

140 000 0.281 0.0146
SU2 510 000 0.286 0.0130

1 200 000 0.287 0.0129

300 000 0.257 0.0220
SU2V 1 500 000 0.272 0.0181

3 000 000 0.270 0.0183

Table 2.3.2: Aerodynamic coefficients obtained on several meshes with the different numerical
models for the Onera M6 wing at M = 0.839 and α = 3.06◦.

17

Chapter 2. Comparison of aerodynamic models

(a) Model PAN. (b) Models NAS and NASC.

(c) Models TRN and TRNV.

(d) Model SU2. (e) Model SU2V.

Figure 2.3.2: Computational grids used by the different models for the Onera M6 wing.

2.3.2 Aerodynamic loads

The aerodynamic load coefficients, obtained by integrating the forces on the surface of the wing,

are given in Table 2.3.3. The reference point for the moment computation is taken at the leading

edge of the root chord. The aerodynamic coefficients were not measured experimentally and

are therefore not included in the table. As expected, the nonlinear inviscid models TRN and SU2

tend to predict higher lift and moment coefficients and a lower drag coefficient compared to the

viscous models TRNV and SU2V because they ignore the boundary layer, which modifies the

pressure distribution and produces shear forces. Compared to the nonlinear inviscid models,

the linear models PAN and NAS slightly underestimate the lift and moment coefficients. PAN

also strongly underestimates the drag coefficient, as it cannot compute the wave drag produced

by shockwaves. When corrected by the Euler solution obtained using SU2, NASC predictions

move closer to the results of the nonlinear models, except for the drag coefficient.

18

2.3. Onera M6

Model CL CD CM
PAN 0.247 0.0047 −0.181
NAS 0.248 - −0.181
NASC 0.271 - −0.201
TRN 0.288 0.0111 −0.212
SU2 0.286 0.0130 −0.212
TRNV 0.255 0.0161 −0.181
SU2V 0.272 0.0181 −0.196

Table 2.3.3: Aerodynamic coefficients obtained by different levels of fidelity for the Onera M6
wing at M = 0.839 and α = 3.06◦.

Figure 2.3.3 shows the pressure distribution along the mean aerodynamic chord of the wing,

located at 44% of the span, obtained using the different models and experimental data. Note

that the difference in pressure distribution between the suction and pressure sides is used to

compare linear models, since NAS and NASC are based on a lattice approach, hence not ac-

counting for the wing thickness. Because of their underlying assumptions, PAN and NAS are

unable to predict shocks and to represent the actual physics of transonic flows. Since NASC

is corrected using an Euler calculation, it is the only linear approach that captures the shock.

The nonlinear inviscid models TRN and SU2 are found to correctly represent the physics even

though they predict a stronger shock when compared to the experimental results. Finally, the

viscous models TRNV and SU2V give accurate pressure distribution predictions, although a

small difference in the shock location and strength is still observed between them; the shock

predicted by TRNV appears to be in slightly better agreement with the experimental measure-

ments but this should not be taken as a general result.

Figure 2.3.3b also shows that the different numerical solution procedures implemented in SU2

and Tranair slightly affect the shock strength and location. Moreover, in the case of viscous

models (Fig. 2.3.3c), the difference in boundary layer and turbulence modeling also affects

the solution. This has a direct impact on the aerodynamic coefficients: SU2 tends to predict

higher values of drag and moment compared to TRN while TRNV tends to underestimate the

lift, moment and drag coefficients compared to SU2V, as illustrated in Table 2.3.3.

19

Chapter 2. Comparison of aerodynamic models

0 0.2 0.4 0.6 0.8 1
-0.5

0

0.5

1

1.5

2

2.5
PAN
NAS
NASC
Exp

(a) Linear models

0 0.2 0.4 0.6 0.8 1

-1.5

-1

-0.5

0

0.5

1

TRN
SU2
Exp

(b) Inviscid models

0 0.2 0.4 0.6 0.8 1

-1.5

-1

-0.5

0

0.5

1

TRNV
SU2V
Exp

(c) Viscous models

Figure 2.3.3: Pressure distribution along the mean aerodynamic chord of the Onera M6 wing
(y/b = 0.44) at M = 0.839 and α = 3.06◦ obtained from different levels of fidelity and compared
to experimental data [54].

Figure 2.3.4 shows the distribution of the sectional lift and moment coefficients along the span

of the Onera M6 wing, obtained by integrating numerically the pressure coefficient in the chord-

wise direction. The sectional moment is computed around the local quarter-chord. The lift

distribution predicted by the different solvers is similar to the experimental measurements, but

there are differences in magnitude. In particular, as already noted in Table 2.3.3, the nonlinear

inviscid models tend to predict higher lift coefficients for the same angle of attack. Both the

inviscid and viscous nonlinear models predict sectional moment distributions that are similar to

the experimental results. Since inviscid models ignore the boundary layer and predict stronger

shocks, they tend to yield higher magnitudes for the moment coefficient. Finally, the moment

distribution predicted by the linear models does not follow the same trend as the experimental

data, except when corrected by a nonlinear solution.

20

2.3. Onera M6

0 0.2 0.4 0.6 0.8 1
0.05

0.1

0.15

0.2

0.25

0.3

0.35

PAN
NAS
NASC
Exp

(a) Linear models

0 0.2 0.4 0.6 0.8 1
-0.04

-0.02

0

0.02

0.04
PAN
NAS
NASC
Exp

(b) Linear models

0 0.2 0.4 0.6 0.8 1
0.05

0.1

0.15

0.2

0.25

0.3

0.35

TRN
SU2
Exp

(c) Inviscid models

0 0.2 0.4 0.6 0.8 1
-0.04

-0.02

0

0.02

0.04
TRN
SU2
Exp

(d) Inviscid models

0 0.2 0.4 0.6 0.8 1
0.05

0.1

0.15

0.2

0.25

0.3

0.35

TRNV
SU2V
Exp

(e) Viscous models

0 0.2 0.4 0.6 0.8 1
-0.04

-0.02

0

0.02

0.04
TRNV
SU2V
Exp

(f) Viscous models

Figure 2.3.4: Sectional aerodynamic loads along the span of the Onera M6 wing at M = 0.839
and α = 3.06◦ obtained from different levels of fidelity and compared to experimental data [54].

2.3.3 Computational performance

Models PAN, NAS, NASC, TRN and TRNV were run in serial on a laptop fitted with an Intel

i7-7700HQ processor (2.8 GHz), and models SU2 and SU2V were run on a cluster equipped

21

Chapter 2. Comparison of aerodynamic models

with Intel Xeon E5-2650 processors (2.0 GHz)6. The mesh sizes and computational times are

given in Table 2.3.4. The linear models PAN, NAS and NASC are very fast since they require

only one iteration to solve a scalar equation and need a small number of cells. Note that the

computational time needed to compute the reference Euler solution required by NASC is not

taken into account. On the other hand, the higher-fidelity models SU2 and SU2V need many

iterations to solve five and six equations respectively, on a volume grid, which makes them

slower. The medium-fidelity models TRN and TRNV require few Newton iterations to solve a

scalar equation, for a typical runtime of five to ten minutes.

Table 2.3.4 shows that SU2V is quite slow. This is mainly due to the fact that using acceleration

techniques such as Courant-Friedrich-Levy number adaptation or multigrid was not possible

for this computation. Note that the goal of the present work is to identify the trends in the

computational cost of the different models. Optimizing the numerical parameters of the different

solvers could lead to a decrease in computational time.

Model n. cells n. threads wall-clock time cpu time
PAN 1 000 1 10 s 10 s
NAS 500 1 20 s 20 s
NASC 500 1 20 s 20 s
TRN 500 000 1 4 min 4 min
SU2 510 000 12 14 min 3 h
TRNV 500 000 1 8 min 8 min
SU2V 1 500 000 36 24 h 36 d

Table 2.3.4: Mesh size and computational time required by the different models for the Onera
M6 benchmark case.

2.4 Embraer benchmark wing

In this section, the different models are compared on the Embraer benchmark wing [40, 55],

which is more representative of a transport aircraft wing and has been designed and optimized

for a transonic cruise flight at Mach 0.78. The wing model is depicted in Figure 2.4.1 and its

geometrical parameters are provided in Table 2.4.1. Since no experimental data is available

for this case, the numerical results will be compared to the highest aerodynamic level of fi-

delity considered in the present work: the Reynolds-Averaged Navier-Stokes equations. This

wing is simulated in five different flight conditions: low-speed and high-speed maneuvers, and

low-speed, nominal and high-speed cruise. For each calculation, the angle of attack is ad-

justed such that the resulting lift coefficient is equal to a prescribed lift coefficient, computed

based on a typical transport aircraft weight. Note that this procedure is automatically handled

by Tranair. Since the maneuver cases involve more complex flows, they are thoroughly ana-

lyzed in this section, while the results for cruise cases are given in appendix A and only briefly
6Computational resources have been provided by the Consortium des Équipements de Calcul Intensif (CÉCI),

funded by the Fonds de la Recherche Scientifique de Belgique (F.R.S.-FNRS) under Grant No. 2.5020.11 and by
the Walloon Region.

22

2.4. Embraer benchmark wing

presented here. For the low-speed maneuver, the Mach number is M = 0.50, the prescribed

lift coefficient is CL = 0.80 and the altitude is 6500 ft, while for the high-speed maneuver, the

Mach number is M = 0.78, the prescribed lift coefficient is CL = 0.60 and the altitude is 27000

ft. Note that the computations are carried out using the pressures and temperatures defined by

International Standard Atmosphere at the given altitudes.

Figure 2.4.1: Embraer Benchmark wing model.

Parameter Value
Aspect ratio 10
Taper ratio 0.28
Sweep angle 26◦

Dihedral angle 5◦

Table 2.4.1: Geometrical properties of the Embraer wing.

The computational domains for the different solvers are built in the same way as for the Onera

M6 wing, but the grid sizes differ. Again, a convergence study was performed for each model.

PAN and NAS/NASC have been discretized with 1 400 and 800 surface panels respectively. The

final grids of TRN and TRNV consist of 500 000 hexahedral cells, with a minimum cell size of

1/200 of the chord at the shock and leading edge. The unstructured grid used for SU2 contains

1.3 million tetrahedra with characteristic cell sizes of 1/200 and 1/100 of the local chord at the

leading edge and at the trailing edge, respectively. Finally, the grid for SU2V contains 150,

75 and 25 cells in the chordwise, normal and spanwise direction respectively, for a total of 1.5

million hexahedra. The height of the first mesh cell is set so that y+ ∼ 1 for each flight condition.

The final meshes are illustrated in Figure 2.4.2.

23

Chapter 2. Comparison of aerodynamic models

(a) Model PAN. (b) Models NAS and NASC.

(c) Models TRN and TRNV.

(d) Model SU2. (e) Model SU2V.

Figure 2.4.2: Computational grids used by the different models for the Embraer benchmark
wing.

2.4.1 Aerodynamic loads

The computed angle of attack of the wing and the resulting aerodynamic load coefficients, ob-

tained by integrating the forces on the surface of the wing, are given in Tables 2.4.2a and 2.4.2b

for low-speed and high-speed maneuvers, respectively. TRNV and SU2V require a higher an-

gle of attack to reach the same target lift than the inviscid models, and they also predict higher

values for the drag coefficient. At high speed, the viscous models predict a lower moment coef-

ficient than the inviscid models, while it is comparable at low speed. Linear models fall into two

categories. On the one hand, PAN, which makes use of the full geometry of the wing, predicts

a similar angle of attack and a lower value of the drag coefficient when compared to TRN and

SU2. On the other hand, NAS is based on a flat lattice geometry and predicts a significantly

higher angle of attack. Predictably, when the pressure correction calculated from the Euler

solution is used, NASC predicts almost the same results as the nonlinear solvers.

24

2.4. Embraer benchmark wing

Model α CL CD CM
PAN +2.7 0.80 0.0233 −1.069
NAS +8.6 0.80 - −0.973
NASC +3.2 0.80 - −1.041
TRN +3.1 0.80 0.0243 −1.034
SU2 +2.8 0.80 0.0252 −1.055
TRNV +3.6 0.80 0.0310 −1.025
SU2V +3.8 0.80 0.0317 −1.018

(a) M = 0.50 and CL = 0.80.

Model α CL CD CM
PAN −0.5 0.60 0.0136 −0.866
NAS +5.3 0.60 - −0.739
NASC −1.1 0.60 - −0.872
TRN −0.9 0.60 0.0159 −0.857
SU2 −0.9 0.60 0.0167 −0.866
TRNV +0.2 0.60 0.0241 −0.815
SU2V +0.4 0.60 0.0244 −0.819

(b) M = 0.78 and CL = 0.60.

Table 2.4.2: Aerodynamic coefficients obtained from the different levels of fidelity for the Em-
braer benchmark wing for low and high-speed maneuvers.

Figure 2.4.3 shows the pressure distribution along the mean aerodynamic chord of the Embraer

benchmark wing, located at 42% of the span, at low and high speeds. At low speed, the various

models predict a similar pressure difference to the one predicted by SU2V, except for NAS,

which strongly overpredicts the pressure peak at the leading edge. This is mostly due to the

high angle of attack needed to achieve the target lift coefficient. Since NASC is corrected by

an Euler solution that allows to account for wing camber, the resulting difference in pressure

is comparable to that calculated by SU2V. Similar conclusions can be drawn at higher speeds.

Results obtained with PAN are similar to those obtained by SU2V, except at the shock and

pressure peak locations. Since PAN and NAS solve linear equations, they cannot predict the

shock. However, using the correction method implemented in NASTRAN allows NASC to take

the shock into account, except that it is stronger and located further downstream. This is

consistent, since the correction comes from an Euler calculation. The same is true for the

results obtained from the inviscid nonlinear solvers, which also feature a reduced pressure

peak compared to the SU2V prediction. TRNV, found to be as accurate as SU2V in the Onera

M6 case, predicts a stronger shock and a slightly higher drag coefficient in the present case.

25

Chapter 2. Comparison of aerodynamic models

0 0.2 0.4 0.6 0.8 1
-2

0

2

4

6
PAN
NAS
NASC
SU2V

(a) Linear models (M = 0.50, CL = 0.80).

0 0.2 0.4 0.6 0.8 1
-2

0

2

4

6
PAN
NAS
NASC
SU2V

(b) Linear models (M = 0.78, CL = 0.60).

0 0.2 0.4 0.6 0.8 1

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

TRN
SU2
SU2V

(c) Inviscid models (M = 0.50, CL = 0.80).

0 0.2 0.4 0.6 0.8 1

-1.5

-1

-0.5

0

0.5

1

TRN
SU2
SU2V

(d) Inviscid models (M = 0.78, CL = 0.60).

0 0.2 0.4 0.6 0.8 1

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

TRNV
SU2V

(e) Viscous models (M = 0.50, CL = 0.80).

0 0.2 0.4 0.6 0.8 1

-1.5

-1

-0.5

0

0.5

1

TRNV
SU2V

(f) Viscous models (M = 0.78, CL = 0.60).

Figure 2.4.3: Pressure distribution along the mean aerodynamic chord of the Embraer bench-
mark wing (y/b = 0.42) for low and high-speed maneuvers obtained from the different levels of
fidelity.

Figure 2.4.4 shows the sectional lift coefficient distribution along the span of the Embraer

benchmark wing at low and high speeds. In this case, where the lift coefficient of the wing

is prescribed, the lift distributions predicted by the different models are similar, except for NAS,

26

2.4. Embraer benchmark wing

which yields highly inaccurate results. It should be recalled that the Embraer wing is cambered

while the Onera M6 is not. NASTRAN does not include camber in its calculation by default; a

camber or a pressure correction, or both, must be applied. The pressure correction used here

improves the predictions significantly, as shown by the NASC results.

0 0.2 0.4 0.6 0.8 1
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

PAN
NAS
NASC
SU2V

(a) Linear models (M = 0.50, CL = 0.80).

0 0.2 0.4 0.6 0.8 1
0.4

0.45

0.5

0.55

0.6

0.65

0.7

PAN
NAS
NASC
SU2V

(b) Linear models (M = 0.78, CL = 0.60).

0 0.2 0.4 0.6 0.8 1
0.55

0.6

0.65

0.7

0.75

0.8

0.85

TRN
SU2
SU2V

(c) Inviscid models (M = 0.50, CL = 0.80).

0 0.2 0.4 0.6 0.8 1
0.35

0.4

0.45

0.5

0.55

0.6

0.65

TRN
SU2
SU2V

(d) Inviscid models (M = 0.78, CL = 0.60).

0 0.2 0.4 0.6 0.8 1
0.6

0.65

0.7

0.75

0.8

0.85

TRNV
SU2V

(e) Viscous models (M = 0.50, CL = 0.80).

0 0.2 0.4 0.6 0.8 1
0.4

0.45

0.5

0.55

0.6

0.65

TRNV
SU2V

(f) Viscous models (M = 0.78, CL = 0.60).

Figure 2.4.4: Sectional aerodynamic lift coefficient along the span of the Embraer benchmark
wing for low and high-speed maneuvers obtained from the different levels of fidelity.

27

Chapter 2. Comparison of aerodynamic models

Figure 2.4.5 shows the sectional moment coefficient distribution along the span of the Embraer

benchmark wing at low and high speeds. The moment distributions predicted by the various

models are similar, with the following exceptions. Firstly, as in the Onera M6 case, inviscid

models tend to predict moment coefficients with higher magnitude. Secondly, NAS yields highly

inaccurate results. Again, the pressure correction used in NASC improves the predictions.

Thirdly, SU2 overpredicts the dip in the moment distribution located at the kink of the wing

(y/b = 0.37) at low speed, while PAN does not capture it at high speed.

28

2.4. Embraer benchmark wing

0 0.2 0.4 0.6 0.8 1
-0.2

-0.15

-0.1

-0.05

0

PAN
NAS
NASC
SU2V

(a) Linear models (Mach 0.50, CL = 0.80).

0 0.2 0.4 0.6 0.8 1
-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

PAN
NAS
NASC
SU2V

(b) Linear models (Mach 0.78, CL = 0.60).

0 0.2 0.4 0.6 0.8 1
-0.16

-0.12

-0.08

-0.04

0
TRN
SU2
SU2V

(c) Inviscid models (Mach 0.50, CL = 0.80).

0 0.2 0.4 0.6 0.8 1
-0.24

-0.2

-0.16

-0.12

-0.08

-0.04
TRN
SU2
SU2V

(d) Inviscid models (Mach 0.78, CL = 0.60).

0 0.2 0.4 0.6 0.8 1
-0.14

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

TRNV
SU2V

(e) Viscous models (Mach 0.50, CL = 0.80).

0 0.2 0.4 0.6 0.8 1
-0.16

-0.14

-0.12

-0.1

-0.08

-0.06

-0.04

TRNV
SU2V

(f) Viscous models (Mach 0.78, CL = 0.60).

Figure 2.4.5: Sectional aerodynamic moment coefficient along the span of the Embraer bench-
mark wing for low and high-speed maneuvers obtained from the different levels of fidelity.

2.4.2 Computational performance

The same computers were used as for the Onera M6 wing. The mesh size and the computa-

tional time are given in Tables 2.4.3a and 2.4.3b. Again, the time needed to compute the ref-

erence Euler solution required by NASC is not displayed in the corresponding row. Compared

29

Chapter 2. Comparison of aerodynamic models

to the Onera M6 wing, the Embraer wing has a higher aspect ratio and unstructured meshes

need to be denser to achieve the same resolution. This has an impact on the runtime: SU2

is now about 60 times slower than TRN. As in the Onera M6 case, TRNV is significantly faster

than SU2V. Overall, the linear models PAN, NAS and NASC remain very fast, while higher-

fidelity SU2 and SU2V based on the Euler and RANS equations are significantly slower. The

full potential models TRN and TRNV offer a good tradeoff between accuracy and computational

time.

Model n. cells n. threads wall-clock time cpu time
PAN 1 400 1 10 s 10 s
NAS 800 1 25 s 25 s
NASC 800 1 25 s 25 s
TRN 500 000 1 5 min 5 min
SU2 1 300 000 12 25 min 5 h
TRNV 500 000 1 12 min 12 min
SU2V 1 500 000 60 48 h 120 d

(a) M = 0.50 and CL = 0.80.
Model n. cells n. threads wall-clock time cpu time
PAN 1 400 1 10 s 10 s
NAS 800 1 25 s 25 s
NASC 800 1 25 s 25 s
TRN 500 000 1 5 min 5 min
SU2 1 300 000 12 30 min 6 h
TRNV 500 000 1 12 min 12 min
SU2V 1 500 000 60 48 h 120 d

(b) M = 0.78 and CL = 0.60.

Table 2.4.3: Mesh size and computational time required by the different models for the Embraer
benchmark case.

2.4.3 Cruise flight conditions

The aerodynamic load distributions predicted by the different models used to compute the flow

over the Embraer benchmark wing in the low-speed, nominal and high-speed cruise condi-

tions, as well as their computational cost, are available in appendix A. The Mach numbers

corresponding to these three flight conditions are M = 0.70, M = 0.78 and M = 0.89, and the

corresponding prescribed lift coefficients are CL = 0.58, CL = 0.47 and CL = 0.39, respectively.

In the low-speed cruise case, the freestream Mach number is small and the flow remains sub-

sonic over the whole wing. As a result, the linear models are in good agreement with the

nonlinear inviscid models, except for NAS, which neglects the camber of the wing. Compared

to inviscid models, viscous models predict a higher pressure peak at the leading edge, and

yield lower magnitudes of the moment coefficient, due to the presence of the boundary layer.

For this case without shocks, the computational cost of the nonlinear models is lower than that

for flow solutions in which shocks are present.

In the nominal cruise case, the viscous models predict a weak shock. Note that this is by de-

30

2.5. Discussion

sign, as the wing shape has been optimized for this particular flight condition. On the other

hand, nonlinear inviscid models predict a stronger shock, located downstream, which notice-

ably changes the pressure distribution, as well as the angle of attack needed to achieve the

prescribed lift coefficient. The predictions of the linear models differ even more, since they do

not predict the shock. This has a noticeable impact on the lift and moment distributions, espe-

cially near the kink of the wing. For this case with a weak shock, the computational cost of all

the different models remains low.

The discrepancies between the models greatly increase as the freestream Mach number rises

to M = 0.89. In this high-speed cruise condition, strong shocks are observed on both the

suction and pressure sides of the wing. In such cases, there is strong interaction between the

shock and the boundary layer, and neglecting the viscosity does not yield accurate and reliable

results. Although both the full potential and the viscous-inviscid coupling formulations should

break down for such transonic and partly separated flows, Tranair (TRNV) still converges and

yields predictions comparable to RANS (SU2V) solutions obtained from SU2. For this case with

strong shocks, the computational cost of the different models increases significantly, particularly

that of TRNV.

2.5 Discussion

For both test cases considered in the present chapter, the presence of the shock and the

boundary layer affected the results significantly. At high speed, the shock was found to change

the behavior of the pressure distribution and to impact the lift, drag and moment coefficients.

Furthermore, at both low and high speeds, the presence of the boundary layer was found

to decrease the lift, and impacted the angle of attack such that it needed to be about one

degree higher to reach a prescribed lift coefficient. At high speed, the boundary layer was also

found to affect both the shock location and its strength, which in turn affected the aerodynamic

coefficients. Moreover, accounting for the fluid viscosity introduces shear stresses and slightly

modifies pressure forces, which significantly increases the magnitude of the drag coefficient.

Results also show that using lattice methods, which do not account for the wing thickness and

camber, has a significant impact on the solution. Correcting such methods with a nonlinear

solution improves all results except for the drag, but the computational time becomes slightly

higher than the one needed to obtain the nonlinear solution.

The results presented up to this point demonstrate that, in the presence of shocks, linear meth-

ods predict the lift with reasonable accuracy but underestimate the drag and the pitching mo-

ment and yield nonphysical pressure distributions. They are therefore not suited for transonic

aerodynamic computations and optimization in preliminary aircraft design. On the other hand,

the Euler and Reynolds-Avergared Navier-Stokes equations correctly capture the physics but

have a high computational cost. Full potential models are found to give reliable results for a

moderate computational cost. More particularly, the full potential equation was found to predict

results comparable to the Euler equations for less than a tenth of the computational cost. When

31

Chapter 2. Comparison of aerodynamic models

coupled to the boundary layer equations, the full potential computations accuracy were similar

to RANS results for less than a thousandth of the computational cost.

Since most aircraft fly in the transonic regime, the presence of shocks is very likely. Even though

linear models are able to yield reasonable estimates of the lift distribution, they fail to give a

good prediction for the drag and pitching moment. Moreover, neglecting the shock in transonic

wing design could lead to badly shaped wings. Comparing the different nonlinear equations

showed that the full potential model accuracy is similar to that of higher-fidelity models, but

at a much lower cost, provided that shocks are not too strong. In practice, strong shocks

are not desirable as they cause a dramatic increase in drag, and thus in fuel consumption.

Consequently, modern transport aircraft wings are designed so that only weak shocks occur

in nominal cruise conditions. As such, the flow isentropicty assumption underlying the full

potential equation is not a critical limitation. The full potential formulations and their solution

techniques will therefore be investigated in chapter 3.

32

Chapter 3

The full potential equation
In the present chapter, the different potential formulations and the numerical methods to solve

them will be investigated. Attention will also be drawn to the main challenges that arise when

solving these equations. Traditional field methods, such as the finite difference/element/volume

methods, will first be reviewed, as they constitute the main techniques used to solve the full

potential equation. The field panel method will then be briefly introduced and reviewed.

3.1 Potential formulations

3.1.1 Equations and solution methods

The different steady potential formulations can be written in conservative form,

∇ ·F = 0. (3.1.1)

In the case of the full (nonlinear) potential equation, the flux vector reads,

F = ρ∇φ, (3.1.2)

where φ is the total velocity potential, and ρ is the density, depending on the velocity and given

by Eq. 1.2.10. Combining Equations 3.1.1 and 3.1.2 gives the full potential equation 1.2.9,

which can be rearranged in the form of a Poisson equation, such that the nonlinear terms are

grouped on the right-hand side,
∇ · (∇φ) = σ,

σ =
1

ρ
∇ρ · ∇φ.

(3.1.3)

The full potential equation can also be cast into its non-conservative form,

(a2 − u2)φxx + (a2 − v2)φyy + (a2 − w2)φzz − 2uvφxy − 2uwφxz − 2vwφyz = 0, (3.1.4)

where a is the local speed of sound and u, v and w are the local velocity components. Equa-

tion 3.1.4 can further be simplified by considering that lifting bodies induce small disturbances

compared to the mean flow. The total potential is first decomposed into a freestream potential,

φ∞, and a perturbation potential assumed to be small compared to the total potential. The

33

Chapter 3. The full potential equation

steady Transonic Small Disturbance (TSD) equation is then obtained by neglecting small terms

compared to the mean flow,[
1−M2

∞ −M2
∞ (γ + 1)

ϕx
u∞

]
ϕxx + ϕyy + ϕzz = 0, (3.1.5)

where ϕ = φ−φ∞ is the perturbation potential , M∞ is the freestream Mach number, u∞ is the

freestream velocity along the x direction and γ is the specific heat ratio. The non-conservative

form of the full potential and the TSD equations are not the main focus of the present work, but

are worth attention since many breakthroughs in transonic flow computation were first achieved

using these formulations.

Partial differential equations can be solved with various numerical methods, usually categorized

as boundary element or field methods. The oldest field method is the finite difference method,

in which the equations are discretized on a set of points in the field around the geometry. Even

though the finite difference method is simple in essence, it is severely limited by the grid gen-

eration process since the points should form a structured stencil. The finite element and finite

volume methods were developed later on. Rather than being discretized directly on a grid, the

equations are discretized on elements or volumes representing some relatively small portions

of the field. These elements and volumes are then locally mapped to a simpler computational

space, in which the computations are actually carried out. These methods thus circumvent

the limitation of the finite difference method, since the grid no longer needs to be structured.

Complex geometries can then be studied more easily. If the equations are linear, a cheaper

alternative consists in using a boundary element method. In this approach, only the boundary

of interest is discretized. Rather than solving the equations directly, elementary solutions (i.e.

singularities) are superimposed on the surface of the geometry and are set to enforce its im-

permeability. In the case of aerodynamic modeling, this technique is usually referred to as a

panel method. Its cost effectiveness makes it one of the standard tools in preliminary aircraft

design, even today. In an effort to model flow nonlinearities while retaining the low computa-

tional cost of the boundary element method, researchers developed the field panel method,

an extension of the panel method solving the full (nonlinear) potential equation. The solution

procedure is the same as in a panel method, except that a non-conforming Cartesian grid is

added around the geometry. The right-hand side of Equation 3.1.3 is then computed in the

cells of this Cartesian grid by means of traditional finite differences. This term acts as a source

term representing compressibility and allows the modeling of nonlinear flows. The field panel

method can be considered as a middle way between a field technique and a boundary element

method. More details about the formulation will be given in chapter 4.

3.1.2 Main challenges

Two challenges naturally arise when solving a potential formulation. Firstly, a potential flow is

irrotational and cannot produce loads, which is exactly what engineers are trying to predict.

A potential formulation thus has an infinite number of solutions, and an additional condition

should be enforced. The Kutta condition is based on the physical observation that real fluids

34

3.2. Field potential solvers

are viscous and cannot turn around sharp corners, such as the trailing edge of a wing. There

are many formulations of the Kutta condition, such as finite fluid velocity at the trailing edge,

zero vorticity at the trailing edge, equality of pressures on the suction and pressure sides at

the trailing edge, etc. The second challenge is the prediction of transonic flows. When the

flow is subsonic, the pressure waves inside the fluid propagate in every direction. However,

when the flow is supersonic, they can only propagate downstream. This change in the physics

can be clearly seen mathematically in the non-conservative form of the full potential equation.

By computing the characteristics of Equation 3.1.4, it can be demonstrated that the nature of

the equation switches from elliptic to hyperbolic as the signs of the leading terms switch from

positive to negative, which occurs when the flow becomes supersonic. The interested reader

is directed to Holst’s work [34] for a complete mathematical development. This change in the

physical nature of the flow and mathematical nature of the equation must be reflected in the

numerical implementation. Over the years, several approaches have been developed to handle

this challenge, as will be illustrated in the next section.

3.2 Field potential solvers

This section is mainly based on Holst’s excellent literature review on nonlinear potential meth-

ods [34]. It briefly describes the early work done on the nonlinear potential equation during the

seventies and eighties, as well as the major breakthroughs that made the full potential model

evolve into a mature technology.

3.2.1 Early work on the transonic small disturbances equation

The effort to solve transonic flows started in the late sixties with the TSD equation 3.1.5 as

a model problem. The first major breakthrough was the "physics-dependent" differentiation,

proposed by Murman and Cole in 1971 [59]. They implemented an algorithm reflecting the

change in the physical and mathematical nature of the equation between the subsonic and

supersonic regions of the flow. The algorithm switches from central differencing in subsonic

regions to upwind differencing in supersonic regions. This allowed the computation of transonic

flows, which was impossible before.

In two dimensions1, the flux vector in Equation 3.1.1 for the steady TSD equation reads

F =

[
f

g

]
=

[
(1−M2

∞)ϕx − γ−1
2 M2

∞ϕ
2
x

ϕy

]
. (3.2.1)

The equation can then be rewritten following the Murman and Cole algorithm as

f̄i+1/2,j − f̄i−1/2,j

∆x
+
gi,j+1/2 − gi,j−1/2

∆y
= 0, (3.2.2)

where i and j denote the position on the grid, such that x = i∆x and y = j∆y, and where the
1All the developments will be particularized to two dimensions for conciseness.

35

Chapter 3. The full potential equation

flux f̄ is defined as

f̄i+1/2,j = µifi+1/2,j + (1− µi)fi−1/2,j , (3.2.3)

and where the switching operator µ is 1 for a local Mach number lower than 1, and 0 otherwise.

Note that the fluxes at midpoints are reconstructed by an averaging procedure.

The algorithm was first implemented to solve flows around airfoils and was extended to more

complex configurations by various authors. The computations were carried out using either

the conservative or the non-conservative form of the equation. Examples of applications in-

clude computations around axisymmetric bodies [60], three-dimensional isolated wing [61, 62],

wing-body [63, 64, 65], wing-body-store [66, 67] and wing-body-canard [68] configurations, and

turbomachinery cascades [69, 70]. The assumptions behind the TSD equation however restrict

its application to thin bodies at low angles of attack, which is not often the case in practice.

Moreover, the shockwaves were not always accurately captured, as reported by Bailey and

Ballhaus [71] for example. Researchers thus turned to the full potential equation.

3.2.2 Early work on the full potential equation

The first two-dimensional codes solving the full potential equation were developed by Steger

and Lomax [72] and Garabedian and Korn [73]. The authors used finite differences to discretize

the equation on grids built using conformal mapping of a circle into an airfoil. The solution was

obtained through successive line over-relaxation [74], and the codes were extended to incor-

porate a boundary layer correction method [75]. Later in the seventies, the algorithms solving

the full potential equation were sucessfully generalized to handle more complex geometries,

such as axisymmetric blunt bodies [76, 77], inlets [78, 79, 80, 81], and turbomachinery airfoil

cascades [82, 83], and to feature inverse design options [84].

In 1974, Jameson and Caughey [85, 86] developed FLO22, the first three-dimensional full po-

tential solver. The solver uses finite differences and the grid is built using a shear-parabolic

conformal mapping [87]. The iteration scheme is also based on successive line over-relaxation.

Moreover, Jameson enhanced the Murman and Cole algorithm and developed the concept of

rotated difference. The key idea was to match the computational domain of dependence, i.e.

the region upon which the solution at a point depends, to the physical and mathematical one.

The rotated difference scheme allows to use upwind differentiation only in the streamwise di-

rection and is thus more stable and accurate.

All codes developed so far were based on the non-conservative form of the full potential equa-

tion 3.1.4. In such codes, the solution, and more particularly the shock strength and position,

was found to be affected by numerical parameters. Jameson thus extended his research work

to the conservative form of the full potential equation 1.2.9 and developed the first conservative

solver in 1975 [88]. The solver was extended with the help of Caughey and their work resulted

in several codes between 1977 and 1980: FLO27 [89], FLO28 [90] and FLO30 [91]. These

codes use a similar grid generation process and iteration scheme as FLO22, but the discretiza-

tion is based on finite volumes instead. While FLO27 is only able to discretize isolated wings

36

3.2. Field potential solvers

mounted on an infinite cylinder representing the fuselage, FLO28 and FLO30 feature more

advanced techniques to treat the fuselage. Verhoff and O’Neil [27] performed a comparative

study of the FLO codes. More specifically, the authors investigated the different fuselage mod-

eling capabilities implemented in theses codes. Over the years, various authors succesfully

enhanced these codes. FLO27 was extended by Chen et al. [92] to include a boundary layer

correction method. Moreover, the authors were able to improve the grid generation process

to discretize pylons and nacelles, and performed transonic computations with power-off and

power-on engines. FLO28 was extended in a similar way, using a grid generation technique

developed earlier by Thompson et al. [93], as described by Yu [94]. Finally, viscous correction

methods were also implemented in FLO30 by Street [95] and Woodson et al. [96].

In Jameson and Caughey’s work, the rotated difference scheme is implemented by splitting the

fluxes into physical terms f and g, and artificial viscosity terms P and Q. The full potential flux

vector in Equation 3.1.2 then reads,

F =

[
f + P

g +Q

]
. (3.2.4)

The full potential equation is then discretized as

←−
δ ξ
(
fi+1/2,j + Pi+1/2,j

)
+
←−
δ η
(
gi,j+1/2 +Qi,j+1/2

)
+Ai,j = 0, (3.2.5)

where
←−
δ denotes a backward derivative. The components of the flux vector are computed as

fi+1/2,j =
1

2

[ρu
J
|i+1/2,j+1/2 +

ρu

J
|i+1/2,j−1/2

]
,

gi,j+1/2 =
1

2

[ρv
J
|i+1/2,j+1/2 +

ρv

J
|i−1/2,j=1/2

]
,

(3.2.6)

where u and v are the velocity components and J is the determinant of the Jacobian matrix

mapping the cell from the physical space (x, y) to the computational space (ξ, η). The P and Q

terms acting as artificial viscosity are defined as

Pi+1/2,j =


µρ
Ja2

(
u2δξξ + uvδξδη

)
φi,j , ui+1/2,j > 0,

− µρ
Ja2

(
u2δξξ + uvδξδη

)
φi,j , ui+1/2,j < 0,

Qi,j+1/2 =


µρ
Ja2

(
uvδξδη + v2δηη

)
φi,j , vi,j+1/2 > 0,

− µρ
Ja2

(
uvδξδη + v2δηη

)
φi,j , vi,j+1/2 < 0,

(3.2.7)

where a is the speed of sound. The switching function µ allows to activate the viscous terms in

the supersonic regions and is defined as

µ = max

(
0, 1−

M2
C

M2

)
, (3.2.8)

where MC is a user-specified cut-off Mach number. In Equation 3.2.5, the term Ai,j restores

37

Chapter 3. The full potential equation

the continuity in the solution between adjacent cells, hence effectively removing odd-even de-

coupling [89].

As demonstrated by Klopfer and Nixon [97], an interesting feature of solving the conservative

form of the equation is the ability to add an entropy correction. The correction is based on the

Rankine-Hugoniot relation [98], and allows full potential calculations to capture stronger shocks

more accurately and to achieve the same accuracy as solving the Euler equations. Applications

for both steady and unsteady flows are available in a work by Parrineello and Mantegazza [99].

3.2.3 Transonic computation techniques

Following the successful work of Jameson on the rotated difference scheme, several authors [100,

101, 102] established a density upwinding procedure during 1978 and 1979. The numerical

viscosity term is not added to the equation, but an upwind bias is directly added to the den-

sity instead. This is mathematically equivalent to the rotated difference scheme, and physically

consistent with the local hyperbolic nature of the equation.

In the artificial density method, the physical density ρ in the potential equation is replaced by a

biased (i.e. upwinded) density ρ̃, which can be expressed as

ρ̃ = ρ− µ
←−
δsρ∆s, (3.2.9)

where
←−
δs denotes a derivative in the opposite direction of the flow and ∆s is the local cell

size. The streamline upwind derivative of the density can be evaluated in different ways. For

example, Hafez et al.[102] used

←−
δsρ∆s =

1

q

(
u
←−
∆xρ+ v

←−
∆yρ

)
, (3.2.10)

where q is the velocity magnitude, and where
←−
∆xρ and

←−
∆yρ are backward differences of the

density in the x and y directions, respectively. In Equation 3.2.9, the amount of bias is controlled

by the switching function µ, which is generally defined as

µ = µC max

(
0, 1−

M2
C

M2

)
, (3.2.11)

where µC and MC are user-specified constants, and controls the amplification of the bias and

the extent of the region where the bias is to be applied.

A further improvement to the density upwinding procedure is the flux upwinding scheme which

was implemented by various authors [103, 104, 105, 106, 107, 108, 109]. In this method, the

entire mass flux is upwinded to produce smooth gradients through the sonic regions, which

results in better shock capturing. Studies comparing the density and flux upwinding schemes

made by Habashi and Hafez [110], Volpe [111] and Dulikravich [112] indicate that the flux

upwinding procedure tends to yield better results for weak shocks. The convergence charac-

teristics of the two methods are however very similar.

38

3.2. Field potential solvers

In the flux upwinding scheme, the physical density ρ is replaced by a biased density ρ̃ in the

potential equation, which is expressed as

ρ̃ = ρ− ∆s

q

←−
δs (ρq) , (3.2.12)

where ∆s is the cell size. Similar to the density upwinding procedure, the upwinded flux is

approximated by
←−
δs (ρq) =

1

q

(
u
←−
δx (ρq) + v

←−
δy (ρq)

)
, (3.2.13)

where the mass flux is expressed as

ρq =

0, ifM < 1,

ρq− ρ?q? ifM ≥ 1,
(3.2.14)

where q is the velocity vector and where starred quantities denote sonic values. The above

formulation is second order in subsonic regions and first order in supersonic regions. It can

further be complemented by a limiter to switch between first and second order formulations

at local extrema, thus reducing oscillations in the solution. The density and flux upwinding

procedures are efficient and practical to implement, since only the density needs to be modified

in the full potential equation. As a consequence, current codes solving the equation are usually

based upon these techniques.

Another original method for capturing shockwaves was developed by Bristeau et al. in 1985 [113].

It expresses the solution of the full potential equation as a constrained minimization problem

to be solved by a least squares conjugate gradient method under a finite element formulation.

The constrain consists in a term penalizing expansion shocks, but not affecting compression

shocks. Though Bristeau and his colleagues obtained good results, the method is harder to

implement and thus not widespread.

3.2.4 Kutta condition implementation

Few details are usually given on the implementation of the Kutta condition, and some authors

do not even mention it. In two-dimensional cases, such as flow over airfoils, the Kutta condition

is usually enforced by computing the potential jump, i.e. the circulation, at the trailing edge

and imposing it to be constant on a wake extending downstream. The wake is thus modeled

as an infinitesimal gap in the mesh, where the potential can be discontinuous. For example,

Bristeau et al. [113] used this approach. This strategy can be extended to three dimensions,

by considering each spanwise section of a wing to be an airfoil. The circulation can then

be computed at discrete locations of the wing trailing edge and imposed to be constant on

spanwise slices of the wake. This implementation finds its roots in the panel method, in which

only the boundary needs to be discretized. It is in essence restricted to structured grids, but can

be extended to unstructured grids. Each wake node must first be projected on the trailing edge.

The circulation must then be interpolated from adjacent trailing edge nodes to the projected

39

Chapter 3. The full potential equation

wake node location. The interpolated value must finally be imposed on the original wake node.

The procedure is schematized in Figure 3.2.1. However, this implementation is not practical

and alternative implementations will be explained in section 3.2.6.

Δ𝜙w = Δ𝜙TE

Δ𝜙TE = aΔ𝜙A + 𝑏Δ𝜙B

Δ𝜙A

Δ𝜙B

1.2.

3.

Figure 3.2.1: Illustration of basic Kutta condition implementation for three-dimensional unstruc-
tured grids. 1) project the wake node on the trailing edge. 2) interpolate the potential jump from
adjacent trailing edge nodes to the projected wake node location. 3) impose the interpolated
value of the circulation on the wake node.

3.2.5 Commercial software

With the advent of more efficient and robust full potential solvers, engineers became interested

in studying more complex configurations, such as full aircraft with nacelles. For such cases,

the finite volume and finite element methods are natural choices since they allow more free-

dom in the grid generation process. However, even today, some well-established codes still

use finite difference methods combined with dedicated complex grid generators. Codes featur-

ing advanced solution techniques, viscous correction methods and design features were then

developed.

The most widely-used full potential solver is probably Tranair, developed by Johnson et al. [45,

46] at NASA and The Boeing Company in the last two decades of the 20th century. Tranair

uses finite elements on non-conforming Cartesian grids to discretize the full potential equation.

The variational formulation is based on the Bateman principle, which is modified for cells cut

by a solid boundary. The simulation starts with a user-specified uniform grid, which is then

refined using an Octree method. The refinement can be driven by the solution in order to cap-

ture sharp gradients accurately. Tranair uses either density upwinding or flux upwinding, the

latter being first or second order. Since the surface grid is structured, the Kutta condition can be

implemented in a panel-like fashion. The potential jump at the trailing edge of each spanwise

station is computed and imposed on every wake node downstream of that spanwise station, as

explained in the previous section. The resulting set of equations is solved using a quasi-Newton

40

3.2. Field potential solvers

method with the Bank and Rose [47] line search algorithm and the linear iteration scheme is

GMRES [114]. Tranair has been coupled to the integral form of the boundary layer equations.

Drela’s two-dimensional code, ISES [16, 115], was initially used, but the formulation was later

extended by Mughal [18] to handle quasi-2D boundary layers, i.e. two-dimensional boundary

layers extended with a crossflow model, which are typically encountered in aeronautical flows.

The inviscid and viscous equations are solved in a fully-simultaneous fashion, as described in

Lock’s work [20]. Tranair also features a design and optimization procedure. The geometric

sensitivities with respect to the objective function, constraints and flow variables are computed

using finite differences. The effect on the geometry is then modeled through surface transpi-

ration. More specifically, the impermeability boundary condition is adjusted to allow a blowing

or a suction on the boundary. The methodology is similar to that employed in viscous correc-

tion techniques. Details about the formulation can be found in several works by the Tranair

development team [116, 117, 118, 119]. Tranair finally features a basic dynamic aeroelactic

modeling capability. The unsteady flow is modeled by solving for linear harmonic perturbations

about a pre-computed steady flow. Imposing the mode shapes of a flexible wing as a boundary

condition allows to compute the flutter speed for a given flight condition. The equations are

given in chapter 7 and further details about the formulation can be found in the manual [120].

Another commercially available code is blwf developed by Karas and Kovalev [121] at the Cen-

tral Hydrodynamics Institute (TsAGI) in Russia. The code discretizes the conservative form of

the full potential equation using finite volumes, which is then solved by the approximate factor-

ization scheme [34, 122]. Transonic flows are stabilized with first or second order multiplicative

artificial viscosity based on Engquist and Osher’s work [123]. The code includes an algebraic

grid generator able to map wing/body configurations to a C-grid topology. If tails or nacelles

are present, a chimera approach, similar to that described by Holst [124], is used to superpose

the different sets of grid. blwf also offers the possibility to solve the boundary layer equations,

either in their integral formulation, like in Tranair, or discretized using finite differences. The

viscous-inviscid coupling is performed in a quasi-simultaneous fashion [20]. As in the case

of Tranair, blwf has been extended to solve unsteady flows modeled by linear harmonic

small perturbations to compute the flutter speed. Furthermore, the code incorporates a simple

beam modeling technique to discretize the structure of the wing, allowing to compute static

aeroelastic wing deflections. Finally, blwf has been extended to solve the Euler equations.

The VFP software [125] was developed at the Aircraft Research Association2 and RAE/DERA

(now QinetiQ3). It uses a finite difference discretization on a structured grid with a form of

relaxation as an iteration scheme. The boundary layer is modeled by solving the integral form

of the boundary layer equations, which are coupled to the inviscid equations through a semi-

inverse method [20]. The code is currently able to handle wing/body configurations, without

tails or nacelles, and is still under development [126].

2https://www.ara.co.uk/
3https://www.qinetiq.com

41

https://www.ara.co.uk/
https://www.qinetiq.com

Chapter 3. The full potential equation

3.2.6 Research codes

In parallel to the commercial solvers referenced in the previous section, researchers devel-

oped and implemented their own codes, improving existing characteristics and proposing new

features. Although the first potential solvers were developed thirty to forty years ago and the

technology is mature, new codes are still emerging today.

In 1995, Nishida [12] developed a full potential solver in the context of a fully simultaneous

viscous-inviscid coupling simulation framework. His implementation is based on a finite ele-

ment formulation with structured grids and uses a simple density upwinding scheme, where

the upwind element is taken to be the previous one in the streamwise direction. Moreover, he

implemented the Kutta condition in a similar way to periodic boundary conditions, making it grid

independent, as opposed to Tranair. Nishida also coupled his inviscid code to the integral

form of the boundary layer equations, which are solved in a fully simultaneous fashion. The

author performed transonic computations on several wings, and showed that his full potential

solver yielded results similar to experimental data when the viscous correction method was

used. Discrepancies in shock location were however observed depending on which spanwise

station was considered. Nishida’s work was further extended to deal with unstructured grids in

2017 by Galbraith et al. [13]. Moreover, Galbraith and his colleagues adapted Parrinello and

Mantegazza finite volume formulation [127, 99] to finite elements. In their work, they explored

a new way of upwinding the density, which is considered as a second variable instead of a

function, explicitly computed from the potential by the isentropic flow relationship 1.2.10. Since

the density is approximated to be linear inside an element, the streamline upwind derivative

can be computed locally and the upwind bias (Equation 3.2.9) can be added without extending

the computational stencil, i.e. without taking additional upstream elements into account. This is

consistent with the finite element method, since neighboring elements are not needed, and the

data structure does not need to be further enriched. Another advantage of this method is that

it can be easily extended to higher order. Galbraith et al. tested their code on isolated wings

and wing-fuselage configurations, at both subsonic and transonic speeds. In each case, they

reported consistent results.

During his Master and Ph.D. work, Kinney [128, 129] developed an unstructured finite element

implementation allowing the modeling of complex geometries, such as full aircraft configura-

tions. He used a second order flux upwinding scheme with limiters. The upwinding is performed

in two sweeps and depicted in Figure 3.2.2. During the first sweep, the mass flux computed

on elements A to D is stored into their nodes 1 and 2. The second sweep then consists in up-

winding the mass flux of the element F by only considering the upwind nodes (1 and 2) of this

element. The upwinded mass flux is constructed by averaging the mass flux stored in the up-

wind nodes. A detailed explanation can be found in the work by Kinney et al. [130]. Similarly to

the work by Galbraith et al., this method of upwinding the flux only needs an element-to-nodes

data structure, which is naturally present in the finite element code.

42

3.2. Field potential solvers

𝜌𝒒

𝜌𝒒D

𝜌𝒒C

𝜌𝒒B

𝜌𝒒A

(a) First sweep.

𝜌𝒒

𝜌𝒒2

𝜌𝒒1

 𝜌𝒒F

(b) Second sweep.

Figure 3.2.2: Flux upwinding (adapted from Kinney et al. [130]). The bar and the tilde symbols
denote averaged and upwinded quantities, respectively.

Later in 1997, Kinney et al. [131] coupled their inviscid solver with the integral form of the bound-

ary layer equations. The boundary layer is assumed to be two-dimensional and computed along

several strips along the span of a wing. The viscous-inviscid iterations are performed in a fully

simultaneous fashion, and wall transpiration is used to model the effect of the viscous flow

on the inviscid flow. Results computed using the different solvers by Kinney et al. on various

aircraft configurations can be found in several papers [130, 131, 132, 133, 134].

Later, Neel (1997) [9] and Liegl (2005) [10], used a finite volume formulation to solve the full po-

tential equation on unstructured grids. Both implementations use a density upwinding scheme.

The Kutta condition is enforced by computing the circulation at spanwise stations of the wing,

and then used to compute a potential jump through the wake extending downstream of the lift-

ing surface. This is basically an extension of the algorithm used by Tranair for unstructured

grids, which is described in Figure 3.2.1. In order to improve the convergence speed of his

code, Liegl used a panel method to initialize the flow, and more specifically, the value of the

circulation, before the actual finite volume computation. Both authors compared their codes

on two and three-dimensional cases, and compared their results to those obtained from other

implementations based on the Euler and RANS equations, as well as to experimental data.

They reported good convergence characteristics and solution times about one order of magni-

tude faster than Euler calculations. Particularly, Neel performed transonic computations on the

Onera M6, and obtained similar results as those presented in chapter 2, in Figure 2.3.3.

More recently, in 2012, Eller [135] implemented a variable-order finite element method on un-

structured grids. To ensure robustness, the density is modified when the flow becomes super-

sonic. Shock waves are therefore not captured and the method is limited to subcritical flows.

The Kutta condition is formulated in the same fashion as Nishida, but with the help of a least

squares method. Eller performed subsonic computations on the DLR-F4 wing-fuselage con-

figuration [136] and obtained good agreement with experimental results. Davari et al. [137]

43

Chapter 3. The full potential equation

extended Eller’s work in 2018 by embedding the wake sheet into the mesh, rather than mod-

eling it explicitly by an infinitesimal gap. The potential jump across the wake is represented

using cut elements. These elements have duplicated degrees of freedom on their nodes and

use enriched shape functions. This way of handling the wake has great advantages for both

the grid generation process and aeroelastic simulations, since the wake does not have to be

geometrically modeled. Their implementation is also based on a least squares finite element

method and is currently restricted to airfoils. The results obtained by Davari et al. showed that

the wake modeling method they proposed features improved robustness compared to classical

techniques.

In 2017, Lyu et. al. [11] developed a finite volume full potential solver based on an adaptive Oc-

tree Cartesian grid. In order to obtain a good initial grid, they also implemented a grid generator

which uses a cell-cutting and merging algorithm to process the geometry. The mesh is then

further coarsened or refined based on the different solutions obtained through the simulation.

As the mesh is non-conforming, the impermeability boundary condition is enforced by using

ghost-cells. The method uses a density upwinding scheme and the Kutta condition is enforced

in a novel way by computing gradients on wake faces rather than directly assigning a potential

jump, which is reported to accelerate the convergence. However, each wake node must still

be mapped to its corresponding spanwise station on the trailing edge. The authors validated

their codes on various three-dimensional configurations, such as the Onera M6, the DLR-F4

and a blended wing body. In each case, they obtained good agreement with Euler results or

experimental data. More particularly, in the case of the Onera M6, the results are similar to

those obtained in chapter 2, Figure 2.3.3.

3.3 Field panel methods

While researchers were focusing on the development of finite volume or element methods, the

main numerical tool used in industrial aircraft design was the panel method4, solving the linear

potential equation. It thus felt natural to extend boundary element methods to solve transonic

flows. This gave rise to the field panel method, in which a panel method is coupled to a finite

difference method that represents flow nonlinearities coming from compressibility. This section

briefly reviews the historical developments of the field panel method. Details about the theory

and the numerical method will be given in chapter 4. For more information, the reader is

directed to Rottgermann’s thesis [138].

3.3.1 Early coupling between boundary elements and finite differences

The research by Piers and Slooff [139] laid the basis for coupling panel methods to finite dif-

ference algorithms [140]. In 1979, they performed transonic flow computations around airfoils

with a method based on an integral formulation of the TSD equation. Casting Equation 3.1.5

4The panel method is still routinely used in today’s aircraft design process due to its very low computational
cost.

44

3.3. Field panel methods

into its Poisson form (Equation 3.1.3) allows to rewrite it as

∇ · (∇ϕ) = σ,

σ = M2
∞

(
1 + (γ + 1)

ϕx
u∞

)
ϕxx.

(3.3.1)

In the two-dimensional field panel method proposed by Piers and Slooff, the left-hand side

of Equation 3.3.1 is a linear operator and is solved using a panel method. The geometry is

approximated as a thin line made of flat panels. The right-hand side, referred to as field source,

contains the nonlinear terms and is discretized in a Cartesian mesh with finite differences.

Since the body is made of thin and flat panels, they can be aligned with the grid cell centers.

The panel method and the finite difference algorithm are then used iteratively: the potential

obtained by solving the first equation in Equation 3.3.1 is used to compute the right-hand side

term, σ, which then modifies the impermeability boundary condition on the geometry in the

panel method. Piers and Slooff applied their methods to two-dimensional nonlifting geometries

and tried different forms of upwinding in their algorithm. They were able to capture shockwaves

and obtained a good match with finite differences codes.

In 1982, Johnson et al. [141], working at Boeing, went a step further and proposed a variant of

the field panel method for solving the full potential equation in Poisson form 3.1.3. In their im-

plementation, the thick geometry is embedded in a Cartesian mesh. A least squares technique

is then used to reduce the solution of the equation to a sequence of Poisson problems, solved

by fast Fourier transforms in combination with a traditional panel method. They also extended

their work to use the Euler equations in place of the full potential equation. This methodology

was further extended by Young et al. in 1986 [142] to improve its computational efficiency.

Johnson et al. used their code on various airfoils, and obtained a good match with Jameson’s

FLO22 code for both subsonic and supersonic flows. Around the same time, in 1985, Erick-

son and Strande [143] working at NASA, extended Panair [48] to solve transonic flows with

similar ideas. They formulated the method for three-dimensional configurations, but only ap-

plied it to two-dimensional transonic airfoils. They were able to match results from Jameson’s

FLO36 [144] and Flores TAIR [145] full potential codes, and Pulliam’s [146] Euler code. The

joint work of Boeing and NASA researchers would later result in Tranair. Although Tranair

is a finite element code, its roots lie in the field panel method from which it borrows some

features, such as the imposition of the farfield boundary condition.

3.3.2 Recent field panel methods

In 1986, Sinclair [147] developed a two-dimensional code that he extended to three dimen-

sions in 1988 [148]. Sinclair recognized that integral equation procedures were efficient for

boundary computations but required a lot of computational time and memory for field compu-

tations. He therefore completely segregated the boundary and field computations and used

advanced iteration schemes to solve the system of equations resulting from the finite difference

discretization.

45

Chapter 3. The full potential equation

In 1994, Rottgermann and Wagner developed ROFPM [149]. They extended their in-house

vortex lattice code [150] to account for wing thickness and to model transonic flow occurring

at the tip of helicopter rotor blades. They embedded surface panels into a Cartesian grid, and

added an artificial viscosity, similar to that produced by Jameson’s rotated difference scheme,

explicitly to the field source term in order to stabilize supersonic regions of the flow. They first

implemented a field panel method by only using integral equation procedures. Then, based

on Sinclair’s findings, they split the boundary and field computations. More specifically, they

used the approximate factorization scheme to compute the field sources inside the Cartesian

grid, and a trilinear interpolation method to modify the impermeability boundary condition. With

these techniques, they were able to reduce the computational time to 19% and the memory

requirement to 2% of their first implementation. They used their code to compute the flow

around the CARADONNA rotor [151] and were able to match both Euler and experimental

results. Moreover, the authors reported that their code only required 5% of the computational

time needed to obtain an Euler solution.

Later in 2002, Gebhardt et al. implemented a field panel method, with the objective of creating

a fast aerodynamic modeling tool for transonic aircraft design [152]. As opposed to Sinclair

and Rottgermann, they only used integral equation computations, but they introduced some

improvements to the method. First, the authors added a minigrid technique to improve the

accuracy on coarse grids and to easily compute field derivatives near the body. They also intro-

duced the concept of sub-paneling to remove the oscillatory behavior of the integral equation

near the body. Further details about these two techniques will be presented in chapter 4. In

order to accelerate convergence, Gebhardt and his colleagues split the field source term into

an harmonic and non-harmonic part, which allowed to use an explicit-implicit iteration scheme,

featuring better convergence characteristics. Finally, they implemented a solution-driven adap-

tive mesh technique. The authors used a rectangular NACA 0012 and the Onera M6 wings

to validate their code. They were able to capture weak shocks, but they were smeared and

displaced downstream. This was attributed to a lack of grid refinement in the shock region.

Gebhardt and his fellow researchers are the last known people to have worked on the field

panel method before the present work.

3.4 Discussion

Extensive research on nonlinear potential flow models was carried out between the seventies

and nineties. The early breakthrough on type-dependent differentiation applied by Murman

and Cole to the TSD equation led various authors to develop finite difference, finite volume

and, later, finite element methods to solve transonic flows. More specifically, the simple, yet

effective, switching between central and upwind differences implemented by Murman and Cole

was extended to the rotated difference scheme by Jameson, and further generalized to the den-

sity and flux upwinding schemes by various authors. The full potential equation was used to

solve external flow problems ranging from two-dimensional airfoils to complete aircraft configu-

46

3.4. Discussion

rations, as well as internal flows, such as turbomachinery cascades. The full potential equation

was also coupled to the boundary layer equations to account for viscous effects and correct

inviscid flow predictions. In all cases, the authors reported reliable and consistent results, com-

parable to higher fidelity equations or even experimental results, for a smaller computational

cost.

Aside these developments, researchers also tried to improve the widely used and cost effective

panel method by developing the field panel method. However, less research has been carried

out on this technique, and, while authors like Sinclair, Rottgermann and Wagner reported that

the field panel method was able to deliver accurate results with little computational resources,

other researchers like Gebhardt and his colleagues reported a lack of resolution near sharp

gradients and a prohibitive computational cost.

With the increase in available computer power, researchers nowadays usually turn to the Euler

or Navier-Stokes equations. As a result, the majority of the developments on nonlinear potential

methods stopped in the nineties and today’s well established commercial codes are Tranair,

blwf and VFP, all developed in those years. However, the importance of nonlinear potential

solvers is still recognized in industrial aircraft design, as they are able to quickly deliver mean-

ingful results: a full potential solver is typically at least one order of magnitude faster than an

Euler solver. On the other hand, aircraft geometries are now usually described by complex

computer aided design models. Moreover, optimization loops and coupled physics simulations

are now performed in the early design stages. This encouraged some researchers to turn back

towards full potential methods and to extend them with various features, such as using unstruc-

tured grids, computing adjoint solutions for efficient gradient computations, and ensuring that

the solver is compatible for fluid-structure interaction computations. More specifically, Galbraith,

Davari and their co-workers explored these features and proposed new ways of implementing

the Kutta condition, details on which often lack in the literature.

Overall, though nonlinear potential technology is mature, solvers are still being developed to

easily handle complex aircraft configurations for optimization or coupled physics simulations in

the context of preliminary aircraft design [13, 137]. However, with the notable exception of the

work by Davari et. al., embedded in the open source framework Kratos Multiphysics [153, 154],

no code is either in the public domain, or freely available. Since full potential methods are able

to quickly deliver meaningful results, two solvers will be developed and presented in the next

two chapters. In chapter 4, a field panel method will first be implemented, as it is a simple

extension to the well known panel method. In chapter 5, a finite element method will then be

implemented.

47

Chapter 4

Field panel solution of the full
potential equation
In this chapter, a field panel method will be developed and presented. The theory and the im-

plementation will first be described, and computational examples will then be given to illustrate

the advantages of the method as well as its limitations.

4.1 Theory

This section presents the theory underlying the field panel method. The nonlinear potential

equation is first reformulated into an integro-differential equation and manipulated so that it can

be solved by combining a boundary element method and a field technique.

4.1.1 Formulation

The full potential equation written in Poisson’s form 3.1.3 can be integrated over a domain V

enclosed by a surface S. The integral equation can then be transformed using Green’s third

identity to yield

φ = φ∞−
1

4π

∫
S

[
τ

1

r
− µn · ∇(

1

r
)

]
dS︸ ︷︷ ︸

ϕb

− 1

4π

∫
V

[
σ

1

r

]
dV︸ ︷︷ ︸

ϕf

, (4.1.1)

where r is the distance vector [rx, ry, rz], r is its norm defined by
√
r2
x + r2

y + r2
z , and n is a unit

vector normal to surface S pointing inwards V .

In Equation 4.1.1, the total potential φ can be considered as the superposition of the freestream

potential φ∞, a surface-induced potential ϕb, and a field-induced potential ϕf . The freestream

potential is given by a uniform, undisturbed flow at a given angle of attack α, and can be

computed as

φ∞ = x cosα+ z sinα, (4.1.2)

where the x and z coordinates are computed using a Cartesian frame of reference, and where

the angle α lies between the horizontal plane and the freestream velocity vector. Note that

Equation 4.1.2 has been normalized by the freestream velocity. The surface induced-potential

can be modeled by source singularities τ and doublet singularities µ, and their strength can

be computed by a panel method. The field-induced potential can be modeled by field sources

49

Chapter 4. Field panel solution of the full potential equation

σ, whose strength is given by the second equation in Equation 3.1.3 and is usually computed

using finite differences. The two equations 3.1.3 can then be solved iteratively by a panel

method and a field module.

4.1.2 Panel method

The theory concerning the panel method described in the present chapter mainly comes from

Katz and Plotkin [155]. The panel method is a boundary element method solving the integral

form of the linear potential equation. Since the equation is linear, only boundary (surface) terms

need to be retained in Equation 4.1.1, yielding

φ = φ∞−
1

4π

∫
S

[
τ

1

r
− µn · ∇(

1

r
)

]
dS︸ ︷︷ ︸

ϕb

. (4.1.3)

Note that Equation 4.1.3 is a form of Equation 1.2.13 for a particular choice of the kernel

function.

Two boundary conditions must be enforced to solve the integral linear potential equation 4.1.3.

The first is the farfield boundary condition, which states that any perturbation potential decays

far from the body. Since the integral is proportional to the inverse of the distance between the

body and the boundaries, the farfield boundary condition is automatically fulfilled, provided that

the singularities τ and µ are zero on the farfield boundary. As a result, no singularities are

placed on the farfield boundary. The second boundary condition is the impermeability, which

enforces zero normal velocity on the geometry’s surface, and is formulated as a Neumann

boundary condition,

∇φb ·n = 0⇔ ∇ϕb ·n = −∇φ∞ ·n. (4.1.4)

Equation 4.1.4 allows to determine the sources τ , since they induce a discontinuity in the

potential which is equal to

∆φτ =
∂(φ− φi)

∂n
, (4.1.5)

where φi is the potential inside the geometry. Consequently, setting φi = 0 directly allows

to set the surface sources to include the normal component of the freestream velocity. Note

that, since the flow velocity is normal to the iso-potential lines, this is equivalent to imposing a

Dirichlet boundary condition as demonstrated by Katz and Plotkin [155].

The Kutta condition must be enforced in order to allow a potential (irrotational) flow to smoothly

leave the geometry and to generate aerodynamic loads. In the panel method, this is accom-

plished by adding a wake sheet, extending horizontally from the trailing edge of the geometry.

To accurately represent the physics, the wake should be shed and follow the flow, thus repre-

senting a force-free wake, instead of being flat. However, flat and force-free wakes produce

very similar results for non-rotating steady flows, see Holst [34]. Doublet singularities are then

placed on the wake sheet, and their magnitude is set to match the circulation around the ge-

ometry, which is computed as the difference between the strengths of the doublets lying on the

50

4.1. Theory

suction and the pressure sides at the trailing edge of the geometry. The wake doublets are thus

linked to the surface doublets, and no additional unknowns are introduced.

The final step consists in discretizing the geometry and the wake into panels, which contain

the source and doublet singularities, grouped in two vectors τττ and µµµ. The surface integral in

Equation 4.1.3 can then be replaced by a discrete sum of elementary integrals on the panels.

Combining the discrete form of Equations 4.1.3 and 4.1.4 yields the set of linear equations,

Aµµµ+ Bτττ = 0, (4.1.6)

where A and B are the aerodynamic influence coefficient matrices, depending solely on the

geometry. The expression of the influence coefficients will be defined below. Note that the

influence coefficients related to wake panels are directly included in the matrix A. Also note

that the only unknown in Equation 4.1.6 is µµµ, since τττ is fully determined by the impermeability

boundary condition 4.1.4.

4.1.3 Field module

The field module supplements the panel method and models the compressibility of the flow.

The theory concerning the field module of the field panel method mainly comes from Gebhardt

et al. [152] and Chu et al. [156].

The role of the field module is to compute the volume integral in Equation 4.1.1. The volume

is discretized using a rectangular Cartesian grid enclosing the geometry. Since the farfield

boundary condition is automatically satisfied by the panel method, the domain size only needs

to be large enough to contain the nonlinearities in the flow. Each mesh cell is considered as

a field panel, which contains a field source σ. Note that the grid is non-conforming, and zero-

strength field sources are associated with field panels located inside the geometry. Explicit

finite differences are used to discretize the second equation in Equation 3.1.3 and to compute

the vector of field sources, σσσ. The volume integral in Equation 4.1.1 can then be replaced by

a discrete sum of elementary integrals on the field cells, and the vector of total potential in the

field φfφfφf is computed as

φfφfφf = φ∞φ∞φ∞ + Afµµµ+ Bfτττ + Cσσσ, (4.1.7)

where Af , Bf , and C are influence coefficient matrices, and where the vector of surface sin-

gularities µµµ and τττ are updated by the panel method. To close the iterative procedure and to

enforce the impermeability boundary condition, the surface source singularities must now in-

clude the normal component of the freestream velocity as well as the normal component of the

velocity induced by the field sources. The new boundary condition reads,

∇ϕb ·n = −∇(φ∞ + ϕf) ·n, (4.1.8)

where ϕf = φf − φ∞.

Figure 4.1.1 depicts a typical configuration for a field panel computation. Even though the the-

51

Chapter 4. Field panel solution of the full potential equation

ory has been developed for three-dimensional computations, the configuration is drawn in two

dimension, for clarity. Four surface panels and seven field cells, as well as their associated

singularities, are drawn in blue. In practice, the farfield boundary, drawn in black, is located

several chord lengths away from the body so that the domain encloses all the nonlinear phe-

nomena, such as shock waves. The wake is made of one long panel that extends beyond the

downstream boundary, which contains only one doublet singularity. Its value is set using the

doublet strengths at the trailing edge.

𝑆b 𝑆w

𝒏b

𝒏w

𝜇, 𝜏

𝜇w = 𝜇TE,u − 𝜇TE,l

𝜎 = 0
𝜇TE,u

𝜇TE,l

𝜎

𝑉

Figure 4.1.1: Field panel discretization.

4.1.4 Influence coefficients

The different matrices given in the previous section contain the aerodynamic influence coeffi-

cients needed by the field panel method. Their mathematical expression is given below.

Surface coefficients

The influence coefficients for the velocity potential induced by rectangular surface panels were

derived by Hess and Smith [157] and are used to compute matrices A, B and Af , Bf .

The computations are carried out in the (flat) panel reference frame shown in Figure 4.1.2,

whose collocation point is noted O(x0, y0), corner points (numbered cyclically) are noted by

(xk, yk) with k = 1, 2, 3, 4 and surface is noted S. The target point onto which the potential

is sought is denoted by P (x, y, z). In order to perform the change of frame of reference, the

rotation matrix R is used to pre-multiply the vector OP.

R =


ex · eX ex · eY ex · eZ
ey · eX ey · eY ey · eZ
ez · eX ez · eY ez · eZ,

 (4.1.9)

52

4.1. Theory

where ex, ey, ez is the reference frame attached to the panel and eX, eY, eZ is the global refer-

ence frame.

To simplify the expression of the influence coefficients, the following variables are defined,

dij =
√

(xj − xi)2 + (yj − yi)2 (4.1.10)

mij =
yj − yi
xj − xi

(4.1.11)

rk =
√

(x− xk)2 + (y − yk)2 + z2 (4.1.12)

ek = (x− xk)2 + z2 (4.1.13)

hk = (x− xk)(y − yk). (4.1.14)

e𝑧

e𝑦

e𝑥

𝑥2, 𝑦2

𝑥1, 𝑦1

𝑥3, 𝑦3

𝑥4, 𝑦4

𝑃 𝑥, 𝑦, 𝑧

Figure 4.1.2: Panel and notations (adapted from Katz and Plotkin [155]).

The influence coefficients corresponding to source terms used to compute matrices B and Bf

53

Chapter 4. Field panel solution of the full potential equation

are given by

AICτ =
−1

4π

{[
(x− x1)(y2 − y1)− (y − y1)(x2 − x1)

d12
log

r1 + r2 + d12

r1 + r2 − d12

+
(x− x2)(y3 − y2)− (y − y2)(x3 − x2)

d23
log

r2 + r3 + d23

r2 + r3 − d23

+
(x− x3)(y4 − y3)− (y − y3)(x4 − x3)

d34
log

r3 + r4 + d34

r3 + r4 − d34

+
(x− x4)(y1 − y4)− (y − y4)(x1 − x4)

d41
log

r4 + r1 + d41

r4 + r1 − d41

]
−|z|

[
arctan

(
m12e1 − h1

zr1

)
− arctan

(
m12e2 − h2

zr2

)
+ arctan

(
m23e2 − h2

zr2

)
− arctan

(
m23e3 − h3

zr3

)
+ arctan

(
m34e3 − h3

zr3

)
− arctan

(
m34e4 − h4

zr4

)
+ arctan

(
m41e4 − h4

zr4

)
− arctan

(
m41e1 − h1

zr1

)]}
.

(4.1.15)

The influence coefficients corresponding to doublet terms used to compute matrices A and Af

are given by

AICµ =
1

4π

[
arctan

(
m12e1 − h1

zr1

)
− arctan

(
m12e2 − h2

zr2

)
+ arctan

(
m23e2 − h2

zr2

)
− arctan

(
m23e3 − h3

zr3

)
+ arctan

(
m34e3 − h3

zr3

)
− arctan

(
m34e4 − h4

zr4

)
+ arctan

(
m41e4 − h4

zr4

)
− arctan

(
m41e1 − h1

zr1

)]
.

(4.1.16)

Field coefficients

The influence coefficients for the potential and the velocity induced by field panels were derived

respectively by Seidov and Skvirsky [158], and Chu et al. [156]. They are used to compute the

matrix C, as well as the second term on the right-hand side in Eq 4.1.8.

A rectangular parallelepipedic field cell is considered. The origin of the frame of reference

attached to the cell is located at the center of gravity of the cell and the axes are aligned with

respect to the cell edges. The field cell is bounded by the planes ξ = ξ1, ξ = ξ2, η = η1, η = η2,

ζ = ζ1 and ζ = ζ2, where ξ, η and ζ denote the coordinates in the frame of reference. If the cell

holds a constant source singularity of strength σ, the potential induced by this field cell at an

arbitrary point P (x, y, z) located inside or outside of the cell is given by

φσ(x, y, z) =
−σ
4π

∫ ξ2

ξ1

∫ η2

η1

∫ ζ2

ζ1

1√
(x− ξ)2 + (y − η)2 + (z − ζ)2

dζdηdξ. (4.1.17)

54

4.2. Implementation

To simplify the result of this integral, the following variables are defined,

A = x− ξi (4.1.18)

B = y − ηj (4.1.19)

C = z − ζk (4.1.20)

R =
√
A2 +B2 + C2. (4.1.21)

The potential influence coefficients induced by a field cell used to compute matrix C is given by

AICσ =
−1

4π

2∑
i,j,k=1

(−1)i+j+k
[
BC log (A+R)− A2

2
arctan

BC

AR

+CA log (B +R)− B2

2
arctan

CA

BR

+AB log (C +R)− C2

2
arctan

AB

CR

] (4.1.22)

The velocity influence coefficients induced by a field cell and used to compute the second term

on the right-hand side in Equation 4.1.8 are given by

AICx,σ =
1

σ

∂φσ
∂x

=
1

4π

2∑
i,j,k=1

(−1)i+j+k
[
B

2
log

(R+ C)

R− C
+
C

2
log

(R+B)

R−B
−A arctan

BC

AR

]
(4.1.23)

AICy,σ =
1

σ

∂φσ
∂y

=
1

4π

2∑
i,j,k=1

(−1)i+j+k
[
C

2
log

(R+A)

R−A
+
A

2
log

(R+ C)

R− C
−B arctan

CA

BR

]
(4.1.24)

AICz,σ =
1

σ

∂φσ
∂z

=
1

4π

2∑
i,j,k=1

(−1)i+j+k
[
A

2
log

(R+B)

R−B
+
B

2
log

(R+A)

R−A
− C arctan

AB

CR

]
(4.1.25)

4.2 Implementation

The theoretical procedure described in the previous section has been implemented into a new

code developed for this work, called Aero [159, 160]. The code has been written in the high-

level, scientific and efficient C++ language. Extensive usage of structures has been made to

keep the code organized and simple to use. Overall, the code is fairly modular and can be

modified quite easily if further development is needed. More details about the code can be

found in appendix B.

4.2.1 Geometry treatment

Before actual computations can be carried out, the geometry and the field must be discretized

and stored in the data structure. Additional treatment of the field cells and the surface panels

55

Chapter 4. Field panel solution of the full potential equation

is also required to ensure solution consistency and convergence. The surface panels are flat

quadrilateral surfaces defined by their four corner points, their center of gravity, and three unit

orthogonal vectors: longitudinal, transverse and normal. The field cells are defined by their

centroids and the cell size in the x, y and z directions. Note that the mesh is uniform, i.e.

the field panels all have the same size. The surface and the field panels data are stored into

matrices, which are regrouped into two structures. If the code needs to be extended to handle

several networks of surface or field panels, these structures can be easily vectorized.

Mapping of field panels

Since the volume grid is Cartesian and does not conform to the body, cells lying inside the

body, i.e. internal cells, must be distinguished from cells outside the body , i.e. external cells.

Moreover, two adjacent external cells may be separated by a wake surface or several body

surfaces. This will be problematic when using finite differences to compute the derivatives of

the potential in the field to obtain the source term, since the potential is discontinuous across

these surfaces. Several techniques can be used to address this issue while allowing complex

geometries to be handled. These techniques include: minigrid, jump relations, and cell sorting.

The first technique has been proposed by Gebhardt et al. [152] and has been tested in the

present code. It is detailed in appendix B. The second technique consists in identifying the

cells adjacent to any surface and implementing jump relations inside the finite differences. In

this way, the discontinuity in the potential is taken into account. This method was first proposed

by Rottgermann and Wagner [149]. Finally, the third technique, which has been used in the

present code, consists in identifying the problematic cells and disabling the derivative in the

problematic direction.

In order to identify the situation of a cell, a three-dimensional adaptation of the point-in-polygon

algorithm [161] and ray casting algorithm [162] is used:

1. Cast a ray from the center of the cell in the x-direction (to infinity)

2. Count the number of surface panels the ray crosses

• check if the ray is not parallel to the plane containing the panel

• check if the ray intersects this plane and compute the intersection

• check that this intersection is included in the panel

3. If the number of valid intersections is even, the point lies outside the body

To check if the derivative can be computed in a given direction for any external cell, the above

algorithm is also used, except that the ray is cast from the center of the cell to the center of

adjacent cells. If one valid intersection between the ray and a surface panel is detected, the

derivative in the given direction is immediately disabled and set to zero.

56

4.2. Implementation

Sub-paneling

The aerodynamic influence coefficients related to constant singularities of a surface panel are

singular and discontinuous on the panel edges. If the potential needs to be computed close

to the surface panel edges, the solution might be oscillatory. In the panel method, this never

happens in practice, since the solution is only needed at the surface panel center. However,

for a field panel method, the potential is also required at the field cell center, which might be

located close to the surface. In Aero, a subpaneling technique has been used to remove the

oscillations appearing under such conditions. The method was also used by Gebhardt et al.

and was originally proposed as a subvortex technique by Maskew [163]. It consists in using a

linear singularity strength distribution instead of constant singularities for surface panels which

are close to field cells. In this way, constant singularities, which are computationally cheap,

are used to compute the majority of the influence coefficients, while linear singularities, more

expensive, are used only to handle problematic panels, where extra stability is required.

In practice, the sub-paneling is performed in two steps. First, if a field cell center is located too

close to the surface of the geometry, the surface panel is split into a user-defined number of sub-

panels, with constant singularity strength. Then, at each iteration, when the singularity strength

is known on each surface panel, the singularity is interpolated linearly on the sub-panels. The

bilinear interpolation, also performed in two steps, is illustrated in Figure 4.2.1. The contribution

to the potential in the field at cell i by the surface panel j (split in ns sub-panels) can then be

computed as

ϕf |i,j =

ns∑
k

Af,kµk +Bf,kτk, (4.2.1)

where k is the subpanel index.

(a) From panel centers to panel
vertices.

(b) From panel vertices to sub-
panel centers.

Figure 4.2.1: Singularity bilinear interpolation on sub-panels.

The effect of the sub-paneling technique on the solution smoothness is illustrated in Fig-

ure 4.2.2. Figure 4.2.2a shows the first layer of field cells located directly above the first half of

the chord of a wing section. The x-component of the velocity computed at the center of these

57

Chapter 4. Field panel solution of the full potential equation

field cells, uf , is plotted along the horizontal direction in Figure 4.2.2b. For large field panel sizes

(∆x/c = 0.08, in blue), the solution is not converged and the mesh must be refined. However,

when the cell size is too small (∆x/c = 0.02, in red), oscillations caused by the discontinuity

in the surface singularities across surface panels start to appear. Since the velocity is used

to compute the source term, which will in turn correct the panel method and drive the solution

process, these oscillations can lead to the divergence of the algorithm. The oscillations can be

effectively removed by the sub-paneling technique and a smooth solution can be obtained, as

shown by the green curve.

𝑥

Δ𝑥

𝑐
= 0.08

Δ𝑥

𝑐
= 0.02

Airfoil suction side

(a) First layer of field cell above the airfoil suction
side for two grid sizes.

(b) x-component of the field velocity for two grid
sizes, with and without sub-paneling.

Figure 4.2.2: Effect of Grid size and sub-paneling on velocity for near-field cells.

4.2.2 Numerical treatment

Once the geometry and the mesh are defined and treated, the actual computations can be

carried out.

Aerodynamic influence coefficient matrices

The current implementation of the field panel method relies on four groups of matrices, each

stored into different structures: body-to-body, body-to-field, field-to-field and field-to-body aero-

dynamic influence coefficients. The matrices are referred to as A and B, Af and Bf , C, and

Cb respectively. Their source and target panels are illustrated in Figure 4.2.3. Each element

of these matrices represents the influence of a panel onto another and depends solely on ge-

ometric parameters. The assembly of the matrices is therefore performed before the iteration

loop, and can be reused outside the field panel method for other purposes, such as compu-

tation of sensitivities in the context of optimization. Note that the size of the matrices grows

as N2, where N is the number of panels. The number of panels should therefore be kept to

a minimum. When a body-to-field influence coefficient of a panel that will be split needs to

be computed, this coefficient is set to 0 instead, and the influence coefficients of the corre-

sponding sub-panels are computed and stored into another matrix. The matrices related to the

sub-panels are regrouped into a fifth structure.

58

4.2. Implementation

𝜎

𝜇, 𝜏

𝑨, 𝑩

𝑨f, 𝑩f

𝑪

𝑪b

Figure 4.2.3: Source and target panels to compute the aerodynamic influence coefficient ma-
trices.

Surface singularity computation

At each iteration, the surface source singularities τ are computed to fulfill the augmented im-

permeability boundary condition 4.1.8. The set of linear equations 4.1.6 can then be solved

for the surface doublet singularities µ. In the present implementation, the set of equations is

solved with the linear algebra library Eigen [164]. A direct solver, either based on a LU or a

QR decomposition is used. Since the number of surface panels is not large, the use of a direct

solver is appropriate.

Field variables computation

At each iteration, the velocity in the field must first be computed in order to obtain the field

source singularities. Several options exist to compute the velocity in the field. The potential

can either be computed first with aerodynamic influence coefficients using Equations 4.1.15,

4.1.16 and 4.1.22, then numerically differentiated with finite differences in the Cartesian grid.

The second option consists in differentiating analytically the influence coefficients, so that they

can be used directly to compute the velocity using Equations 4.1.23 to 4.1.25.

Both approaches have been implemented, tested and compared in the present work. The sec-

ond approach is more accurate since it is purely analytic, but it involves the computation of

three influence matrices instead of one (three components of the velocity instead of a scalar

potential). Moreover, the velocity influence coefficients are more sensitive than the potential

coefficients. As a result, near the body surface, the discontinuity between the singularity values

on each panel induces oscillations in the velocity distribution in the field, despite the subpan-

eling technique. On the other hand, if a sufficiently fine grid is used, the finite differences of

the potential give a very good approximation of the velocity computed directly with the ana-

lytic coefficients. Numerical experiments showed that the potential formulation, i.e. potential

59

Chapter 4. Field panel solution of the full potential equation

computed with the one influence matrix and numerically differentiated with finite differences,

required 40% less memory and was 35% faster than the second approach to achieve a similar

solution. It has therefore been retained in the present work.

The potential in the field is computed with Equation 4.1.7. For field panels lying close to the

surface of the geometry, the surface contributing terms are replaced by the right-hand side of

Equation 4.2.1. The potential is then differentied with central finite differences, except near

the boundaries, where one-sided differences are used. The density is computed from the

velocity using the isentropic gas formula 1.2.10. The field sources can then be computed using

the second equation in Equation 3.1.3, which is also discretized using finite differences. To

close the iterative procedure, the impermeability boundary condition must be updated following

Equation 4.1.8. In Aero, field-to-body aerodynamic influence coefficient matrices are used to

obtain the velocity induced by the field cells on the surface panels, and to compute the second

term of the right-hand side in Equation 4.1.8.

Supersonic flow treatment

As explained in chapter 3, the physical and mathematical nature of the flow changes in super-

sonic regions. Consequently, these changes must be reflected in the numerical method and

supersonic flow regions must be stabilized. In the present work, three techniques have been

tested: derivative upwinding, artificial density and artificial viscosity.

The simplest way to allow transonic flow computation is to use central differences in subsonic

regions and backward (upwind) differences in supersonic regions, as in the Murman and Cole

algorithm [59]. Since the grid is Cartesian, the upwinding is accomplished only along x, which

is the main flow direction. This effectively stabilizes the iterative procedure, but the accuracy

can be further improved. In order to properly upwind the derivatives, backward derivatives

should be used in the local streamline direction of the flow, as prescribed by Jameson’s rotated

difference scheme [85, 88].

Rotated differences can be introduced in the solution by biasing the density in the upwind

direction. In this procedure, the physical density is replaced by a biased density, which is

computed using Equations 3.2.9, 3.2.10 and 3.2.11. In a very similar way, an artificial viscosity

can be directly added to the field source term, as shown by Rottegermann and Wagner [149].

Using the artifical viscosity procedure, the field sources are computed as,

σ̃ = σ + max

(
0, 1−

M2
C

M2

)
∂σ

∂s
∆s, (4.2.2)

where the cut-off Mach number has been chosen from the literature as MC = 0.95, and the

streamline upwind derivative of the field sources is computed similarly to Equation 3.2.10,

∂σ

∂s
∆s =

1

q

(
u
←−
∆xσ + v

←−
∆yσ

)
. (4.2.3)

60

4.2. Implementation

In the present work, both approaches have been tested and yielded identical results. The

artificial viscosity approach has been retained since it is more practical to implement.

4.2.3 Solution procedure

This section describes the solution procedure currently implemented. It should be recalled that

all the variables are vectors, since they are stored at each point of the grid. For clarity, the

bold vector notation is only used to denote true vector variables, such as the velocity, whereas

the aerodynamic influence coefficient matrices are underlined. The remaining variables are

denoted in italic. Note that the field variables are normalized by setting the magnitude of the

freestream velocity to 1.

Initialization
The geometry is first processed. Then, the field panels are created and mapped, and the

subpaneling is performed. Afterwards, the matrices containing the influence coefficients are

computed: body-to-body (A and B), field-to-field (C), body-to-field (Af and Bf) and field-to-

body (Cx,b, Cy,b, Cz,b). All the relevant field variables, such as the field sources σ̃, and the

normal component of the field-induced velocity on the body un,σ, are also initialized to zero.

1 - surface sources
The first step of the iterative process consists in setting the surface source singularities so that

they include the non-lifting normal velocity component, according to Equation 4.1.8, as

τ = −(U∞ ·n + un,σ). (4.2.4)

2 - surface doublets
The second step consists in solving the set of linear equations 4.1.6,

Aµ+Bτ = 0, (4.2.5)

to obtain the surface doublet singularities, µ.

3 - field variables
The third step consists in computing the different field variables. The total potential in the field

is first computed using the surface and field singularities as

φf = φ∞ +Afµ+Bfτ + Cσ̃, (4.2.6)

61

Chapter 4. Field panel solution of the full potential equation

and is then differentiated to obtain the total velocity in the field Uf . The speed of sound a, the

Mach number M and the density ratio ρ
ρ∞

are then computed using the isentropic relations

a2 = a2
∞ +

γ − 1

2
− γ − 1

2
|Uf |2

M =
|Uf |
a

ρ

ρ∞
=

[
1 +

γ − 1

2
M2
∞
(
1− |Uf |2

)] 1
γ−1

.

(4.2.7)

4 - field sources
The fourth step consists in updating the field source singularities using

σ̃ = ∇
(
ρ

ρ∞

)
·Uf + max

(
0, 1−

M2
C

M2

)
∂σ

∂s
∆s, (4.2.8)

where the streamline upwind derivative of the field sources is computed using Equation 4.2.3.

5 - boundary condition update
The fifth step consists in updating the normal component of the field source induced velocity

as,

un,σ = [Cx,bσ̃, Cy,bσ̃, Cz,bσ̃] ·n. (4.2.9)

Stopping criterion
Steps 1 to 5 are repeated until convergence. The iterative procedure is stopped when the

maximum variation of the field sources drops below a user-defined tolerance. The stopping

criterion is defined as

max |σ̃n − σ̃n−1| < ε, (4.2.10)

where n is the iteration counter and ε is the user-defined tolerance.

Finalization
The final step is to compute the surface velocity and the pressure coefficient. The surface

velocity is the sum of the freestream velocity U∞, the surface perturbation velocity ub and field

perturbation velocity uf vectors. The latter has already been calculated to update the boundary

condition. The surface perturbation velocity can be computed by differentiating the potential on

the surface. If l is the chordwise tangent, m the spanwise tangent and n the normal unit vector

of a surface panel, then

ul,b = −∂µ
∂l

um,b = − ∂µ
∂m

un,b = σ̃.

(4.2.11)

The obtained velocity vector is then rotated to the global axes and used to compute the total

62

4.3. Validation

surface velocity,

Ub = U∞ + ub + uf . (4.2.12)

The pressure coefficient can subsequently be computed as,

Cp =
2

γM2
∞

{[
1 +

γ − 1

2
M2
∞(1− |Ub|2)

] γ
γ−1

− 1

}
. (4.2.13)

4.3 Validation

In this section, Aero is validated by computing the flow on two test cases in different flow

regimes. The first test case is a rectangular wing with a constant NACA 0012 airfoil and an

aspect ratio of 10 that is used for nonlifting computations. The second wing is the Onera M6

and it is used to test lifting computations. Both cases are tested in incompressible, subcritical

and supercritical flow regimes. The predictions are compared to Tranair, which solves the

nonlinear potential equation, and to Panair, which solves the linear potential equation and

scales its solution using a compressibility correction. The field panel computations carried

out using Aero are considered converged when the maximum difference in the field sources

between two consecutive iterations drops below 10−5.

4.3.1 Incompressible flow

The flow is first assumed to be incompressible and the Mach number is set to M = 0. Under

such conditions, the field module is deactivated and only the panel method is tested. Both the

NACA and Onera wings have been discretized with 1000 panels: 100 along the chord and 10

along the span. The angle of attack, α, of the NACA 0012 is set to 0◦ to obtain a nonlifting flow

while the angle of attack of the Onera M6 is set to 3.06◦.

Figure 4.3.1 shows the pressure distribution along the mean aerodynamic chord of the NACA

0012 and the Onera M6 wings at zero Mach number. The results for both lifting and nonlifting

flows perfectly match those obtained with Panair, hence demonstrating the validity of the

implemented panel method. Since the method is linear, only one iteration is required. On a

laptop fitted with an Intel i7-7700HQ processor (2.8 GHz), the computational time required by

Panair is about 10 seconds, while it is 1 second for Aero.

63

Chapter 4. Field panel solution of the full potential equation

0 0.2 0.4 0.6 0.8 1

-1

-0.5

0

0.5

1

Panair
Aero

(a) NACA 0012: α = 0◦, M = 0.0.

0 0.2 0.4 0.6 0.8 1

-1.5

-1

-0.5

0

0.5

1

Panair
Aero

(b) Onera M6: α = 3.06◦, M = 0.0.

Figure 4.3.1: Pressure distribution along the mean aerodynamic chord of the NACA 0012 and
Onera M6 wings at incompressible speed.

4.3.2 Subcritical flow

The Mach number is set so that the flow is compressible but remains subcritical for both wings

and the angle of attack is kept to 0◦ and 3.06◦, respectively. The surface mesh is maintained

to 1000 panels for both wings. In the case where the flow is subcritical, the domain size can

be small, as the field sources decay quickly as the distance increases. For both cases, the

domain boundaries are placed at 0.5 chord length away of the body in the streamwise and

normal directions, and to 0.5 span length away in the spanwise direction. These sizes have

been checked a posteriori by verifying that the magnitude of the field sources is sufficiently

small in the farfield. A convergence study is first performed to find a suitable field mesh size for

each wing. Figure 4.3.2 shows the pressure distribution along the mean aerodynamic chord of

the NACA 0012 at M = 0.7 and the Onera M6 at M = 0.6 for a coarse, a medium, and a fine

grid. The number of cells is denoted by nc. In this case, the convergence is reached for the

medium-density meshes for both wings. Since the Onera M6 is swept, a denser cell distribution

is required along the span.

64

4.3. Validation

0 0.2 0.4 0.6 0.8 1

-1

-0.5

0

0.5

1

n
c
=2500

n
c
=8100

n
c
=18180

(a) NACA 0012: α = 0◦, M = 0.70.

0 0.2 0.4 0.6 0.8 1

-1.5

-1

-0.5

0

0.5

1

n
c
=10125

n
c
=16875

n
c
=22725

(b) Onera M6: α = 3.06◦, M = 0.60.

Figure 4.3.2: Pressure distribution along the mean aerodynamic chord of the NACA 0012 and
Onera M6 at subcritical speed for three different grids.

Following the convergence study, the fields around the NACA 0012 and the Onera M6 are

discretized using nc = 8 100 and nc = 16 875 cells, respectively. In both cases, the field cell

size is around 4% and 2% of the chord in the streamwise and normal directions, respectively.

Figure 4.3.3 shows the pressure distribution along the mean aerodynamic chord of the NACA

0012 and the Onera M6 at compressible but subcritical flow conditions. Globally, the field

panel method shows a good agreement with Tranair except near the suction peak, which

is underestimated. In the NACA case, the predictions are also improved compared to Panair

linear solution, while it is the opposite in the Onera M6 case. The computations were performed

on a laptop fitted with an Intel i7-7700HQ processor (2.8 GHz) and 16 GB of memory. The

NACA 0012 case converged in 22 iterations and required 525 MB of memory and 160 seconds

of computational time, while the Onera M6 case converged in 12 iterations and required 2.3 GB

of memory and 380 seconds of computational time.

0 0.2 0.4 0.6 0.8 1

-1

-0.5

0

0.5

1

Panair
Aero
Tranair

(a) NACA 0012: α = 0◦, M = 0.70.

0 0.2 0.4 0.6 0.8 1

-1.5

-1

-0.5

0

0.5

1

Panair
Aero
Tranair

(b) Onera M6: α = 3.06◦, M = 0.60.

Figure 4.3.3: Pressure distribution along the mean aerodynamic chord of the NACA 0012 and
Onera M6 at subcritical speed.

65

Chapter 4. Field panel solution of the full potential equation

4.3.3 Supercritical flow

The Mach number is set so that the flow is supercritical and the angle of attack of both wings

is kept to 0◦ and 3.06◦ respectively. The surface mesh is maintained to 1000 panels. Since

shocks are expected for these cases, the domain sizes have been increased: they now extend

two chord lengths away from the wing in the streamwise and normal directions. These sizes

have been validated a posteriori, by ensuring that the shocks are fully contained in the domain

and do not interact with the farfield boundary, and that the magnitude of the field sources is

sufficiently small in the farfield. A convergence study is performed to find a suitable mesh size

for each wing. Figure 4.3.4 shows the pressure distribution along the mean aerodynamic chord

of the NACA 0012 at M = 0.8 and the Onera M6 at M = 0.839 for a coarse, a medium, and a

fine grid. Since the numerical viscosity, ensuring the stability of the method, is proportional to

the grid size, the mesh cannot be indefinitely refined when shocks are present in the solution.

The fine grid presented on Figure 4.3.4 is the finest grid for which a converged solution could

be obtained. In the NACA case, convergence could be attained on the fine grid, while for the

Onera case, the solution on the fine grid still largely differs from the solution on the medium

grid. Further to the stability issue, the memory required by the fine grid almost reaches the

maximum memory available on the machine.

0 0.2 0.4 0.6 0.8 1

-1

-0.5

0

0.5

1

n
c
=9180

n
c
=22500

n
c
=87580

(a) NACA 0012: α = 0◦, M = 0.80.

0 0.2 0.4 0.6 0.8 1

-1

-0.5

0

0.5

1

n
c
=16875

n
c
=63125

n
c
=166375

(b) Onera M6: α = 3.06◦, M = 0.839.

Figure 4.3.4: Pressure distribution along the mean aerodynamic chord of the NACA 0012 and
Onera M6 at supercritical speed for three different grids.

Following the convergence study, the finest meshes are retained, and the NACA is discretized

with nc = 87 580 field panels while the Onera grid counts nc = 166 375 cells. Figure 4.3.5 shows

the pressure distribution along the mean aerodynamic chord of the NACA 0012 and the Onera

M6 at supercritical conditions. When the flow exhibits a shock, the accuracy of the method is

degraded. Figures 4.3.5a and 4.3.5b both show that the field panel method tends to predict

a shock that is smeared and displaced upstream compared to Tranair full potential solution.

Even if the field panel solution shows significant improvement over the linear potential solution

predicted by Panair, this is at the cost of the computational time and memory required to

compute and store the aerodynamic influence coefficients. The NACA 0012 case converged

66

4.3. Validation

in 121 iterations and required 65 GB of memory and 10 hours of computational time, while the

Onera M6 case converged in 240 iterations and required 225 GB of memory and more than one

day of computation time. Since these computations required an extensive amount of memory,

they were performed on a cluster equipped with AMD Bulldozer processors (2.1 GHz) and 256

GB of memory per node. This is to be compared to the solution time required by Tranair,

which is of about five minutes. The tendency to smear the shock, as well as the high memory

requirement were also reported by Gebhardt et al. [152].

0 0.2 0.4 0.6 0.8 1

-1

-0.5

0

0.5

1

Panair
Aero
Tranair

(a) NACA 0012: α = 0◦, M = 0.80.

0 0.2 0.4 0.6 0.8 1

-1.5

-1

-0.5

0

0.5

1

Panair
Aero
Tranair

(b) Onera M6: α = 3.06◦, M = 0.839.

Figure 4.3.5: Pressure distribution along the mean aerodynamic chord of the NACA 0012 and
Onera M6 at supercritical speed.

4.3.4 Challenges and attempted solutions

As shown in Figures 4.3.3 and 4.3.5, Aero tends to underestimate the pressure peak at the

leading edge and to smear and displace the shock upstream. The underestimation of the pres-

sure peak only occurs on certain geometries. While it is clearly visible on the Onera M6, it is

nearly absent on the NACA 0012 wing. It could be due to insufficient local grid refinement.

Finer grids could not be tested due to prohibitive computational costs. Implementing a grid

stretching capability could solve this issue. The impossibility to accurately capture the shock

however poses a serious problem. Computing the field sources from Tranair’s solution and

using them to correct Aero’s incompressible predictions in a single iteration allowed to recover

results similar to Tranair’s. The issue thus seems to be located in the iterative procedure or

in the field module, rather than in the formulation of the method. Several solutions have been

attempted to fix the issue, among which an adaptation of the artificial viscosity and an adapta-

tion of the aerodynamic influence coefficient matrices. The adaptation of the artificial viscosity

consisted in scaling the switching function by the magnitude of the gradient of the density in

Equation 4.2.2. The adaptation of the influence matrices consisted in removing the coefficients

related to surface and field panels located upstream of the target cell. However, neither of these

solutions improved the results, neither in terms of accuracy nor of computational time.

67

Chapter 4. Field panel solution of the full potential equation

4.4 Discussion

Aero, a field panel method, was developed and implemented to solve the full potential equa-

tion, and quickly model transonic flows. The code was tested on two test cases for incompress-

ible, subcritical and supercritical flow regimes. For incompressible and subcritical flows, the

agreement between the field panel method and other solution techniques is excellent, except

near the pressure peak, which tends to be underestimated. When the flow is supercritical,

the shock tends to be smeared and displaced upstream, even though the solution is improved

compared to the linear potential prediction. Moreover, the grid refinement needed to capture

the shock leads to excessive memory usage and computational time. Several techniques can

be used to decrease the computational requirements. A fast multipole method [165, 166] could

be implemented. This technique was already combined to panel methods and proved to be

efficient [167, 168]. As proposed by Sinclair [147, 148], the boundary and field computations

can also be separated. Since Sinclair and Rottegermann [149], who used this approach, also

reported better results near shocks, finite difference based computations might also increase

the accuracy of the field panel method. However, such techniques are complex to implement,

and the algorithmic complexity becomes similar to that of a traditional finite element or volume

method.

Despite being a promising, simple and straightforward extension to the panel method, the field

panel method suffers from a major drawback. It tends to smear shocks compared to traditional

field solvers, such as Tranair [152, 159]. Therefore, the field panel method, as it is imple-

mented in Aero at least, is only applicable to the design of aircraft which fly at high compress-

ible, but subcritical speeds. In order to accurately capture shocks and to carry out transonic

flow computations, a finite element solution of the full potential equation will be developed in

the next chapter.

68

Chapter 5

Finite element solution of the full
potential equation
In this chapter, a finite element solution of the full potential equation will be developed and pre-

sented. The theory and the implementation will first be described, and computational examples

will then be given to illustrate the capabilities of the method as well as its limitations. The full

potential equation is elliptic over a large portion of the flow, except in supersonic regions, where

it becomes hyperbolic. Since the finite element method is well adapted to solving elliptic partial

differential equations, the formulation only needs to be adapted in these supersonic regions.

Moreover, the University of Liège has significant expertise in finite element modeling. The finite

element method has thus been chosen over the more traditional finite volume method.

5.1 Theory

A finite element formulation relies on two main aspects: the weak form of a problem governed

by partial differential equations and their boundary conditions, and its discretization. The weak

formulation is first obtained from the strong form of the equations by multiplying it with test

functions and integrating over a given domain. The domain is then divided into small elements,

onto which the weak formulation is discretized using interpolation functions. The solution to the

problem is finally obtained by requiring that the equations are satisfied for any values of the test

functions, which is equivalent to seeking a solution in the sense of a distribution.

5.1.1 Weak formulation

Consider a domain Ω enclosed by a surface Γ = Γu ∪ Γf ∪ Γb, as depicted in Figure 5.1.1.

Assuming the potential φ to belong to the Sobolev space, the full potential equation 1.2.9 can

be multiplied by a test function ψ, and integrated by parts over the domain Ω. The weak form

of the equation reads,∫
Ω
ρ∇φ · ∇ψ dV −

∫
Γ
ρ∇φ ·nψ dS = 0, ∀ψ ∈ H1(Ω), (5.1.1)

where the density ρ is given by the isentropic flow relationship 1.2.10, and where n is the

unit vector normal to Γ pointing inwards. H1(Ω) denotes the Sobolev space of real square-

integrable functions defined over Ω, L2(Ω), whose distributional derivative is also real square-

69

Chapter 5. Finite element solution of the full potential equation

integrable,

H1(Ω) =
{
f ∈ L2(Ω) : ∇f ∈ L2(Ω)

}
. (5.1.2)

Note that the linear potential equation is recovered if the density is considered to be constant

and equal to the freestream density.

Boundary conditions

The boundary surface, Γ, is split into an upstream boundary Γu, a farfield boundary Γf , and

the body boundaries Γb, as depicted in Figure 5.1.1. Numerical experiments showed that the

solution was less sensitive to Neumann boundary conditions, hence allowing to use smaller

domains. However, imposing only such boundary conditions could result in an ill-conditioned

set of equations. Consequently, a Neumann boundary condition is applied on the farfield and

body boundaries, while a Dirichlet boundary condition is applied on the upstream boundary.

The Neumann boundary condition, imposing a flux through the boundaries of the domain, is

directly recovered in the second term of the weak formulation of the full potential equation 5.1.1.

Since the derivative of the potential is the velocity, the weak form of the Neumann boundary

condition can be written as ∫
Γf

ρ∇φ ·nψ dS =

∫
Γf

ρ∞U∞ ·nψ dS,∫
Γb

ρ∇φ ·nψ dS = 0,

(5.1.3)

where ρ∞ and U∞ are the density and the velocity vector in the freestream. The Dirichlet

boundary condition is enforced by requiring that the test function ψ vanishes on the upstream

boundary, and that

φ|Γu = φ∞, (5.1.4)

where φ∞ is the freestream potential at coordinates (x, y, z), and is defined as

φ∞ = x cosα cosβ + y sinβ + z sinα cosβ, (5.1.5)

where α is the angle of attack and β is the angle of sideslip. Equation 5.1.4 and the first equa-

tion in Equation 5.1.3 are referred to as farfield boundary conditions, while the second equation

in Equation 5.1.3 is referred to as the impermeability boundary condition. If three-dimensional

symmetric flows are studied, i.e. symmetric configurations at zero angle of sideslip, the bound-

ary Γ is further composed of a symmetry plane Γs onto which a symmetry boundary condition

is applied. Under potential flow assumptions, this boundary condition reduces to the imperme-

ability boundary condition. A typical two-dimensional domain is illustrated in Figure 5.1.1.

70

5.1. Theory

𝛻𝜙 ⋅ 𝒏
Γb

= 0

𝛻𝜙 ⋅ 𝒏
Γf

= 𝑼∞ ⋅ 𝒏

𝑼∞ = [cos𝛼, sin𝛼]

𝛼

 𝜙
Γu

= 𝜙∞

Domain Ω

Figure 5.1.1: Typical domain used for a finite element computation.

Kutta condition

As explained in chapter 3, the Kutta condition needs to be enforced to allow potential flows

to produce aerodynamic loads. In the present work, the Kutta condition is imposed following

Nishida’s [12] and Galbraith et al. [13] ideas.

A flat wake sheet, denoted Γw and extending from the trailing edge of any lifting body to the

farfield boundary located downstream of these bodies, is created. The unknown potential value

on this wake is duplicated, hence allowing the potential to be discontinuous across the wake.

If no additional boundary condition is explicitly applied on the wake, homogeneous Neumann

boundary conditions are naturally enforced on both sides of the wake, and it acts as a solid

wall. In order to restore the continuity in the flow, the two supplementary boundary conditions

in Equation 1.2.12 must be enforced. The following procedure is similar to the formulation of

periodic boundary conditions. The first condition prescribes the equality of the mass flux on the

upper and lower sides of the wake,∫
Γw,u

ρ∇φ ·n dS = −
∫

Γw,l

ρ∇φ ·n dS, (5.1.6)

where subscripts u and l refer to the upper and lower sides of the wake, respectively. Substi-

tuting from Equation 5.1.1 in the above equation allows to replace the surface terms by volume

terms. As a consequence, continuity in the mass-flux can be enforced by adding the volume

terms computed on the upper side of the wake to the volume terms lying on the lower side of

71

Chapter 5. Finite element solution of the full potential equation

the wake, that is∫
Ωw,l

ρ∇φ · ∇ψ dV +

∫
Ωw,u

ρ∇φ · ∇ψ dV = 0, ∀ψ ∈ H1(Ωw,l). (5.1.7)

The second condition prescribes the equality of the pressure across the wake. Similar to the

density, the pressure is given by the isentropic flow relationship,

p = p∞

[
1 +

γ − 1

2
M2
∞
(
1− |∇φ|2

)] γ
γ−1

, (5.1.8)

where p∞ is the freestream pressure and γ is the heat capacity ratio. Since the pressure only

depends on the L2 norm of the velocity, the continuity in the pressure can be written as,∫
Γw

(ψ + Ψ)[[|∇φ|2]] dS = 0, ∀ψ ∈ H1(Γw,u), (5.1.9)

where the double square bracket indicates a jump between the quantities on the upper and

lower sides of the wake. Equation 5.1.9 introduces a convective term, which can lead to oscil-

lations in the solution. For three-dimensional flows, these oscillations can cause the solution

to diverge. In such cases, an effective way to stabilize the solution is to use a Petrov-Galerkin

formulation. The test function ψ is then supplemented by an additional term,

Ψ =
1

2

h

U∞
(U∞ · ∇ψ) , (5.1.10)

where U∞ is the norm of the freestream velocity vector and h is a characteristic length. For two-

dimensional flows, Ψ can be set to zero. Equations 5.1.7 and 5.1.9 can further be supplemented

by a third equation, reflecting the Kutta condition locally on the trailing edge ΓTE,∫
ΓTE,u

|∇φ|2ψ dS −
∫

ΓTE,l

|∇φ|2ψ dS = 0, ∀ψ ∈ H1(ΓTE,u). (5.1.11)

Using Equation 5.1.11 allows to align the wake sheet horizontally, which simplifies the ge-

ometry generation procedure. However, numerical experiments performed on various wings

showed that adding Equation 5.1.11 induces oscillations for three-dimensional flows. Various

techniques have been tried to stabilize the flow, such as, normalizing the integral, similarlly to

Galbraith et al. [13], using a Petrov-Galerkin stabilization, and using the same discretization on

the upper and lower sides of the trailing edge, but none of them produced satisfying results on

realistic wing shapes. As a result, Equation 5.1.11 can only be used for two-dimensional flows,

and the wake should be aligned with the trailing edge bisector in three-dimensional cases. A

parametric study, given in section 5.4, shows that the wake inclination has a non-negligible in-

fluence on the results obtained with the present method. Further possibilities of improvement

will be discussed in chapter 7.

72

5.1. Theory

Supersonic flow treatment

As explained in chapter 3, supersonic regions of the flow need to be stabilized. A density

upwinding procedure, similar to Eberle [100] and Hafez et al. [102], is used in the present work.

The upwinded density can be written as,

ρ̃ = ρ− µ
←−
δsρ∆s. (5.1.12)

Details about the computation of the switching function, µ, and the streamline upwind derivative

of the density,
←−
δsρ∆s, will be given in the next section. A flux upwinding procedure, similar

to Kinney [129, 130], has also been implemented, but the gain in accuracy was negligible

compared to the increase in computational cost and algorithmic complexity.

The implemented density upwinding procedure works well up to local Mach numbers around

1.3, followed by shockwaves. If no shockwave occurs, local Mach numbers of about 2.0 can

be reached. Flows featuring such high Mach numbers are not often computed in practice

since nonlinear potential theory is theoretically restriced to local Mach numbers below 1.3.

However, in some cases, tiny portions of the flow can exhibit a very high local Mach number

that will not affect the entire solution, but that can cause divergence of the numerical procedure.

As an example, the vortex generated at the wingtip trailing edge of three-dimensional lifting

configurations induces a local infinite velocity. For high-speed freestream flows, this translates

into a large local Mach number and a low density at this location. Such a flow is illustrated

and discussed in appendix D. To alleviate this issue, the density associated to large velocity

magnitudes is clamped according to the following Padé approximation [13],

ρ =
ρcrit

1 + κ
(

U
Ucrit
− 1
) , U > Ucrit, (5.1.13)

where U is the norm of the velocity, ρcrit is the critical density, Ucrit is the norm of the critical

velocity, and

κ ≡
∂ρ
∂U

−ρ

∣∣∣∣∣
U=Ucrit

=
M2
∞Ucrit

1 + γ−1
2 M2

∞
(
1− U2

crit

) . (5.1.14)

Similarly to the density, the Mach number depends solely on the velocity magnitude and is

defined as

M =

√
|∇φ|2

1
M2
∞

+ γ−1
2 (1− |∇φ|2)

. (5.1.15)

As a result, the critical density and velocity, ρcrit and Ucrit, can be determined by choosing a

critical Mach number, which is a user-specified input, usually set to Mcrit ∼
√

5. Figure 5.1.2

compares the dependence of the density and Mach number on the velocity, with and without the

Padé approximation, and demonstrates the effectiveness of the density clamping procedure.

73

Chapter 5. Finite element solution of the full potential equation

(a) Density. (b) Mach number.

Figure 5.1.2: Evolution of the density and the Mach number as a function of the velocity. The
solid line represents the physical values and the dashed line represents the Padé approxima-
tion.

Aerodynamic loads

The resultant aerodynamic force coefficient is computed by integrating the normalized pressure

force on the body surface,

CF =
1

Sref

∫
Γb

Cpn dS, (5.1.16)

where Sref is a reference area, and where the pressure coefficient is given by

Cp =
2

γM2
∞

(ργ − 1) . (5.1.17)

The aerodynamic load coefficients are then obtained by projecting CF on the lift, drag and

sideforce directions, yielding

CL = CF · eL, CD = CF · eD, CS = CF · eS, (5.1.18)

where the directions are defined with respect to the angle of attack α, and the angle of sideslip

β,

eL =


− sinα

0

cosα

 , eD =


cosα cosβ

sinβ

sinα cosβ

 , eS =


− cosα sinβ

cosβ

− sinα sinβ

 . (5.1.19)

The pitching moment coefficient is obtained by integrating the y-component of the normalized

moment caused by the pressure force on the body surface,

CM =
1

Srefcref

∫
Γb

[Cpn ∧ l] · ey dS, (5.1.20)

74

5.1. Theory

where cref is a reference length, ey is a unit vector pointing in the y direction, and l is the lever

arm measured from a fixed reference point.

Aeroelastic capability

Since Flow is also designed to perform aeroelastic computations, it needs to implement a mesh

deformation procedure. An efficient way to deform the grid for the kind of wing deflections

considered in practical aeroelasticity, is to use linear elasticity theory. The grid is assumed

to behave like an elastic body, rigid near the deforming boundaries, and flexible elsewhere.

Moreover, the linear elasticity equations can be easily solved by the finite element method, and

require little supplementary implementation work.

For an elastic solid, the equilibrium between the internal and external forces, Equation 1.2.22,

can be written in weak form as∫
Ω
∇σσσs · ∇ψ dV −

∫
Γ
∇σσσs ·nψ dS =

∫
Ω

fs dV, ∀ψ ∈ H1(Ω), (5.1.21)

where the internal stress σσσs can be related to the displacement us using Hooke’s constitutive

law for linear isotropic solids,

σσσs =
Eν

(1 + ν)(1− 2ν)
tr
(
∇us +∇us

T
)
I +

E

1 + ν

(
∇us +∇us

T
)
. (5.1.22)

The Young modulus E and the Poisson’s ratio ν are constitutive parameters. In the present

work, they are set to 1/V and 0, respectively, as suggested by Dwight [169]. As a result, the

mesh behaves as a linear elastic solid, rigid close to the wing where the elements are small,

and flexible in the farfield where the elements are large.

In the mesh deformation framework there is no body force, nor natural Neumann boundary

condition. Only a Dirichlet boundary condition is imposed on boundary surfaces. The values of

the displacement are fixed to zero, except on the body where they are prescribed according to

the body motion,

us|Γb
= ub. (5.1.23)

On the wake surface, periodic boundary conditions are used to enforce the continuity of the

displacement field across the wake,∫
Ωw,l

∇σσσs · ∇ψ dV +

∫
Ωw,u

∇σσσs · ∇ψ dV = 0, ∀ψ ∈ H1(Ωw,l),

usw,u − usw,l = 0.

(5.1.24)

5.1.2 Finite element discretization

The domain Ω and its boundary Γ are discretized using continuous Galerkin finite elements. An

unstructured grid strategy is chosen in order to easily mesh three-dimensional complex shapes,

75

Chapter 5. Finite element solution of the full potential equation

and to easily implement the Kutta condition. In three dimensions, the volume Ω is discretized

with linear tetrahedra and Γ is discretized with triangles, while in two dimensions, triangles and

lines are used. The potential and test functions are expressed as

φ = Niφi,

ψ = Niψi,
(5.1.25)

where Ni are the shape functions associated to an element, and interpolate the nodal values

φi and ψi of the potential and the test functions on that element. These shape functions are

assumed to belong to H1(Ω), and have a compact support: they are defined to be nonzero only

on an element. Furthermore, they are constrained by the partition of unity, that is∑
i

Ni = 1, (5.1.26)

over their support. In particular, a function Ni is defined so that it is equal to 1 on node i and

zero on the other nodes. Such shape functions are illustrated in the case of linear triangles in

Figure 5.1.3.

𝑁1
𝜙1

𝜙2 𝜙3

1

(a) N1.

1

𝜙1

𝜙2 𝜙3

𝑁2

(b) N2.

1

𝜙1

𝜙2 𝜙3

𝑁3

(c) N3.

Figure 5.1.3: Shape functions for linear triangle elements.

Following the finite element discretization, the weak formulation of the full potential equa-

tion 5.1.1 can be written as∑
e

∫
Ωe

ρ̃e∇Njφj · ∇Niψi dVe −
∑

e

∫
Γe
ρ∇φe ·neNiψi dSe = 0, ∀ψi, (5.1.27)

where the subscript e refers to elemental quantities. The associated Neumann boundary con-

ditions 5.1.3 become∑
e

∫
Γfe

ρ∇φe ·neNiψi dSe =
∑

e

∫
Γfe

ρ∞U∞ ·neNiψi dSe,

∑
e

∫
Γbe

ρ∇φe ·neNiψi dSe = 0.

(5.1.28)

The Dirichlet boundary conditions 5.1.4 are imposed as

φi|Γu = φ∞. (5.1.29)

76

5.1. Theory

Kutta condition

Each element and node lying on the wake sheet is duplicated in order to allow the potential

to be discontinuous across the wake. For three-dimensional configurations, the potential is

continuous at the tip of the wake, i.e. the free edge that extends downstream of the wingtip. As

a consequence, the nodes lying on this edge are not duplicated. The continuity in the mass flux

through the wake is expressed by adding the upper volume terms to the lower shape functions

instead of to the upper shape functions. Equation 5.1.7 can then be discretized as

∑
e

∫
Ωw,le

ρ̃e∇Njφj · ∇Niψiw,l dVe +
∑

e

∫
Ωw,ue

ρ̃e∇Njφj · ∇Niψiw,l dVe = 0, ∀ψi ∈ Ωw,l.

(5.1.30)

Similarly, the continuity in pressure across the wake is expressed by adding the lower surface

integral contributions to the upper shape functions. The discretized form of Equations 5.1.9

and 5.1.11 reads∑
e

∫
Γwe

(ψ + Ψ)w,u

(
[∇φ · ∇Njφj]w,u − [∇φ · ∇Njφj]w,l

)
dSe = 0, ∀(ψ + Ψ)w,u,

∑
e

∫
ΓTE,ue

∇φ · ∇NjφjψiTE,u dSe −
∑

e

∫
ΓTE,le

∇φ · ∇NjφjψiTE,u dSe = 0, ∀ψi ∈ ΓTE,u.

(5.1.31)

Note that the second equation is not used for three-dimensional flows. The stabilized shape

functions associated with the upper wake surface are computed as,

(ψ + Ψ)w,u = Niψi +
1

2

h

U∞
(U∞ · ∇Niψi) , ψ ∈ Γw,u. (5.1.32)

The derivatives of the shape functions ∇Ni appearing in Equations 5.1.31 and 5.1.32 are com-

puted in the volume elements attached to the wake surface Γw, but are evaluated and integrated

on that surface instead.

Figure 5.1.4 shows the discretization used to implement the Kutta condition, both for two and

three-dimensional flows. In particular, the degrees of freedom are duplicated on the trailing

edge of three-dimensional configurations, but no supplementary condition is enforced there, as

opposed to two-dimensional configurations. Also note that the degrees of freedom on the free

edge are not duplicated.

77

Chapter 5. Finite element solution of the full potential equation

𝜙TE,u
𝑛w

𝜙w,uΓw,u

Ωw,u

𝜙w,l

Ωw,l

Γw,l
𝜙TE,l Horizontal

wake

(a) Two-dimensional configuration.

𝜙w,u

Inclined
wake

𝜙TE,u

𝜙w,l𝜙TE,l

Symmetry plane

Γw,u

Γw,l

Free edge

(b) Three-dimensional configuration.

Figure 5.1.4: Discretization for the Kutta condition.

Density upwinding

In the implemented density upwinding procedure, the physical density is replaced by an up-

winded density which is biased by the streamline upwind derivative of the density, as given by

Equation 5.1.12. Two techniques have been implemented to compute the streamline upwind

derivative. Firstly, the derivative was computed as in Equation 3.2.10. The term was recon-

structed using a Green-Gauss integration procedure, similar to Pelz and Jameson [170]. This

78

5.1. Theory

approach is similar to that used in finite volume schemes and is not well adapted to a finite

element framework. It was therefore not retained in the current implementation. Secondly, the

derivative was approximated by a difference in the density. The upwinded density is then given

by

ρ̃ = ρ− µ(ρ− ρU), (5.1.33)

where the switching function is defined as

µ = µC max

(
0, 1−

M2
C

M2

)
. (5.1.34)

The constants µC and MC are controlled by the numerical scheme, as described in the next

section. Using finite elements with linear shape functions implies that the density is constant

over each element, and allows to easily compute the density at the upwind point, ρU, appearing

in Equation 5.1.33. Several techniques have been tested. The simplest one, consists in taking

the density computed on the adjacent element whose centroid is located closest to the opposite

main flow direction, i.e. the x-direction. This element should be identified only once before

starting the computations, but is not the true upwind element, especially near highly curved

geometries, e.g. wing leading edges. As a result, the domain of dependence of the flow is not

correct, and this might lead to inaccurate solutions. An improvement consists in identifying the

upwind element exactly. Since the grid is unstructured, this is accomplished by using the local

velocity vector of the current element. This method is more accurate, but the flow vector has to

be recomputed at each iteration. Yet another approach consists in taking a weighted average

of the density computed on all the adjacent elements located upwind of the current element.

The three techniques have been tested in the present work. The last two yielded similar results,

more accurate than those obtained using the first technique. The second strategy was retained

due to its simplicity and is depicted in Figure 5.1.5. The local velocity vector of the current

element is depicted in blue. The green and red arrows illustrate the vectors joining the centroid

of the current element to the centroid of the adjacent elements. As the element pointed by the

green arrow is the closest to the opposite flow direction, depicted by the gray axis, it is retained,

while the other elements are discarded. This procedure is restricted to linear elements, but

could be extended to higher-order meshes with a fair amount of work. Implementation details

will be given in the next section.

79

Chapter 5. Finite element solution of the full potential equation

𝑠

𝜌

𝜌U

Figure 5.1.5: Identification of upwind elements for density upwinding procedure. The adjacent
element whose centroid is located closest to the opposite flow direction, pointed by the green
arrow, is retained. The other elements, pointed by red arrows, are discarded.

Grid deformation

Using the same discretization as for the potential equation, the linear elasticity law for the grid

deformation can be written as∑
e

∫
Ωe

[
Eeνe

(1 + νe)(1− 2νe)
∂kNlusl,kδij +

Ee

1 + νe

(
∂jNlusl,i + ∂iNlusl,j

)]
∂jNlψl dVe = 0, ∀ψl,

(5.1.35)

The Dirichlet boundary condition on the deforming surface are enforced as,

usi |Γb
= ubi . (5.1.36)

On the wake, the periodic boundary conditions are discretized as follows. The upper wake

volume element contributions are added to the lower wake equations, and the upper wake

80

5.2. Implementation

unknowns are prescribed to match the lower wake unknowns,

∑
e

∫
Ωw,le

[
Eeνe

(1 + νe)(1− 2νe)
∂kNlusl,kδij +

Ee

1 + νe

(
∂jNlusl,i + ∂iNlusl,j

)]
∂jNlψlw,l dVe

+
∑

e

∫
Ωw,ue

[
Eeνe

(1 + νe)(1− 2νe)
∂kNlusl,kδij +

Ee

1 + νe

(
∂jNlusl,i + ∂iNlusl,j

)]
∂jNlψlw,l dVe

= 0, ∀ψi ∈ Ωw,l,

usj |Γw,u − usj |Γw,l
= 0.

(5.1.37)

5.2 Implementation

Flow [14, 171], an open-source unstructured finite element method solving the full potential

equation, has been developed following the formulation and discretization described in the pre-

vious section. The solver is embedded in waves [172], a finite element framework developed at

the University of Liège. The code consists in C++ classes wrapped in Python modules through

SWIG [173]. The wrapping allows to take advantage of both the high computing efficiency of the

C++ language, and the pre and post-processing capabilities of the Python language, as well

as its communication facilities. The code relies on Eigen [164] for linear algebra operations

and on Intel Threading Build Blocks [174, 175] for shared memory parallelization. More

details about the code can be found in appendix C.

5.2.1 Geometry modeling and meshing

Flow does not rely on any input geometry, but is directly based on a mesh input instead.

Currently, the code only supports the gmsh [56, 57] native format. As a result, the geometry

can be created with any computer-aided design software, but the meshes should be generated

by gmsh.

Wake modeling

The wake is explicitly modeled as a surface extending from the trailing edge of lifting configura-

tions to the downstream boundary. The wake sheet is meshed in gmsh and directly embedded

into the volume grid. Flow then duplicates each element and node on the wake sheet, except

on the free edge, as explained in the previous section. The duplicated, upper and lower, nodes

and elements are mapped together such that the contributions of the Kutta conditions can be

easily assembled later on. Equations 5.1.31 and 5.1.32 require to evaluate and integrate the

shape function derivatives on the wake surface. However, in standard finite element implemen-

tations, the derivatives are evaluated only at the Gauss points of volume elements, and are

therefore not readily available on the element faces. Fortunately, in the case of linear triangles

and tetrahedra, the derivatives of the shape functions are constant over the elements. As a

consequence, the derivatives computed at the Gauss points can be directly used to compute

81

Chapter 5. Finite element solution of the full potential equation

the Kutta condition related terms. This makes the current implementation of the Kutta condition

quite simple, but it restricts its application to linear triangular and tetrahedral meshes.

5.2.2 Numerical scheme

Noting that the discretized weak form of the full potential equation 5.1.27 must hold for any test

function vector ψψψ, it can be rewritten as a set of equations,

R = 0, (5.2.1)

where R is the residual vector. Since the full potential equation is nonlinear, it needs to be

solved in an iterative fashion. A Taylor expansion around a solution vector φφφs allows to write

0 = R +
∂R

∂φφφ
∆φ∆φ∆φ+O(∆φ∆φ∆φ2), (5.2.2)

where ∆φ∆φ∆φ = φφφ − φφφs. Neglecting second order terms, and given a known solution estimate φφφn
at iteration n, a better estimate of the solution, φφφn+1, can be found by solving

Jn(φφφn+1 −φφφn) = −Rn, (5.2.3)

where the residual vector Rn is evaluated at φφφn, and the Jacobian matrix Jn is defined as

Jn =
∂R

∂φφφ
|φφφn . (5.2.4)

Two iterative schemes are implemented in Flow to solve Equation 5.2.3: the Picard iteration

with relaxation, and a quasi-Newton algorithm combined with line search. If the density is

considered to be constant, the potential equation becomes linear. However, the Kutta condi-

tion being nonlinear, the problem still needs to be solved iteratively. A linear set of equations

must be solved at each iteration of the Picard and quasi-Newton algorithms. For the mesh

sizes considered in the present work, direct or iterative linear solvers can be used. Intel MKL

Pardiso [176], MUMPS [177] and a standard implementation of the GMRES alogirthm [114]

are available in the current implementation. The results presented in this thesis are computed

using Pardiso, and a comparison of the different linear solvers is available in appendix D.

The contributions of the Neumann boundary condition and the Kutta condition to the potential

equation can be directly embedded in the Jacobian matrix and in the residual vector. The

Dirichlet boundary condition is enforced in two steps. If the degree of freedom i lies on a

surface onto which a Dirichlet boundary condition needs to be enforced, the ith element of

vector φφφ is initialized to the imposed value. The ith line of the Jacobian matrix is then filled with

zeros, except for the diagonal element, which is set to 1, and the ith element of the residual

vector is set to zero. In this way, the degrees of freedom corresponding to a Dirichlet boundary

condition are effectively pinned to the initially prescribed value.

Following the standard finite element approach, the shape functions and their derivatives are

82

5.2. Implementation

first computed at the element level. More specifically, they are evaluated at each Gauss point

inside an element, using a reference frame attached to that element. They are then combined to

form the different terms of the potential equation and the boundary conditions, and integrated

over the element volume using the Gauss integration procedure. The contribution of each

element is finally assembled into the Jacobian matrix and the residual vector.

Picard iteration scheme

In the Picard, or fixed-point, iteration scheme, the residual vector is split into a part that depends

on the solution and a constant part,

Rn = Anφφφn − b. (5.2.5)

The Jacobian matrix is then chosen to be

Jn = An, (5.2.6)

so that Equation 5.2.3 reduces to

Anφφφn+1 = b, (5.2.7)

which is simply Equation 5.1.27 written in matrix form.

The entries of the matrix A are given by

Aij =

∫
Ωe

ρe∂kNj∂kNi dVe, (5.2.8)

and the entries of the vector b are given by

bi =

∫
Γe
ρ∂kφe ·nkeNi dSe. (5.2.9)

The Kutta condition is enforced in two steps. Firstly, the contributions of the upper wake nodes

are directly added to the rows of matrix A and vector b corresponding to lower wake nodes,

except for the nodes lying on the trailing edge. Note that no contribution is assembled on the

upper wake rows at this step. This enforces the continuity in the mass flux through the wake,

Aij |w,l = Aij |w,l +Aij |w,u,

bi|w,l = bi|w,l + bi|w,u.
(5.2.10)

Secondly, the upper wake rows are replaced by the first equation in 5.1.31. The following terms

are thus assembled to the upper wake rows,

Aij |w,u =

∫
Γwe

(
Ni +

1

2

h

U∞
U∞,k∂kNi

)
w,u

(
[∂kφ∂kNj]w,u − [∂kφ∂kNj]w,l

)
dSe. (5.2.11)

For two-dimensional flows, the upper trailing edge node contributions are also added to the

83

Chapter 5. Finite element solution of the full potential equation

lower trailing edge rows, and the following terms are also added to the upper trailing edge

rows,

Aij |TE,u =

∫
ΓTE,ue

∂kφ∂kNjNiTE,u dSe −
∫

ΓTE,le

∂kφ∂kNjNiTE,u dSe. (5.2.12)

An under-relaxation technique has also been implemented in order to increase the stability of

the Picard scheme. At each iteration, the solution is updated as,

φφφn+1 = λφφφn+1 + (1− λ)φφφn (5.2.13)

where λ is a user-defined relaxation parameter. In the case where λ = 1, the standard fixed-

point iteration scheme is recovered. In practice, Picard’s algorithm is simple to implement, but

it has poor convergence characteristics. If shocks are present in the solution, it might not even

converge, no matter the amount of relaxation used. In the current implementation, the algorithm

is restricted to the computation of compressible, but not transonic, flows, and is mainly used for

testing and debugging purposes.

Quasi-Newton algorithm

In the Newton-Raphson method, the Jacobian matrix is calculated either analytically or numer-

ically. In the latter case, the matrix terms are obtained by introducing small perturbations in

each degree of freedom of the solution vector, at each iteration. As such, the matrix entries

must not be explicitly derived analytically, and the procedure is simple to implement. However,

this is at the expense of computational performance. In the present implementation, the ana-

lytic approach has been chosen in order to reduce the computational requirements as much as

possible. The Jacobian matrix is obtained by differentiating the weak form of the full potential

equation 5.1.1,

J =
∂R

∂φ
= =

∫
Ω

∂

∂φ
{ρ̃}∇φ · ∇ψ dV +

∫
Ω
ρ̃
∂

∂φ
{∇φ · ∇ψ} dV

=

∫
Ω

(1− µ)
∂

∂φ
{ρ∇φ · ∇ψ} dV

+

∫
Ω
µ

(
∂

∂φ
{ρU}∇φ · ∇ψ + ρU

∂

∂φ
{∇φ · ∇ψ}

)
dV

+

∫
Ω
− (ρ− ρU)

∂

∂φ
{µ}∇φ · ∇ψ dV,

(5.2.14)

where the different derivatives are given by

∂

∂φ
{ρ} = −M2

∞ρ
2−γ∇φ · ∂

∂φ
{∇φ} ,

∂

∂φ
{µ} = µCM

2
C

(
2

M3

∂

∂φ
{M}

)
,

∂

∂φ
{M} = M

[
1

|∇φ|2
+
γ − 1

2

1

a2

]
∇φ · ∂

∂φ
{∇φ} .

(5.2.15)

84

5.2. Implementation

The speed sound is computed as

a =

√
1

M2
∞

+
γ − 1

2
(1− |∇φ|2). (5.2.16)

Note that the derivative of the switching function µ is only computed in supersonic regions,

where it is nonzero and continuous. Using finite element discretization, Equation 5.2.14 be-

comes

Jij =

∫
Ωe

(1− µ)
[
−M2

∞ρ
2−γ
e ∂kφ∂kNj∂kφ∂kNi + ρe∂kNj∂kNi

]
dVe

+

∫
Ωe

µ
[
−M2

∞ρ
2−γ
U ∂kφU∂kNjU∂kφ∂kNi + ρU∂kNj∂kNi

]
dVe

−
∫

Ωe

(ρe − ρU)

[
2µCM

2
C

M3
e

(
1√

∂kφ2a2
e

+
γ − 1

2

√
∂kφ2

3
√
a2

e

)
∂kφ∂kNj∂kφ∂kNi

]
dVe,

(5.2.17)

where subscript U refers to the upwind element. Note that the analytic form of the Jacobian

was verified by comparing it to the numerical Jacobian obtained using small perturbations. The

residual vector is written as

Ri =

∫
Ωe

[(1− µ) ρe + µρU] ∂kφ∂kNi dVe −
∫

Γe

ρ∂kφnkNi dSe. (5.2.18)

The Kutta condition is enforced in a similar way as for the Picard iteration scheme. The con-

tributions of the upper wake nodes are directly added to the lower wake rows, instead of the

upper wake rows, of the Jacobian matrix and residual vector,

Jij |w,l = Jij |w,l + Jij |w,u,

Ri|w,l = Ri|w,l +Ri|w,u.
(5.2.19)

The following terms are then assembled on the upper wake rows,

Jij |w,u = 2

∫
Γwe

(
Ni +

1

2

h

U∞
U∞,k∂kNi

)
w,u

(
[∂kφ∂kNj]w,u − [∂kφ∂kNj]w,l

)
dSe,

Ri|w,u =

∫
Γwe

Niw,u

(
[∂kφ∂kφ]w,u − [∂kφ∂kφ]w,l

)
dSe.

(5.2.20)

For two-dimensional flows, the trailing edge rows are also changed in a similar way,

Jij |TE,u = 2

∫
ΓTE,ue

∂kφ∂kNjNiTE,udSe − 2

∫
ΓTE,le

∂kφ∂kNjNiTE,udSe,

Ri|TE,u =

∫
ΓTE,ue

∂kφ∂kφNiTE,udSe −
∫

ΓTE,le

∂kφ∂kφNiTE,udSe.

(5.2.21)

The Newton-Raphson method converges more rapidly than Picard’s iteration scheme, and ex-

hibits a second-order convergence rate as it gets closer to the solution. However, it might be

85

Chapter 5. Finite element solution of the full potential equation

unstable for transonic flow computations where the local Mach numbers are high. An effective

way to stabilize the Newton method is to restrict the change in the solution using a line search

procedure. In such a technique, the new solution vector is computed as

φφφn+1 = φφφn + λn(φφφn+1 −φφφn), (5.2.22)

where λn is the step length of the line search. A quadratic line search [178] and the Bank and

Rose [47] algorithms have been implemented to find the optimal λn for a given iteration. The

former is more robust, but requires more function evaluations to compute the step length than

the latter. For smooth meshes, the Rose and Bank algorithm is usually sufficient. The results

presented in chapters 5 and 6 are computed with this line search algorithm. Both algorithms

are shortly described in appendix C and compared in appendix D.

Density upwinding

Equation 5.1.33 requires to compute the density at an upwind point, for each element located

in supersonic regions. Since linear shape functions are used in the finite element discretiza-

tion, only one upwind element needs to be associated with each current element, as described

in Figure 5.1.5. As the supersonic regions are not known a priori, and can vary during the

computation procedure, an upwind element is first associated to any volume element of the

mesh. As a result, the finite element data structure needs to be enriched, such that each ele-

ment knows its direct neighbors. This operation is handled by C++ Standard Template Library

containers and is very fast, even for large meshes. During the iterative procedure, the upwind

element is determined by minimizing the scalar product between its direction relative to the

current element and the local velocity vector. In practice, the local velocity vector does not vary

greatly between two consecutive iterations. As a result, the upwind element can be updated

infrequently. An adaptive density upwinding is implemented to improve the convergence and

stability of the Newton method for transonic flow computations. The parameters µC and MC of

the switching function 5.1.34 are allowed to vary. As explained in chapter 3, the first parameter

controls the amplification of the density bias, while the second controls the extent of the region

where the bias is to be applied. In the current implementation, they are initialized to 2 and 0.92 in

order to produce strong stabilization over a large portion of the flow. As the solution converges,

these parameters are varied to 1 and 0.95. These final values were chosen from the literature,

as they are suitable for most cases. The update frequency of the parameters is a user-defined

input. Changing both parameters each time the relative residual of the full potential equation

drops below 10−2 or 10−3 works usually well. Since changing the density upwinding has an

impact on the solution, the upwind elements are identified each time the parameters vary.

The flow around a NACA 0012 airfoil is computed at zero angle of attack and Mach 0.8 to

illustrate the effect of using variable parameters to bias the density. Figure 5.2.1a shows the

evolution of the relative residual, computed as the L2 norm of the unknown potential vector, as

a function of the iteration count, while Figure 5.2.1b shows the pressure distribution along the

chord of the airfoil. µC and MC are first set to 3 and 0.90 to produce a high amount of bias

86

5.2. Implementation

(blue curve). Figure 5.2.1 shows that the algorithm converges quite fast to a solution in which

the shock is smeared and displaced upstream. On the other hand, setting the parameters

directly to 1 and 0.95 to produce a low amount of bias (red curve) prevents the scheme from

converging, and the obtained solution is oscillatory near the shock. Varying the parameters

(green curve) allows the solution procedure to converge and yields a solution close to the

Tranair predictions used as reference.

0 5 10 15 20 25
10-10

10-8

10-6

10-4

10-2

1

C
=3, M

C
=0.9

C
=1, M

C
=0.95

C
, M

C
 varied

(a) Relative residual as a function of iteration count.

0 0.2 0.4 0.6 0.8 1

-1.5

0

1

C
=3, M

C
=0.9

C
=1, M

C
=0.95

C
, M

C
 varied

Tranair

(b) Pressure distribution along the chord.

Figure 5.2.1: Effect of varying the upwinding parameters during the solution procedure. Flow
around a NACA 0012 airfoil at zero angle of attack and Mach 0.8 compared to Tranair’s
results.

In the adaptive density upwinding strategy described above, the final values taken by the pa-

rameters of the switching function still have to be chosen, as they will influence the results of

a computation. Figure 5.2.2 shows the pressure distribution along the chord of a NACA 0012

airfoil at zero angle of attack and Mach 0.8 for different final values of the parameters µC and

MC. The results obtained using Tranair are also given for reference. For a given grid density,

changing the values of the parameters allows to fine tune the strength and the location of the

shock. In the present test case and for a grid size of 1/100 of the chord on the airfoil surface, the

optimal set of parameters has been found to be µC = 0.95 and MC = 0.945, as illustrated in Fig-

ure 5.2.2b. In practice however, the optimal values of the parameters are case-dependent and

sensitive to the grid density, hence difficult to choose a priori. Furthermore, changing the grid

density has a similar effect on the results, as will be demonstrated in section 5.4. Consequently,

µC = 1.0 and MC = 0.95 have been retained as final values in the current implementation of

Flow.

87

Chapter 5. Finite element solution of the full potential equation

0 0.2 0.4 0.6 0.8 1

-1.5

0

1

C
=1.1, M

C
=0.94

C
=1.0, M

C
=0.95

C
=0.9, M

C
=0.96

Tranair

(a) Sensitivity analysis.

0 0.2 0.4 0.6 0.8 1

-1.5

0

1

C
=0.95, M

C
=0.945

Tranair

(b) Optimal parameters.

Figure 5.2.2: Pressure distribution along the chord of a NACA 0012 airfoil at zero angle of
attack and Mach 0.8 for several final values taken by the parameters of the switching function
and compared to Tranair’s results.

5.3 Validation

In this section, the solver implemented in Flow is tested and verified on various two and three-

dimensional configurations. Convergence analyses are first performed, and the code is then

compared to the full potential solver Tranair.

5.3.1 Domain and mesh convergence analyses

Convergence analyses are fist performed on both the domain and the mesh sizes. To demon-

strate the convergence, transonic flow computations are performed on the RAE 2822 airfoil

and the Onera M6 wing. The variation of the lift and drag coefficients, as well as of the location

of the shock, with mesh size is studied. For the wing, the shock location is taken along the

mean aerodynamic chord. In Table 5.3.1a, the domain size is noted in terms of its extent in

the streamwise and normal directions, in chord lengths, respectively denoted by nX and nZ. In

Table 5.3.2a, the domain extent is given in the streamwise, spanwise and normal directions in

multiples of the root chord, span and root chord length, respectively, denoted by nX, nY and nZ.

As the domain size is increased, the mesh size is also increased in order to maintain the same

density. In Tables 5.3.1b and 5.3.2b, the mesh size is given in terms of the number of cells nC.

RAE 2822 airfoil

Table 5.3.1 shows the lift cl and drag cd coefficients, as well as the shock location, given as a

fraction of the chord xs
c , on the RAE 2822 airfoil at an angle of attack α = 2◦ and a Mach number

M = 0.715, for different domain and mesh sizes. For this two-dimensional case, Table 5.3.1a

shows that using the second domain is enough to obtain a converged solution in terms of drag

and shock location, though the lift still varies slightly. This suggests to place the boundaries 5

chord lengths away from a lifting configuration in two-dimensional cases. The solution obtained

88

5.3. Validation

using the second mesh in Table 5.3.1b is also converged in terms of drag and shock location,

but as in the domain convergence study case, the lift still varies. The variation in the lift is

mainly due to the difference in shock strengths captured using various domain and grid sizes.

The second mesh is obtained by using a cell size of 0.01 of the chord on the airfoil surface

and of 1 chord in the farfield. Note that refining the mesh further than the third mesh leads to

divergence of the method. This occurs because the density upwinding process ensuring the

stability of transonic flow computations is proportional to the mesh size. To complement this

study, a mesh sensitivity analysis is given in section 5.4.

nX × nZ cl cd
xs
c

5× 4 0.896 0.0058 0.63
11× 10 0.818 0.0025 0.56
21× 20 0.811 0.0023 0.55

(a) Domain convergence (using mesh density corre-
sponding to second mesh in Tab.b).

nC cl cd
xs
c

2 000 0.773 0.0034 -
6 000 0.818 0.0025 0.56
13 000 0.827 0.0025 0.57

(b) Mesh convergence (using second domain in
Tab.a).

Table 5.3.1: Convergence analysis for the flow around a RAE 2822 airfoil at 2◦ angle of attack
and Mach 0.715.

Onera M6 wing

Table 5.3.2 shows the lift CL and drag CD coefficients, as well as the shock location, noted as

a fraction of the mean aerodynamic chord xs
c |MAC, on the Onera M6 wing at an angle of attack

of 3.06◦ and a Mach number of 0.839, for different domain and mesh sizes. For this three-

dimensional case, using the second domain in Table 5.3.2a yields a converged solution and

suggests to place the domain boundaries 3 chord lengths away from the wing in the streamwise

and normal directions, and 1 span length in the spanwise direction. Using the second mesh in

Table 5.3.2b, obtained by using a local cell size of 0.005 and 0.01 of the chord at the leading

and trailing edges of the wing, and of about 1 chord length in the farfield, is sufficient to get a

converged solution. As in the two-dimensional case, note that using a finer mesh prevents the

method from converging.

nX × nY × nZ CL CD
xs
c |MAC

6× 1.5× 5 0.312 0.0126 0.52
8× 2× 7 0.294 0.0111 0.61
14× 5× 13 0.289 0.0111 0.61

(a) Domain convergence (using mesh density corre-
sponding to second mesh in Tab.b).

nC CL CD
xs
c |MAC

200 000 0.273 0.0101 0.54
600 000 0.294 0.0111 0.61
1 000 000 0.302 0.0114 0.60

(b) Mesh convergence (using second domain in
Tab.a)).

Table 5.3.2: Convergence analysis for the flow around the Onera M6 wing at 3.06◦ angle of
attack and Mach 0.839.

5.3.2 Aerodynamic loads

Following the convergence study, the results presented in the rest of the present chapter are

obtained on two-dimensional domains for which boundaries are placed 5 chord lengths away

89

Chapter 5. Finite element solution of the full potential equation

from the airfoil, and on three-dimensional domains for which boundaries are placed 3.5 chord

lengths away from the wing in the streamwise and normal directions and 1 span length away in

the spanwise direction. The mesh size ranges from 0.005 to 0.01 of the chord on the surface of

the airfoils and wings, and is set to 1 chord length in the farfield. The computational grids used

for the different airfoils and wings in the present chapter are given in Figure 5.3.1.

(a) NACA 0012 airfoil. (b) RAE 2822 airfoil.

(c) Onera M6 wing. (d) Embraer benchmark wing.

Figure 5.3.1: Computational grids used for the different airfoils and wings.

NACA 0012 and RAE 2822 airfoils

The aerodynamic load coefficients acting on the NACA 0012 airfoil at an angle of attack α = 0◦

and Mach M = 0.8 are given in Table 5.3.3a, and the pressure distribution along the chord of

the airfoil is shown in Figure 5.3.2a. For this flow, the lift should be zero and the shock should

lie at 50% of the chord, as predicted by Tranair. Both results are recovered by Flow. For a

two-dimensional transonic computation, the drag is only produced through the shock, and its

magnitude varies with the shock strength. Compared to Tranair, Flow consistently predicts

a slightly weaker shock, and slightly less drag. Another comparison is performed on the RAE

2822 airfoil. The flow is computed at α = 2◦ and M = 0.715. For this lifting flow, Flow tends

to predict a lower lift coefficient, as shown in Table 5.3.3b. This lower lift can be related to

the weaker shock and the lower magnitude of the pressure coefficient upstream of the shock

predicted by Flow, as illustrated in Figure 5.3.2b. In both cases, the overall results obtained

90

5.3. Validation

using Flow compare well with those obtained with Tranair. However, Flow tends to predict

weaker shocks than Tranair. This is mainly due to the different strategies implemented in the

two solvers to stabilize transonic flow computations, and to the different types of mesh used by

the two solvers. For two-dimensional computations, weaker shock predictions are found to have

a slight impact on the drag and a noticeable impact on the lift. This difference in lift coefficient

can also be attributed to the different implementations of the Kutta condition in the two codes.

Code cl cd
Flow 0.000 0.0049
Tranair −0.011 0.0059

(a) NACA 0012: α = 0◦, M = 0.80.

Code cl cd
Flow 0.818 0.0025
Tranair 0.847 0.0024

(b) RAE 2822: α = 2◦, M = 0.715.

Table 5.3.3: Aerodynamic load coefficients of two-dimensional airfoils in transonic flow obtained
using Flow and compared to Tranair’s predictions.

0 0.2 0.4 0.6 0.8 1

-1

-0.5

0

0.5

1

Flow
Tranair

(a) NACA 0012: α = 0◦, M = 0.80.

0 0.2 0.4 0.6 0.8 1

-1.5

-1

-0.5

0

0.5

1

Flow
Tranair

(b) RAE 2822: α = 2◦, M = 0.715.

Figure 5.3.2: Pressure distributions along the chord of two-dimensional airfoils in transonic flow
obtained using Flow and compared to Tranair’s predictions.

Onera M6 and Embraer benchmark wing

The aerodynamic load coefficients of two three-dimensional wings are given in Table 5.3.4.

The first is the Onera M6 wing, simulated at an angle of attack α = 3.06◦ and a Mach number

M = 0.839. The second is the Embraer benchmark wing, for which the angle of attack is set to

yield a lift coefficient CL = 0.60 and the Mach is set to M = 0.78. In both cases, the moment

coefficient is computed at the leading edge of the root chord. Overall, there is good agreement

between the results obtained using Flow and Tranair.

91

Chapter 5. Finite element solution of the full potential equation

Code CL CD CM
Flow 0.294 0.0111 −0.218
Tranair 0.288 0.0111 −0.212

(a) Onera M6: α = 3.06◦, M = 0.839.

Code α CD CM
Flow −0.8◦ 0.0147 −0.853
Tranair −0.9◦ 0.0159 −0.857

(b) Embraer benchmark wing: CL = 0.60, M = 0.78.

Table 5.3.4: Aerodynamic load coefficients of three-dimensional wings in transonic flow ob-
tained using Flow and compared to Tranair’s predictions.

Figure 5.3.3 shows the pressure coefficient along the chord at various spanwise stations of

the Onera M6. These stations are taken at the root, 44%, 65% and 95% of the semi-span of

the wing. Note that the mean aerodynamic chord is located at y/s = 0.44, where y is the

spanwise coordinate and s is the semi-span. The experimental data obtained by Schmitt and

Charpin [54] are also included, except at the wing root, where they are not available. At the root

and the mean aerodynamic chord stations, the solution obtained with Flow closely matches

the predictions from Tranair, even though the shock predicted by Flow is located slightly

upstream, as in the two-dimensional cases discussed earlier. At y/s = 0.65, the double shock

pattern observed by Schmitt and Charpin [54] is not at all captured by Flow, but is almost

captured by Tranair, even if it is heavily smeared. However, Tranair has the advantage of

using an adaptive grid procedure, that allows the software to refine the grid to better capture

flow gradients. At the tip section, although both solvers predict a similar solution, neither Flow

nor Tranair recovers a shock as sharp as that observed experimentally. Note that the shock

predicted by full potential solutions is expected to be stronger than that obtained experimentally,

as observed in chapter 2.

92

5.3. Validation

0 0.2 0.4 0.6 0.8 1

-1

-0.5

0

0.5

1 Flow
Tranair

(a) y/s = 0.

0 0.2 0.4 0.6 0.8 1

-1.5

-1

-0.5

0

0.5

1

Flow
Tranair
Exp

(b) y/s = 0.44

0 0.2 0.4 0.6 0.8 1

-1.5

-1

-0.5

0

0.5

1

Flow
Tranair
Exp

(c) y/s = 0.65

0 0.2 0.4 0.6 0.8 1

-1.5

-1

-0.5

0

0.5

1

Flow
Tranair
Exp

(d) y/s = 0.95

Figure 5.3.3: Pressure distributions along the chord at several spanwise stations of the Onera
M6 at α = 3.06◦ and M = 0.839 obtained using Flow and comapred to Tranair’s predictions
and experimental data [54].

Figure 5.3.4 shows the pressure coefficient along the chord at various spanwise stations of

the Embraer benchmark wing. These stations are taken at the root, 37%, 41% and 95% of the

semi-span of the wing. Note that the mean aerodynamic chord is located at y/s = 0.41. As

in the Onera M6 case, there is an overall good agreement between the Flow and Tranair

solutions, except at the shock location, which tends to be smeared and moved upstream by

Flow. This can also be related to the lower drag coefficient predicted by Flow.

93

Chapter 5. Finite element solution of the full potential equation

0 0.2 0.4 0.6 0.8 1

-1

-0.5

0

0.5

1 Flow
Tranair

(a) y/s = 0.

0 0.2 0.4 0.6 0.8 1

-1

-0.5

0

0.5

1

Flow
Tranair

(b) y/s = 0.37

0 0.2 0.4 0.6 0.8 1

-1

-0.5

0

0.5

1

Flow
Tranair

(c) y/s = 0.41

0 0.2 0.4 0.6 0.8 1

-1

-0.5

0

0.5

1

Flow
Tranair

(d) y/s = 0.95

Figure 5.3.4: Pressure distributions along the chord at several spanwise stations of the Embraer
benchmark at CL = 0.60 and M = 0.78 obtained using Flow and compared to Tranair’s
predictions.

5.3.3 Computational performance

The test cases presented in this chapter were run on a laptop fitted with an Intel i7-7700HQ pro-

cessor (2.8 GHz). The mesh size and the computational time required by Flow and Tranair

are given in Tables 5.3.5 and 5.3.6 for two and three-dimensional cases, respectively.

For two-dimensional flow computations, Flow is about three to five times faster than Tranair.

This is due to the solution adaptive grid procedure implemented in Tranair, which needs

to generate adapted meshes several time during the iterative process. For such small mesh

sizes, the grid generation seems to take longer than the actual solution process. On the other

hand, only one fine grid is used for Flow. The finite element matrix computation and assembly

processes in Flow are multi-threaded using shared memory parallelization. When the test

cases are run on four threads, the wall-clock time is reduced by a factor of two. The ideal factor

of four cannot be reached as, first, the linear solver is not used in parallel, and second, little

additional time is required for communication and synchronization.

94

5.4. Sensitivity analysis

Code n. cells n. threads wall-clock time cpu time
Flow 4 000 1 0.7 s 0.7 s
Flow 4 000 4 0.3 s 1.2 s
Tranair 6 500 1 6 s 6 s

(a) NACA 0012: α = 0◦, M = 0.80.
Code n. cells n. threads wall-clock time cpu time
Flow 6 000 1 1.8 s 1.8 s
Flow 6 000 4 1.0 s 4.0 s
Tranair 6 000 1 5 s 5 s

(b) RAE 2822: α = 2◦, M = 0.715.

Table 5.3.5: Computational performance of two-dimensional transonic flow computations pre-
formed using Flow and compared to Tranair.

For three-dimensional flows, Flow requires approximately the same computational time as

Tranair to compute the flow around the Onera M6 wing, and is around 10% faster in the

Embraer benchmark case. In both cases, the mesh used by flow is larger, but as Tranair

needs to generate several grids during the grid adaptation procedure, the total runtime remains

comparable. Similarly to the two-dimensional cases, a reduction of 50% in wall-clock time is

obtained by running Flow on four threads.

Code n. cells n. threads wall-clock time cpu time
Flow 600 000 1 245 s 245 s
Flow 600 000 4 100 s 400 s
Tranair 500 000 1 240 s 240 s

(a) Onera M6: α = 3.06◦, M = 0.839.
Code n. cells n. threads wall-clock time cpu time
Flow 700 000 1 290 s 290 s
Flow 700 000 4 120 s 480 s
Tranair 500 000 1 320 s 320 s

(b) Embraer benchmark wing: CL = 0.60, M = 0.78.

Table 5.3.6: Computational performance of three-dimensional transonic flow computations pre-
formed using Flow and compared to Tranair.

5.4 Sensitivity analysis

As Flow is intended to be used in the preliminary aircraft design stage, the code has been

designed such that a computation can be easily configured. Consequently, the number of

parameters chosen arbitrarily by the user is kept to a minimum. However, two parameters of

paramount importance still need to be fixed: the wake inclination and the mesh density. The

present section illustrates the effect of these two parameters on the accuracy of transonic flow

computations performed within Flow.

95

Chapter 5. Finite element solution of the full potential equation

5.4.1 Wake inclination

As explained earlier, the wake must be aligned with the trailing edge bisector for three-dimensional

configurations. However, the bisector line is not well defined for highly curved trailing edges.

The present study attempts to quantify the effect of the wake inclination on three-dimensional

flow solutions.

The Embraer wing is chosen as a benchmark and is simulated at an angle of attack α = −1.2

and a Mach number M = 0.78. This flight condition corresponds approximately to the high-

speed maneuver described in chapter 2. Three wake inclinations are chosen: the first is based

on a trailing edge defined as 1% of the chord, the second uses 15% of the chord, and the third

wake is horizontal. The strategy to define the wake inclination is depicted in Figure 5.4.1. The

results, given as integrated aerodynamic coefficients and pressure coefficients along the chord

are compared to the predictions obtained from Tranair, and summarized in Table 5.4.1. Note

that Tranair uses a horizontal wake. Compared to Tranair, the closest lift and moment

coefficients are obtained using the second configuration, for which the wake is tilted following a

bisector based on a trailing edge defined as 15% of the chord. The corresponding drag coeffi-

cient differs by 17 counts from Tranair, which is quite large compared to the first configuration,

which only differs by 3 counts. This result is in line with those presented in Table 5.3.4b which

show that, in the Embraer benchmark wing case, Flow underestimates the drag but yields lift

and moment coefficients, and an angle of attack similar to Tranair.

horizontal wake
wing

inclined wake
percentage of

chord used
to define

trailing edge
and bisector

Figure 5.4.1: Strategy to define the trailing edge bisector and the wake inclination.

96

5.4. Sensitivity analysis

Code Inclination CL CD CM
Flow 1% 0.60 0.0142 −0.877
Flow 15% 0.54 0.0122 −0.775
Flow horizontal 0.48 0.0104 −0.685
Tranair horizontal 0.56 0.0139 −0.806

Table 5.4.1: Evolution of the aerodynamic coefficients of the Embraer wing at α = −1.2◦ and
M = 0.78 for different wake inclination compared to Tranair’s results.

Figure 5.4.2 shows the pressure coefficient along the root section, mean aerodynamic and tip

section chords of the Embraer benchmark wing simulated at α = −1.2◦ and M = 0.78 for

three wake inclinations. A zoom on the last 5% of the local chord is also provided to judge the

accuracy of the Kutta condition. The results obtained using Tranair are also given for refer-

ence. The configuration yielding the most similar pressure distribution compared to Tranair

varies depending on the considered section. At the root and the mean aerodynamic chord sec-

tions, the first configuration, based on a trailing edge defined as 1% of the chord, best matches

Tranair’s results, while at the tip section, the second configuration is the closest one. The

local behavior of the solution at the trailing edge confirms this result. Moreover, it indicates that

the Kutta condition implemented in the two solvers does not ensure the exact equality of the

pressure on the suction and pressure sides. Furthermore, the Kutta condition is not fulfilled

on each section for both Flow and Tranair. For a given wake configuration, the difference

between the pressure on the suction and pressure sides at the trailing edge obtained using

Flow decreases along the span, while the opposite trend can be observed for Tranair.

97

Chapter 5. Finite element solution of the full potential equation

0 0.2 0.4 0.6 0.8 1

-1

-0.5

0

0.5

1

1%
15%
horizontal
Tranair

(a) Root.

0.95 1

-0.2

0.6

1%
15%
horizontal
Tranair

(b) Root (trailing edge).

0 0.2 0.4 0.6 0.8 1

-1

-0.5

0

0.5

1

1%
15%
horizontal
Tranair

(c) Mean aerodynamic chord.

0.95 1

-0.2

0.5

1%
15%
horizontal
Tranair

(d) Mean aerodynamic chord (trailing edge).

0 0.2 0.4 0.6 0.8 1

-1

-0.5

0

0.5

1

1%
15%
horizontal
Tranair

(e) Tip.

0.95 1

-0.1

0.4

1%
15%
horizontal
Tranair

(f) Tip (trailing edge).

Figure 5.4.2: Pressure distribution along the chord of several sections along the span of the
Embraer wing at α = −1.2◦ and M = 0.78 for different wake inclination compared to Tranair’s
predictions.

Both Tranair and Flow solutions depend on the Kutta condition. Even if the implementation

in Tranair does not enforce the exact equality of the pressure on the suction and pressure

sides along the whole span, the wake is always horizontal and its inclination is not controlled

98

5.4. Sensitivity analysis

by the user. This ensures that the results will be consistent from one lifting configuration to

another. This is not the case with Flow, since the wake inclination must be provided by the

user. Furthermore, a suitable wake inclination is not trivial to determine and will be different for

each wing. Several tentative solutions will be discussed in chapter 7 in order to decrease the

influence of the wake inclination on the solution.

5.4.2 Grid density

The two-dimensional flow over a NACA 0012 airfoil is computed using Flow at zero angle

of attack and several freestream Mach numbers to illustrate the impact of grid refinement on

shock capturing. The pressure along the chord of the airfoil, as well as the drag coefficients are

compared to Tranair, and given in Figures 5.4.3 to 5.4.5. It should be recalled that Tranair

makes use of a robust solution adaptive grid feature, which ensures that the local grid size

always fits the solution.

For a freestream Mach number M = 0.78, the flow exhibits a very weak shock, with an associ-

ated maximum local Mach number of 1.1. For this case, Figure 5.4.3 shows that a grid counting

less than nC = 6 000 cells is not dense enough to accurately capture the shock and yield an

accurate drag coefficient. For a grid of 6 000 cells, the captured shock is slightly sharper, and

the drag coefficient differs by less than one drag count compared to Tranair.

0 0.2 0.4 0.6 0.8 1

-1

0

1

n
C

=1000

n
C

=3000

n
C

=6000

Tranair

(a) Pressure coefficient.

nC CD
1 000 0.00161
3 000 0.00135
6 000 0.00172
Tranair 0.00171

(b) Drag coefficient.

Figure 5.4.3: Pressure along the chord and drag coefficient of the NACA 0012 at α = 0◦ and
M = 0.78 for several mesh sizes compared to Tranair’s results.

For a freestream Mach number M = 0.80, the shock is stronger and the maximum local Mach

number is close to 1.3, which is the theoretical limit of validity of the full potential equation.

For this case, Figure 5.4.4 illustrates that a grid counting nC = 3 000 elements is sufficient to

capture a sharp shock, even though it is displaced slightly upstream compared to Tranair’s

prediction. The difference between the drag coefficients predicted by the two solvers increases

to 4 − 5 drag counts. Further refining the grid leads to an oscillatory behavior, which prevents

convergence.

99

Chapter 5. Finite element solution of the full potential equation

0 0.2 0.4 0.6 0.8 1

-1

0

1

n
C

=1000

n
C

=3000

n
C

=6000

Tranair

(a) Pressure coefficient.

nC CD
1 000 0.00331
3 000 0.00457
6 000 0.00488
Tranair 0.00413

(b) Drag coefficient.

Figure 5.4.4: Pressure along the chord and drag coefficient of the NACA 0012 at α = 0◦ and
M = 0.80 for several mesh sizes compared to Tranair’s results.

For a freestream Mach number M = 0.82, a strong shock is exhibited and the maximum local

Mach number is close to 1.5. For this case, the full potential equation is no longer valid and

an Euler solution computed using SU2 is given as well in Figure 5.4.5. Although Tranair still

converges, the asymmetry of the pressure between the suction and pressure sides, as well as

the prediction of a stronger shock and a lower drag coefficient than SU2, illustrate that the limit

of the methodology is reached. While using a grid of nC = 3 000 cells with Flow inconsistently

yields a weaker shock displaced upstream and a lower drag coefficient than Tranair and SU2,

further refining the grid leads to an oscillatory and unconverged solution. Moreover, as the grid

is refined, the shock strength and location do not converge. This is to be compared with the

results at M = 0.78, for which smooth convergence can be attained, even for fine grids.

0 0.2 0.4 0.6 0.8 1

-1

0

1

n
C

=1000

n
C

=3000

n
C

=6000

Tranair
SU2

(a) Pressure coefficient.

nC CD
1 000 0.00754
3 000 0.01153
6 000 0.01086
Tranair 0.01840
SU2 0.01944

(b) Drag coefficient.

Figure 5.4.5: Pressure along the chord and drag coefficient of the NACA 0012 at α = 0◦ and
M = 0.82 for several mesh sizes compared to Tranair’s and SU2’s results.

The grid sensitivity study presented in the present section showed that, although transonic

100

5.5. Discussion

flow computations can reliably be performed using Flow, the solver still lacks robustness when

high local Mach numbers are involved. As such, the consistency and stability properties of

the upwinding formulation, which are the requirements for convergence, should be further in-

vestigated. Additionally, the implementation of techniques limiting the velocity near high flow

gradients, or of a solution adaptive grid, is highly desirable. These aspects will be discussed in

chapter 7.

5.5 Discussion

Flow, an unstructured grid, finite element method solving the full potential equation was devel-

oped and implemented. The code is written in C++ wrapped in Python, and designed to perform

transonic aerodynamic and aeroelastic flow computations in the context of preliminary aircraft

design. The solver has been tested on various two and three-dimensional configurations, and

the results have been compared to Tranair. Overall, there is a good agreement between

the predictions of the two solvers. The aerodynamic load coefficients predicted by Flow and

Tranair usually differ by less than 10 counts or 5%, whichever the higher. The pressure

distributions computed along the mean aerodynamic chord, as well as at several spanwise

stations of the wings, also closely matched, though Flow tends to underpredict the velocity up-

stream of shockwaves. This has the effect of moving the shocks slightly upstream compared to

Tranair’s predictions. The accuracy of Flow under transonic flow conditions is much higher

than that of Aero, the field panel method presented in chapter 4. For two-dimensional cases,

Flow is found to be significantly faster than Tranair. For three-dimensional computations,

the adaptive grid technology implemented in Tranair increases the solver computational ef-

ficiency and yields similar computational time as Flow. It should also be noted that the time

required to generate a suitable three-dimensional unstructured grid is non negligible. As such,

an adaptive grid technique could also be implemented in Flow. Moreover, such a procedure

could also increase the solver’s robustness and remove the responsibility of the user to specify

a grid size prior to the computation. Development perspectives of adaptive mesh refinement

will be presented in chapter 7. Flow is currently restricted to steady inviscid flows. Several

enhancements, such as unsteady modeling, viscous corrections, and adjoint computations will

be presented in chapter 7 as well.

One of the goals of the present work is to investigate the accuracy and computational effi-

ciency of the different aerodynamic levels of fidelity for transonic aeroelastic computations in

the context of preliminary aircraft design. The Python wrapping used in Flow makes the solver

modular and easy to integrate into an aeroelasticity framework, as opposed to other software,

such as Tranair. Such computations will be presented in the next chapter.

101

Chapter 6

Static aeroelastic computations
The impact of the different aerodynamic levels of fidelity on static aeroelastic computations is

assessed in the present chapter. Previous comparisons performed by various authors are first

briefly reviewed. The finite element method developed in chapter 5, Flow, is then validated

in the context of fluid-structure interaction computations, and the levels of fidelity presented in

chapter 1 are compared using the Embraer benchmark wing.

6.1 State-of-the-art

Few comparative studies are available for static aeroelastic computations, even though engi-

neers commonly use multi-fidelity [179] or high-fidelity [180, 181] aerodynamic modeling. The

most extensive study is probably the first Aeroelastic Prediction Workshop organized by the

American Institute of Aeronautics and Astronautics in 2012 [182, 183]. In this workshop, some

authors, such as Romanelli et al. [184] and Acar and Nikbay [185], compared their results ob-

tained with linear potential or Euler equations to experimental data. Particularly, Romanelli et al.

observed noticeable discrepancies between wing deflections obtained using the doublet lattice

method and the Euler formulation. However, the workshop placed the emphasis on obtaining

representative data rather than on comparing the models. Navier-Stokes solvers were mainly

used and computational costs were not always reported. An insight into the tradeoff between

accuracy and computational time is given by Edwards and Malone [186] for some models in the

context of aeroelastic computations, and extensive comparisons are made by Schuster [187]

and Henshaw et al. [188]. However, these works focus on unsteady aerodynamics and dynamic

aeroelasticity. A systematic study of the effect of the major transonic aerodynamic modeling

methods on static aeroelastic predictions was performed by Crovato et al. [40].

6.2 Methodology

In the present chapter, the aerodynamic solvers are coupled to structural solvers using a par-

titioned approach: the fluid and solid physics are solved using different numerical methods

implemented in different solvers, as described in chapter 1.

The Euler equations are solved using SU2 [41, 42, 43], and the linear potential equations are

solved using Panair [48, 49] and NASTRAN [50, 51]. Furthermore, the Euler solution obtained

103

Chapter 6. Static aeroelastic computations

with SU2 on the undeformed wing shape, i.e. the wing shape in cruise condition, is also used

to correct the doublet-lattice solution of NASTRAN. The numerical setup of these solvers is

the same as in chapter 2. Finally, the full potential equation is solved using Flow [14, 171].

Reynolds-Averaged Naver-Stokes computations have been performed, but the mesh deforma-

tion procedure implemented in SU2 failed to produce a proper new grid, hence causing the

solver to diverge. Computations using Tranair were not performed due to the complexity

of coupling it to a structural solver. Viscous SU2 and Tranair solutions are therefore not

presented in the present chapter.

The equilibrium equations of a solid 1.2.22 are solved using the linear finite element method

implemented in NASTRAN [53], while Equation 1.2.25 is solved by modali, an in-house modal

solver [189].

Fluid-structure coupling is performed either using NASTRAN, PanFsi, or CUPyDO [190, 191,

192, 193], depending on the software used to calculate the aerodynamic loads. The NASTRAN

computations are performed by means of the elastic trim analysis, also known as SOL 144,

which projects the loads directly on the structural model in physical space. Fluid-structure

computations are also carried out using PanFsi, an in-house MATLAB code, such that the dis-

placements are obtained using a MATLAB version of modali, while the loads are computed by

Panair. MATLAB interpolation functions are used to transfer data between the fluid and struc-

tural meshes. The loads and the displacements are updated until the difference in the loads

between two consecutive iterations falls below a prescribed tolerance. Finally, Flow and SU2

are coupled to modali through CUPyDO, a python suite designed to couple staggered solvers.

The code is developed at the University of Liège and offers different coupling algorithms and

different methods to interpolate the loads on the structural mesh and the displacements on the

fluid nodes. In the present work, the simulations are performed using the Block-Gauss-Seidel

algorithm described in chapter 1 and the variables are interpolated using radial basis functions.

Convergence is reached when the difference in the magnitude of the displacements between

two consecutive iterations drops below a prescribed tolerance. The normalized tolerance1 is

set to 10−4 for both PanFsi and CUPyDO.

The combinations of aerodynamic and structural solvers, and fluid-structure couplers, as well

as the naming convention used in the present chapter, are summarized in Table 6.2.1.

Name Aerodynamic solver Structural solver Coupler
PAN Panair modali PanFsi
NAS NASTRAN NASTRAN NASTRAN
NASC NASTRAN NASTRAN NASTRAN
FLO Flow modali CUPyDO
SU2 SU2 modali CUPyDO

Table 6.2.1: Naming convention used in the present chapter.

1The normalized tolerance is obtained by normalizing the criterion (the loads or the displacements) by its maxi-
mum expected value.

104

6.3. Agard 445.6

Flow’s capability to perform fluid-structure interaction computations is first assessed on the

Agard wing [194]. The full potential solver is compared to various literature results obtained by

solving the Euler equations. Computations are then performed using the flexible model of the

Embraer benchmark wing [40, 55] in two simulated maneuver conditions in order to assess the

impact of aerodynamic modeling on static aeroelastic computations. The wing is considered

to be clamped at its root section to represent the attachment to the fuselage, and the angle

of attack is adjusted to produce a prescribed static load factor. This boundary condition is

not fully realistic, as a real fuselage is not rigid. However, this setup allows to easily compare

the different solvers. The gravity load is also neglected in the computations, which is not fully

realistic. Possible improvements to these two aspects will be discussed in chapter 7. Both the

Agard and the Embraer wings are modeled using orthotropic material properties.

6.3 Agard 445.6

The Agard 445.6 wing is a low aspect ratio, swept and tapered wing, which is depicted in Fig-

ure 6.3.1 and whose geometrical and structural parameters are given in Table 6.3.1. The wing

was designed for wind tunnel flutter testing, and is widely used as a standard validation case

for transonic flutter calculations. Altough experimental data have been collected by Yates [194]

for dynamic aeroelastic cases, no measurements are available for static cases, which are the

focus of the present work. However, various authors [190, 195, 196] performed static computa-

tions to validate their aeroelastic solvers. They simulated the wing at an angle of attack α = 1◦

and a Mach number M = 0.80, yielding a freestream dynamic pressure of 2 867 Pa. The same

condition is used in the present section.

Figure 6.3.1: Agard 445.6 wing model.

105

Chapter 6. Static aeroelastic computations

Parameter Value
Aspect ratio 3.3
Taper ratio 0.66
Sweep angle 45◦

Root chord 559 mm
Semi-span 762 mm

(a) Geometrical properties.

Parameter Value
Longitudinal Young modulus 3.15 GPa
Transverse Young modulus 0.42 GPa
Shear modulus 0.44 GPa
Poisson’s ratio 0.31
Density 382 kg m−3

(b) Structural properties.

Table 6.3.1: Geometrical and structural properties of the Agard 445.6 wing.

The mesh used for FLO is built in the same way as in chapter 5, and the unstructured grid

counts 250 000 tetrahedra, with a characteristic size of 1/200 and 1/100 of the local chord

at the leading and trailing edges, respectively. The associated structural model is built in

Metafor [197] and is based on the weakened model 3 of the wing [190]. The mesh is built

using gmsh [57] and consists of 31, 2 and 17 hexahedral cells in the chordwise, normal and

spanwise directions respectively. A modal analysis is then performed in Metafor to obtain the

first four mode shapes which are subsequently used in modali. Note that the modes used in

the present study are identical to those obtained by Güner et al. [198]. The computational grids

used by Flow and Metafor are illustrated in Figure 6.3.2. The coupling of Flow and modali

is performed using CUPyDO and the tolerance on the displacements is set to 10−3 mm, which

correspond to 10−4 times the expected maximum displacement.

(a) Grid used by Flow. (b) Grid used by Metafor.

Figure 6.3.2: Fluid and structural computational grids used for the Agard 445.6 wing.

6.3.1 Aerodynamic loads

Table 6.3.2 gives the aerodynamic coefficients of the deformed wingshape. The results are

also compared to the Euler solution obtained by Thomas [190] using SU2 and modali coupled

through CUPyDO. There is good overall agreement between Flow and SU2 for all aerodynamic

coefficients, which differ by one count or less. The relative difference in the drag coefficients

predicted by the solvers is about 20%, but this remains acceptable since the magnitude of the

coefficient is quite small.

106

6.4. Embraer benchmark wing

Model CL CD CM
FLO 0.053 0.00044 −0.055
Euler (Thomas [190]) 0.054 0.00035 −0.056

Table 6.3.2: Aerodynamic coefficients for the flexible Agard wing obtained using Flow at α = 1◦

and M = 0.80, and compared to those obtained by Thomas [190].

6.3.2 Wing deflection

Table 6.3.3 gives the vertical deflection ∆z at the wingtip averaged between the leading and

trailing edges, as well as the pitch rotation angle ∆ε of the wingtip of the Agard wing. ∆ε is

computed about the quarter-chord of the wingtip section and is positive nose up. The results

are also compared to those obtained by Thomas [190], Melville et al. [195] and Goura [196]

using various Euler solvers. Again, there is good overall agreement between the different

solvers and results previously reported in the literature. Flow tends to predict slightly smaller

displacements, but a similar wingtip’s rotation, than Euler solvers.

Model ∆z (mm) ∆ε (◦)
FLO 11.3 −0.2
Euler (Thomas [190]) 12.4 −0.2
Euler (Melville [195]) 11.7 −0.2
Euler (Goura [196]) 12.0 −0.2

Table 6.3.3: Mean vertical displacement and pitch-up rotation of the wingtip of the flexible
Agard wing obtained using Flow at α = 1◦ and M = 0.80, and compared to Thomas [190],
Melville’s [195] and Goura’s [196] results.

6.4 Embraer benchmark wing

The Embraer wing, described in chapter 2, is considered to be flexible and is used as a bench-

mark for static aeroelastic computations. The wing skin and the wingbox structure are illustrated

in Figure 6.4.1. Note that the engine’s nacelle is also represented but not taken into account in

the computations.

107

Chapter 6. Static aeroelastic computations

Figure 6.4.1: Wingbox structure of Embraer benchmark wing.

The aerodynamic meshes used for models PAN, NAS, NASC and SU2 are described in chap-

ter 2, while the mesh used for FLO is described in chapter 5. The structural model is discretized

in NASTRAN using 50, 000 shell elements, and the fluid-structure computations performed us-

ing NASTRAN are carried out directly using this structural model. The computations performed

through MATLAB and CUPyDO are carried out using the first six mode shapes obtained by a

modal analysis performed in NASTRAN. The modes and their associated frequencies, normal-

ized by a reference value, are depicted in Figure 6.4.2. Since the geometry of the wingbox

does not match with that of the wing skin, the modes are first interpolated on the mean chord

plane of the wing using the infinite plane spline methodology, and then projected from this mean

plane to the wing skin using a closest point strategy. The methodology is described in detail by

Güner [199]. The grid used by modali to represent the mode shapes consists of 2 100 points

on the wing surface. The fluid-structure computations are performed at low-altitude/low-speed

and high-altitude/high-speed maneuver conditions. For the low-speed maneuver, the Mach

number is M = 0.50, the lift coefficient is CL = 0.80 and the altitude is 6 500 ft, resulting in a

load factor n = 2.5. For the high-speed maneuver, M = 0.78, CL = 0.60, the altitude is 27 000

ft, and n = 2.

108

6.4. Embraer benchmark wing

(a) First bending, f? = 1.0. (b) First in-plane, f? = 2.6.

(c) Second bending, f? = 3.1. (d) Third bending, f? = 5.5.

(e) First torsion, f? = 6.9. (f) Second in-plane, f? = 7.4.

Figure 6.4.2: First six mode shapes and normalized frequencies of the Embraer benchmark
wing.

6.4.1 Aerodynamic loads

Table 6.4.1 summarizes the predicted angle of attack and aerodynamic coefficients of the

benchmark wing in its deformed configuration for low and high-speed maneuvers. At low-speed,

the linear model PAN yields similar results compared to the nonlinear model SU2. However, it

109

Chapter 6. Static aeroelastic computations

slightly overpredicts the angle of attack needed to achieve the target lift coefficient and under-

predicts the drag coefficient at high-speed. On the other hand, the lattice model NAS neglects

the camber of the wing, and strongly overperdicts the angle of attack and underpredicts the mo-

ment coefficient, for both flight conditions. Using the Euler correction with NASC significantly

improves the predictions, even though the angle of attack is still overestimated by about one

degree. Finally, FLO is found to underestimate the drag compared to SU2, at both low and high

speeds. Overall, the results are similar to those presented in chapter 2. Comparison of the

results of Table 6.4.1 to those of Table 2.4.2 illustrates the impact of wing deformation on the

angle of attack and aerodynamic coefficients: the angle of attack needed to reach a prescribed

lift increases, as well as the drag and the magnitude of the moment.

Model α CL CD CM
PAN +3.7 0.80 0.0256 −1.073
NAS +9.8 0.80 - −0.937
NASC +5.1 0.80 - −0.988
FLO +3.8 0.80 0.0217 −1.049
SU2 +3.7 0.80 0.0257 −1.060

(a) M = 0.50 and CL = 0.80.

Model α CL CD CM
PAN +0.5 0.60 0.0148 −0.885
NAS +6.1 0.60 - −0.705
NASC +0.9 0.60 - −0.812
FLO +0.1 0.60 0.0141 −0.867
SU2 −0.1 0.60 0.0186 −0.890

(b) M = 0.78 and CL = 0.60.

Table 6.4.1: Angles of attack and aerodynamic coefficients for the flexible Embraer wing ob-
tained from different levels of fidelity for low and high-speed maneuvers.

Figure 6.4.3 shows the lift coefficient distribution along the span of the deformed wing for low

and high-speed maneuvers. PAN and FLO predict similar distributions than SU2 at both low

and high speeds, contrary to NAS, which is completely inaccurate as it ignores the camber

of the wing. Using the correction method implemented in NASTRAN allows to improve the lift

distribution, even though NASC results still noticeably differ from the other models, especially

at low-speed.

0 0.2 0.4 0.6 0.8 1
0.4

0.5

0.6

0.7

0.8

0.9

PAN
NAS
NASC
FLO
SU2

(a) M = 0.50 and CL = 0.80.

0 0.2 0.4 0.6 0.8 1
0.2

0.3

0.4

0.5

0.6

0.7

PAN
NAS
NASC
FLO
SU2

(b) M = 0.78 and CL = 0.60.

Figure 6.4.3: Sectional lift coefficient distribution along the span of the deformed Embraer wing
in low and high-speed maneuver conditions, obtained from different levels of fidelity.

110

6.4. Embraer benchmark wing

Figure 6.4.4 shows the quarter-chord moment coefficient distribution along the span of the de-

formed wing for low and high-speed maneuvers. The nonlinear models FLO and SU2 yield

similar results at both low and high speeds. At high-speed, PAN predicts a moment distribu-

tion similar to the nonlinear models. On the other hand, at low-speed, it underestimates the

magnitude of the moment at the root and overestimates it at the tip. Again, NAS is completely

inaccurate as it ignores the camber of the wing. Using the Euler pressure correction improves

the solution, even though NASC predictions still differ from those of the nonlinear models, par-

ticularly at low speed.

0 0.2 0.4 0.6 0.8 1
-0.2

-0.15

-0.1

-0.05

0

PAN
NAS
NASC
FLO
SU2

(a) M = 0.50 and CL = 0.80.

0 0.2 0.4 0.6 0.8 1
-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

PAN
NAS
NASC
FLO
SU2

(b) M = 0.78 and CL = 0.60.

Figure 6.4.4: Sectional moment coefficient distribution along the span of the deformed Embraer
wing in low and high-speed maneuver conditions, obtained from different levels of fidelity.

6.4.2 Wing deflection

Figure 6.4.5 shows the vertical displacement, averaged between the leading and trailing edges,

of the deformed wing for low and high-speed maneuvers. Note that the displacement is normal-

ized with respect to the half-span of the wing. All models predict a similar displacement curve

for both maneuver conditions. This is also true for NAS, even though its lift distribution differs

from the other models.

111

Chapter 6. Static aeroelastic computations

0 0.2 0.4 0.6 0.8 1
0

0.03

0.06

0.09

0.120.12
PAN
NAS
NASC
FLO
SU2

(a) M = 0.50 and CL = 0.80.

0 0.2 0.4 0.6 0.8 1
0

0.02

0.04

0.06

0.08
PAN
NAS
NASC
FLO
SU2

(b) M = 0.78 and CL = 0.60.

Figure 6.4.5: Mean vertical displacement along the span of the deformed Embraer wing in low
and high-speed maneuver conditions, obtained from different levels of fidelity.

Figure 6.4.6 shows the nose-up rotation in pitch along the span of the deformed wing at low

and high speeds. The rotation angle is computed along the quarter-chord and is normalized by

the maximum value of the rotation obtained from the SU2 solution. All models predict a similar

rotation, except for NAS, which strongly underestimates the rotation at the outboard section

of the wing. For the others models, the differences in the moment distributions observed in

Figure 6.4.4 have little impact on the deformation of the wing.

0 0.2 0.4 0.6 0.8 1
-1

-0.8

-0.6

-0.4

-0.2

-0

PAN
NAS
NASC
FLO
SU2

(a) M = 0.50 and CL = 0.80.

0 0.2 0.4 0.6 0.8 1
-1

-0.8

-0.6

-0.4

-0.2

0

PAN
NAS
NASC
FLO
SU2

(b) M = 0.78 and CL = 0.60.

Figure 6.4.6: Nose-up rotation along the span of the deformed Embraer wing in low and high-
speed maneuver conditions, obtained from different levels of fidelity.

6.4.3 Computational performance

The mesh size and the time required to run the computations presented in the present chapter

are given in Table 6.4.2. The calculations were performed in serial on a laptop fitted with an Intel

i7-7700HQ processor (2.8 GHz). In this case, the computational cost of the Euler correction

required by NASC has been included. PAN converged in 8 and 9 fluid-structure iterations at

112

6.5. Discussion

low and high speed, respectively. FLO and SU2 converged respectively in 7 and 9 iterations for

both low and high speeds. Finally, NAS and NASC converged in 3 iterations at both speeds.

PAN and NAS are about fifteen times faster than FLO, which is itself around fifty times faster

than SU2.

Model n. cells n. threads wall-clock time
PAN 1 400 1 80 s
NAS 800 1 75 s
NASC 800 1 5 h + 75 s
FLO 700 000 1 20 min
SU2 1 300 000 1 13 h

(a) M = 0.50 and CL = 0.80.
Model n. cells n. threads wall-clock time
PAN 1 400 1 90 s
NAS 800 1 75 s
NASC 800 1 6 h + 75 s
FLO 700 000 1 25 min
SU2 1 300 000 1 12 h

(b) M = 0.78 and CL = 0.60.

Table 6.4.2: Mesh size and computational time required by the different models for the Embraer
benchmark case.

6.5 Discussion

The static fluid-structure interaction computations first performed on the Agard wing demon-

strated that Flow, coupled with modali through CUPyDO, yielded results comparable to var-

ious Euler solutions gathered from the literature, hence validating the aeroelastic capability

implemented in Flow.

Static aeroelastic computations were then performed on the flexible Embraer benchmark wing

to compare the different levels of fidelity. Overall, the results predicted by the linear and non-

linear models are quite similar, at both low and high speeds. However, the camber must be

modeled, otherwise wildly inaccurate results will be obtained. Representing the geometry by a

flat lattice and correcting the results with a solution obtained using a higher fidelity calculation

on the undeformed wing shape is also more or less accurate, but the computational cost of the

method then becomes similar to the cost of the higher fidelity computation. For the present

case at least, static wing deflections are not sensitive to shock modeling. The aerodynamic

coefficients and the angle of attack obtained using the different solvers are also similar, except

for the drag coefficient at high-speed. Consequently, flight shape calculations can be carried

out using linear methods with reasonable confidence in the predictions. Once the deformed

wing shape is known, a single nonlinear rigid aerodynamic calculation can be performed on

this shape in order to estimate the aerodynamic loads more accurately.

The analyses performed on the Embraer wing also showed the effect of taking into account the

113

Chapter 6. Static aeroelastic computations

static deformation on the aerodynamic coefficients. Overall, a higher angle of attack is needed

to reach the same lift coefficient, and the drag coefficient is slightly higher, as is the magnitude

of the moment coefficient.

114

Chapter 7

Conclusion

7.1 Summary and conclusions

Modern aircraft wings usually have high aspect ratios and are made of composite materials.

Since such wings are light and flexible, hence prone to large deformations, their aeroelastic

behavior must be considered in the early stages of the aircraft design process, where low-

fidelity linear aerodynamic modeling is traditionally favored because of its low computational

cost. However, modern aircraft fly in the transonic regime, in which the flow is nonlinear. The

main goals of the present work were to assess the impact of aerodynamic modeling method-

ology on transonic aerodynamic and aeroelastic computations performed on both rigid and

flexible wings during preliminary aircraft design, and to develop an aerodynamic modeling tool

able to perform such computations efficiently.

The comparison of the different levels of fidelity commonly used for transonic aerodynamic

modeling in preliminary aircraft design showed that the model should take the viscosity of the

fluid into account, or at least include a boundary layer modeling technique, as the boundary

layer has a non-negligible effect on the pressure distribution. Using an inviscid model will

result in an overestimation of the aerodynamic loads, even though they remain representative

in the context of preliminary aircraft design. Moreover, in the general case, a nonlinear model

is mandatory to predict transonic flows, as shocks might be present. Neglecting shock waves

could result in choosing a wing shape not suited for the prescribed flight condition. Full potential

based models are appropriate to carry out such calculations, as they offer a good trade-off

between accuracy and computational time, and usually achieve an accuracy similar to that

of higher fidelity models for a fraction of their cost. For wing shapes already optimized for

the transonic regime, the shock, if any is present, will be weak and a linear model can be

used, as it will yield aerodynamic loads similar to those predicted by a nonlinear model, except

for the drag. Since aeroelastic computations are usually performed using an optimized wing

shape and that wing displacements mainly consist of out-of-plane motion driven by the lift and

moment distributions, using a linear model also allows to recover static deflections similar to

those predicted by nonlinear models. It should however be stressed that the geometry used

with the linear model must include the camber of the wing, otherwise highly inaccurate results

will be obtained. Consequently, static aeroelastic computations could be performed efficiently

by using a multi-fidelity approach. Several multi-fidelity strategies will be discussed in the next

section.

115

Chapter 7. Conclusion

In the context of this work, two different techniques for solving the full potential equation were

investigated and implemented in order to perform transonic aerodynamic and static aeroelastic

computations: a field panel method and a finite element code. Both codes are open-source and

available on GitHub and GitLab, respectively. The field panel code, Aero [160], yields reliable

results for compressible, but not transonic flows, at a moderate computational cost. However,

when the flow is supercritical, the predicted shock is heavily smeared and displaced upstream

when compared to other full potential solutions. Moreover, the computational requirements

quickly become excessive, both in time and memory. Techniques, such as the fast multipole

method, could be implemented to reduce the computational cost, but would not guarantee bet-

ter results. Although the iterative procedure currently implemented in Aero does not yield reli-

able predictions for transonic computations, the code could be used to correct a linear solution

by using field sources obtained through another nonlinear solver. This multi-fidelity technique

will be detailed in the next section. The finite element code, Flow [171], yields results that

closely match those predicted by Tranair, a widely used commercial full potential software,

for both two and three-dimensional benchmark cases. However, in some cases, Flow tends

to slightly underestimate the maximum local Mach number upstream of shockwaves, which

results in slight shock smearing and drag underestimation. The computational cost of Flow

is smaller than that of Tranair for two-dimensional cases, and similar for three-dimensional

flows. If multiple threads are used, the cost can be decreased by at least one half of the ideal

speed-up factor. Flow is also interfaced to CUPyDO [193], an in-house fluid-structure interac-

tion coupling code, and can be used to perform static aeroelastic computations. Although Flow

yields reliable and consistent results for most transonic cases, it has some drawbacks. Firstly,

since the density upwinding formulation depends on the grid size, the accuracy of the shock

capturing and the stability of the solution also strongly depend on it. Secondly, the results de-

pend on the wake inclination, which must be aligned with the trailing edge bisector. However,

the bisector is not well defined for highly curved geometries, such as supercritical airfoils. Ideas

and techniques to alleviate these two issues will be presented in the next section. Thirdly, the

vortex at the wingtip trailing edge might cause a local singular behavior in the solution, slowing

down the convergence rate of the method. Consequently, the grid should be kept coarse in this

area, which might affect the solution accuracy locally.

7.2 Suggestions for future work

Although the objectives of the present thesis have been fulfilled, the research work opened new

questions. This section suggests future work to improve the static aeroelastic computations

performed in chapter 6 and to add new features to Flow.

7.2.1 Improvements of aeroelastic computations

The static aeroelastic computations performed in chapter 6 only gave a first insight into actual

aero-structural computations performed during the preliminary aircraft design stage. Several

ways to improve these computations will be discussed in the present section.

116

7.2. Suggestions for future work

Inclusion of the gravity load

The aeroelastic computations were performed by only considering the aerodynamic loads act-

ing on the Embraer benchmark wing. Such computations should also include the gravity load

to yield realistic and consistent results. The gravity load could be directly included in the struc-

tural modal model, or implemented as an additional constant load in CUPyDO. The inclusion of

the gravity should be further investigated before actual aeroelastic computations can be carried

out.

Investigation on the fuselage-wing boundary condition

The boundary condition used at the wing root assumes that the wing is rigidly clamped. In a real

situation, the wing is attached to a fuselage that is not rigid. This boundary condition could have

an influence on the results and further investigation is necessary. The computations performed

in CUPyDO could be improved either by modeling the fuselage, or by replacing the boundary

condition. On the one hand, the first approach requires to model the internal structure of the

fuselage and to obtain its mode shapes. On the other hand, the second approach requires to

model the effect of the fuselage on the wing, and to use reaction forces as boundary conditions

instead of clamping the wing root. Note that such a boundary condition is not readily available

in CUPyDO and additional implementation work would be required as well.

Integration in aero-structural optimization

The present work focused only on isolated fluid-structure interaction computations. However,

these computations are usually performed during structural or aero-structural optimization pro-

cesses, such as aeroelastic tailoring. During such computations, the deformation of the wing

could become large and strongly affect the behavior of the flow, which could impair the fluid

solver’s stability. Benchmark studies should therefore be performed to assess the robustness

of the solver and of the process. Moreover, in the case of aero-structural computations, aero-

dynamic sensitivities should be computed to drive the optimization process. While obtaining

the sensitivities for a linear model is computational cheap, it might require a high computational

time for a nonlinear model. The way aerodynamic sensitivities are computed should therefore

also be investigated.

Multi-fidelity aeroelastic computations

The results obtained so far suggest that linear models, provided that they model wing camber,

yield accurate static wing deflections at a very low computational cost. However, a nonlinear

model is still needed to obtain accurate load distributions, especially for the drag. Conse-

quently, the aeroelastic computation could be performed by using a linear model corrected by

a nonlinear model. For a simple case, the nonlinear model could be used only once during

the last fluid-structure iteration. For more complex cases, the nonlinear model could be used

several times during the computation, as suggested by Jovanov and De Breuker [179]. In both

cases, the nonlinear computation should be fast and it should be used infrequently. Another

117

Chapter 7. Conclusion

alternative consists in using a field panel approach, whereby the field source terms would first

be generated from an already available flow solution, and then used to correct a linear com-

putation. As a nonlinear computation is first performed on the rigid wing model to optimize its

shape for the cruise condition, that computation could be used to compute the field sources.

The fluid-structure computation could then be performed with a panel method corrected using

these field sources. A similar procedure is already used in aircraft design to scale the aero-

dynamic influence coefficient matrices in the context of dynamic aeroelastic computations [4].

Using such multi-fidelity computation strategies would allow to minimize the cost while ensuring

results accuracy. Note that multi-fidelity modeling is an active research topic.

7.2.2 Development of new features for Flow

Flow, the finite element solver developed and presented in chapter 5 is currently restricted

to steady inviscid flow computations. Future developments, such as adjoint computations for

optimization, and extension of the solver to compute unsteady and viscous flows, as well im-

provements based on sensitivity studies, are presented in this section.

Wake modeling

The current implementation of Flow requires to generate a wake embedded in the volume grid.

Although this operation is supported by gmsh, it is not practical and requires special care during

the pre-processing. Using techniques based on the automatic embedment of the wake or on

the modification of the numerical formulation on elements intersected by the wake, such as

those described by Parrinello et al. [200], would help alleviate this issue.

Additionally, the parametric study performed in chapter 5 showed that the three-dimensional

Kutta condition formulation used in Flow makes the results sensitive to the wake inclination

angle. Removing the dependency or, at least characterizing it, is necessary to obtain more reli-

able results. The best solution would be to use a flat and horizontal wake. For such a solution to

work, additional terms should be assembled on the trailing edge nodes, as in two-dimensional

cases. This has already been attempted, but oscillations were obtained in the solution. For

geometries with highly curved trailing edges, such as supercritical airfoils, the solution proce-

dure did not even converge. Several attempts have been made to stabilize the computation;

the most promising was proposed by Galbraith et al. [13] and consists in normalizing the Kutta

contribution by the trailing edge cell area. The technique was found to damp the oscillations

for wings made of symmetric airfoils, but proved ineffective for supercritical airfoils. Further

research is thus needed. If the wake cannot be flat, it could be iteratively deformed to follow

the local flow direction. This method presents two drawbacks. The mesh would have to be

regenerated or deformed at each iteration, and the iterative procedure would increase the com-

putational cost. However, note that embedding the wake in the mesh as proposed by Davari

et al. [137] or Parrinello et al. [200] would avoid regenerating or deforming the volume mesh.

If the dependency of the results on the wake inclination cannot be removed, several three-

dimensional benchmark cases should be defined and used to find suitable inclination angles.

118

7.2. Suggestions for future work

More specifically, the benchmark would allow to define which portion of the trailing edge region

should be considered when defining the trailing edge bisector.

Density upwinding and solution adaptive mesh refinement

The sensitivity study performed in chapter 5 showed that the transonic flow stabilization imple-

mented in Flow as well as the shock capturing properties of the solver greatly depends on the

grid size. Particularly, the numerical scheme does not converge when the mesh is too fine and

that high local Mach numbers are involved. Consequently, the consistency and stability proper-

ties of the density upwinding procedure implemented in the code, which are the requirements

for convergence, should be further investigated. As the upwinding formulation considered in

the present work is similar to that already used by various authors, particular attention should

be devoted to the numerical implementation. More specifically, the way the upwind element is

chosen should be further investigated.

Additionally, developing a feature such as solution based mesh refinement would allow to re-

move the difficult task of generating a suitable grid from the user, thus enabling accurate, yet

stable computations. Three main aspects must be chosen when implementing a mesh refine-

ment strategy. First, the metric for mesh refinement. Second, the technique used to refine the

mesh. Third, the termination criterion. In aerospace applications, both rapid expansions, such

as the flow acceleration in the leading edge region, and compression phenomena, such as

shockwaves, must be captured accurately. For shock capturing, the metric is usually based on

the gradient of the density [130], which is physically consistent. In order to capture expansion

phenomena, a metric based on the Laplacian of the density can be used. Recently Schmid-

mayer et al. [201] proposed several criteria for adaptive mesh refinement for compressible flow

computations. The technique used for refining the mesh is usually based on cell splitting. Un-

structured triangular and tetrahedral meshes are particularly well suited for this technique, as

each cell can be split without creating any hanging node. The termination criterion can be

based on the local mesh size or a normalized quantity [130].

gmsh features a remeshing capability and the software was used to generate a sequence of

solution adapted grids for transonic computations in Flow. The procedure can be summarized

as follows. Firstly, a transonic flow computation is performed using a coarse grid. Secondly,

the cells having a high density gradient are marked for refinement and the cells having a low

density gradient are marked for coarsening, while the other cells are left unchanged. Thirdly, an

updated cell size is computed for each cell by multiplying the current cell size by a user-defined

factor. Finally, the new cell sizes are passed to gmsh which generates a new mesh. The pro-

cess is repeated until the minimum cell size reaches a user defined size. The grid adaption

procedure was tested on the RAE 2822 airfoil at an angle of attack α = 2◦ and a freestream

Mach number M = 0.715. Figure 7.2.1 illustrates the Mach number around the airfoil as well as

the computational grid, and Figure 7.2.2 depicts the pressure coefficient along the chord of the

airfoil. The pre-defined grid is obtained by using a uniform cell size of 0.01 of the chord on the

airfoil surface and counts 6 000 cells and 3 000 nodes, while the adapted mesh has a minimal

119

Chapter 7. Conclusion

cell size of 0.005 of the chord near the leading edge and counts 5 400 elements and 2 700 nodes.

Note that the cell size near the shock is similar for both meshes. The final grid required 5 in-

termediate flow solutions to be generated. Although Figures 7.2.1 and 7.2.2 show that using a

grid adapted to the solution yields a smoother solution, and that Flow’s predictions move closer

to Tranair’s, the grid adaptation procedure has two major drawbacks. Firstly, the accuracy of

the solution and the robustness of the process both depend on several user-defined parame-

ters, namely: the two thresholds to identify high and low density gradients, the two factors used

to increase or decrease the cell size and the termination criterion. Numerical experiments per-

formed on various airfoils at various freestream conditions showed that all the parameters were

dependent on both the geometry and the flow conditions, and did not allow to find a set or a

range of parameters that produced satisfactory results in all cases. Secondly, gmsh generates

a completely new grid which might move the shock too much between two successive itera-

tions and lead to robustness issues. Furthermore, the remeshing is costly in three-dimensional

cases. Instead of resorting to gmsh to generate a new grid, the mesh data structure could be

directly manipulated inside Flow and the cells could be split or coalesced. Such a procedure

would be more robust and computationally efficient, but also requires extensive implementation

efforts. As a conclusion, more research is needed on this topic.

(a) Pre-defined grid. (b) Solution adapted grid.

Figure 7.2.1: Mach number around the RAE 2822 airfoil at α = 2◦ and M = 0.715 obtained
from Flow by using a pre-defined grid and a solution adaptive grid procedure.

120

7.2. Suggestions for future work

0 0.2 0.4 0.6 0.8 1

-1.5

-1

-0.5

0

0.5

1

Pre-defined mesh
Adapted mesh
Tranair

Figure 7.2.2: Pressure coefficient along the chord of the RAE 2822 airfoil at α = 2◦ and M =
0.715 obtained from Flow by using a pre-defined grid and a solution adaptive grid procedure,
and compared to Tranair’s solution.

Adjoint solution

In order to perform aerodynamic or aero-structural optimization calculations, Flow must be able

to compute the sensitivities of some objective function J , e.g. the drag, with respect to some

design variables v, e.g. the wing shape. The optimization can be formulated as a constrained

minimization problem,
min J(φ, v),

s.t. R(φ, v) = 0,
(7.2.1)

where φ is the velocity potential and R is the full potential equation. The problem can be solved

by constructing the augmented Lagrangian,

L = J − λR, (7.2.2)

and requiring that its total derivative vanishes, that is,

δL = 0⇒


∂J
∂φ − λ

∂R
∂φ = 0

∂J
∂v − λ

∂R
∂v = 0

R = 0

. (7.2.3)

The third equation in 7.2.3 expresses that the potential always satisfies the full potential equa-

tion, i.e. the forward problem. Choosing the Lagrange multipliers λ to satisfy the first equation

allows to compute the total derivative of the objective function with respect to the design vari-

ables using the second equation, and to pass this derivative to an optimizer. This so-called

121

Chapter 7. Conclusion

adjoint approach allows to compute the total gradient for any number of design variables by

solving one linear equation per objective function only. This is advantageous as aerodynamic

and aero-structural optimization usually involves a large number of design variables.

An adjoint feature has been partly implemented in Flow. The solver is currently capable of

computing the adjoint variables λL and λD representing the sensitivities with respect to the

lift and drag coefficients. The derivative of the potential equation ∂R
∂φ appearing in 7.2.3 is

computed by re-using the tangent matrix of the forward problem, without taking the contribution

of the Kutta condition. The derivative of the objective function is computed analytically as

∂J

∂φ
=
−2

Sref

∫
Γb

ρn · d̂∇φ · ∇δφ dS, (7.2.4)

where Sref is a reference area, Γb denotes the boundary of the body, ρ is the isentropic density,

n is the unit normal vector to Γb, and d̂ is the lift or drag normalized direction. Additionally,

a Dirichlet boundary condition requiring the adjoint sensitivities to vanish in the farfield is pre-

scribed on the outer boundaries. Finally, the Kutta condition is enforced by adding the following

terms on the lower and upper wake nodes, respectively,∫
Γw,l

∇δφu ·n−∇δφl ·n dS = 0,∫
Γw,l

∇δφ2
u −∇δφ2

l dS = 0.

(7.2.5)

Figure 7.2.3 shows the Lagrange multiplier associated with the drag for the flow over a rectan-

gular NACA 0012 at angle of attack α = 5◦ and Mach M = 0 compared to the results obtained

by Galbraith et al. [13]. Overall, there is a qualitative good agreement although quantitative

comparison is not possible. Few mathematical developments exist for the adjoint full potential

equation. This is particularly true for the Kutta condition, whose implementation could not be

verified. Today, the preferred approach is to use automatic differentiation, for which analytic

developments are not necessary. However, using such an approach is not suited for Flow,

as the tangent matrix is readily available, and recomputing it would unnecessarily increase the

computational cost. Further research is thus needed on this topic.

122

7.2. Suggestions for future work

(a) Flow solution. (b) Galbraith et al. [13] solution.

Figure 7.2.3: Drag sensitivity for the flow over a NACA 0012 at α = 5◦ and M = 0 obtained
using Flow and compared to Galbraith et al. [13] solution.

Viscous-inviscid coupling

The results obtained in chapter 2 showed that solving the full potential equation coupled with

an integral formulation of the boundary layer equations offered an accuracy similar to solving

the Reynolds-Averaged Navier-Stokes equations for only a fraction of the computational cost.

The implementation of a viscous-inviscid coupling procedure in Flow is thus highly desirable.

During his Master thesis, Bilocq [202] implemented a two-dimensional viscous solver and a

viscous-inviscid interaction procedure in Flow. The solver is based on the two equations

integral formulation of the boundary layer equations developed by Drela [15], and the quasi-

simultaneous method developed by Veldman [19] is used as coupling scheme. Both the equa-

tions and the coupling scheme are briefly described in chapter 1. Two-dimensional viscous

computations performed on the NACA 0012 airfoil at various angles of attack and Mach num-

bers were compared to Xfoil [203, 204] and SU2, and overall good agreement was observed.

As an example, the pressure and the friction coefficients along the chord of the airfoil at an

angle of attack of attack α = 5◦ and a Mach number M = 0.5 are illustrated in Figures 7.2.4

and 7.2.5. Although the viscous-inviscid coupling available in Flow yields overall satisfactory

results, spurious oscillations are present in the predictions. Moreover, the implementation is

restricted to two-dimensional and subcritical flows. Extensions to three-dimensional cases and

to treat transonic flows is possible but requires extensive implementation effort.

123

Chapter 7. Conclusion

0 0.2 0.4 0.6 0.8 1

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

Flow
Xfoil

Figure 7.2.4: Pressure coefficient along the chord of the NACA 0012 airfoil at α = 5◦ and
M = 0.5 obtained from Flow and compared to Xfoil (reproduced from Bilocq [202]).

0 0.2 0.4 0.6 0.8 1
0

0.004

0.008

0.012
Flow
Xfoil

(a) Suction side.

0 0.2 0.4 0.6 0.8 1
0

1.2

2.4

3.6
10-3

Flow
Xfoil

(b) Pressure side.

Figure 7.2.5: Friction coefficient along the chord of the NACA 0012 airfoil at α = 5◦ andM = 0.5
obtained from Flow and compared to Xfoil (reproduced from Bilocq [202]).

Unsteady flow modeling

The present work only dealt with steady flow computations. However, unsteady flow modeling

is also required in aircraft design, especially for flight dynamics or dynamic aeroelastic compu-

tations, such as flutter prediction. Several methods can be used to model unsteady nonlinear

potential flows: either perform time-accurate computations, or decompose the flow into multiple

harmonic solutions.

124

7.2. Suggestions for future work

The unsteady full potential equation is written as

∂ρ

∂t
+∇ · ρ∇φ = 0, (7.2.6)

where the isentropic density is now time-dependent and given by

ρ = ρ∞

[
1 +

γ − 1

2
M2
∞

(
1− 2

M∞

∂φ

∂t
− |∇φ|2

)] 1
γ−1

. (7.2.7)

Equation 7.2.6 can be considered as a function of the potential only. However, it becomes

second-order in time and cannot be discretized with unsteady schemes usually used in compu-

tational fluid dynamics. Sankar et al. [205], Malone and Sankar [206], and Shankar et al. [207]

proposed an adaptation of the steady Newton scheme to deal with the unsteady equation in

the context of the finite volume method. However, their formulation is complex and should be

investigated further. An alternative solution for solving Equation 7.2.6 consists in considering

the density as a second variable, alongside the potential. In that case, the set of equations

remains first-order in time and can be treated more easily. Nevertheless, there are two main

drawbacks. Firstly, the steady solver cannot be directly re-used and has to be heavily adapted.

Secondly, two equations must be solved instead of one, hence increasing the computational

cost. Although the finite element formulation proposed by Galbraith et al. [13] is based on such

an idea, the authors did not develop their solver for an unsteady framework.

In aerospace applications, a significant part of unsteady computations involves flows that are

periodic in time. In such cases, the flow can be decomposed into several harmonics and the

potential can be written

φ = φ0 +
∑
k

φk exp(iωkt), (7.2.8)

where φ0 is the steady potential, and φk and ωk are the amplitude and the frequency of the

kth harmonic, respectively. By analogy with structural dynamics, φk is also referred to as the

kth flow mode. This decomposition allows a potential flow to be solved using an harmonic

method. The harmonic balance method was initially developed to perform electrical circuit

analysis [208], and has gained popularity in computational fluid dynamics over the past years.

In the harmonic balance method, the set of equations can be seen as several steady equations

coupled together through source terms. If few harmonics are retained, the periodic state can

be reached quite quickly and the technique can be inexpensive compared to a time-accurate

computation. Although, the harmonic balance method has been successively used to solve the

Navier-Stokes and Euler equations, it has never been applied to unsteady potential theory, to

the best of the author’s knowledge. As such, it could be a new research topic to investigate.

A further simplification to the harmonic decomposition consists in linearizing the unsteady flow

about a known steady solution by considering only small perturbations. Equation 7.2.8 can

then be simplified by retaining only one flow mode, and the unsteady potential is expanded as

φ = Φ + ϕ exp(iωt), (7.2.9)

125

Chapter 7. Conclusion

where Φ is the steady potential, and where ϕ denotes the amplitude of the perturbation and ω,

its frequency. Substituting Equation 7.2.9 into Equation 7.2.6 yields,

iω%+∇ · (ρ∇ϕ+ %∇Φ) = 0, (7.2.10)

where the perturbation density is given by,

% = − ρM2

|∇Φ|2
[iωϕ+∇φ · ∇ϕ] . (7.2.11)

Note that Equations 7.2.10 and 7.2.11 are linear in ϕ. Consequently, for a given set of n pertur-

bation frequencies, one nonlinear steady computation must be performed and n uncoupled sets

of linear equations must be solved, which is inexpensive if n is small. The unsteady flow over

a wing can be obtained using the following procedure. Firstly, a modal analysis is performed

to obtain the structural modes of vibration of the wing. Then, a nonlinear steady computa-

tion is performed at a given flight condition. Finally, each structural mode motion is used as a

boundary condition, and ω is set to the corresponding natural frequency, in order to solve Equa-

tion 7.2.10 and to recover the corresponding flow mode. The flow modes can subsequently be

used for transonic flutter computations. Several authors, such as Whitehead [209], Hall [210]

and Florea [211], already investigated this procedure. Moreover, Tranair and blwf imple-

ment solution techniques to obtain the flow modes and the flutter speed. Alternatively, the new

methodology based on dynamic mode decomposition and interpolation, recently developed by

Güner [199], could be used.

In the three unsteady modeling methodologies described in the present section, the most chal-

lenging development is the implementation of the Kutta condition. As for steady methods, few

authors give details about the Kutta condition. If only small amplitude motions are considered,

as it is the case in flutter computations, the modeling of the wake and the formulation of the

Kutta condition could be kept similar to the steady case. In such a case, only the expression of

the mass flux and the pressure should be adapted to take into account the unsteadiness of the

flow.

126

Bibliography
[1] Statista: number of scheduled passengers boarded by the global airline indus-

try from 2004 to 2020. https://www.statista.com/statistics/564717/

airline-industry-passenger-traffic-globally/, Accessed September

2020.

[2] Flightpath 2050 Europe’s Vision for Aviation. https://ec.europa.eu/transport/

sites/transport/files/modes/air/doc/flightpath2050.pdf, Accessed

September 2020.

[3] International Energy Agency: data and reports on CO2 emisions. https://www.

iea.org/data-and-statistics/?country=WORLD&fuel=CO2+emissions,

https://www.iea.org/reports/tracking-transport-2019, Accessed

September 2020.

[4] J.R. Wright and J.E. Cooper. Static Aeroelasticity and Flutter, chapter 22, pages 475–

480. John Wiley and Sons, 2015.

[5] M.H. Shirk and T.J. Hertz. Aeroelastic Tailoring - Theory, Practise and Promise. Journal

of Aircraft, 23(1):6–18, January 1986.

[6] P.R. Spalart and S.R. Allmaras. A One-Equation Turbulence Model for Aerodynamic

Flows. Recherche Aerospatiale, 1:5–21, 1994.

[7] F.R. Menter. Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applica-

tions. AIAA Journal, 32(8), August 1994.

[8] J.L. Steger and B.S. Baldwin. Shock waves and drag in the numerical calculation of

isentropic transonic flows. Technical report, NASA, 1972.

[9] R. Neel. Advances in Computational Fluid Dynamics: turbulent separated flows and

transonic potential flows. PhD thesis, Virginia Polytechnic Institute, August 1995.

[10] R.M. Lieg. A Full Potential Solver for Lifting Flows on Unstructured Tetrahedral Meshes.

Master’s thesis, Concordia University, 2005.

[11] F. Lyu, T. Xiao, and X. Yu. A Fast and Automatic Full Potential Finite Volume Solver

on Cartesian Grids for Unconventional Configurations. Chinese Journal of Aeronautics,

2017.

[12] B. Nishida. Fully Simultaneous Coupling of the Full Potential Equation and the Integral

Boundary Layer Equations in Three Dimensions. PhD thesis, Massachussets Institute of

Technology, February 1996.

127

https://www.statista.com/statistics/564717/airline-industry-passenger-traffic-globally/
https://www.statista.com/statistics/564717/airline-industry-passenger-traffic-globally/
https://ec.europa.eu/transport/sites/transport/files/modes/air/doc/flightpath2050.pdf
https://ec.europa.eu/transport/sites/transport/files/modes/air/doc/flightpath2050.pdf
https://www.iea.org/data-and-statistics/?country=WORLD&fuel=CO2+emissions
https://www.iea.org/data-and-statistics/?country=WORLD&fuel=CO2+emissions
https://www.iea.org/reports/tracking-transport-2019

Bibliography

[13] M.C. Galbraith, S.R. Allmaras, and R. Haimes. Full Potential Revisited: A Medium Fidelty

Aerodynamic Analysis Tool. In 55th AIAA Aerospace Sciences Meeting, SciTech Forum.

AIAA, January 2017.

[14] A. Crovato, R. Boman, H. Güner, V.E. Terrapon, G. Dimitriadis, H.S. Almeida, A.P. Prado,

C. Breviglieri, P.H. Cabral, and G.H. Silva. A Full Potential Static Aeroelastic Solver for

Preliminary Aircraft Design. In 18th International Forum on Aeroelasticity and Structural

Dynamics. International Forum on Aeroelasticity and Structural Dynamics, June 2019.

[15] M. Drela. Two-Dimensional Transonic Aerodynamic Design and Analysis Using The Euler

Equations. PhD thesis, Massachussets Institute of Technology, 1985.

[16] M. Drela, M.B. Giles, and W. Thompkins. Newton Solution of Coupled Euler and

Boundary-Layer Equations. Numerical and Physical Aspects of Aerodynamics Flows

III, 1986.

[17] M. Drela and M.B. Giles. Viscous-Inviscid Analysis of Transonic and Low Reynolds Num-

ber Airfoils. AIAA Journal, 25(10), 1987.

[18] B. Mughal and M. Drela. A calculation method for the three-dimensonal boundary-layer

equations in integral form. In 31st Aerospace Sciences Meeting. AIAA, 1993.

[19] Veldman A.E.P. New, Quasi-simultaneous Method to Calculate Interacting Boundary

Layers. AIAA Journal, 19(1), 1981.

[20] R.C. Lock and B.C. Williams. Vicous-inviscid Interactions in External Arodynamics.

Progress in Aerospace Science, 24:51–171, 1987.

[21] R. Kamakoti and W. Shyy. Fluid–structure interaction for aeroelastic applications.

Progress in Aerospace Sciences, 40(8):535–558, November 2004.

[22] G. Hou, J. Wang, and A. Layton. Numerical Methods for Fluid-Structure Interaction — A

Review. Communications in Computational Physics, 12(2):337––377, August 2012.

[23] U. Kuttler and W.A. Wall. Fixed-point fluid–structure interaction solvers with dynamic

relaxation. Computational Mechanics, 43(1):61–72, February 2008.

[24] C. Wood, A.J. Gil, O. Hassan, and J. Bonet. Partitioned block-Gauss–Seidel coupling

for dynamic fluid–structure interaction. Computers and Structures, 88(23):1367–1382,

December 2010.

[25] J. Degroote, K.J. Bathe, and J. Vierendeels. Performance of a new partitioned procedure

versus a monolithic procedure in fluid–structure interaction. Computers and Structures,

87(11):793–801, November 2009.

[26] I. Bhateley and R. Cox. Application of Computational Methods to Transonic Wing De-

sign, volume 81 of Progress in Astronautics and Aeronautics, chapter 8, pages 405–431.

American Institute of Aeronautics and Astronautics, Reston, VA, USA, 1981.

128

Bibliography

[27] A. Verhoff and P.J. O’Neil. Extension of FLO codes to transonic flow prediction for

fighter configurations, volume 81 of Progress in Astronautics and Aeronautics, chap-

ter 11, pages 467–487. American Institute of Aeronautics and Astronautics, Reston, VA,

USA, 1981.

[28] P. Rubbert and G. Saaris. Review and evaluation of a three-dimensional lifting poten-

tial flow analysis method for arbitrary configurations. In 10th AIAA Aerospace Science

Meeting, San Diego, CA, USA, January 1972.

[29] J. Flores, T.L. Holst, D. Kwak, and D.M. Batiste. Comparison of the Full-Potential and Eu-

ler Formulations for Computing Transonic Airfoil Flows. Technical report, NASA, Wash-

ington, DC, USA, 1984.

[30] G.H. Klopfer and D. Nixon. Nonisentropic potential formulation for transonic flows. AIAA

Journal, 22:770–776, 1984.

[31] J. Le Balleur. Strong matching methods for computing transonic viscous flow including

wakes and seprations - lifting airfoils. La Recherche Aerospatiale, 3:161–185, 1981.

[32] R. Melnik, R. Chow, H. Mead, and A. Jameson. A Multigrid Method for the Computation

of Viscid/Inviscid Interaction on Airfoils. Technical report, Grumman Aerospace Corpora-

tion, Bethpage, NY, USA, 1983.

[33] J. Van Muijden, A. Broekhuizen, A. van der Wees, and J. van der Vooren. Flow analysis

and drag prediction for transonic transport wing/body configurations using a viscous-

inviscid interaction type method. In 19th ICAS Congress, Anaheim, CA, USA, September

1994.

[34] T.L. Holst. Transonic flow computations using nonlinear potential methods. Progress in

Aerospace Sciences, 36:1–61, 2000.

[35] M. Drela, M. Giles, and W. Thompkins. Newton Solution of Coupled Euler and Boundary

Layer Equations, volume 3 of Numerical and Physical Aspects of Aerodynamic Flows,

chapter 7, pages 143–154. Spinger, Berlin/Heidelberg, Germany, 1986.

[36] M. Potsdam. An Unstructured Mesh Euler and Interactive Boundary Layer Method for

Complex Configurations. In 12th Applied Aerodynamic Conference, Colorado Springs,

CO, USA, June 1994.

[37] M. Aftosmis, M. Berger, and J. Alonso. Applications of a Cartesian Mesh Boundary-

Layer Approach for Complex Configurations. In 44th AIAA Aerospace Science Meeting

and Exhibit, Reno, NV, USA, January 2006.

[38] A. Jameson. The Evolution of Computational Methods in Aerodynamics. Journal of

Applied Mechanics, 50:1052–1070, 1983.

[39] F. Johnson, E. Tinoco, and N. Yu. Thirty Years of development and applications of CFD

at Boeing Commercial Airplanes. Computational Fluids, 34:1115–1151, 2005.

129

Bibliography

[40] A. Crovato, H.S. Almeida, G. Vio, G.H. Silva, A.P. Prado, C. Breviglieri, H. Güner, P.H.

Cabral, R. Boman, V.E. Terrapon, and G. Dimitriadis. Effect of Levels of Fidelity on Steady

Aerodynamic and Static Aeroelastic Computations. Aerospace, 7(4):42, April 2020.

[41] F. Palacios, M.R. Colonno, A.C. Aranake, A. Campos, S.R. Copeland, T.D. Economon,

A.K. Lonkar, T.W. Lukaczyk, T.W.R. Taylor, and J.J. Alonso. Stanford University Unstruc-

tured (SU2): An open-source integrated computational environment for multi-physics

simulation and design. AIAA Journal, 2013.

[42] T.D. Economon, F. Palacios, S.R. Copeland, T.W. Lukaczyk, and J.J. Alonso. Stanford

University Unstructured (SU2): An open-source suite for multi-physics simulation and

design. AIAA Journal, 2016.

[43] Stanford University Unstructured - SU2 v6.2. https://su2code.github.io/, Ac-

cessed September 2020.

[44] A. Jameson. Origins and Further Development of the Jameson–Schmidt–Turkel Scheme.

AIAA Journal, 55(5), May 2017.

[45] F.T. Johnson, Samant S.S., M.B. Bieterman, R.G. Melvin, D.P. Young, J.E. Bussoletti,

and C.L. Hilmes. Tranair: A Full-Potential, Solution-Adaptative, Rectangular Grid-Code

for Predicting Subsonic, Transonic, and Supersonic Flows About Arbitrary Configurations.

Technical report, NASA, 1992.

[46] M.B. Bieterman, R.G. Melvin, F.T. Johnson, J.E. Bussoletti, D.P. Young, W.P. Huffman,

C.L. Hilmes, and M. Drela. Boundary Layer Coupling in a General Configuration Full

Potential Code. Technical report, The Boeing Company, Seattle, WA, 1994.

[47] R.E. Bank and D.J. Rose. Global Approximate Newton Method. Numerische Mathematik,

27:179–295, 1981.

[48] R.L. Carmichael and L.L. Erickson. Panair: A higher order panel method for predict-

ing subsonic or supersonic linear potential flows about arbitrary configurations. AIAA

Journal, 7(2), 1981.

[49] Panair. https://pdas.com/panair.html, Accessed September 2020.

[50] E. Albano and W.P. Rodden. A Doublet-Lattice Method for calulation lift distributions on

oscillating surfaces in subsonic flows. AIAA Journal, 1969.

[51] NASTRAN. https://mscsoftware.com/products/msc-nastran, Accessed

September 2020.

[52] C. Reschke and T. Kier. An Integrated Model for Aeroelastic Simulation of large flexi-

ble Aircraft using MSC. NASTRAN. Technical report, DLR German Aerospace Center -

Institute of Robotics and Mechatronics, Wessling, Germany, September 2004.

130

https://su2code.github.io/
https://pdas.com/panair.html
https://mscsoftware.com/products/msc-nastran

Bibliography

[53] W.P. Rodden and E.H. Johnson. NASTRAN Aeroelastic Analysis User’s Guide. MSC

Software, 1994.

[54] V. Schmitt and F. Charpin. Pressure distributions on the ONERA-M6-wing at transonic

Mach numbers. Experimental data base for computer program assessment, 4, 1979.

[55] G.H.C. Silva, A.P. Prado, P.H. Cabral, R. De Breuker, and J.K.S. Dillinger. Tailoring of

a Composite Regional Jet Wing Using the Slice and Swap Method. Journal of Aircraft,

56(3):990–1004, January 2019.

[56] C. Geuzaine and J.-F. Remacle. Gmsh: a three-dimensional finite element mesh gener-

ator with built-in pre- and post-processing facilities. International Journal for Numerical

Methods in Engineering, 79:1309–1331, 2009.

[57] Gmsh: A three-dimensional finite element mesh generator with built-in pre- and post-

processing facilities. http://gmsh.info, Accessed September 2020.

[58] ANSYS ICEM CFD. https://www.ansys.com/products/fluids, Accessed

September 2020.

[59] E. Murman and J. Cole. Calculation of plane steady transonic flows. AIAA Journal, 1971.

[60] J.A. Krupp and E.M. Murman. The numerical calculation of steady transonic flows past

thin lifting airfoils and slender bodies. AIAA Journal, 1972.

[61] W.F. Jr Ballhaus and F.R. Bailey. Numerical calculations of transonic flow about swept

wings. AIAA paper, 1972.

[62] P.A. Newman and F.B. Klunker. Computation of transonic flow about finite lifting wings.

AIAA Journal, 1972.

[63] S. Rolfs and R. Vanino. A steady relaxation method for two- and three-dimensional tran-

sonic flows. In Euromech 40, Sweden, 1973.

[64] W. Schmidt and S. Hedman. Recent explorations in relaxation methods for three-

dimensional transonic potential flow. ICAS paper, 1976.

[65] W. Mason, D.A. Mackenzie, M.A. Stern, and Johnson J.K. A numerical three-dimensional

viscous transonic wing-body analysis and design tool. AIAA paper, 1978.

[66] C.M. Albone, M.G. Hall, and G. Joyce. Numerical solutions for transonic flows past wing-

body configurations. In Springer, editor, Symposium Transonicum II, Berlin, 1975.

[67] M.C.P. Firman. Calculations of transonic flow over wing/body combinations with an al-

lowance for viscous effects. Technical report, AGARD, 1981.

[68] V. Shankar and N.D. Malmuth. Computational treatment of three-dimensional canard-

wing interactions. Journal of Aircraft, 1983.

131

http://gmsh.info
https://www.ansys.com/products/fluids

Bibliography

[69] W.J. Rae. Calculation of three-dimensional transonic compressor flow fields by a relax-

ation method. Journal of energy, 1977.

[70] W.J. Rae and J.A. Lordi. A study of inlet conditions for three-dimensional transonic com-

pressor flows. Technical report, Calspan, 1978.

[71] F.R. Bailey and W.F. Jr Ballhaus. Comparison of computed and experimental pressures

for transonic flows about isolated wings and wing-fuselage configurations. Technical

report, NASA, 1975.

[72] J.L. Steger and H. Lomax. Numerical calculation of transonic flow bout two-dimensional

airfoils by relaxation procedures. AIAA Journal, 1972.

[73] P.R. Garabedian and D.G. Korn. Analysis of transonic airfoils. Communications on Pure

and Applied Mathematics, 1971.

[74] D.M. Young. Iterative Solution of Large Linear Systems. Elsevier, 1 edition, July 1971.

[75] F. Bauer, P. Garabedian, D. Korn, and A. Jameson. Supercritical Wing Section II. Lecture

Notes in Economics and Mathematical Systems, 1975.

[76] J.C. Jr South and A. Jameson. Relaxation solutions for inviscid axisymmetric transonic

flow over blunt or pointed bodies. In First AIAA CFD Conference, Palm Springs, CA,

1973. AIAA.

[77] J.D Keller and J.C. Jr South. RAXBOD: A fortran program for inviscid transonic flow over

axisymmetric bodies. NASA, 1976.

[78] J.L. Steger and H. Lomax. Calculation of transonic flow around axisymmetric inlets. AIAA

Journal, 1975.

[79] T.J. Baker. A numerical method to compute inviscid transonic flow around axisymmetric

ducted bodies. In Springer, editor, Symposium Transonicum II, Berlin, 1975.

[80] D.A. Caughey and A. Jameson. Accelerated iterative calculation of transonic nacelle flow

fields. AIAA Journal, 1977.

[81] Reyhner T. Cartesian mesh solution for axisymmetric transonic potential flow around

inlets. AIAA Journal, 1977.

[82] D.C. Ives and Liutermoza J.F. Analysis of transonic cascade flow using conformal map-

ping and relaxation techniques. AIAA Journal, 1977.

[83] D.C. Ives and Liutermoza J.F. Second-order-accurate calculation of transonic flow over

turbomachinery cascades. AIAA Journal, 1979.

[84] L.A. Carlson. Transonic airfoil analysis and design using Cartesian coordinates. Journal

of Aircraft, 1976.

132

Bibliography

[85] A. Jameson. Iterative solution of transonic flows over airfoils and wings, including flows

at mach 1. Communications on Pure and Applied Mathematics, 1974.

[86] A. Jameson, D.A. Caughey, P.A. Newman, and R.M. Davis. A brief description of the

Jameson-Caughey NYU transonic swept-wing computer program FLO-22. NASA, 1976.

[87] P.A. Henne and R.M. Hicks. Wing analysis using a transonic potential flow computational

method. NASA, 1978.

[88] A. Jameson. Transonic potential flow calculation using conservative form. In Second AIIA

CFD Conference, pages 145–155, 1975.

[89] A. Jameson and D.A. Caughey. A finite-volume method for transonic potential flow cal-

culations. In Third AIIA CFD Conference, pages 35–54, 1977.

[90] A. Jameson and D.A. Caughey. Numerical calculation of transonic potential flow about

wing-body combinations. AIAA Journal, 1979.

[91] D.A. Caughey and A. Jameson. Progress in finite-volume calculations for wing-fuselage

combinations. AIAA Journal, 1980.

[92] L.T. Chen, K.C. Yu, and T.Q. Dang. Transonic computational method for an aft-mounted

nacelle/pylon with power effect. Journal of Aircraft, 27, 1990.

[93] J.F. Thompson, F.C. Thames, and C.W. Mastin. Automatic numerical generation of

body-fitted curvilinear coordinate system for field containing any number of arbitrary two-

dimensional bodies. Journal of Computational Physics, 15, 1974.

[94] N.J. Yu. Transonic flow simulations for complex configurations with surface fitted grids.

AIAA paper, 1981.

[95] Street C. Viscous-inviscid interaction for transonic wing-body configurations including

wake effects. AIAA Journal, 20, 1982.

[96] S.H. Woodson, J.F. Campbell, and F.R. De Jarnette. Interactive three-dimensional

boundary-layer method for transonic flow over swept wings. AIAA Journal, 29, 1991.

[97] G H. Klopfer and D. Nixon. Nonisentropic Potential Formulation for Transonic Flows. In

21st AIAA Aerospace Sciences Meeting, Reno, Nevada, January 1983. AIAA.

[98] NACA. Equations, tables, and charts for compressible flow. Technical report, NACA,

1953.

[99] A. Parrinello and P. Mantegazza. Improvements and extensions to a full-potential formu-

lation based on independent fields. AIAA Journal, 50(3), March 2012.

[100] A. Eberle. A finite volume method for calculating transonic potential flow around wings

from the pressure minimum integral. NASA, 1978.

133

Bibliography

[101] T.L. Holst and W.F. Jr Ballhaus. Fast conservative schemes for the full potential equation

applied to transonic flows. AIAA Journal, 1979.

[102] M.M. Hafez, E.M. Murman, and J.C. Jr South. Artificial compressibility methods for nu-

merical solution of transonic full potential equation. AIAA Journal, 1979.

[103] B. Engquist and S. Osher. Stable and entropy satisfying approximations for transonic

flow calculations. Mathematics of Computation, 1980.

[104] P.M. Goorjian and R. Van Buskirk. Implicit calculations of transonic flows using monotone

methods. AIAA paper, 1981.

[105] P.M. Goorjian, M.C. Meagher, and R. Van Buskirk. Monotone implicit algorithms for the

small-disturbance and full potential equations applied to transonic flows. AIAA paper,

1983.

[106] J.W. Boerstoel. A multigrid algorithm for steady transonic potential flows around aerofoils

using newton iteration. Technical report, NASA, 1981.

[107] J. Slooff. Some new developments in exact integral equation formulations for sub or

transonic compressible potential flow. Computational Mechanics Publications, 1982.

[108] S. Osher, M. Hafez, and W. Jr Whitlow. Entropy condition satisfying approximations for

the full potential equations of transonic flow. Mathematics of Computation, 1985.

[109] M.M. Hafez, W. Jr Whitlow, and S. Osher. Improved finite difference schemes for tran-

sonic potential fow calculations. AIAA Journal, 1987.

[110] W.G. Habashi and M.M. Hafez. Finite element solutions of transonic flow problems. AIAA

Journal, 1982.

[111] G. Volpe and A. Jameson. Transonic potential flow calculations by two artificial density

methodss. AIAA Journal, 1988.

[112] G.S. Dulikravich. Analysis of artificial dissipation models for the transonic full potential

equation. AIAA Journal, 1988.

[113] M.O. Bristeau, O. Pironneau, R. Glowinsky, J. Periaux, P. Perrier, and G. Poirier. On

the numerical solution of nonlinear problems in fluid dynamics by least square and finite

element methods. Application to transonic flow simulations. Computer methods in applied

mechanics and engineering, 1985.

[114] Y. Saad and M.H. Schultz. GMRES: a generalized minimal residual algorithm for solving

nonsymmetric linear systems. SIAM Journal on Scientific and Statistical Computing,

1986.

[115] M. Drela and M.B. Giles. ISES: A two dimensional viscous aerodynamic design and

analysis code. AIAA paper, 1987.

134

Bibliography

[116] W.P. Huffman, R.G. Melvin, D.P. Young, F.T. Johnson, and J.E. Bussoletti. Practical De-

sign and Optimization in Computational Fluid Dynamics. AIAA paper, July 1993.

[117] D.P. Young, W.P. Huffman, R.G. Melvin, M.B. Bieterman, C.L. Hilmes, and F.T. Johnson.

Inexactness and Global Convergence in Design Optimization. AIAA paper, September

1994.

[118] R.G. Melvin, W.P. Huffman, D.P. Young, F.T. Johnson, C.L. Hilmes, and M.B. Bieterman.

Recent Progress in Aerodynamic Design and Optimization. Internatonal Journal for Nu-

merical Methods in Fluids, 30:205–216, 1999.

[119] D.P. Young, W.P. Huffman, R.G. Melvin, C.L. Hilmes, and F.T. Johnson. Nonlinear Elimina-

tion in Aerodynamic analysis and Design Optimization. In Springer Verlag, editor, Large-

Scale PDE-constrained Optimization, Lecture Notes in Computational Science and En-

gineering, pages 17–44. Biegler, L., October 2004.

[120] The Boeing Company. Tranair manual, August 2009.

[121] O.V. Karas and V.E. Kovalev. BLWF56 presentation. blwf-aero.ru/BLWF_code/

index_en.html, Accessed September 2020.

[122] T. Holst and S. Thomas. Numerical solution of transonic wing flow fields. AIAA Journal,

21, 1983.

[123] B. Engquist and S. Osher. One sided difference approximations for nonlinear conserva-

tion laws. Mathematics of Computation, 36:45–75, 1980.

[124] T. Holst. Multizone chimera algorithm for solving the full-potential equation. Journal of

Aircraft, 35, 1998.

[125] Viscous full-potential (VFP) method for three-dimensional wings and wing-body combi-

nations. Part 1: Validation of VFP results with experiment and comparisons with other

methods, Accessed September 2020.

[126] S. Prince, D. Di Pasquale, K. Garry, and Nuzzo C. A Rapid Aerodynamic Prediction

Method for Unconventional Transonic Aircraft Configurations. In 31st Congress of the

International Council of the Aeronautical Sciences, Belo-Horizonte, Brazil, September

2018. International Council of the Aeronautical Sciences.

[127] A. Parrinello and P. Mantegazza. Independent two-fields solution for full-potential un-

steady transonic flows. AIAA Journal, 48(7), July 2010.

[128] D.J. Kinney. Finite Element Simulations of Compressible Inviscid and Viscous Flows.

Master’s thesis, Department of Mechanical Engineering, U.C. Davis, 1992.

[129] D.J. Kinney. Finite Element Solution of the Full Potential Equation Over Aircraft Config-

urations Using Unstructured Tetrahedrai Grids. PhD thesis, Department of Mechanical

and Aeronautical Engineering, U.C. Davis, 1994.

135

blwf-aero.ru/BLWF_code/index_en.html
blwf-aero.ru/BLWF_code/index_en.html

Bibliography

[130] D.J. Kinney, M.M. Hafez, and P.A. Gelhausen. Validation of a new unstructured full po-

tential formulation. AIAA paper, 1995.

[131] D.J. Kinney, M.M. Hafez, and P.A. Gelhausen. An unstructured full potential boundary

layer formulation. AIAA paper, 1997.

[132] D.J. Kinney, J.R. Gloudemans, and M.M. Hafez. The finite element solution of the full po-

tential equation over aircraft configurations using unstructured tetrahedral and prismatic

grids. AIAA paper, 1994.

[133] D.J. Kinney and Hafez. Finite element computations of transonic potential flow. In Inter-

national Conference on Finite Elements in Fluids, Venezia, Italy, 1995.

[134] D.J. Kinney, A.S. Hahn, and P.A. Gelhausen. Comparison of low and high nacelle sub-

sonic transport configurations. AIAA paper, 1997.

[135] D. Eller. Fast, unstructured-mesh finite-element method for nonlinear subsonic flows.

Journal of Aircraft, 2012.

[136] G. Redeker, R. Muller, D. Isaacs, , and R. Hirdes. A Selection of Experimental Test Cases

for the Validation of CFD Codes. Technical Report 2, AGARD, August 1994.

[137] M. Davari, R. Rossi, P. Dadvand, I. Lopez, and R. Wuchner. A cut finite element method

for the solution of the full potential equation with an embedded wake. Computational

Mechanics, 2018.

[138] A. Rottgermann. Eine Methode zur Berücksichtigung kompressibler und transsonischer

Effekte in Randelementverfahren. PhD thesis, Institut fur Aerodynamik und Gasdynamik

der Universit at Stuttgart, 1995.

[139] W.J. Piers and J.W. Slooff. Calculation of Transonic Flow by means of a Shock Capturing

Field Panel Method. AIAA Journal, 1979.

[140] B. Sanderse. Cartesian grid methods for preliminary aircraft design. Master’s thesis, T.U.

Delft, 2008.

[141] F.T. Johnson, R.M. James, J.E. Bussoletti, A.C. Woo, and D.P. Young. A Transonic Rect-

angular Grid Embedded Panel Method. In Third Joint Thermophysics, Fluids, Plasma

and Heat Transfer Conference. AIAA/ASME, 1982.

[142] D.P. Young, A.C. Woo, J.E. Bussoletti, and F.T. Johnson. An Exterior Poisson Solver us-

ing Fast Direct Methods and Boundary Integral Equations with Applications to Nonlinear

Potential Flow. SIAM Journal on Applied Mathematics, 7(3), July 1986.

[143] L. Erickson and S. Strande. A theoretical basis for extending surface-paneling methods

to transonic flow. AIAA Journal, 23(12), December 1985.

[144] FLO codes. http://aero-comlab.stanford.edu/jameson/flo_codes.html,

Accessed Septmeber 2020.

136

http://aero-comlab.stanford.edu/jameson/flo_codes.html

Bibliography

[145] J. Flores, T.L. Holst, D. Kwak, and D.M. Batiste. A New Consistent Spatial Differencing

Scheme for the Transonic Full Potential Equation. AIAA paper, 1983.

[146] T.H. Pulliam, D.C. Jespersen, and R.E. Childs. An Enhanced Version of an Implicit Code

for the Euler Equations. AIAA paper, 1983.

[147] P.M. Sinclair. An exact integral (field panel) method for the calculation of two-dimensional

transonic potential flow around complex configurations. The Aeronautical Journal, 1986.

[148] P.M. Sinclair. A three-dimensional field-integral method for the calculation of transonic

flow on complex configurations — theory and preliminary results. The Aeronautical Jour-

nal, 1988.

[149] A. Rottegermann and S. Wagner. Cost Efficient Calculation of Compressible Potential

Flow Around a Helicopter Rotor Including Free Vortex Sheet. In AGARD FDP Symposium

on Aerodynamics and Aeroacoustics of Rotorcraft. AGARD, October 2017.

[150] A. Rottgermann, R. Behr, Ch. Schottl, and S. Wagner. Calculation of Blade-Vortex Inter-

action of Rotary Wings in lncompressible Flow by an Unsteady Vortex-Lattice Method In-

cluding Free Wake Analysis, volume 33-7 of Numerical Techniques for Boundary Element

Methods, Notes on Numerical Fluid Mechanics, chapter 15, pages 153–166. Vieweg Ver-

lag, 1992.

[151] F.X. Caradonna and C. Tung. Experimental and Analytical Studies of a Model Helicopter

Rotor in Hover. In Sixth European Rotorcraft and Powered Lift Aircraft Forum, September

1980.

[152] L. Gebhardt, D. Fokin, T. Lutz, and S. Wagner. An Implicit-Explicit Dirichlet-Based Field

Panel Method for Transonic Aircraft Design. AIAA Journal, 2002.

[153] P. Dadvand, R. Rossi, and E. Onate. An object-oriented environment for developing finite

element codes for multi-disciplinary applications. Archives of Computational Methods in

Engineering, 17(3):253–297, 2010.

[154] Kratos Multiphysics. https://github.com/KratosMultiphysics/Kratos, Ac-

cessed September 2020.

[155] J. Katz and A. Plotkin. Low-Speed Aerodynamics. Cambridge Aerospace Series. Cam-

bridge University Press, 2001.

[156] L-C. Chu, E. Yates, and O. Kandil. Integral Equation Solution of the Full Potential Equa-

tion for Transonic Flows. In 27th Aerospace Sciences Meeting, 1989.

[157] J.L. Hess and A.M.O. Smith. Calculation of potential flow about arbitrary bodies. Progress

in Aerospace Sciences, 8:1 – 138, 1967.

[158] Z.F. Seidov and P.I. Skvirsky. Gravitational potential and energy of homogeneous rectan-

gular parallelepiped. arXiv:astro-ph/0002496, February 2000.

137

https://github.com/KratosMultiphysics/Kratos

Bibliography

[159] A. Crovato, G. Dimitriadis, and V. Terrapon. Higher Fidelity Transonic Aerodynamic Mod-

eling for Preliminary Aircraft Design. In 31st Congress of the International Council of the

Aeronautical Sciences. International Council of the Aeronautical Sciences, September

2018.

[160] Aero v1.0.1 - a Field Panel Method for Aerodynamic Loads Computation in Prelimi-

nary Aircraft Design. https://github.com/acrovato/aero, Accessed September

2020.

[161] I.E. Sutherland, R.F. Sproull, and R.A. Schumacker. A Characterization of Ten Hidden-

Surface Algorithms. ACM Comput. Surv., 6(1):1–55, March 1974.

[162] M. Shimrat. Algorithm 112: Position of Point Relative to Polygon. Commun. ACM, 5(8),

August 1962.

[163] B. Maskew. Subvortex Technique for the Close Approach to a Discretized Vortex Sheet.

Journal of Aircraft, 4(2), February 1977.

[164] Gaël Guennebaud, Benoît Jacob, et al. Eigen v3. http://eigen.tuxfamily.org,

2010.

[165] L. Ying, G. Biros, and D. Zorin. A kernel-independent adaptive fast multipole algorithm in

two and three dimensions. Journal of Computational Physics, 196(2):591–626, 2004.

[166] Y.J. Liu and N. Nishimura. The fast multipole boundary element method for potential

problems: A tutorial. Engineering Analysis with Boundary Elements, 30(5):371–381,

2006.

[167] D.J. Willis, J. Peraire, and J.K. White. A combined pFFT-multipole tree code, unsteady

panel method with vortex particle wakes. In 43rd AIAA Aerospace Sciences Meeting and

Exhibit. American Institute of Aeronautics and Astronautics, January 2005.

[168] J. Mooren. A Fast, Unstructured Panel Solver. Fall 2012.

[169] R.P. Dwight. Robust Mesh Deformation using the Linear Elasticity Equations. Journal of

Computational Fluid Dynamics, 12:401–406, 2009.

[170] R. Pelz and A. Jameson. Transonic flow calculations using triangular finite elements.

AIAA Journal, 23:569–576, April 1985.

[171] Flow v1.9 - a open-source, unstructured finite elements, full potential solver. https:

//gitlab.uliege.be/am-dept/waves/tree/master/flow, Accessed Septem-

ber 2020.

[172] waves. https://gitlab.uliege.be/am-dept/waves, Accessed September 2020.

[173] D. M. Beazley. SWIG: An easy to use tool for integrating scripting languages with C

and C++. In Proceedings of the 4th conference on USENIX Tcl/Tk Workshop, volume 4,

page 15. USENIX Association, 1996.

138

https://github.com/acrovato/aero
http://eigen.tuxfamily.org
https://gitlab.uliege.be/am-dept/waves/tree/master/flow
https://gitlab.uliege.be/am-dept/waves/tree/master/flow
https://gitlab.uliege.be/am-dept/waves

Bibliography

[174] Intel threading building blocks. https://software.intel.com/en-us/tbb, Ac-

cessed September 2020.

[175] Intel threading building blocks. https://github.com/intel/tbb, Accessed

September 2020.

[176] Pardiso: Parallel Direct Sparse Solver. https://software.intel.com/en-us/

node/470282, Accessed September 2020.

[177] MUMPS: MUltifrontal Massively Parallel sparse direct Solver. http://mumps.

enseeiht.fr/, Accessed September 2020.

[178] W. Sun and Y.X. Yuan. Optimization Theory and Methods - Nonlinear Programming.

Springer, 2006.

[179] K. Jovanov and R. De Breuker. Accelerated convergence of high-fidelity aeroelasticity

using low-fidelity aerodynamics. In 16th International Forum on Aeroelasticity and Struc-

tural Dynamics, St. Petersburg, Russia, July 2015.

[180] G. Kenway and J. Martins. Multipoint High-fidelity Aerostructural Optimization of a Trans-

port Aircraft Configuration. Journal of Aircraft, 51:144–160, 2014.

[181] T. Brooks, G. Kenway, and J. Martins. Benchmark Aerostructural Models for the Study of

Transonic Aircraft Wings. AIAA Journal, 56:2840–2855, 2018.

[182] J. Heeg, P. Chwalowski, and D. Schuster. Overview and lessons learned from the aeroe-

lastic prediction workshop. In 54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural

Dynamics and Materials Conference, Boston, MA, USA, April 2013.

[183] D. Schuster, J. Heeg, C. Wieseman, and P. Chwalowski. Analysis of Test Case Computa-

tions and Experiments for the Aeroelastic Prediction Workshop. In 51st AIAA Aerospace

Sciences Meeting, Grapevine, TX, USA, January 2013.

[184] G. Romanelli, M. Castellani, P. Mantegazza, and S. Ricci. Coupled CSD/CFD non-linear

aeroelastic trim of free-flying flexible aircraft. In 53rd AIAA/SME/ASCE/AHS/ASC Struc-

tures, Structural Dynamics and Materials Conference, Honolulu, HI, USA, April 2012.

[185] P. Acar and M. Nikbay. Steady and Unsteady Aeroelastic Computations of HIRENASD

Wing for Low and High Reynolds Numbers. In 54th AIAA/ASME/ASCE/AHS/ASC Struc-

tures, Structural Dynamics and Materials Conference, Boston, MA, USA, April 2013.

[186] J. Edwards and J. Malone. Current status of computational methods for transonic un-

steady aerodynamics and aeroelastic applications. Computational System Engineering,

3:545–569, 1992.

[187] D. Schuster, D. Liu, and L. Huttshell. Computational Aeroelasticity: Success, Progress,

Challenge. Journal of Aircraft, 40:843–856, 2003.

139

https://software.intel.com/en-us/tbb
https://github.com/intel/tbb
https://software.intel.com/en-us/node/470282
https://software.intel.com/en-us/node/470282
http://mumps.enseeiht.fr/
http://mumps.enseeiht.fr/

Bibliography

[188] M.D.C. Henshaw, K. Badcock, G. Vio, C. Allen, J. Chamberlain, I. Kaynes, G. Dimitriadis,

J. Cooper, M. Woodgate, A. Rampurawala, Jones, Fenwick, Gaitonde, Taylor, Amor,

Eccles, and Denley. Non-linear aeroelastic prediction for aircraft applications. Progress

in Aerospace Science, 43:65–137, 2007.

[189] modali v1.0.1 - a modal solver for FSI computations. https://github.com/

ulgltas/modali, Accessed September 2020.

[190] D. Thomas, A. Variyar, R. Boman, T. Economon, J. Alonso, G. Dimitriadis, and V.E. Ter-

rapon. Staggered strong coupling between existing fluid and solid solvers through a

python interface for fluid-structure interaction problems. In VII International Conference

on Computational Methods for Coupled Problems in Science and Engineering, pages

645–660, 2017.

[191] D. Thomas, M.L. Cerquaglia, R. Boman, T. Economon, J. Alonso, G. Dimitriadis, and

V.E. Terrapon. CUPyDO: An integrated Python environment for coupled fluid-structure

problems. Advances in Engineering Software, 2019.

[192] M.L. Cerquaglia, D. Thomas, R. Boman, V.E. Terrapon, and J.-P. Ponthot. A fully parti-

tioned Lagrangian framework for FSI problems characterized by free surfaces, large solid

deformations and displacements, and strong added-mass effects. Computer Methods in

Applied Mechanics and Engineering, In press, 2019.

[193] CUPyDO v1.2.3 - Python tools for partitioned fluid-structure coupling. http://github.

com/ulgltas/cupydo, Accessed September 2020.

[194] E.C. Yates. AGARD standard aeroelastic configurations for dynamic response I: Wing

445.6. Technical report, AGARD, 1988.

[195] R.B. Melville, S.A. Mortan, and D.P. Rizzetta. Implementation of a fully-implicit, aeroe-

lastic navier-stokes solver. In 13th Computational Fluid Dynamics Conference. AIAA,

June-July 1997.

[196] G. Goura. Time marching analysis of flutter using computational fluid dynamics. PhD

thesis, University of Glasgow, 2001.

[197] METAFOR, A nonlinear finite element code, University of Liege. http://metafor.

ltas.ulg.ac.be/, Accessed September 2020.

[198] H. Güner, D. Thomas, G. Dimitriadis, and V.E. Terrapon. Unsteady aerodynamic model-

ing methodology based on dynamic mode interpolation for transonic flutter calculations.

Journal of Fluids and Structures, 84:218–232, January 2019.

[199] H. Güner. Unsteady Aerodynamic Modeling Methodology for Transonic Flutter Calcula-

tions. PhD thesis, University of Liège, May 2020.

140

https://github.com/ulgltas/modali
https://github.com/ulgltas/modali
http://github.com/ulgltas/cupydo
http://github.com/ulgltas/cupydo
http://metafor.ltas.ulg.ac.be/
http://metafor.ltas.ulg.ac.be/

Bibliography

[200] A. Parrinello, M. Morandini, and P. Mantegazza. Automatic Embbeding of Potential Flow

Wake Surfaces in Generic Monolithic Unstructured Meshes. Journal of Aircraft, 50(4),

July-August 2013.

[201] K. Schmidmayer, F. Petitpas, and E. Daniel. Adaptive mesh refinement algorithm based

on dual trees for cells and faces for multiphase compressible flows. Journal of Computa-

tional Physics, 388, March 2019.

[202] A. Bilocq. Implementation of a viscous-inviscid interaction scheme in a finite element full

potential solver. Master’s thesis, University of Liège, June 2020.

[203] M. Drela. XFOIL: An Analysis and Design System for Low Reynolds Number Airfoils. In

Low Reynolds Number Aerodynamics, pages 1–12. Springer Berlin Heidelberg, 1989.

[204] M. Drela. Xfoil. https://web.mit.edu/drela/Public/web/xfoil/, Accessed

September 2020.

[205] N.L. Sankar, J.B. Malone, and Y. Tassa. An implicit conservative algorithm for steady

and unsteady three-dimensional transonic potential flows. Technical report, Lockheed

Georgia company, 1981.

[206] J.B. Malone and N.L. Sankar. Numerical Simulation of Two-Dimensional Unsteady Tran-

sonic Flows using the Full-Potential Equation. AIAA Journal, 22(8), August 1984.

[207] V. Shankar, H. Ide, J. Gorski, and S. Osher. A fast, time-acurate unsteady full potential

scheme. Technical report, Rockwell International science center, 1985.

[208] R.J. Gilmore and M.B. Steer. Nonlinear circuit analysis using the method of harmonic

balance - a review of the art. part i. introductory concepts. International Journal of Mi-

crowave and Millimeter-Wave Computer-Aided Engineering, 1(1):22–37, 1991.

[209] D.S. Whitehead. A finite element solution of unsteady two-dimensional flow in cascades.

International Journal for Numerical Methods in Fluids, 10:13–34, 1990.

[210] K.C. Hall. A deforming grid variational principle and finite element method for computing

small disturbances flows in cascades. In 30th Aerospace Sciences Meeting and Exhibit,

Reno, NV, USA, January 1992. AIAA.

[211] R. Florea and K.C. Hall. Eigenmode analysis of Unsteady Flows about Airfoils. Journal

of Computational Physics, 147:568–593, July 1998.

[212] D. Van Heesch. Doxygen. http://www.doxygen.nl/, Accessed September 2020.

[213] geoGen v1.0.1 - a gmsh geometry generator for CFD solvers. https://github.com/

acrovato/geoGen, Accessed September 2020.

[214] VTK: The Visualization ToolKit. https://vtk.org, Accessed September 2020.

141

https://web.mit.edu/drela/Public/web/xfoil/
http://www.doxygen.nl/
https://github.com/acrovato/geoGen
https://github.com/acrovato/geoGen
https://vtk.org

Bibliography

[215] Paraview, an open-source, multi-platform data analysis and visualization application.

https://www.paraview.org, Accessed September 2020.

[216] SciPy. https://docs.scipy.org/doc/scipy/reference/index.html, Ac-

cessed September 2020.

[217] PyOpt. http://www.pyopt1.org, Accessed September 2020.

142

https://www.paraview.org
https://docs.scipy.org/doc/scipy/reference/index.html
http://www.pyopt1.org

Appendix A

Additional computations for the
Embraer benchmark wing
The present appendix provides additional computations performed on the Embraer benchmark

wing and complements the results given in chapter 2.

A.1 Effect of the turbulence model on viscous computations

This section shows the effect of the turbulence model on the computations performed on the

Embraer benchmark wing at maneuvering speeds using the Reynolds-Averaged Navier-Stokes

level of fidelity. The results obtained using the Spalart-Allmaras (SA) [6] and the Menter’s k−ω
Shear Stress Transport (SST) [7] models implemented in SU2 are compared to those obtained

using the viscous-inviscid interaction capability implemented in Tranair. Overall, there is a

good agreement between the results obtained using the two turbulence models. Furthermore,

the difference between the results obtained using the SA and SST models is slightly smaller

than that between the results obtained using SU2 and Tranair, except for the difference in the

moment coefficient.

Model α CL CD CM
Tranair +3.6 0.80 0.0310 −1.025
SU2 SA +3.8 0.80 0.0317 −1.018
SU2 SST +3.9 0.80 0.0312 −1.015

(a) M = 0.50 and CL = 0.80.

Model α CL CD CM
Tranair +0.2 0.60 0.0241 −0.815
SU2 SA +0.4 0.60 0.0244 −0.819
SU2 SST +0.5 0.60 0.0242 −0.821

(b) M = 0.78 and CL = 0.60.

Table A.1.1: Aerodynamic coefficients of the Embraer benchmark wing for low and high-speed
maneuvers obtained from the SU2’s Spalart-Allmaras and k − ω Shear Stress Transport turbu-
lence models and compared to Tranair’s results.

143

Appendix A. Additional computations for the Embraer benchmark wing

0 0.2 0.4 0.6 0.8 1

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

Tranair
SU2 - SA
SU2 - SST

(a) M = 0.50, CL = 0.80.

0 0.2 0.4 0.6 0.8 1

-1.5

-1

-0.5

0

0.5

1

Tranair
SU2-SA
SU2-SST

(b) M = 0.78, CL = 0.60.

Figure A.1.1: Pressure distribution along the mean aerodynamic chord of the Embraer bench-
mark wing for low and high-speed maneuvers obtained from the SU2’s Spalart-Allmaras and
k − ω Shear Stress Transport turbulence models and compared to Tranair’s results.

0 0.2 0.4 0.6 0.8 1
0.6

0.65

0.7

0.75

0.8

0.85

Tranair
SU2 - SA
SU2 - SST

(a) M = 0.50, CL = 0.80.

0 0.2 0.4 0.6 0.8 1
0.4

0.45

0.5

0.55

0.6

0.65

Tranair
SU2-SA
SU2-STT

(b) M = 0.78, CL = 0.60.

Figure A.1.2: Sectional lift distribution along the span of the Embraer benchmark wing for low
and high-speed maneuvers obtained from the SU2’s Spalart-Allmaras and k − ω Shear Stress
Transport turbulence models and compared to Tranair’s results.

144

A.2. Additional flight points

0 0.2 0.4 0.6 0.8 1
-0.14

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

Tranair
SU2 - SA
SU2 - SST

(a) M = 0.50, CL = 0.80.

0 0.2 0.4 0.6 0.8 1
-0.16

-0.14

-0.12

-0.1

-0.08

-0.06

-0.04

Tranair
SU2-SA
SU2-SST

(b) M = 0.78, CL = 0.60.

Figure A.1.3: Sectional moment distribution along the span of the Embraer benchmark wing
for low and high-speed maneuvers obtained from the SU2’s Spalart-Allmaras and k − ω Shear
Stress Transport turbulence models and compared to Tranair’s results.

A.2 Additional flight points

This section presents the results for the Embraer benchmark wing at several cruise speeds.

A.2.1 Low-speed cruise

The wing has been simulated at Mach number M = 0.70, a lift coefficient CL = 0.58, and

altitude of 36 000ft.

Model α CL CD CM
PAN −0.2 0.58 0.0128 −0.817
NAS +5.5 0.58 - −0.705
NASC −0.2 0.58 - −0.797
TRN −0.4 0.58 0.0141 −0.810
SU2 −0.2 0.58 0.0162 −0.810
TRNV +1.0 0.58 0.0230 −0.764
SU2V +1.2 0.58 0.0247 −0.765

Table A.2.1: Aerodynamic coefficients obtained from different levels of fidelity for the Embraer
benchmark wing at M = 0.70 and CL = 0.58.

145

Appendix A. Additional computations for the Embraer benchmark wing

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5
PAN
NAS
NASC
SU2V

(a) Linear models

0 0.2 0.4 0.6 0.8 1

-1.5

-1

-0.5

0

0.5

1

TRN
SU2
SU2V

(b) Inviscid models

0 0.2 0.4 0.6 0.8 1

-1.5

-1

-0.5

0

0.5

1

TRNV
SU2V

(c) Viscous models

Figure A.2.1: Pressure distribution along the mean aerodynamic chord of the Embraer bench-
mark wing at M = 0.70 and CL = 0.58 obtained from different levels of fidelity.

146

A.2. Additional flight points

0 0.2 0.4 0.6 0.8 1
0.35

0.4

0.45

0.5

0.55

0.6

0.65

PAN
NAS
NASC
SU2V

(a) Linear models

0 0.2 0.4 0.6 0.8 1
-0.2

-0.15

-0.1

-0.05

0

PAN
NAS
NASC
SU2V

(b) Linear models

0 0.2 0.4 0.6 0.8 1
0.35

0.4

0.45

0.5

0.55

0.6

0.65

TRN
SU2
SU2V

(c) Inviscid models

0 0.2 0.4 0.6 0.8 1
-0.18

-0.16

-0.14

-0.12

-0.1

-0.08

-0.06
TRN
SU2
SU2V

(d) Inviscid models

0 0.2 0.4 0.6 0.8 1
0.4

0.45

0.5

0.55

0.6

0.65

TRNV
SU2V

(e) Viscous models

0 0.2 0.4 0.6 0.8 1
-0.14

-0.13

-0.12

-0.11

-0.1

-0.09

-0.08

-0.07

TRNV
SU2V

(f) Viscous models

Figure A.2.2: Sectional aerodynamic loads along the span of the Embraer benchmark wing at
M = 0.70 and CL = 0.58 obtained from different levels of fidelity.

147

Appendix A. Additional computations for the Embraer benchmark wing

Model n. cells n. threads wall-clock time cpu time
PAN 1 000 1 10 s 10 s
NAS 500 1 20 s 20 s
NASC 500 1 20 s 20 s
TRN 500 000 1 4 min 4 min
SU2 1 300 000 12 10 min 2 h
TRNV 500 000 1 10 min 10 min
SU2V 1 500 000 36 24 h 36 d

Table A.2.2: Mesh size and computational time required by the different models for the Embraer
benchmark case at M = 0.70 and CL = 0.58.

A.2.2 Nominal cruise

The wing has been simulated at Mach number M = 0.78, a lift coefficient CL = 0.47, and

altitude of 36 000ft.

Model α CL CD CM
PAN −1.6 0.47 0.0090 −0.706
NAS +4.1 0.47 - −0.576
NASC −2.3 0.47 - −0.708
TRN −1.8 0.47 0.0105 −0.703
SU2 −1.7 0.47 0.0125 −0.701
TRNV −0.7 0.47 0.0184 −0.656
SU2V −0.3 0.47 0.0209 −0.648

Table A.2.3: Aerodynamic coefficients obtained from different levels of fidelity for the Embraer
benchmark wing at M = 0.78 and CL = 0.47.

148

A.2. Additional flight points

0 0.2 0.4 0.6 0.8 1
-2

-1

0

1

2

3

4
PAN
NAS
NASC
SU2V

(a) Linear models

0 0.2 0.4 0.6 0.8 1

-1

-0.5

0

0.5

1

TRN
SU2
SU2V

(b) Inviscid models

0 0.2 0.4 0.6 0.8 1

-1

-0.5

0

0.5

1

TRNV
SU2V

(c) Viscous models

Figure A.2.3: Pressure distribution along the mean aerodynamic chord of the Embraer bench-
mark wing at M = 0.78 and CL = 0.47 obtained from different levels of fidelity.

149

Appendix A. Additional computations for the Embraer benchmark wing

0 0.2 0.4 0.6 0.8 1
0.3

0.35

0.4

0.45

0.5

0.55

PAN
NAS
NASC
SU2V

(a) Linear models

0 0.2 0.4 0.6 0.8 1
-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

PAN
NAS
NASC
SU2V

(b) Linear models

0 0.2 0.4 0.6 0.8 1
0.25

0.3

0.35

0.4

0.45

0.5

0.55

TRN
SU2
SU2V

(c) Inviscid models

0 0.2 0.4 0.6 0.8 1
-0.22

-0.2

-0.18

-0.16

-0.14

-0.12

-0.1

-0.08
TRN
SU2
SU2V

(d) Inviscid models

0 0.2 0.4 0.6 0.8 1
0.25

0.3

0.35

0.4

0.45

0.5

0.55

TRNV
SU2V

(e) Viscous models

0 0.2 0.4 0.6 0.8 1
-0.16

-0.14

-0.12

-0.1

-0.08

SU2V
TRNV

(f) Viscous models

Figure A.2.4: Sectional aerodynamic loads along the span of the Embraer benchmark wing at
M = 0.78 and CL = 0.47 obtained from different levels of fidelity.

150

A.2. Additional flight points

Model n. cells n. threads wall-clock time cpu time
PAN 1 000 1 10 s 10 s
NAS 500 1 20 s 20 s
NASC 500 1 20 s 20 s
TRN 500 000 1 5 min 5 min
SU2 1 300 000 12 15 min 3 h
TRNV 500 000 1 11 min 11 min
SU2V 1 500 000 36 24 h 36 d

Table A.2.4: Mesh size and computational time required by the different models for the Embraer
benchmark case at M = 0.78 and CL = 0.47.

A.2.3 High-speed cruise

The wing has been simulated at Mach number M = 0.89, a lift coefficient CL = 0.36, and

altitude of 36 000ft.

Model α CL CD CM
PAN −3.1 0.36 0.0059 −0.626
NAS +2.7 0.36 - −0.448
NASC +2.1 0.36 - −0.676
TRN −1.5 0.36 0.0680 −0.663
SU2 −2.2 0.36 0.0589 −0.673
TRNV +1.5 0.36 0.0684 −0.491
SU2V +1.0 0.36 0.0650 −0.521

Table A.2.5: Aerodynamic coefficients obtained from different levels of fidelity for the Embraer
benchmark wing at M = 0.89 and CL0.36.

151

Appendix A. Additional computations for the Embraer benchmark wing

0 0.2 0.4 0.6 0.8 1
-2

-1

0

1

2

3

PAN
NAS
NASC
SU2V

(a) Linear models

0 0.2 0.4 0.6 0.8 1

-1.5

-1

-0.5

0

0.5

1

TRN
SU2
SU2V

(b) Inviscid models

0 0.2 0.4 0.6 0.8 1

-1.5

-1

-0.5

0

0.5

1

TRNV
SU2V

(c) Viscous models

Figure A.2.5: Pressure distribution along the mean aerodynamic chord of the Embraer bench-
mark wing at M = 0.89 and CL0.36 obtained from different levels of fidelity.

152

A.2. Additional flight points

0 0.2 0.4 0.6 0.8 1
0.1

0.2

0.3

0.4

0.5

PAN
NAS
NASC
SU2V

(a) Linear models

0 0.2 0.4 0.6 0.8 1
-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

PAN
NAS
NASC
SU2V

(b) Linear models

0 0.2 0.4 0.6 0.8 1
0.1

0.2

0.3

0.4

0.5

TRN
SU2
SU2V

(c) Inviscid models

0 0.2 0.4 0.6 0.8
-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0
TRN
SU2
SU2V

(d) Inviscid models

0 0.2 0.4 0.6 0.8 1
0.1

0.2

0.3

0.4

0.5

TRNV
SU2V

(e) Viscous models

0 0.2 0.4 0.6 0.8 1
-0.2

-0.15

-0.1

-0.05

0

TRNV
SU2V

(f) Viscous models

Figure A.2.6: Sectional aerodynamic loads along the span of the Embraer benchmark wing at
M = 0.89 and CL0.36 obtained from different levels of fidelity.

153

Appendix A. Additional computations for the Embraer benchmark wing

Model n. cells n. threads wall-clock time cpu time
PAN 1 000 1 10 s 10 s
NAS 500 1 20 s 20 s
NASC 500 1 20 s 20 s
TRN 500 000 1 11 min 11 min
SU2 1 300 000 12 25 min 5 h
TRNV 500 000 1 3 h 3 h
SU2V 1 500 000 36 48 h 72 d

Table A.2.6: Mesh size and computational time required by the different models for the Embraer
benchmark case at M = 0.89 and CL0.36.

154

Appendix B

Aero - field panel code
This appendix gives more details about the implementation of the field panel method presented

in chapter 4.

B.1 Organization of the code

The code is split into three main blocks: a pre-processor, a solver and a post-processor. The

pre-processor reads the user provided data, such as the grid points and the flow conditions,

and stores them into matrices. These matrices are further grouped into structures and passed

to the solver. The solver first assembles the aerodynamic influence coefficients matrices and

iteratively calls the panel method and the field module to solve the flow. When convergence

has been reached, the solver computes the flow variables on the wing surface. Finally, the

post-processor outputs the computed flow variables into readable ASCII files.

Figure B.1.1 illustrates the main blocks of the code and the different functions. They will be

further described in the next sections.

155

Appendix B. Aero - field panel code

Figure B.1.1: Code flowchart.

156

B.1. Organization of the code

B.1.1 Input and output files

The code relies on two ASCII input files. The first is a configuration (.CFG) file containing the

freestream flow variables, i.e. Mach number and angle of attack, as well as the domain and the

Cartesian grid definition parameters. The second file (.PTS) contains the points defining the

geometry to be analyzed. These points need to be provided in the Selig format. The geometry

is divided into stations along the span, and the points defining these stations are written in

counter-clockwise order, starting from the trailing edge. A MATLAB code is provided to easily

generate a grid in the required format for any wing shape consisting at most of nine planforms.

The results produced by the field panel method are written in two ASCII formatted .DAT files.

The first file contains the coordinates of the center of all body panels as well as the correspond-

ing pressure coefficient. The second file contains the coordinates of the center of all field cells

as well as the corresponding field variables. Additionally, the code generates two ASCII .POS

files, containing the Mach number in the field and the pressure coefficient on the wing surface.

These files can be viewed and post-processed using gmsh [57].

B.1.2 Structures

The structures used in the code belong to two categories: the first is used to store the data and

the solution on geometric entities, and the second is used to store the aerodynamic influence

coefficients.

Geometry:

• Network : contains the geometry and the surface singularities, velocity and pressure of

each surface panel

• Field : contains the geometry and the field singularities, velocity and density and Mach

number of each field panel

• Subpanel : contains the geometry and the surface singularities of each sub-panel

Aerodynamic influence coefficient:

• Body_AIC: contains the body-to-body and body-to-field coefficients

• Field2field_AIC: contains the field-to-field coefficients

• Field2body_AIC: contains the field-to-body coefficients

• Subpanel_AIC: contains the sub-panel-to-field coefficients

157

Appendix B. Aero - field panel code

B.1.3 Functions

As described in Figure B.1.1, the code is split into three main blocks, each composed of func-

tions.

Pre-processor:

• read_config: reads the user-provided data file containing the freestream flow variables,

the domain parameters, etc.

• read_sgrid : reads the user-provided file containing the surface grid points

• create_panel : creates the surface panels from the points and stores the data into matrices

• create_wake: creates the wake panels and stores the data into matrices

• create_field : creates the field panels from the domain and Cartesian grid parameters and

stores the data into matrices

• map_field : identifies which field panels lie inside or outside the body

• map_derivatives: for each exterior field cell, identifies in which direction a finite difference

may be performed, without crossing the wake or the body surface

• cast_ray_pip: ray casting and three-dimensional point-in-polyhedron algorithm, used by

the previous two functions

Solver:

• id_subpanel : identifies surface panels lying too close to field cells and marks them

• build_AIC: builds the aerodynamic coefficient matrices and stores them into structures

• infcB: computes the body-to-body and body-to-field influence coefficients of a pair of pan-

els

• infcFF : computes the field-to-field influence coefficients of a pair of field panels

• infcFB: computes the field-to-body influence coefficients of a pair of panels

• split_panel : splits the surface panels previously identified into sub-panel and computes

the new body-to-field influence coefficients

• solve_body : computes the surface sources singularities and solves for the doublet singu-

larities

• compute_fVars: computes the flow variables (density and Mach number) in the field

• interp_ctv : interpolates the surface singularities from panel centers to panel vertices

158

B.2. Minigrid

• interp_sp: interpolates the surface singularities from panel vertices to sub-panel centers

• interp: bilinear interpolation algorithm, used by the previous two functions

• solve_field : computes the field sources and the upwind bias

• compute_sVars: computes the flow variables (velocity and pressure coefficient) on the

body surface

Post-processor:

• write_sp: writes the surface pressure coefficient in .DAT and .POS files

• write_fv : writes the field Mach number in .DAT and .POS files

B.2 Minigrid

In order to compute the derivatives in the field, the simplest approach is to use regular finite

differences in the Cartesian grid. However, to increase the accuracy and to prevent the deriva-

tives from passing through the surface of the body or the wake, a minigrid technique, proposed

by Gebhardt et al. [152], can be used.

The minigrid technique consists in calculating the potential at several points inside a cell and

computing the derivatives from these points. In practice, the size of the minigrid is small com-

pared to the cell (∆xMG = 0.001×∆x) so that the derivatives do not intersect the body or wake

surfaces. Using a minigrid with such small size yield identical results to computing the velocity

directly the analytic aerodynamic influence coefficients rather than using finite differences on a

regular grid. Figure B.2.1 depicts the two types of grid.

i; j i+ 1; ji− 1; j

i; j + 1

i; j − 1

∆x

∆y

(a) Regular grid.

i; j

∆xMG

∆yMG

(b) Minigrid.

Figure B.2.1: Grid types to compute derivatives.

On a minigrid (Figure B.2.1b), a typical derivative is computed as

∂ϕf

∂x
|i,j '

ϕf |i+∆xMG,j − ϕf |i−∆xMG,j

2∆xMG
, (B.2.1)

159

Appendix B. Aero - field panel code

while on a regular grid (Figure B.2.1a), it would be computed as

∂ϕf

∂x
|i,j '

ϕf |i+1,j − ϕf |i−1,j

2∆x
. (B.2.2)

Despite its advantages, the minigrid has two major drawbacks. The first is that the potential

has to be computed at several points inside the cell, hence requiring more than one influence

coefficient per cell. In three dimensions, seven coefficients are required instead of one. The

second drawback is that the oscillations in the velocity close to the body caused by the discon-

tinuity between the surface singularities are amplified by the minigrid. To completely remove

these oscillations and ensure stability of the iterative process, a large number of sub-panels

needs to be used, leading to prohibitive computational cost. On the other hand, a regular grid

is coarser than a minigrid and tends to smooth the derivatives. Moreover, the accuracy of the

results obtained on a coarse minigrid and a fine regular grid, both chosen to have the same

computational cost, is almost the same. To avoid the oscillations in the solution and to simplify

the implementation, the regular grid approach has been retained in the present work.

160

Appendix C

Flow - finite element code
This appendix gives more details about the implementation of the finite element code presented

in chapter 5. A wiki is available at https://gitlab.uliege.be/am-dept/waves/wikis/

flow, and documentation specific to developers can be generated using doxygen [212].

C.1 Code architecture

Contrary to the field panel method presented in chapter 4 and appendix B, Flow heavily relies

on the modularity provided by the object-oriented programming. The code is split into classes,

each having a specific responsibility. The scientific parts of the code needing computing and

storage efficiency, such as the data structure manager and the solver, are written in C++. Using

SWIG [173], these classes are derived in Python, which provides an intuitive and easy-to-use

interface. The end-product is a highly flexible and modular, but fast and efficient, code.

Figure C.1.1 illustrates the global arrangement of the high-level C++ classes and an example

use in Python.

161

https://gitlab.uliege.be/am-dept/waves/wikis/flow
https://gitlab.uliege.be/am-dept/waves/wikis/flow

Appendix C. Flow - finite element code

#
 m

o
d
u
les

im
p
o
rt tb

o
x

im
p
o
rt flo

w

#
 freestream

 flo
w

a =
 1

*
p
i/1

8
0
 #

 an
g
le o

f attack

b
 =

 0
*
p
i/1

8
0
 #

 an
g
le o

f sid
eslip

m
 =

 0
.8

 #
 m

ach
n
u
m

b
er

#
 m

esh

m
sh

=
 tb

o
x

.M
esh

D
ata(“g

eo
file”) #

 lo
ad

 m
esh

 fro
m

 g
eo

m
etry

m
sh

C
rck

=
 tb

o
x

.M
sh

C
rack

(m
sh

) #
 create w

ak
e sh

eet

m
sh

C
rck

.setC
rack

(‘w
ak
e’)

m
sh

C
rck

.ru
n
()

#
 p

ro
b
lem

p
b
l

=
 flo

w
.P

ro
b
lem

(m
sh

, a, b
, m

)

p
b
l.set(flo

w
.M

ed
iu

m
(m

sh
, ‘field

’, m
, a, b

)) #
 set co

n
stitu

tiv
e law

s

p
b
l.ad

d
(flo

w
.In

itial(m
sh

, ‘field
’, a, b

)) #
 ad

d
 in

itial co
n
d
itio

n

p
b
l.ad

d
(flo

w
.D

irich
let(m

sh
, ‘u

p
stream

’, a, b
)) #

 ad
d
 D

irich
let

B
C

p
b
l.ad

d
(flo

w
.F

reestream
(m

sh
, ‘farfield

’, a, b
)) #

 ad
d
 N

eu
m

an
n
 B

C

p
b
l.ad

d
(flo

w
.W

ak
e(m

sh
, [‘w

ak
e’, ‘w

ak
e_
’])) #

 ad
d
 w

ak
e B

C

p
b
l.ad

d
(flo

w
.K

u
tta(m

sh
, [‘te’, ‘te_

’])) #
 ad

d
 K

u
tta

co
n
d
itio

n

p
b
l.ad

d
(flo

w
.B

o
u
n
d
ary

(m
sh

, ‘w
in
g
’)) #

 m
ark

 w
in

g
 b

o
u
n
d
ary

#
 so

lv
er

lso
l

=
 tb

o
x

.P
ard

iso
() #

 u
se P

ard
iso

as lin
ear so

lv
er

so
l =

 flo
w

.N
ew

to
n

(p
b
l, lso

l) #
 d

efin
e N

ew
to

n
 so

lv
er

so
l.m

ax
It

=
 2

5
 #

 set n
u
m

erical p
aram

eters

so
l.relR

es
=

 1
e-6

so
l.ru

n
() #

 ru
n
 an

d
 sav

e resu
lts

so
l.sav

e()

M
esh

D
ata

P
ro
b
lem

M
ed

iu
m

So
lver

In
itial

D
irich

let

Free
stream

M
esh

C
rack

B
o
u
n
d
ary

W
ake/K

u
tta

P
icard

N
ew

to
n

P
y
th

o
n

 in
p

u
t file

C
+

+
 classes

Figure C.1.1: Code architecture.

162

C.1. Code architecture

C.1.1 Input and output files

Flow relies on two input files. The first (.GEO/.MSH) contains the mesh written in the native

gmsh [57] format. If the geometry is created using gmsh, this geometry file can be directly

provided to Flow instead. Furthermore, if the considered geometry is a wing, a suitable input

file can be easily generated using geoGen [213]. The second file (.PY) is written in Python

and defines the problem to be solved. As briefly illustrated on the left side in Figure C.1.1, this

script file instantiates all the relevant objects and manipulates them. Alternatively, the use of

Python also allows to easily automate the computation procedures commonly used in aircraft

design. For example, a polar calculation script, allowing to sweep a given range of angles

of attack, and a trim calculation script, allowing to automatically adjust the angle of attack to

reach a prescribed lift coefficient, have already been written. The user can then simply provide

a python dictionary containing the different parameters to configure the solver. Examples of

geometry, script and configuration files are given in the code repository [171].

The data generated by Flow can be post-processed in several ways. Firstly, all the flow vari-

ables computed by the solver are readily available through Python. Secondly, these variables

are written to disk either in the gmsh (.POS) or VTK [214] (.VTU) format, and can be visualized

and post-processed using gmsh or Paraview [215]. If VTK and Paraview are used, sample

python classes are also provided to automatically generate slices along the span of a wing.

Thirdly, the data on the boundary of interest, such as wing and fuselage, are saved to ASCII

.DAT files. These data can then be exported to virtually any post-processing tool.

C.1.2 C++ classes

The following list describes the main C++ classes used in Flow:

• Problem: holds the problem to be solved (flow parameters, boundary conditions, ...)

• Medium: holds the linear or nonlinear constitutive laws of the air

• Initial : prescribes an initial condition

• Dirichlet : prescribes a Dirichlet boundary condition

• Freestream: prescribes a Neumann boundary condition on freestream boundaries

• Wake: prescribes the Kutta condition on the wake sheets

• Kutta: prescribes the Kutta condition on the trailing edges

• Newton: solves the set of equations using a quasi-Newton method

• Picard : solves the set of equations using the Picard (fixed-point) method

Additionally, the following main C++ classes, part of the waves framework, are required:

163

Appendix C. Flow - finite element code

• MeshData: holds the data structure of the grid

• MeshCrack : creates a crack in the mesh, used to insert a wake sheet with duplicated

degrees of freedom

• MeshDeformation: deforms the mesh using linear elasticity laws

• Pardiso: interfaces Intel Pardiso direct linear (inner) solver

• Mumps: interfaces MUMPS direct linear (inner) solver

• Gmres: interfaces the GMRES iterative linear (inner) solver

C.1.3 Python classes

Three python classes are currently available in Flow:

• Config: performs the basic configuration of the problem and solver

• Polar : sweeps a given range of angles of attack

• Trim: adjusts the angle of attack to reach a prescribed lift coefficient

C.2 Line search algorithms

A line search algorithm allows to adapt the magnitude of the change in the solution computed

by a Newton method. The process usually relies on function evaluations performed at several

intermediate solution points. The solution giving the lowest residual is retained as the new so-

lution. A sample process is illustrated in Figure C.2.1. In Figure C.2.1a, a pure Newton method

without line search is used, and four linear system solves alongside four function evaluations

are required to find the root of the function. In Figure C.2.1b, the line search allows to find the

root using two system solves and three function evaluations. In the present implementation,

two line search methods have been implemented in order to increase the robustness of the

Newton algorithm used to solve the nonlinear potential equation: the quadratic line search and

the Bank and Rose line search.

164

C.2. Line search algorithms

(a) Newton method without line search. (b) Newton method with line search.

Figure C.2.1: Effect of a line search technique on the convergence of a Newton method.

C.2.1 Quadratic line search

The quadratic line search algorithms approximates the equation for which a root is sought as a

quadratic function. A bracketing phase is first performed to restrict the quadratic approximation

range. Then, several function evaluations are performed with the goal to minimize the residual.

As such, the procedure requires at least four function evaluations for each linear solution up-

date. The block diagram of the line search is given in Figure C.2.2 and more details about the

method can be found in chapter 2.4.1, page 93 of the book by Sun and Yuan [178].

165

Appendix C. Flow - finite element code

𝑘: ℎ = ℎ𝑘

𝑅1 = 𝑓(𝑥𝑘)

𝑅ℎ = 𝑓(𝑥𝑘 + ℎΔ𝑥𝑘)

true false

𝑅ℎ < 𝑅1

𝑅2 = 𝑅ℎ

𝑅ℎ = 𝑓(𝑥𝑘 + 2ℎΔ𝑥𝑘)

𝑅ℎ < 𝑅2

𝑅3 = 𝑅ℎ

𝑡4 = ℎ
4𝑅2 − 3𝑅1 − 𝑅3
4𝑅2 − 2𝑅1 − 2𝑅3

𝑡1 = 0, 𝑡2 = ℎ𝑘, 𝑡3 = 2ℎ𝑘

𝑅3 = 𝑅ℎ

𝑅ℎ = 𝑓(𝑥𝑘 + ℎ/2Δ𝑥𝑘)

𝑅ℎ < 𝑅1

𝑅2 = 𝑅ℎ

ℎ = ℎ/2

𝑅∗ = 𝑅4
𝑅4 = 𝑓(𝑥𝑘 + 𝑡4Δ𝑥𝑘)

𝑅4 − 𝑅∗ < 𝜀LS 𝑅4 < 𝑅2

𝒕 = 𝒕𝟒

𝒕 = 𝒕𝟐

𝑡1 ≤ 𝑡4 ≤ 𝑡2

𝑡1 = 𝑡2 𝑅1 = 𝑅2
𝑡2 = 𝑡4 𝑅2 = 𝑅4

𝑡3 = 𝑡2 𝑅3 = 𝑅2
𝑡2 = 𝑡4 𝑅2 = 𝑅4

𝑡4 =
1

2

𝑡2
2 − 𝑡3

2 𝑅1 + 𝑡3
2 − 𝑡1

2 𝑅2 + 𝑡1
2 − 𝑡2

2 𝑅3
𝑡2 − 𝑡3 𝑅1 + 𝑡3 − 𝑡1 𝑅2 + 𝑡1 − 𝑡2 𝑅3

𝑡1 = 𝑡4
𝑅1 = 𝑅4

𝑡3 = 𝑡4
𝑅3 = 𝑅4

𝑅1 ≥ 𝑅4
𝑅4 ≤ 𝑅2

𝑅2 ≥ 𝑅4
𝑅4 ≤ 𝑅3

true true

falsefalse

ℎ = 2ℎ ℎ = ℎ/2

true

false
false

false

true

true truefalse

Refining phase

Bracketing phase

true

false

Figure C.2.2: Quadratic line search block diagram.

166

C.3. Integration

C.2.2 Bank and Rose line search

The line search developed by Bank and Rose [47] was initially implemented for semi-conductor

physics modeling. In this procedure, the step length is computed as a function of the current

residual vector and is iteratively decreased if needed. The damping factor K is then retained

for the next Newton iteration. Two function evaluations are at least required by the algorithm.

The block diagram of the line search wrapped into a Newton method is given in Figure C.2.3.

𝑘 = 0: 𝐾 = 0

𝑅𝑘 = 𝑓(𝑥𝑘)

𝑡𝑘 =
1

1 + 𝐾𝑅𝑘

𝑥𝑘+1 = 𝑥𝑘 + 𝑡𝑘Δ𝑥𝑘

𝑅𝑘+1 = 𝑓(𝑥𝑘+1)

1

𝑡𝑘
1 −

𝑅𝑘+1
𝑅𝑘

< 𝜀LS

Quasi-Newton

scheme converges

𝑘 = 𝑘 + 1

𝐾 =
𝐾

10

𝑥𝑘+1 − 𝑥𝑘 < 𝜀QN

𝐾 = 0

𝐾 = 1

𝐾 = 10𝐾

true

false

false

true

true

false

Line search

Figure C.2.3: Bank and Rose line search block diagram.

C.3 Integration

The wrapping generated using SWIG and used in Waves allows to easily integrate Flow into

various environments that rely on Python. The relevant variables calculated by the solver are

readily available in Python. More particularly, the geometry and the solution field, as well as

the derived variables on the boundaries of interest, such as a wing, are hold by the Boundary

class, which acts as an interface. These various data can then easily be accessed and manip-

167

Appendix C. Flow - finite element code

ulated by external software. Flow has already been integrated within CUPyDO [193] to perform

aeroelastic computations, as described in chapter 6. As another example, the code could be

integrated in an optimizer, such as those provided by scipy [216] or even pyOpt [217].

168

Appendix D

Flow sensitivity analysis

D.1 Tip vortex singularity

As explained in chapter 5, the vortex generated at the wingtip trailing edge of three-dimensional

lifting configurations induces an infinite local velocity, which translates to a large local Mach

number and a near vacuum density value at this location for high-speed freestream flows. The

three-dimensional flow over the Embraer benchmark wing described in chapter 2 is computed

at a high lift coefficient CL = 0.75 and a high Mach number M = 0.78 to illustrate the solution

behavior at the wingtip trailing edge. Figure D.1.1 shows the contour of the velocity magnitude

with a focus on the wingtip trailing edge. Although the density is clamped using the Padé

approximation described in chapter 5 and that the grid is kept coarse in the vicinity of the

wingtip trailing edge, the velocity reaches very high values locally. The local Mach number is

therefore also spuriously high. This may disrupt the convergence, or even cause the divergence

of the method, although the solution is converged elsewhere in the domain.

Numerical experiments showed that the grid density should be decreased as much as possible

near the wingtip trailing edge for high-speed and high-lift flows such as the one presented in

Figure D.1.1. Although the cell size is usually set to 1/100 of the local chord to get sufficient

accuracy, good convergence characteristics can only be attained by using a cell size of 1/50

to 1/30 of the chord. As a result, the local behavior of the solution is slightly degraded. The

implementation of techniques limiting the velocity near high flow gradients, or of a solution

adaptive grid, is therefore highly desirable.

169

Appendix D. Flow sensitivity analysis

(a) Full wing.

(b) Wingtip region.

Figure D.1.1: Velocity magnitude surface contour of the Embraer benchmark wing at CL = 0.75
and M = 0.78.

D.2 Linear solver

This section illustrates the computational performance of the different linear (inner) solver that

can be used in Flow. The first solver is Pardiso [176], which is originally developed at the

Institute of Computational Science in Switzerland, and shipped with the Intel Math Kernel Li-

170

D.2. Linear solver

brary. The second solver is MUMPS [177] developed by various French research groups and

Universities. Both Pardiso and MUMPS are direct solvers. The third solver is the Generalized

Minimum RESidual iterative algorithm, originally developed by Saad [114] and implemented in

Eigen [164]. Since Pardiso and MUMPS are direct solvers, they do not require any configura-

tion. On the other hand, GMRES is an iterative solver and different options need to be adjusted

to obtain good performance. First, a tolerance below which the residual drops must be defined

as a convergence criterion. Second, the restart parameter, specifying the number of iterations

after which the algorithm is restarted, must be chosen. Third, GMRES is effective only if the set

of linear equations is preconditioned. The preconditioning matrix is computed using an incom-

plete LU decomposition of the Jacobian matrix. Consequently, the fill-in factor, controlling how

incomplete the preconditioner is, must be chosen as well. Additionally, the preconditioner can

be computed such that the matrix entries below a given tolerance are dropped out. Numerical

experiments showed that setting the number of restarts to 50 and using a drop tolerance of

10−6 for the preconditioner work usually well. The impact of the GMRES tolerance and the

fill-in factor of the precondtioning matrix on the computational cost is quantified in Table D.2.1.

The three inner solvers are compared on the Onera M6 wing, simulated at an angle of attack

α = 3.06◦ and a Mach number M = 0.839 , and on the Embraer benchmark wing, simulated

at a lift coefficient CL = 0.60 and M = 0.78. Flow requires 15 nonlinear iterations to solve

the Onera M6 case. The computational time needed using MUMPS is 280 s, while Pardiso

requires 245 s. The Embraer benchmark case requires 16 iterations, and a computational

time of 312 s using MUMPS, and of 290 s using Pardiso. The computational time required

by the GMRES algorithm greatly depends on the tolerance and the fill-in factor, as illustrated

in Table D.2.1. Note that using a zero fill-in factor, which is equivalent to not preconditioning

the set of equations, is very cheap but prevents GMRES from converging. Similarly, using

a tolerance higher than 10−3 prevents the Newton algorithm from converging. The results are

therefore not included in the table. Several conclusions can be drawn. Firstly, GMRES is always

faster than MUMPS, whatever the combination of tolerances and fill-in factors used. Secondly,

GMRES can be faster than Pardiso if a favorable combination of tolerances and fill-in factors

is used. Thirdly, for a given tolerance, the average number of inner iterations decreases as the

fill-in factor increases, but the time required to compute the preconditioner increases. The fill-in

factor for which the total computational time is the smallest depends on the tolerance and the

case. Finally, the best performance are always achieved using a large tolerance and small fill-in

factor. However, more benchmark cases need to be studied in order to confirm this behavior.

171

Appendix D. Flow sensitivity analysis

Tolerance / fill-in factor 1 2 3

10−3 69 / 214 s 32 / 230 s 23 / 245 s
10−5 129 / 240 s 55 / 235 s 35 / 249 s
10−8 229 / 276 s 96 / 252 s 62 / 263 s

(a) Onera M6: α = 3.06◦,M = 0.839.
Tolerance / fill-in factor 1 2 3

10−3 56 / 242 s 27 / 264 s 20 / 266 s
10−5 107 / 270 s 49 / 274 s 38 / 269 s
10−8 204 / 306 s 89 / 286 s 60 / 286 s

(b) Embraer benchmark wing: CL = 0.60,M = 0.78.

Table D.2.1: Number of inner iterations averaged by the number of nonlinear iterations and
computational time required to solve the flow over the Onera M6 and the Embraer benchmark
wings using GMRES, as a function of the tolerance and the fill-in factor of the preconditioner.

D.3 Line search

The present section illustrates the difference in convergence characteristics of the two line

search algorithms described in appendix C that are available in Flow. Both methods are com-

pared on the Onera wing, simulated at an angle of attack α = 3.06◦ and a Mach number

M = 0.839 , and on the Embraer benchmark wing, computed at a lift coefficient CL = 0.60

and M = 0.78. The convergence plot, showing the evolution of the logarithm of the relative

residual along the Newton iteration count, is given in Figure D.3.1. The accumulated number of

function evaluations is also noted at each change in the upwinding parameters, i.e. when the

residual drops below 10−2. The Bank and Rose line search algorithm exhibits a better over-

all convergence rate than the quadratic line search for both test cases. More specifically, the

number of Newton iterations is reduced by 4 and 1 for the Onera and the Embraer wing com-

putation, respectively, and the total number of residual evaluations is reduced by roughly 65%

in both cases. For the Onera computation, the computational time is reduced by 30%, while it

is reduced by 25% in the Embraer case. In both cases, the final results differ by less than one

count, in terms of aerodynamic coefficients.

172

D.3. Line search

Iteration

R
es

id
ua

l

Quadratic
Bank & Rose

15 37 25

60

35

99

(a) Onera M6: α = 3.06◦,M = 0.839.

Iteration

R
es

id
ua

l

Quadratic
Bank & Rose

12

45 18
68

42

117

(b) Embraer benchmark wing: CL = 0.60,M = 0.78.

Figure D.3.1: Evolution of the relative residual as a function of the Newton iterations for the
Onera and Embraer wings computations, with the accumulated number of function evaluations.

173

	Abstract
	Acknowledgments
	Contents
	Introduction
	Motivation
	Aeroelastic modeling in preliminary aircraft design
	Aerodynamic modeling
	Structural modeling
	Aerostructural coupling

	Thesis overview

	Comparison of aerodynamic models
	State-of-the-art
	Methodology
	Onera M6
	Mesh convergence
	Aerodynamic loads
	Computational performance

	Embraer benchmark wing
	Aerodynamic loads
	Computational performance
	Cruise flight conditions

	Discussion

	The full potential equation
	Potential formulations
	Equations and solution methods
	Main challenges

	Field potential solvers
	Early work on the transonic small disturbances equation
	Early work on the full potential equation
	Transonic computation techniques
	Kutta condition implementation
	Commercial software
	Research codes

	Field panel methods
	Early coupling between boundary elements and finite differences
	Recent field panel methods

	Discussion

	Field panel solution of the full potential equation
	Theory
	Formulation
	Panel method
	Field module
	Influence coefficients

	Implementation
	Geometry treatment
	Numerical treatment
	Solution procedure

	Validation
	Incompressible flow
	Subcritical flow
	Supercritical flow
	Challenges and attempted solutions

	Discussion

	Finite element solution of the full potential equation
	Theory
	Weak formulation
	Finite element discretization

	Implementation
	Geometry modeling and meshing
	Numerical scheme

	Validation
	Domain and mesh convergence analyses
	Aerodynamic loads
	Computational performance

	Sensitivity analysis
	Wake inclination
	Grid density

	Discussion

	Static aeroelastic computations
	State-of-the-art
	Methodology
	Agard 445.6
	Aerodynamic loads
	Wing deflection

	Embraer benchmark wing
	Aerodynamic loads
	Wing deflection
	Computational performance

	Discussion

	Conclusion
	Summary and conclusions
	Suggestions for future work
	Improvements of aeroelastic computations
	Development of new features for Flow

	Bibliography
	Additional computations for the Embraer benchmark wing
	Effect of the turbulence model on viscous computations
	Additional flight points
	Low-speed cruise
	Nominal cruise
	High-speed cruise

	Aero - field panel code
	Organization of the code
	Input and output files
	Structures
	Functions

	Minigrid

	Flow - finite element code
	Code architecture
	Input and output files
	C++ classes
	Python classes

	Line search algorithms
	Quadratic line search
	Bank and Rose line search

	Integration

	Flow sensitivity analysis
	Tip vortex singularity
	Linear solver
	Line search

