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Abstract The objective of this paper is to review recent advances in the sensors
used to measure seismic linear vibrations at low frequencies. The main types of
inertial sensors are reviewed: absolute displacement sensors, geophones, acceler-
ometers, and seismometers. The working principle of each of them is explained, along
with the general strategies to extend their bandwidth. Finally, the principle fundamen-
tal limitations of all inertial sensors are reviewed: tilt-to-horizontal coupling, zero-
length springs, and sources of noise.

Introduction

The measurement of low-frequency and small-
amplitude seismic vibrations with a high accuracy is critical
in two scientific disciplines: seismology and structural vibra-
tion control. In both fields, there is a constant necessity to
develop sensors with a better resolution, robust to tempera-
ture variations and magnetic fields, with a low power con-
sumption, and, of course, at an affordable price. This is
particularly valid in frontier science facilities, such as future
particle colliders and gravitational wave detectors.

The objective of this paper is to review the main sensor
types used to measure small vibrations at low frequencies;
our focus is restricted to linear vibrations. Readers interested
in rotation sensors can find excellent reviews on this topic in
Lee (2009). We first provide a few basic definitions, followed
by a detailed treatment of specific sensors—geophones,
accelerometers, broadband seismometers and displacement
sensors. For each of these sensor types, the basic working
principle is explained, along with the main performances and
limitations. The paper finishes with a brief discussion on
the modelling and measurement of the sensor noise.

Definitions

The sensitivity of a sensor, S, is the conversion factor
relating the physical quantity to measure, U, and the output
voltage signal, Vo:

S � Vo=U: (1)

It depends on the frequency but is constant in the useful
bandwidth of the sensor.

The instrumental noise of a sensor, N, is the part of the
output signal that does not correspond to the physical quan-
tity U. The origin can be either external (pressure, humidity,
temperature, electrical networks, magnetic fields, radiations,

etc.) or internal (Brownian motion of the mass, amplifier
noise, and so on). To some extent, the effect of external
sources can be reduced by shielding the sensor, but the level
of internal noise is inherent to the choice of the sensor com-
ponents. The main sources of internal noise are reviewed in
the section Sources of Internal Noise. In general, the overall
level of noise depends on the frequency and must be speci-
fied in V=

������
Hz

p
. Alternatively, it can also be specified by its

root-mean-square (rms) value, Nrms, in a given frequency
band, and expressed in V.

The resolution of a sensor, R, is the smallest physical
quantity that the sensor can measure. It is defined as the ratio
between the noise and the sensitivity. If the sensor measures
displacement, the resolution is

R�m=
������
Hz

p
� � N�V= ������

Hz
p �

S�V=m� or Rrms�m� � Nrms�V�
S�V=m� :

(2)

The dynamic range of a sensor (DR), usually expressed
in decibels (dB), is defined as the ratio between the maxi-
mum recordable output voltage (without saturation and non-
linearities) Vmax

o and the minimum output voltage (i.e., the
instrumental noise Nrms) such that

DR � 20 log10�Vmax
o =Nrms�; (3)

or equivalently, by dividing numerator and denominator
by S, as

DR � 20 log10�Umax=Rrms�; (4)

where Umax is the largest value of the quantity U that the
sensor can measure. To design a good sensor, a general
objective is to maximize DR (i.e., to maximize Umax and
minimize Umax) in order to be able to measure both large
and small values of U.
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Table 1 provides a list of definitions of the variables used
in this paper.

Absolute Measurement

In order to understand absolute measurement, it is
necessary to understand relative measurement with respect to
an inertial reference. The sensor capable of such measure-
ment, called an inertial sensor, provides the measurement
of an absolute quantity (displacement, velocity, or accelera-
tion) only in some frequency range. The basic principle of an
inertial sensor is depicted in Figure 1. It consists of a seismic
massm, attached to the measurement point through a suspen-
sion, represented by a spring k and a dashpot c.

The dynamic equation of the seismic mass is

m�x� c�_x − _w� � k�x − w� � −mg; (5)

where x is the displacement of the seismic mass, w is the
displacement of the support, and g is the gravity constant.
If we choose the origin of x to have zero initial conditions
(i.e., x � 0 at the equilibrium point where the static deflec-
tion compensates the gravity), equation (5) becomes

m�x� c�_x − _w� � k�x − w� � 0: (6)

Then, the measurement of y � x − w is used to evaluate
w. Writing equation (6) in function of y gives

m�y� c_y� ky � −m �w: (7)

Using the Laplace transform, equation (7) becomes

ms2Y � csY � kY � −ms2W; (8)

From equation (8), the transmissibility Twy�s� between
the displacement of the attachment point W�s� and the rela-
tive displacement Y�s� is given by

Twy�s� �
Y�s�
W�s� �

−ms2

ms2 � cs� k
: (9)

The magnitude and phase of the frequency response Twy�jω�
are shown in Figure 2 (dotted line). Above the resonance fre-
quency of the oscillator ω0 �

���������
k=m

p
, the measurement of the

relative displacement Y�s� is a perfect estimator of the dis-
placementW�s�, because of the flat transfer function. This is
the principle of an absolute displacement sensor. Similarly, if
instead of the relative displacement Y�s� we measure the
relative speed _Y�s� � sY�s�, it is a perfect estimator of the
speed _W�s� above ω0 (also dotted line in Fig. 2). This is
the working principle of a geophone. The figure also shows
the transmissibility T _wy between the speed of the support
_W�s� � sW�s� and Y�s� (dashed line in Fig. 2) and the trans-
missibility T �wy between the acceleration �W�s� � s2W�s� and
Y�s�. Following the same reasoning, below ω0, Y�s� is a per-
fect estimator of the acceleration �W�s� but is scaled by 1=ω2

0

Table 1
Nomenclature

Variable Definition

S Sensitivity of a sensor
Vo Output voltage
U Physical quantity to measure
N Instrumental noise
R - Resolution of a sensor in equation (2)

- Resistance constant in equations (16), (18), (19), (20),
(24), (26) and (47)

Nrms Root-mean-square value of the sensor noise
Nrms Root-mean-square value of the sensor noise
Vmax

o Maximum recordable voltage
DR Dynamic range
m Mass of the sensor inertial mass
k Spring constant
c Dashpot constant
w Absolute displacement of the ground
g - Gravity constant in equations (5), (43), and (44)

- Gain of the controller in equations (12) and (14)

y Relative displacement between the inertial mass and the
support

Y Laplace transform of y
s Laplace variable

Twy Transmissibility between w and y
ω0 Resonance frequency of the oscillator
ξ0 Fraction of critical damping
ka Stiffness of the piezoelectric actuator
δ Elongation of the actuator
xa Displacement of the upper end point of the actuator
G - Sensitivity of the displacement sensor in

equations (13), (14), (33)–(39)
- Sensitivity converting voltage into acceleration in
equation (51)

i Current in the feedback circuit
I Laplace transform of i
j Imaginary number
T - Constant of the coil in equations (15)–(21), (35)–(39),

(41)
- Temperature in equations (45)–(47)

B Magnetic field in the coil
L Inductance of the coil

E�s� Expression of the stretcher
ωc Apparent corner frequency with the stretcher
ξc Apparent fraction of critical damping with the stretcher
Ts Constant of the part of the coil used as a sensor
Ta Constant of the part of the coil used as an actuator

gp; gi; gd Gains of the proportional-plus-integral-plus-derivative
(PID) controller

H - Expression of the PID controller in equations (25),
(34)–(36), (40), and (41)

- Ratio between S2 and S1 in equations (54)–(59)

Q Electric charges at the electrodes of the piezoelectric
transducer

C Electrical capacitance of the piezoelectric transducer
V Voltage between the electrodes of the piezoelectric

transducer
d33 Piezoelectric constant
n Number of layers of piezoelectric material
f - Force exerted on the piezoelectric transducer in

equations (29) and (30)
- Frequency in equations (45)–(47) and (49)–(51)

CA Capacitance of the amplifier

(continued)
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(solid line in Fig. 2). This is the working principle of an
accelerometer.

Absolute Displacement Sensor

In active vibration isolation, the quantity of interest is
the absolute displacement of the sensitive equipment. As
is apparent from the Absolute Measurement section, above

the resonance of the seismic mass, the measurement of the
relative displacement between the mass and the support pro-
vides this information. This section presents an active mean
to extend the sensitivity of a displacement sensor in the low-
frequency range. The device is shown in Figure 3. To the best
of our knowledge, there is no commercial product corre-
sponding to this system.

It consists of a mass m mounted on a soft element re-
presented by a spring k and a dashpot c and has a relative
displacement sensor y. In this case, the soft element is not
directly fixed to the support, but to a piezoelectric actuator.
In Figure 3, ka�≫ k� is the stiffness of the actuator and δ its
elongation.

The equation governing the dynamics of the seismic
mass is

m�x� c�_x − _xa� � k�x − xa� � 0; (10)

where x and xa are as shown in Figure 3. The dynamic equi-
librium of the point xa is expressed as

Table 1 (Continued)
Variable Definition

θ Tilt angle of the inertial sensor
Θ Laplace transform of θ
ΦF Power spectral density of the thermomechanical force

exerted on a mass
kB Boltzmann’s constant
ΦB Power spectral density of the acceleration of a mass

subjected to a thermomechanical force
ΦJ Power spectral density of the thermoelectrical noise
RC Electrical resistance of a capacitor
Φsh Shottky noise
Idc Average current due to the random motion of the electric

charges
ΦV Power spectral density of the flicker noise
K Constant parameter in the expression of the flicker noise
α Constant parameter in the expression of the flicker noise
Φnn Power spectral density of the instrument noise
Φss Power spectral density of the signal
Φxx Power spectral density of x
Φyy Power spectral density of y
Φxy Cross power spectral density between x and y
γ2xy Coherence between x and y
Z Load at which the current noise is developed

S1 and S2 Sensitivities of two sensors
N1 and N2 Noise of two sensors

β Signal-to-noise ratio

Figure 1. Working principle of an inertial sensor. (See Table 1
for definitions for all figures.)

Figure 2. Transmissibilities of the sensor described in Figure 1.

Figure 3. Working principle of an active displacement sensor
(Fraanje et al., 2009).
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c�_x − _xa� � k�x − xa� � ka�xa − w − δ�: (11)

A second relative displacement sensor measures
y1 � x − xa, and the signal is fed back to the actuator in such
a way that

δ � gy1 � g�x − xa�; (12)

where g includes the gain of the controller and the sensitivity
of the relative displacement sensor.

The output voltage of the sensor Vo is given by

Vo � Gy � G�x − w�: (13)

By substituting equations (11)–(13) into equation (10),
we get

Vo

w
� −G �cm=ka�s3 �ms2�1� g� k=ka�

�cm=ka�s3 �ms2�1� g� k=ka� � cs� k
:

(14)

The typical sensitivity curve is shown in Figure 4. The feed-
back operation decreases the corner frequency from����������������������������������
kka=�m�k� ka��

p
to

�������������������������������������������������
kka=�m�k� �1� g�ka��

p
.

Geophone

The working principle of the geophone is illustrated in
Figure 5 (Roset et al., 2004). A coil is encircled around a
seismic mass m and loaded by a resistance R. The ground
w generates a relative motion between m and the coil. The
relative motion creates a current i and a voltage Vo across the
resistance.

The equations of the system are as follows:

m�x� c�_x − _w� � k�x − w� � Ti � 0 (15)

for the mechanical part and

L
di
dt

− T�_x − _w� � Ri � 0 (16)

for the electrical part, where i is the current, L is the induc-
tance of the coil, and T is the constant of the coil, expressed
in Tm or V=�m=s�.

Defining y � x − w, in the Laplace domain we get

ms2Y � csY � kY � TI � −ms2W (17)

and

LsI − TsY � RI � 0: (18)

The output of the sensor is the voltage Vo across the resis-
tance R; that is, Vo � RI. The sensitivity of the geophone is
given by

Vo

sW
� RT

Ls� R
−ms2

ms2 � sc� k� T2s=�Ls� R� : (19)

In practice, R ≫ sL, and equation (19) is reduced to

Vo

sW
� −mTs2

ms2 � s�c� T2=R� � k
(20)

or, equivalently, to

Vo

sW
� −Ts2

s2 � 2ξ0ω0s� ω2
0

; (21)

which is the typical expression of a high-pass filter
(Fig. 6), where ω0 �

���������
k=m

p
and ξ0 � �c� T2=R�=�2mω0�.

Actually, a geophone can measure the velocity of the sup-
port, typically from a few hertz to a few hundred hertz. At
high frequency, the performances are limited by the higher-
order modes, discussed in Zero-Length Spring. At low fre-
quency, the performances are limited by the fundamental
resonance of the inertial mass.

There are at least three possibilities to extend the band-
width of a geophone at low frequency. The first one is to add
a capacitor in series with the resistance (Pazos et al., 2005).
In this case, the corner frequency can be decreased by a fac-
tor of 1=4 without any loss of sensitivity. The second pos-
sibility is to stretch the sensitivity curve so that it has an
apparent corner frequency at ωc lower than its mechanical
resonance frequency ω0 (Zuo, 2004; Zuo and Nayfeh, 2004).

(a) (b)

(c)

Figure 5. Electromagnetic geophone: (a) The model, and (b,
c) two conceptual designs: a moving magnet topology (b) and a
moving coil topology (c).

Figure 4. A typical sensitivity curve of a displacement sensor in
an open-loop (solid line) and a closed-loop (dashed line)
configuration.
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This can be directly implemented numerically by multiply-
ing the output signal by

E�s� � g
s2 � 2ξ0ω0s� ω2

0

s2 � 2ξcωcs� ω2
c
; (22)

where g is a constant gain and ξc is the apparent damping.
Because it is just a variable gain, the major limitation is that it
does not improve the signal-to-noise ratio. Also, as the sen-
sitivity curve is falling rapidly below the corner frequency, a
digital implementation can result in a high additional quan-
tization noise. To avoid this problem, E�s� can be realized by
an electrical circuit (Zuo and Nayfeh, 2004). A third possi-
bility is to create a feedback geophone, as shown in Figure 7
(Preumont, 2006).

Here, the coil is divided into two parts, and equation (17)
becomes

ms2Y � csY � kY � TaIa � TsIs � −ms2W; (23)

where Ts and Ta are the constants of the two parts of the coil.
One part is still used as a sensor. Using the same assumption
that R is large, the output voltage is given by

Vo � RIs ≃ Tssy (24)

where Is is the current generated by the relative motion be-
tween the mass and the ground. Then, Vo is used to generate
a current in the other part of the coil. Taking a proportional-
plus-integral-plus-derivative (PID) controller, we get

Ia � H�s�Vo � �gp � gi=s� sgd�Vo; (25)

where gp, gi, and gd are the gains of the controller. Replacing
equations (24) and (25) in equation (23) gives

Vo

sW
� −mTss2

�m�TaTsgd�s2��c�T2
s=R�TaTsgp�s�k�TaTsgi

:

(26)

The corner frequency of the geophone can be actively de-
creased from

���������
k=m

p
to

�����������������������������������������������������������
�k� TaTsgi�=�m� TaTsgd�

p
by

choosing a negative value for gi and a positive value for
gd. The proportional gain gp is chosen to adjust the damping.
In the useful bandwidth, the sensitivity is reduced to

Vo

sW
� −mTs

m� TaTsgd
; (27)

and the transfer function between the ground displacement
and the relative displacement of the seismic mass is

y
W

� −m
m� TaTsgd

: (28)

As is apparent from equation (28), an additional feature of
the relative acceleration feedback is that it forces the seismic
mass to move with the ground, which reduces the relative
displacement of the seismic mass. As a consequence, the sen-
sor can measure much higher levels of vibrations without
saturation, which is particularly useful to record strong earth-
quakes. This is known as the force-balance principle.

The typical sensitivity curve of a geophone in closed-
loop configuration is also shown in Figure 6 (dashed line).
For even lower frequencies, force-balance accelerometers
(FBA) or broadband seismometers are used (see Force-
Balance Accelerometer and Seismometer section).

Passive Accelerometer

Broadband Accelerometer. A classical broadband acceler-
ometer consists of a seismic mass fixed on a piezoelectric
transducer, as shown in Figure 8. In this configuration, the
transducer is of the stacked design, comprising n layers of
piezoelectric material. The equation governing the dynamics
of the seismic mass is still given by equation (7), where k and
c are now the equivalent stiffness and damping coefficients

Figure 6. Typical sensitivity curve of a geophone in open-loop
(solid line) and closed-loop (dashed line) configuration.

Figure 7. Working principle of a feedback geophone.
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of the transducer with short-circuited electrodes. The consti-
tutive equations of the piezoelectric transducer are

Q
y

� �
� C nd33

nd33 1=k

� �
V
f

� �
; (29)

with d33 the piezoelectric constant, Q the electric charge on
the electrodes, and V the voltage between them; f the force
exerted on the transducer and y its extension; and C its in-
trinsic electrical capacitance. The stack is connected to a
charge amplifier, enforcing V � 0. Using equation (29),
the electric charge can be expressed as

Q � nd33f � nd33ky; (30)

and the voltage at the output of the amplifier is given by

Vo � −Q=CA; (31)

where CA is the capacitance of the amplifier (Preumont,
2006). Combining equations (31), (30), and (7), we get

Vo

s2W
� nd33

CA

m
s2=ω2

0 � 2ξ=ω0 � 1
; (32)

where ω0 is the resonance frequency of the seismic mass.
These sensors are commonly used to measure structural vi-
brations, up to kilohertz. However, as their sensitivity is pro-
portional to m, these sensors cannot resolve low-frequency
seismic vibrations.

Seismic Accelerometer. The basic principle of a passive
seismic accelerometer is described in Figure 1. The seismic
mass is mounted on a compliant element, represented in the
figure by k and c; y is measured by a displacement transdu-
cer, giving a signal proportional to the acceleration, from DC
up to the resonance frequency of the seismic mass (Liu and
Kenny, 2001; Daku et al., 2004; Kollias and Avaritsiotis,
2005). For large values of y, nonlinearities appear in both
the mechanical suspension and the displacement transducer,
with the result that the dynamic range typically is limited to
100 dB. This value can be extended by using a servo loop, as
presented in the next section.

Force-Balance Accelerometer (FBA) and Seismometer

In a feedback accelerometer (Wienlandt, 2002), a coil is
encircled around the seismic mass, as for a geophone, and a
displacement sensor with a sensitivity G is also used to mea-
sure y (Fig. 9).

The output voltage of the sensor, Vo, is given by

Vo � Gy: (33)

This signal, passing through a compensator H�s�, is also
used to generate a current

i � H�s�Vo � H�s�Gy; (34)

creating a force f applied to the seismic mass and given by

f � −Ti � −TH�s�Gy: (35)

Replacing equations (33) and (35) in equation (17), we
get the expression of the sensitivity

Vo

s2W
� −m

�ms2 � cs� k�=G� TH�s� : (36)

Depending on H�s�, various behaviors can be obtained.
If H�s� � gp, equation (36) becomes

Vo

s2W
� −m

�ms2 � cs� k�=G� Tgp
: (37)

The output Vo is proportional to the acceleration of the base
in a large frequency range, from DC to the resonance of
the system, which is extended by the servo loop from
ω0 �

���������
k=m

p
to

���������������������������������k� GTgp�=m
p

. In the useful bandwidth,
the sensitivity is reduced to

Figure 9. Working principle of a force-balanced sensor.

Figure 8. Working principle of a broadband accelerometer.
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Vo

s2w
� −m

k=G� Tgp
≃ −m

Tgp
; (38)

and the transfer function between the ground acceleration
and the relative displacement of the seismic mass and the
frame is

y
s2W

� −m
k� TGgp

; (39)

to be compared with equation (28). Here again, the feedback
forces the seismic mass to move with the ground in the useful
frequency range, renders the output linear, and increases the
dynamic range. Now, the Vmax

o in equation (3) is only limited
by the electrical elements. This is also known as the force-
balance principle, and the sensor is an FBA.

In practice, an integrator is also added to remove the DC
offset of the seismic mass, in which case

H�s� � gp � gi=s; (40)

where gi is the gain of the integrator. The transmissibilities in
open-loop and closed-loop configurations are, respectively,
the solid and dashed lines shown in Figure 10.

An FBA can have a dynamic range of more than 150 dB;
that is, 50 dB more than a passive accelerometer.

FBAs are well adapted to record strong earthquakes, but
it has been shown in Plesinger (1984) that, for a broadband
record of the seismic activity, a sensor with a flat response to
the ground velocity (i.e., a broadband seismometer) is better
adapted (Sheffield, 1964; Melton and Johnson, 1962; Teup-
ser and Plesinger, 1979; Usher et al., 1979; Wielandt and
Streckeisen, 1982). This is achieved by introducing a deri-
vative term in the controller, such as

H�s� � gp � gi=s� sgd: (41)

The value of gd is chosen to be the dominant term of the
denominator in the useful frequency range of the sensor,
leading to a flat response to the ground velocity, as shown
in Figure 11. In the useful bandwidth, equation (36) is
reduced to

Vo

sw
≃ m

Tgd
: (42)

Another class of seismometers is based on electrochemi-
cal transducers (e.g., EENTEC SP-400 and others). In this
case, the oscillator is replaced by fluid (electrolytic solution)
contained between elastic membranes. The transducer con-
sists of a pair of electrodes plunged into the fluid. By a con-
vective diffusion of the ions in the electrolyte, the motion of
the fluid creates a current that is proportional to the fluid ve-
locity. Compared to the devices described previously in this
article, their main advantages are that they are immune to
magnetic field, remain fully operable at high tilt, and have
a low power consumption.

In addition to commercial products, several sensors have
been developed for specific applications. For example, a
high-sensitivity horizontal accelerometer has been developed
for gravitational-wave interferometers (Bertolini et al.,
2006a,b), and a modification of a geophone to produce a
broadband seismometer has been described in Barzilai, Van-
Zandt et al. (1998) and Barzilai (2000). Also, a nonmagnetic
sensor has been developed in Frisch et al. (2003, 2004) to
measure the mechanical vibrations of electromagnets in an
accelerator environment. Finally, it should be noted that
an optical technology can be used to measure y, such as re-
ported in Gardner et al. (1987) and Zumberge et al. (2010).

Tilt-to-Horizontal Coupling

In the previous sections, we have considered only ver-
tical inertial sensors. Figure 12 shows the more general con-
figuration of an inclined sensor.

In this case, equation (5) becomes

m�x� c�_x − _w� � k�x − w� � −mg cos θ; (43)

where θ is the tilt angle. Linearizing the equation around a
nominal angle θ0 and again choosing zero initial conditions,
in the Laplace domain we obtain

Figure 11. Typical sensitivity curve of a broadband seism-
ometer.

Figure 10. Typical sensitivity of an FBA (dashed line) com-
pared to a passive seismic accelerometer (solid line).
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Y�s� � −ms2

ms2 � cs� k
W�s� � −mg sin�θ0�

ms2 � cs� k
Θ�s�; (44)

which means that an inertial sensor cannot distinguish
between a displacement of the support and a modification
of the orientation with respect to the gravitational field. More
precisely, Y�s� is a measure the displacement of the support
above the resonance of the mass and a measure of the tilt of
the support below the resonance. The coupling is maximum
for θ0 � π=2 and is known as tilt-to-horizontal coupling
(Rodgers, 1968, 1969). This explains why stretching filters
cannot be used for horizontal sensors. In order to minimize
this problem, Rijnveld and Van Den Dool (2010) and Laro
et al. (2011) present a solution in which the rotation between
the sensor and the support is permitted. Thus, the sensor is
not tilted when the support rotates and can still measure only
the horizontal displacement.

Zero-Length Spring

In all of the inertial sensors described thus far in this
article, the working principle relies on the availability of
an oscillator with a very low resonance frequency, typically
around 1 Hz. In the first seismometers, it was realized by a
mass suspended by a soft spring. The major drawback was
that, as the static deflection increases with a decreasing
resonance frequency, the size became rapidly prohibitive.
In LaCoste (1934), a more compact design was proposed,
represented in Figure 13a and Figure 13b for the vertical
and the lateral directions, respectively.

Further decreases in size have been achieved with the
introduction of leaf springs, which basically consist of pre-
bent flexible beams (Wielandt and Streckeisen, 1982). This
solution is still widely used in most of the geophones and
seismometers. The major drawback of leaf springs is that

the decrease in size is achieved at the cost of the introduction
of spurious resonances (Ling et al., 1990; Faber and Max-
well, 1997), thereby requiring a careful design. Typically,
an oscillator with a fundamental resonance at a few hertz
has a second resonance between 100 and 200 Hz. In Acer-
nese et al. (2008, 2010), an interesting alternative has been
presented, whereby a horizontal seismometer has been devel-
oped using a folded pendulum. It uses flexural joints and a
tunable fundamental frequency, strongly decoupled from the
higher-order modes. Other interesting devices are presented
in Cacho et al. (1999), in which the rotative inertial mass has
a V-shape to improve the sensitivity; Bertolini et al. (1999,
2004), in which a low-frequency oscillator is achieved with
an antispring; and Oome et al. (2009), in which a permanent
magnet is used to compensate for the gravitational force.

Sensor Noise

A low-noise floor is important to improve the resolution
of a sensor (see equation 2). This is particularly critical when
they are used in active vibration isolation strategies that do
not rely on passive isolation (i.e. active hard mounts; Collette
et al., 2010; van der Poel et al., 2007; van der Poel, 2010;
Montag, 1996a). The main sources of noise are reviewed in
the next section, followed by a general method to experimen-
tally evaluate the sensor noise.

Sources of Internal Noise

Ground-motion sensors are all based on the measure-
ment of the relative motion of a proof mass with respect
to the ground. In such sensors, there are basically four dif-
ferent sources of noise (Rodgers, 1992, 1993,; Rodgers et al.,
1995; Barzilai, VanZandt, and Kenny, 1998; Pallas-Areny
andWebster, 2001): (1) thermomechanical noise, (2) thermo-
electric noise, (3) shot noise, and (4) flicker noise.

Thermomechanical noise, or Brownian noise, of the
seismic mass is caused by molecular collisions with air
(Saulson, 1990; Rowan et al., 2005). This surrounding
environment exerts a random force on the mass, ΦF�ω�,
for which the power spectral density is given by Nyquist’s
formula (Kittel, 1958; Saulson, 1990),

(a) (b)

Figure 13. LaCoste suspensions (LaCoste, 1934).

Figure 12. Tilted inertial sensor.
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ΦF�f� � 4kBTc�N2=Hz�; (45)

and that results in a power spectral density of the mass accel-
eration of

ΦB�f� �
f4

�f20 − f2�2 � �2ξf0f�2
16πkBTξf0

m
�m=s2�2=Hz;

(46)

where kB � 1:38310223 × 10−23 J=K is the Boltzmann’s
constant, T is the temperature, f0 is the resonance frequency
of the oscillator, and ξ is the percentage of critical damping.
For example, taking ξ � 0:7, T � 300 K, m � 10 gr, f0 �
1 Hz gives ΦB�f� � 7:3 × 10−17�m=s2�2=Hz, which corre-
sponds to an rms displacement of 0.02 nm. This contribution
becomes larger with a decreasing size of the proof mass.

Thermoelectrical noise, or Johnson noise, is the electri-
cal equivalent of the thermomechanical noise. It is generated
in the resistive components of the sensor circuit due to ran-
dom thermal excitation of the charge carriers, generating a
white noise voltage of

ΦJ�f� � 4kBTR�V2=Hz�; (47)

where R is the resistance. Typically, it corresponds to an rms
value of some picometers above one hertz. For a capacitor C,
the dielectric loss can be modeled by placing a resistance RC

in parallel to the capacitor (van der Poel, 2010). The equiva-
lent resistor is

RC � 1

ηωC
; (48)

where η is the loss factor of the capacitor.
Shot noise, or Schottky noise, is caused by random

movement of electric charges across potential barriers, such
as p–n junctions (Pallas-Areny andWebster, 2001). Its power
spectral density Φsh�f� can be modeled by

Φsh�f� � 2qIdc�A2=Hz�; (49)

where Idc is the average current that crosses the barrier and q
is the electric charge. It has the shape of a white-noise
current.

Flicker noise, or 1=f noise, is mainly due to impurities
in the production of semiconductor devices. Its main charac-
teristic is that its power spectral density is inversely propor-
tional to the frequency and can be modeled by

ΦV�f�j � K=fα�V2=Hz�; (50)

where the exponent is usually α � 1. Typical values for
sensor amplifier’s noise constants can be found in van der
Poel (2010).

As these sources of noise are uncorrelated, the overall
sensor noise floor Φnn�f� can be directly estimated by sum-
ming all of the contributions using consistent units:

Φnn�f� � ΦB�f� �G2fΦJ�f� � Z2�f�Φsh�f� � ΦV�f�g;
(51)

where Z�f� is the load at which the current noise is devel-
oped and G is the sensitivity, converting the voltage (V) into
acceleration (m=s2). The next section provides a tool to eval-
uate the magnitude of the overall noise arising from a set of
sensors and amplifiers.

Detection

Let us callU the quantity to measure (see Fig. 14). Place
two sensors of the same type side by side, with S1 and S2 as
their respective sensitivities.

Assuming that N1 and N2 are the noise of the two
sensors, the outputs in the frequency domain are given by

X�ω� � S1�ω�U�ω� � N1�ω� (52)

and

Y�ω� � S2�ω�U�ω� � N2�ω�: (53)

Resolving equation (52) for U�ω� and substituting the
solution into equation (53) gives

Y�ω� � H�ω�X�ω� � N�ω�; (54)

where H�ω� � S2�ω�=S1�ω� and N�ω� � N2�ω�−
H�ω�N1�ω�. If N1 and N2 are statistically independent of
each other and of the quantity U, it follows that

Φyy � H2Φxx � Φnn � Φss � Φnn; (55)

which expresses that the total signal power spectral density is
the sum of a coherent useful signal Φss and noise Φnn.

In practice, from the two time histories x�t� and y�t�, we
first calculate the power spectral densities of each signal and
the transfer function H�ω� between them:

H�ω� � Φxy

Φxx
: (56)

Then, Φss is calculated by

Figure 14. Two sensors measuring the same input vibration
(Holcomb, 1989; Montag, 1996a,b).
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Φss � H2Φxx; (57)

and Φnn is calculated by equation (55). The coherence γ2xy
between x�t� and y�t� is defined as the ratio between Φss

and Φyy,

γ2xy�ω� �
Φ2

xy�ω�
Φxx�ω�Φyy�ω�

; (58)

the signal-to-noise ratio (β) is the ratio between Φss and Φnn,

β�ω� � Φss

Φnn
� ΦxxH2

Φnn
� γ2xy

1 − γ2xy
; (59)

and the ratio between the amplitudes of signal and noise is���
β

p
. The amplitude spectrum of the noise is

N�ω� � Φ1=2
nn �ω�; (60)

and its rms value is

Nrms �
�Z ∞

0

Φnn�ν�dν
�
1=2

: (61)

Finally, using equations (60) and (2), we can readily evaluate
the resolution R of the sensor. Figure 15 compares the R of a
few different sensors: geophone (Mark L4C), seismometer
(Güralp CMG–6T), capacitive (PI PISECA 510), and inter-
ferometric (Acernese et al., 2010; Braun and Karrai, 2011).
Except for the curve corresponding to the interferometric
sensor (which has been fitted from data taken in the corre-
sponding references), the curves have been fitted from ex-
perimental data using the method described previously in
section Sources of Internal Noise. At low frequency, the
1=f noise is inherent to the electronic circuitry. At higher
frequency, capacitive sensors have a resolution about 10
times better than magnetic sensors, and interferometric sen-
sors further improve the resolution by another factor of 10.
Of course, the exact location of the curves depends on the
sensor used, but the tendencies should be conserved.

Conclusions

In this paper, the main types of inertial sensors used to
measure low-frequency linear vibrations have been re-
viewed: displacement sensors, geophones, accelerometers,
and seismometers. The working principle of each has been
explained, along with their main characteristics. In summary,
all of them use a single-degree-of-freedom oscillator as
absolute reference. Typically, the oscillator has a resonance
frequency of a few hertz. However, geophones use a coil as
the sensitive element, while displacement sensors and seis-
mic accelerometers use a relative displacement sensor. For
both accelerometers and geophones, the dynamic range
can be extended using the force-balance principle. Usually,
accelerometers are more suitable to measure low-frequency
signals because their bandwidth corresponds to frequencies
lower than the resonance of the inertial mass. Geophones and
displacement sensors are more suitable to measure high-
frequency signals because their bandwidth corresponds to
frequencies higher than the resonance of the inertial mass.
For each sensor type, the procedure to extend the bandwidth
by moving the corner frequency has also been presented.
Then, the primary fundamental limitations of inertial sensors
have been reviewed: tilt-to-horizontal coupling, zero-length
springs, and sources of noise. Finally, the procedure to eval-
uate the overall sensor noise has been presented, along with
numerical examples, showing that optical sensors show
currently the best noise figure, and a high potential for the
development of future inertial sensors (Fig. 15).

Data and Resources

A comparison of commercial accelerometers and seism-
ometers can be found in http://www.passcal.nmt.edu/content
/instrumentation/sensors/sensor‑comparison‑chart (last ac-
cessed November 2011). All data used in this paper came
from the published sources listed in the references.
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