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Abstract 
Optical measurement techniques are very promising for finite element (F.E.) model updating or error 
localisation of plate-like structures in the field of structural dynamics. The purpose of this work is to 
investigate a way to better exploit the high spatial resolution inherent to these techniques in order to 
correct FE mesh discretisation errors and/or model parameter errors. An important assumption in F.E. 
model error detection is first to consider the initial mesh as sufficiently fine to well represent the 
measured (displacement or stress) field. In the case of model updating, the adjustment of the model is 
performed by minimising the difference between the outputs of the model and the exact solution with 
respect to design parameters. In the case of FE mesh adaptation, the exact solution has to be estimated 
whereas in the case of model parameter errors, the reference solution is assumed to be the measured 
one. The idea developed in this paper is to take advantage of the high spatial resolution offered by 
optical techniques to calculate successively two error estimators using only measurements. The 
experimental field is first used for the detection of singular regions corresponding to high gradients. 
This estimator indicates the regions where a mesh refinement is required. Thus a second estimator is 
calculated and used for parameter error detection. 
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1 Introduction 

The study of jet engine turbine’s blades constitutes a very interesting field of investigation for 
researchers working in structural dynamics. 
Industrials are looking for more accurate dynamical behaviour predictions. But blades have been 
studied for years and industry is confronted with current experimental and analytical techniques 
approaching the end of their development.  On the other side, the development cost and the importance 
(as much strategic as technical) of turbine blades justify the development of new technologies and 
heavy studies. Of course, cost and lead-time are of major importance.  It seems that innovations in the 
study of blade dynamical behaviour must go through a better exploitation of experimental results and 
the implementation of new testing processes. 

1.1 Specific dynamics problems of turbine blades  

In a jet engine, rotating components (i.e. rotor blades) passing in front of fixed components (i.e. stator 
blades) are excited by important pressure fluctuations. The number of blades on a stage and the 
combinations between stages generate excitations acting on a wide frequency band (up to 20 kHz) 
during engine’s normal operating rotation speeds. Up to twenty vibrating modes may be excited on a 
blade and they become a potential cause of failure during  operation. 
 

Blades have been modelled using the Finite Element Method (F.E.M.) since the beginning of 
commercial software. This process has been well dominated for years. The main problem is not 
coming from the reliability of the F.E. used for the – virtual – modelling, but from the physical 
behaviour of a blade. This one has been manufactured with tolerances, with local heating, stresses or it 
has perhaps been used, tested or damaged. This reality is included in the model via safety coefficients. 
The use of lighter, higher performance blades with less conservative margins of safety requires a better 
model of the real blade, not the virtual one. This can be achieved with dynamic testing, fault detection 
and model updating.  In  this paper, we will focus on the  dynamic testing and F.E. model 
improvement process of compressor blades. 

1.2 Dynamic testing objectives 

When dealing with jet engine blades, which are excited at high-frequencies, dynamic testing programs 
are very difficult to achieve.   
The first objective is the detection of very small size structural faults for the updating at the modelling 
level. The second goal is to determine optimum sensor placement for the monitoring of all critical 
vibratory responses within the wide engine excitation range, to avoid unexpected resonances 
encountered during initial and costly engine running. Due to the number of locations necessary and the 
engine instrumentation limitations, it is not possible to measure maximum stress for all responses.  In 
order to monitor dynamics stress or displacement for all critical vibratory response modes, the sensors 
location have to be optimally selected to measure a significant percentage of the maximum stress of all 
modes of interest. During dynamic testing, ratio have to be established between maximum stress or 
displacement locations and optimum nominal engine sensors locations. For structural health 
monitoring or for quality control the objective is to detect out of tolerance parameters or minor 
damages before they can combine and propagate to cause failure of the blade. 

Of course, accessibility to the blade is required for a short time and non destructive techniques have to 
be used. 
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1.3 Particularities of blades dynamic testing 

To achieve those objectives, complex high frequency modes have to be analysed because they are 
more sensitive to damage than simpler lower frequency modes. This leads to high spatial resolution 
measurement techniques.  
Problems arise due to technical limitations, especially for light weight structures measurements. The 
use of distributed sensors (e.g. accelerometers) in dynamic structural testing is a widespread 
measurement technique. However, it usually leads to a very poor spatial resolution. The large number 
of measurement points which is needed would require too many sensors to be placed on the structure 
under test.  This not only gives practical problems, but also technical ones such as mass loading 
effects. Moreover, in the medium to high frequency range the wavelength of the structural motion is in 
the range of the distance between two neighbouring sensors or even of their diameter. 
In conclusion, the experimental techniques used for dynamic testing have to be able to measure a full 
field of deformations of the vibrating structure in a non-contact and punctual way on a very wide 
frequency band with a high sensitivity. 

2 The errors in a F.E. models 

Considering that capabilities of numerical structural modelling are increasing, the analyst do not 
readily admit that the models may contain inaccuracies, while the reality is that these models are 
approximations of what he believes the system to be.  Models need to be adjusted, refined and 
broadened to provide a better representation of the real system. Different types of errors may arise in 
F.E. models: 
Errors associated with discretisation in model generation.  They are related to the number of elements, 
to their type and their spatial distribution. 
Idealisation errors in the model assumptions.  They are associated to uncertainty on the boundary 
conditions and inaccuracy in the idealisation of the model parameters. 
Errors associated to model updating.  They are related to the critical steps -expansion, parameters 
selection – of the process. The selection of the elements and their characteristics, which are allowed to 
change, and the range of variation are of major importance. If the wrong parameters are selected for 
updating then an incorrect description of the updated model may result. The analyst understanding of 
the model and selection of parameters are heavily dependent on the location and type of detected 
discrepancies. However, the quality of the error localisation strongly depends on the expansion 
reliability, which is itself related to the number of well identified experimental modes. In fact the main 
drawback of mode-shape vector expansion techniques is that mathematical errors due to the expansion 
process are spread all over the structure. They are added to measurement errors and noise. A large 
number of measured co-ordinates helps to enhance the expansion quality and thus the model error 
localisation results. 
Errors inherent to numerical operations. 

3 Appropriate experimental techniques 

Particularities of turbine blade dynamic testing – full field, non-contact, punctual deformation 
measurement – require new experimental techniques. These can be divided in two categories; those 
measuring a strain field –thermographic and/or thermoelastic strain measurement – and those, very 
sensitive, measuring a displacement field by use of a laser illumination ( Holographic Interferometry 
and Electronic Speckle Pattern Interferometry (ESPI)) – Scanning Laser Doppler Vibrometry (SLDV).  
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Field measurement techniques offers many opportunities to increase the investigation capabilities of 
experimental vibration testing. Nevertheless, their use introduces new problems with respect to 
traditional measurement techniques. Despite great technical advances, their use in the field of modal 
analysis is still quite limited. In fact, some technical problems are not yet completely solved. 

3.1  SLDV 

The Laser Doppler Velocymetry (LDV) is a non-contact velocity transducer based on the analysis of 
Doppler effect on a laser beam emerging from a moving surface. It offers the possibility of performing 
quick and flexible non-intrusive vibration measurements. 
 

LDV's major advantage compared with other optical techniques is its ability to measure not only 
harmonic but also random vibrations.  This allows a quick measure on a wide frequency band of 
response functions and the use of classical identification programs. The very large range of vibration 
amplitude can also be an advantage. By means of a scanning system (composed of two mirrors with 
orthogonal rotation axes which deflect the focused laser beam in the desired location), the 
measurement beam can rapidly, precisely and automatically be positioned from point to point. This is 
different of the other techniques mentioned above which provide a simultaneous measure of the points 
on the surface and display a digital picture. 
 Recent commercial systems are already able to pilot the measurement point on a geometrical 3-D grid 
with a high spatial resolution [15].  In-plane and out-of-plane velocity components at a point are 
determined.  The knowledge of a hihgh3-D spatial density field can be used to determine many 
dynamic properties such as rotations, strains, stress and acoustic emissions. [13] used changes in 
curvatures of the Operational Deflection Shapes (ODS) of a blade to locate the damage.  A SLDV 
measures the vibration while piezoceramic patches provide the excitation. 
Therefore, and this is true for all optical measurement techniques, LDV is sensitive to many interfering 
inputs : optical properties and roughness of the measured specimen, density of the medium where the 
optical beam propagates.  Problems may arise from the control and use of automatic scanning [14]. 

3.2  Thermography – thermoelacticity  

The thermoelastic effect is the adiabatic temperature change due to material dilatation. This small and 
local temperature variations are measured with an infrared camera. [11] used experimental 
thermoelastic analysis on high frequency modes of vibration of a complex turbine impeller and 
outlined problems with vibrating modes resulting in high multi-axial stress distribution. The system 
displays stress magnitude based on the sum of its principal stress values, which could be significantly 
higher than either of the individual principal stresses.  Since strain gage output indicates stress only in 
the direction of strain orientation, this discrepancy with thermoelastic results is a problem for optimum 
strain gage locations. Moreover, the possible incompatibility between strain gage size the spatial 
resolution has to be considered. 

The main limitation in this technique for vibration response measurement is the stress level required 
especially for high frequencies. 

The thermoelastic stress measurement is not strictly speaking a non-contact technique when a thick 
coating has to be applied on the measured surface.  This can influence high frequencies of light 
structure vibration response. 

3.3  Interferometry 

Together with LSDV, interferometry techniques, such as Electronic (or Digital) Speckle Pattern 
Interferometry (ESPI or DSPI) or holographic interferometry, look the most promising. 
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Figure 1 : DSPI set-up 

 
Speckle is the grainy aspect of the image produced by coherent light illuminating an optically rough 
surface. The speckle is moving with the illuminated surface. The recording of the interference between 
the speckle pattern and a reference beam (called "specklegram") enables to measure the displacement 
of the surface. When the surface gets out of shape, an optical path difference (OPD) occurs in the 
interferometer (fig . 1 ). The OPD is recorded by a CCD camera as a variation of the speckle intensity. 
The subtraction of the phase associated at each object point before and after object displacement yields 
a fringe pattern. When interferences between two exposures of a moving surface taken at different 
moments in time are generated, the fringes (alternation of dark and bright areas) represent contour 
lines of displacement which occurred between the two exposures. 
The recording of three OPDs along three sensitivity directions enables to extract the 3-D displacement 
at each point of the surface. The three sensitivity directions are the bisecting lines of the angles formed 
with optical axis of the visualization system and the three object beams that illuminate the object under 
investigation. During the acquisition process, the object is illuminated with each object beam alone so 
that three measurements are necessary to determine the 3-D displacements [9].  
DSPI used a CCD camera to produce and analyse the fringe map. In holographic interferomerty, it is 
neccessary to record again the holographic interferograms witk the CCD camera. The DSPI system is 
less sensitive to perturbations because of its lower resolution. 
A very common technique to measure harmonic vibration with interferometry is the time-averaging 
technique instead: of measuring the interference between two moments in time, interference between a 
rest state and a recording of several periods are gathered and averaged.  This technique is used very 
often as a quick but rough modal analysis method where a sine wave generator is controlled and swept 
in frequency.  As the camera gives the fringe pattern in real time, it is very easy to find the resonance 
frequencies and to get an idea of the deformation shape.  But only the amplitude of the sinusoidal 
vibration at each point can be measured.  Any phase information is lost. By using phase shifting 
technique, and stroboscopic laser illumination at the vibration frequency, it is possible to extract 
amplitude and phase information for every point (pixel) of the fringe pattern at a single frequency. The 
strobing pulse is synchronised with the excitation signal ensuring that maxima or minima of the 
surface motion are observed. An interferogram between the image of the structure without excitation 
and an image of the vibrating structure is recorded. This process obviously assumes a response field 
with all displacements perfectly in phase. 
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3.4  Differentiating close modes 

Waiting for the use of time pulsed laser, holographic measurement techniques are only able to deal 
with an harmonic vibration at a constant frequency. The complete set of complex FRF’s necessary for 
modal parameters identification is not available. 
[12] have rebuilt FRF using as many hologram recordings as spectral lines in the target frequency 
band.  When all FRFs are measured and calculated, standard modal parameters identification methods 
can be used.  But this process is very heavy and, due to the high number of available response points, 
the modal parameter estimation methods might be optimised which leads to spatial domain techniques. 
So, the state of the art in holographic vibration measurement for experimental modal analysis 
implicates the following major assumption : the structure vibrates in a mode where only one mode 
shape is present.  This is even extended to the constraint that this single mode is excited with only one 
harmonic excitation signal at resonance frequency.  This is equivalent to assume that a response 
deformation shape due to a single harmonic excitation at resonance frequency is equal to a mode 
shape. 
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Equations for the harmonic response vector z(k) and dynamic influence coefficients akl show that the 
above statement is true if :  
- The natural frequencies of the modes are far from each others.  Then, the modal response to all 

modes is low compared to the modal response of the target mode k. 
- The damping is low. 
- The forcing vector is such as it amplifies the mode k and attenuates all other ones.   
Otherwise, the response displacement at a natural frequency will be contaminated by other mode 
shapes.  The combination of mode shapes will also result in a response displacement where all points 
do not move in phase.  This phase difference can not be detected by time-averaged method. 
For larger blades, a multi-exciter sinusoidal excitation where the forces are tuned to force a pure 
normal mode behaviour could be a solution.  Piezoceramic patches could provide the excitation. But 
simple recommendations can also improve efficiency of holographic measurements for experimental 
modal analysis : 
- Use of a force control to guarantee a constant response displacement. 
- Introduction of a load cell to measure input force and some reference responses. One accelerometer 

for the driving point and a LDV for resonance frequencies detection and, if necessary, for a very 
rough identification of damping ratio. 

[14] develops techniques to solve other technical points to be considered before using the optical data 
in a F.E.M. updating process. 

4 Exploiting experimental data 

Since the interferometry based measurement techniques output displays a coarse 2D grid of points (up 
to 512 x 512) compared with the 3-D finite element analysis results, the major difficulty is no more the 
lack of experimental information but the way to manage the measurement field to their best. 
The challenge is the transformation of measurements of a physical phenomenon into values 
compatible with theoretical hypotheses associated to F.E. modelling  - for example discontinuity of the 



 QUANSE 2002, April 9-12, 2002, Concepción, Chile 
  

 7

stress field, degree of the displacement field – and defined on a mesh to give them a meaning in the 
F.E. technique point of view. Experimental stress values are seldom used for finite element model 
improvement, because of the difficulty to introduce stress data in standard updating schemes.[4] chose 
a mixed finite element approach, based on simultaneous approximation of displacement and stress 
field to overcome that problem. 
When the measured and calculated values are of same nature and associated to the same topology, the 
analytical vs. experimental discrepancy is easy to determine. At this point, one would like to be able to 
compare the measured value at each pixel with the corresponding value of the discretised solution. 
However, the transformation of the experimental data (defined in the absolute reference frame) into the 
intrinsic coordinates system of a single finite element is a difficult inverse problem. Moreover, the 
stress field is not continuous in the kinematically acceptable models. For these reasons, it is preferable 
to fit the experimental field using the same polynomial expressions as the ones used in the finite 
element formulation. [4] has chosen to transform experimental value into a modal vector for each 
element.  To associate experimental measurement points coordinates with values in the intrinsic co-
ordinate system, each element has to be divided in small areas where the experimental value is 
assumed to be constant. Nodal values are computed through interpolation functions of the same degree 
as the finite element modelling. This attractive technique implicitly supposes that, on each element, the 
experimental field can be expressed by a polynomial expression of the same degree as the F.E. 
representation.  In other words, it supposes that the discretisation is sufficiently fine to precisely 
represent the experimental field. 
But if mesh refinement techniques are very efficient to build models which represent well what the 
modelled structure is expected to be, they are not able to take into account what measurements reveal 
it is in reality. 

5 Original solution 

The idea is to start by comparing the experimental field with the F.E. one.  The experimental field is 
introduced in a mesh discretisation error calculation process.  This permits the detection of singular 
regions corresponding to high gradients.  When the mesh is refined to be able to represent the 
experimental field with a given precision, the latter is transformed into modal vectors can be used in 
the updating process. 
The similitudes between the indicators used in discretisation error detection and in the updating 
processes make this approach much more easier. Indeed, common error localisation common methods 
[Ph Colignon] used for updating and failure detection use a residual energy indicator. It consists in 
evaluating the residual energy at a local level (element-by-element or substructure-by substructure). 
The error estimate for element e corresponding to mode k is given by : 
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where { }V  represents the experimental eigen mode, { }U  the analytic one and [ ]K  the stiffness matrix. 
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where m is the total number of measured modes. 
 
Equation (3.) is in fact equation: [ ][ ]{ } [ ][ ]{ }∫ ∇−∇
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where the metric [D] -1 , Euclidian norm and the dicretised expression of the displacement field (6.) 
have been used. 
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where ∇ is the spatial differentiation operator and D the elasticity matrix. N is the shape function and 
Ue the vector for generalised coordinates resulting from the finite element discretisation of the 
structure. 
This is equivalent to evaluate the distance between two stress fields : 
 

 { } { }∫ λ−σ
eV

eVd   (7.) 

where σ is the experimental or reference field associated with the corresponding mode shape vector u 
and λ is the analytical stress field associated to v 
This expression used here for the localisation of discrepancies between analytical and experimental 
results is also the basis of some mesh refinement methods in static linear analysis. Actually, it is well 
known that the use of a kinematically admissible FE model leads to residual errors in the equilibrium 
equation and to stress discontinuities along the interfaces between the elements. Mesh refinement 
methods [1,3] look to transform these errors into an indicator of discretisation errors. The error 
estimation methods based on the discontinuity of the  finite element’s solution stress field, consists in 
building a new field  with better continuity properties from this solution. This improved field  replace 
directly the experimental field in equation (7.). 
The elements’ new size are determined on the basis of the global error, of the local errors provided 
from the estimator and of a convergence ratio of the solution in the elements. Then a new mesh can be 
generated. 

5.1  Analogy with mesh discretization errors detection 

Our fault detection methodology is established by analogy with mesh refinement techniques studied by 
Dufeu-Beckers [3]. 
The method used to lead to the field λ consists in building a field with a degree at least one time 
greater than the finite element analysis one. This field may be expressed at an element level following: 

 ∑
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where n is the number of measurement points  included on the element skin, Ni is a polynomial 

function with the same degree as the field and 
~

is  the experimental values. To ensure that the field is 

continuous, 
~
ϕ  will take the form of a polynomial function defined on an area rΩ  of the measured 

domain.  

5.2  Representation of the field 

Whether speaking about the displacement or the stress field, the notation rϕ  will be used to represent 
the recovered field. Each component of this field is represented by the polynomial function: 
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This approach is compatible with all the new field measurement techniques introduced above because 
ϕ can be a stress, strain or displacement field. 

5.3  Definition of the patch area 

The patches are the areas drawn by the projection on the measurement grid of several finite elements 
and in general, they overlap partly. These areas must be chosen to have enough data to allow the 
interpolation of the field. The fields ϕr will be built on those areas. Usually, the patch area associated 
to a node j  is made up of the set of elements that are connected to this node. But a patch can be 
associated to an element. This method is known as the “patch recovery” method 
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where iΩ  represents the element i and mj the number of elements connected to the node j. 
The nodes taken into account to build the patches are only those defining an element face which 
contain measured points. Here a patch is a 3-D surface and not a volume. 

5.4  Normalisation of the coordinates 

It is shown in [7] that the results of the recovery of a field represented by a bilinear polynomial depend 
on the co-ordinate system of the area, on its position, on its size and its orientation. In order to obtain 
the most general possible procedure, it is necessary to have a recovery method that is independent of 
the system of axes chosen to evaluate the polynomial coefficients. It has been shown in reference [3] 
that it is advisable to use a complete polynomial and a normalised system of coordinates. The 
normalisation used in one axis is defined in the space [-1,1] by:  
 

minmax

min21
χχ

χχχ
−

−+−=n   where χ represents the co-ordinates. 

 

This normalisation guarantees the definition of an area which touches all the lines defining the limits 
of the normalised space [3] and which is weakly dependent on a particular direction. 

5.5  Construction of the field ϕr 

The unknown parameters a in equation (9.) are obtained by minimisation of the difference between the 
experimental results and the smoothed values at the points of measurement in the "patch". This results 
in minimising the function :  
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where  ω(xi, yi, zi) is a weighting function that can be used to balance the influence of the points (xi, yi, 
zi) according to their distance to the central node which defines the geometrical area. The problem 
defined by equation (14.) is in general over-determined and its solution can be estimated using a least 
square method. For this purpose, let us consider the following function :  
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where (xi, yi, zi) are the coordinates of the selected group of points; mi = ∑
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these points (ke = the number of points in an element of the area).  
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which can be put in the matrix form:  
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(17.)
 
Note that the number of equations to be solved for each component in each area is low. This makes the 
method less expensive than a method that would use a global projection. It should be noted that this 
construction process leads to a smoothed experimental field. It will be explained later that this can be 
an advantage. However, the difference between this improved field and the experimental one can be 
quantified at a previous stage when the FE mesh quality is checked. If the FE model discretisation of 
the structure is well adapted, the difference between the two fields is weak.  

5.6  Reconstruction of the field 

Once the field ϕr has been built on the patch areas, it becomes possible to evaluate the value of the 
continuous field ϕ~  at any point of the continuous structure in the global co-ordinates. Consider a point 
located on the border of the structure : one keeps first the values of ϕr on all the areas to which the 
point belongs. Thus one calculates the weighted average using the following equation :  
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where mj is the number of areas including the point j ; Cj
r is a weighting factor corresponding to the 

distance between the point and the node which is associated to area r.  
The value of the displacement or stress field is then available at any measurement points and more 
particularly, at any points inside an element like the points of Gauss of the external surface for 
instance. 

6 Advantages of the approach 

The alternative of using shape fitting has some attractive major advantages: 
- Thanks to the fitting of the experimental field, unmeasured displacement can be estimated. It is now 
possible to associate an experimental value to every node of the mesh on the measurement surface but 
particularly, to any point in the element measured face. This allows for the construction of indicators 
of the errors of discretisation. Moreover, the use of the patch recovery technique makes the process 
computationally simple. 
- In classical updating processes, the expansion by projection of the experimental modes on the base 
defined by the analytical modes has proven its efficiency. This projection has a smoothing effect on 
the measurements and makes them more compatible with the analytical solution. Here, the fitting of 
the measurements by use of polynomial expressions of the same form as those used for the FE analysis 
has a smoothing effect. They can then be used in numerical calculations, such as updating, without 
introducing numerical instabilities as sometime happens when using directly the measured data. 
- The use of models with six DOFs per node for updating or coupling [20] may require the 
measurement of the rotational DOFs. They are normally neglected from experimental modal analysis 
due to the difficulty in measuring them. [19] calculates the two out-of-plan rotations by derivation of a 
plane fitted in a least-square sense to SLDV measurements. 
- The process developed here can be extended to models using shell elements [1]. 
- With thin structures, when the experimental response set is limited only to out-of-plane translations, 
the displacement along the two other directions may be evaluated. The measured translations can be 
associated with the points of the neutral axis and with the assumption of small displacements, the 
movement in the two other directions can be taken equal to zero. If the structure deformation maintain 
each section perpendicular to the neutral fibre the displacements can be evaluated anywhere else on the 
section. 
- The approach can be used for any measured field, namely: strain, stress and displacement. 
- The fitting tools can be used for the geometrical correlation. A polynomial representation of the FE 
topology of the measured surface can be build. If the angular position of the measuring axis is 
expressed in the model's axis ( using optical techniques ) it is possible to associate at each pixel of the 
grid displayed by the measurement system its third co-ordinate. Indeed, with isoparimetric elements, 
the polynomial functions used to express the displacement field are the same as those used for the 
geometry. 
- The process is completely compatible with current FE programs because it uses their inputs and 
outputs. 

7 Correlation between experimental and FE results 

A commonly-used technique for estimating the amount of correlation between measured and FE 
mode-shape vectors is the Modal Assurance Criterion (MAC) defined as follows : 
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MAC values give a good idea of the closeness between two different mode-shapes ϕexp and ϕFE. They 
oscillate between 0 and 1. An unitary value means a perfect correlation. The mode shapes have to be 
rescaled before correlation. 

8 Indicators of the errors 

The indicators developed in this work are specially intended to the study of mid-size blades. Those are 
usually modelled by two layers of solid elements (parallelipiped or prism) at degree two. But, only the 
points on the external skin of the structure are measured. Than, if the structure is of a thin plate-type 
and if the amplitudes of deformation are small, the following assumption may be done: 
- they are no deformation in the thickness; 
- the in-plane displacement of points on the neutral fibre are null. 
Than the displacements at all the nodes of the elements can be estimated. 
The error at one measurement point is defined as:    ( ) ( )ii~)i(e hϕ−ϕ=   where ( )i~

hϕ  is the 
experimental fitted field and ( )ihϕ  is the experimental or calculated one at the point i. If it is the 
experimental field than the error include the discretisation errors. At an element level an using an 
energetical formulation the error is: 
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T deDe     where D  is the elasticity matrix. 

8.1  Errors in the fitting process 

To quantify the accuracy of the fitting process, the discrepancy between each measured value and the 
fitted one is check. At an element level error must respect: 
 

( ) ( ) tolerancezyxzyx iiiiii
N

e

≤−∫
Ω

,,,,~
expexp ϕϕ ,     where N is the degree of the fitting. (20.) 

If this error is above a fixed tolerance for an order N greater than the degree of the finite elements, this 
is a first indicator of discretisation problems.  

8.2  Discretisation errors 

When the fitted field is an acceptable representation of the measurements, it will be used as the 
reference for all the error calculations. In the following it will be called the measured field. 

8.2.1 Errors calculation using the shape functions  

Knowing the value of the measured field at the nodes of the elements ( eq~ ) and at the Gauss points 
( iχ ) of the external skin of the elements, the following error may be calculated: 
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This is an indicator of the aptitude of the shape function to represent the experimental field on an 
element. 

8.2.2  Errors calculation using the stresses 

The averaged stress value over an element E is compared with the averaged stress value of a smaller 
element e build inside. The size of the element is maintained along the thickness of the blade. The 
error is: 

 ( )( ) ( )( ) ~

e
e
iE

n

i

~

E
E
iE qNDqND

n
1 χ∇−χ∇∑  (22.) 

In the same idea, the shape function can be introduced : 

 ( )( ) ( )( ) ))((1 ~~
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E
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e
iE

n

i
e

e
iE qNNDqND

n
χχχ ∇−∇∑  (23.) 

8.3  Errors in the parameters of the model 

The basic equation for the calculation of the discrepancies between the analytical and experimental 
field is: 
 ( ) ( )ii~)i(e EFEXP ϕ−ϕ=  (24.) 
 

where ϕ is a displacement or a stress field and i is a node or any point on an element. 
The comparison of the gradient of displacement between the FE solution and the measured one is also 
a very sensitive indicator. 
The indicators of the error may first guide the mesh refinement. Than the essential parameters of the 
elements showing parametric-type errors may be used in the optimisation loop of the updating process. 
Those parameters are the classical input of a FE analysis - Young modulus, thickness and the mass per 
unit of volume – and may be restricted by the manufacturing tolerances. 
Their small number and their strong physical meaning should make their optimisation easy since the 
mesh has been refined in order to be able to represent the measured field. 

9 Case study 

The process of detection of the different types of errors in a F.E. model has been validated on the 
example of a clamped plate structure (60 x 90 x 3mm) (fig. 2 ) using a simulated measured field of 
displacements. The plate is made of steel (Young's modulus = 2.1 10E11 N/m2). The mode considered 
is calculated using a very fine FE mesh (154860 DOFs, 9256 elements), in comparison with the one 
used for the calculations. For the sake of concision a single high frequency mode has been 
investigated. A complete process should include the whole set of modes over the frequency band of 
interest.  
The calculated mode is perturbed by noise. Its maximum value is equal to 2% of the maximum 
displacement. The noise is composed with 1% of white noise an 1% of a combination of the two 
nearest modes.  
The simulated defect is a stiffness loss located at point D (60 x 55) (fig. 1 ). The defect is a 8 x 4 x 3 
mm area where Young's modulus has been reduced of only 30 %. 
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D

 
Figure 2: Simulated optical measurements without the added noise, with defect 

(Mode n° 11 at 12020 Hz - SAMCEF Dynam). 

9.1 First F.E. model 

A first model made of 400 elements ( 7080 DOFs) is considered.  
The correlation between the smoothed field and the measured one for the 11th mode and for the three 
measurement directions x, y and z gives MAC values equal to 0.99981,0.99909,0,99994 respectively. 
Such values should cause the end of the optimisation process of any updating programs based on the 
MAC. 
For a fitting with polynomial function of degree 4, the maximum of the absolute value of the error on 
the fitting is about 0.037%. 

9.1.1 FE mesh discretisation errors 

                              
 Figure 3: error calculation using equation 22 Figure 4: error calculation using equation 23 
 
Results of the procedure for the discretisation error localisation are shown in figures 3 and 4. 
It can be observed that:  - the global mode is not correctly represented; 
 - the mesh is not sufficiently fine near the clamped edge. 
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Accordingly, the mesh has to be completely refined. 

9.1.2 FE parametrisation errors 

The detection of the errors on the parameters indicates ( fig.5 to 6 ) the presence of an error near the 
point (60x55) but also errors at the clamped edge. 
 

 
Figures 5 - 6: error calculation using equation 24 

error on the stress  -  error on the gradient of displacement 
 

9.2 Second F.E. model 

A very basic mesh refinement is realised on the areas where troubles are outlined by the first model 
(near the point (60 x 55) and near the fixations).The new model has 15912 DOFs for 1200 elements. 

9.2.1 FE mesh discretisation errors 

                                 
Figures 7-8-9 : calculation of errors on the discretisation  

- using equation 21 - using equation 22 -  using equation 23 
 
A discretisation error is still visible ( fig. 7 to 9 ) near the clamped end but it is several orders of 
magnitude lower than the one revealed by the first model. Near the defect, the mesh is good enough 
and the global mode is correctly represented. 
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9.2.2 FE parametrisation errors 

The error on the elements that have been localised is about 30 % of the absolute value of the three 
principal components of the stress calculated at the super convergence points of the F.E. elements 
(fig.10). 
 

 
Figures 10, 11 : error calculation using equation 24 

error on the stress  -  error on the gradient of displacement 

10 Conclusions 

The results of field measurement techniques have been exploited for the detection and the localisation 
of errors in a FE model. The proposed method has been tested using simulated data with noise and has 
shown its efficiency and its performance. The process has to be completed by : 
- taking the whole set of modes into account; 
- the use of realistic mesh refinement programs; 
- its introduction into an optimisation loop for updating. 
The next step will be to validate the method on a compressor blade using true optical data since there 
may be significant differences between simulated and real measurements. New developments will be 
focused on : 
- the introduction of noise on the geometrical coordinates of the simulated measurement points; 
- giving a better meaning to the indicators; 
- the study of the effect of the fitting polynomial functions degree, vs the size of the elements, on the 

reduction of the measurement noise. 
The sensibility of the process has already been proven with the detection of errors in a model with a 
MAC near one. 
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