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Experimental validation of fail-safe
hybrid mass damper

Simon Chesné1 and Christophe Collette2

Abstract

A simple control law, dedicated to improving the performance and stability of hybrid mass dampers, is investigated.

The resulting hybrid device is based on decentralized velocity feedback techniques. Two poles and two zeros are added

to the initial control law, in order to interact with the dynamics of the structure and the actuator. The interest of these

interactions is to change the poles of the closed loop system so as to make the controlled system hyperstable.

The margins of gain and phase are therefore infinite. Consequently, the proposed hybrid system controller is fail-safe

but also unconditionally stable in theory. Experimentation, using a tuned voice coil actuator, illustrates the performance

and robustness of this hybrid control device.
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1. Introduction

When a classical inertial actuator is used to actively
control a structure, its resonance frequency is much
lower than the fundamental resonance frequency of
the controlled structure. Such a device is often called
an Active Mass Damper (AMD). For applications such
as in buildings, actuators have a very low stiffness.
However, this may result in problems in the context
of embedded applications such as in transportation
vehicles (e.g., cars, helicopters or aircraft), which are
subject to significant acceleration and deceleration tran-
sients. In this context, to avoid large deflections of
the actuator’s mass, the suspension stiffness has to
be sufficiently high, thus increasing the fundamental
resonance of the actuator. In order to add viscous
damping to the structure, the natural way is to drive
these actuators with a signal which is proportional
to the velocity. However, for large values of the control
gain, stability is no longer guaranteed, even when
the structure velocity is measured near the AMD.
It is believed that this is the reason why many elaborate
control strategies have been introduced to control
AMDs (although this is rarely openly confessed):
classical tuning (Burgos et al., 2004), fuzzy controllers
(Battaini et al., 1997; Movassaghi, 2012; Li, 2014), pole
placement (Tso et al., 2013), Lyapunov’s method (Kim
et al., 2004), optimal control (Nishitani et al., 1996;

Wang, 2009; Yoshida and Matsumoto, 2009;
Qi et al., 2010), �-synthesis (Liu et al., 1998), H-infinity
(Baoya and Chunxiang, 2012), or sliding mode control
(Thenozhi and Yu, 2014). Other approaches consider
the problem of the proximity of the resonant frequency
of the actuator to that of the controlled structure.
To increase the stability margins of the control
system, they introduce a compensator into the feedback
loop Elliot and Rohlfing (2012) by actively softening
the actuator. The resulting compensator poses no
more restrictions on the fundamental resonant fre-
quency of the actuator. But these compensators are
usually based on the pole-zero cancellation principle
and present some known dangers. Indeed when the
pole-zero cancellation is not perfect, it can rapidly
destabilize the control system.

Recently, a novel class of dampers has appeared that
are trying to combine several objectives at the same
time. These devices are gathered under the common
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name of Hybrid Mass Dampers (HMDs), or Hybrid
Vibration Absorbers (HVAs). In this paper, we focus
on HMDs, which combine passive and active vibration
control. The objectives are threefold: (1) increase per-
formance, (2) reduce consumption, and (3) ensure a
fail-safe behavior, that is, that the damper will work
as a tuned mass damper when the controller is turned
off. For example, in Yoshida and Matsumoto (2009),
an HMD is presented where an optimal control is used
to combine structural damping with a restricted stroke
of the actuator. In Cheung et al. (2012), an H-infinity
optimal control is used to minimize both the response
and the control effort. In Rodriguez et al. (2016), an
FXLMS controller is used to enhance the frequency
range of an resonant isolation system for helicopter
applications (SARIB[copyright]). In Tso et al. (2013),
the control relies on the pole placement technique.
In Preumont and Seto (2008), a dual loop approach is
preferred to increase the stability margins. In Abe
(2004), a two degree of freedom system is studied,
which can behave as an AMD to suppress the vibra-
tions induced by small earthquakes, and as a tuned
mass damper to suppress the vibrations of a targeted
mode excited by a big earthquake. In the active config-
uration, a linear quadratic regulator is used with a large
gain on the structural velocity. The control is switched
off above a threshold value of the structure displace-
ment, that is, when the actuator cannot deliver the
requested force anymore. One common feature of the
aforementioned controllers is that they are model-
dependent and that the control law is usually complex
to tune. Thus their performance against parameter vari-
ations in the system is not very robust.

In order to bypass this limitation, this paper experi-
ments a novel and simple control law previously intro-
duced in Collette and Chesne (2016). It drastically
improves the performance of classical hybrid dampers
based on decentralized velocity feedback techniques.
In this approach, a compensator is introduced in the
control loop to correct the phase of the actuator
in order that it becomes stable at low frequency.
The interactions between the structure and the control-
ler change the poles of the closed loop system so as to
make the controlled system hyperstable (Collette and
Chesne, 2016). The margins of gain and phase are
therefore infinite. Consequently, the proposed hybrid
system controller is fail-safe but also unconditionally
stable in theory.

The paper is organized as follows. Section two
briefly presents the concept of the control law named
the a-controller and proposes an analysis of its per-
formance and stability properties. Section three pre-
sents the setup used in the experimentation and
particularly the HMD device. Section four presents
and discusses the performance, limitations, and

robustness of the new controller. Section five draws
conslusions.

2. The a-hybrid mass damper

Consider a one degree of freedom system with a reson-
ant frequency of !0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
k1=m1

p
¼ 1 rad:s�1 without

damping. The mechanical parameters are m1 ¼ 1kg,
m2 ¼ �m1 with � ¼ 0:01 and k2 ¼ m2!0�N:m

�1 with
� ¼ 1=ð1þ �Þ (see DenHartog, 1956). We associate to
this system a classical dynamic vibration absorber
(TMD without damping) with a mass ratio � ¼ 1%.
Usually structures are lightly damped and the TMD
has an optimal damping ratio. The choice is made
here to consider a system without damping, it allows
clearer illustration of the stability limits and the ana-
lysis of the phase. The model is illustrated in Figure 1.
The resulting resonant frequencies of the system are
named x1 and x2. Classical Direct Velocity Feedback
(DVF) control generates a command to the actuator,
proportional to the measured velocity of the main
structure (represented by m1). The application of a uni-
tary force on a TMD used as an actuator results in
the open loop transfer function and the root locus
plotted in Figure 2 (dashed black lines). Analysis of
the stability margins shows clearly the limitations of
this approach. Below the first resonance frequency, as
the phase is up to 180�, the system is stable only at very
low feedback gain. One sees also on the root locus that
the lower frequency pole goes immediately into the
right half plane, leading to instability. The closed
loop system will always be marginally stable. This is
mainly due to the absence of a zero between the pole
of the TMD and the pole of the structure. As explained
in the introduction, several elaborations of the control-
ler have been proposed to bypass this limitation.
We propose here a simple alternative which addresses
the stability and weak margins problem adequately by
placing a pair of zeros at the right location, which will

Figure 1. Scheme of the hybrid device without damping.
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allow recovery of a guaranteed stability of the closed
loop system.

We still consider a TMD tuned on the first mode as
the actuator. The controller still uses velocity feedback;
however, an a-controller filter is added into the control
loop (Collette and Chesne, 2016)

H�ðsÞ ¼ g
ðsþ �Þ2

s2
ð1Þ

One sees that a pair of poles and zeros have been
introduced; consequently the phase has been modified
below the first resonant frequency (see its transfer func-
tion in Figure 2(a), blue dotted line). The parameter a is
tuned to make the controller hyperstable. Its value is
� ¼ !0 and corresponds to the resonant frequency of
the initial structure without TMD. The tuning of gain g
depends on the objectives of the controller and also on
the capability of the transducer. In this example it is
chosen as g¼ 1. The resulting root locus of the a-HMD
is plotted in Figure 2(b) (black continuous line).
Initially, the whole root locus plot is in the left half
plane, meaning an unconditional stability of the feed-
back system (infinite gain margin). The open loop
phase is always between �180� and 180�.

In Collette and Chesne (2016) it has been shown that
the hyperstability limits for undamped system are

!1 5�5!2 ð2Þ

Figure 3 shows the phase of the open loop transfer
function for two extreme cases, along with the depart-
ures of the poles in the complex plane. One can under-
stand it as a constraint on the departure angle of the
root loci to keep the pole in the left half plane, or one
can observe the phase of the open loop transfer func-
tion. For the two extreme cases (� ¼ !1 and � ¼ !2),
the phases are tangential to the hyperstability limits
(�180� and 180�) but stay inside the interval.

These representations are plotted considering a
system without damping, to highlight the theoretical
limits. Initial damping in the structure and in the
TMD increase the stability margins considerably.

3. Experimental setup

3.1. Structure and transducer

The control device is represented in Figure 4. The TMD
is by Micromega products, originally designed for

Figure 2. (a) Bode and (b) root locus plots of sensor-actuator open loop transfer function for Direct Velocity Feedback (black

dashed line) and for a-controller using � ¼ !0 (continuous black line). Transfer function H�ðsÞ in blue dotted line.
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purely active control (ADD-5N; http://www.micro-
mega-dynamics.com). Its moving mass is 160 g, its
resonant frequency is around 21Hz, and its internal
damping of � ¼ 11:9%. The experimental setup used
for the validation is a cantilever steel beam
(length: 58 cm, width: 10 cm, thickness: 1 cm). The
damper is rigidly mounted on the beam, at a distance
of Lhmd ¼ 48 cm from the fixation. An accelerometer is
fixed near to the actuator. The structure and the control
device are shown in Figure 5. The targeted mode is the
first bending mode of the beam. Thus, the dimensions
of the beam have been chosen in order that the damper
behaves as a TMD tuned on the first bending mode
when the controller is turned off. In order to obtain a
control force proportional to the command in the
whole frequency band, the system is driven in current.

The mass ratio comparing the moving mass of the
TMD and the effective modal mass of the flexible struc-
ture is � ¼ 9:4%. With this mass ratio, the theoretical
optimal damping of the TMD should be �opt ¼ 17:9%.
The damping of the actual TMD is � ¼ 11:9%. In prac-
tice, neither the damping nor the resonant frequency
are perfectly tuned to correspond to optimal values as
defined in DenHartog (1956). Despite this, good per-
formance is obtained showing the robustness of the
approach as described in the following sections.

3.2. Practical considerations

To estimate the velocity in order to feed the controller,
an acceleration sensor is used combined with an
integrator. Consequently a high-pass (HP) filter is

Figure 3. Phase representations of sensor-actuator open loop transfer function for a-controller using � ¼ !1 and � ¼ !2, and

corresponding angle of departure on the root loci.

Figure 4. Schematic of the control device.
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introduced in the control loop to remove the DC terms.
Moreover, the a controller law has two poles in zero
(see Equation 1). This creates two new integration steps
for the feedback signal. It may lead to an enhancement
of the command at low frequencies, which may also
lead to stroke/force saturation effects in the actuator.
To counter this effect, another two HP filters are intro-
duced. These HP filters are introduced just after the
sensor, as shown in Figure 4. These modifications on
the feedback loop produce a loss in the phase and gain
margins. The theoretical hyperstability is then lost.

Nevertheless, as shown in the next sections, phase and
gain margins are always very high. They do not repre-
sent a limitation of the control system. The corner fre-
quency of these filters and their orders depends clearly
on the controlled system, transducer conception, and
noise present in the control loop.

4. Experimental results

4.1. Open loop frequency response functions

Figure 6 shows the open loop transfer functions on the
frequency band of interest in units of velocity over
injected force. Without the a-controller, it corresponds
to the open-loop transfer function of Direct Velocity
Feedback (DVF). The DVF controller clearly shows its
limitation as predicted by the theory with a gain margin
of 7.5 dB at 18Hz. But the main limitation appears on
the closed loop response in Figure 7 (gray dotted line)
where one can clearly see the dangerous increase of amp-
litude of the first peak as predicted by the root locus plot
in Figure 3 or in Collette and Chesne (2016).

The a-controller has an antiresonance dip (double-
zero) at the actuator’s fundamental resonant frequency
(� ¼ !0), which compensates the phase below the actu-
ator resonance with a 180� phase-advance. The resulting

Figure 6. Bode plot of the sensor-actuator open loop transfer function without controller (black dashed line), with a-controller

(black continuous line) and with the highpass filters (blue dotted line) (fc ¼ 2 � � rad:s�1Þ.

Figure 5. Picture of the experimental setup used to test the

proposed controller. Cantilever beam, clamped at one end, and

equipped with an AMD (Micromega Dynamics ADD-5N) at the

other end. The motion of the beam is measured by a piezo-

electric accelerometer, collocated with the AMD.
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open loop phase is then always between �180� and 180�

equivalent to stability.
As explained earlier in the manuscript, the main

drawback of the proposed controller is the enhance-
ment at low frequencies creating limitations of the feed-
back gain and an important DC component. Three HP
filters at 1Hz are added into the loop. The theoretical
hyperstability is lost, but the resulting gain margin is
54dB at 2Hz. In practice, this kind of gain is so high
that is not reachable.

4.2. Performance

The performance of the control device is observed in
terms of the velocity response at the accelerometer loca-
tion. Figure 7 shows the velocity response of the beam
without TMD (gray continuous line), with passive TMD
(black line), with DVF (gray dotted line), and with the a-
controller using various gains (g¼ 1 in blue, g¼ 3 in
purple, and g¼ 9 in red). The effect of the DVF has
already been commented on in the previous section.
One can easily observe the effect of the a-controller on
the first mode. Depending on the gain, it can reach a
huge attenuation in comparison to the passive device.

Figure 8 shows the root locations for various values
of the gain (g ¼ 1, 3, and 9) compared with the root

locus predictions of the a-controller without (black con-
tinuous line) and with (blue dotted line) the HP filters.
This figure shows a good correlation between model and
experiment. Analyzing the root locus in detail, one can
see that the system is very stable even with the HP filters.
Indeed, the effect of the modifications linked to the use
of these filters appears on the root locus only at very
high gains and at low frequencies. It also shows that
damping can be added on both poles. Consequently,
the effect of these filters does not modify the behavior
or limit the performance of the control device proposed
in this study. The damping on the first mode without
TMD is 0.24%; with passive TMD it reaches around
9% due to the important mass ratio, and with the a-
controller it increases to more than 16% for both peaks.

The proposed control law presents the advantage of
a wide frequency range effect, as has been demonstrated
in Collette and Chesne (2016). The effect on the second
mode is observable on a zoom of the response in
Figure 9 with an attenuation of 7:3dB for g¼ 9. This
wide frequency range effect is also observable on the
third mode and can be more easily seen on the cumu-
lative RMS value of the velocity over ½0� 500�Hz.
One sees that even for small gains, the response reduces
quickly, and the effect on the integrated RMS value is
important.

Figure 7. Frequency response functions, without control (gray), with passive TMD (black), with DVF (gray dotted line) and with a-

controller using various gains (g¼ 1 in blue, g¼ 3 in purple, g¼ 9 in red).
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Another point of view from which to analyze this
hybrid device is to examine the actuator stroke. It is
known that the stroke of a passive TMD is directly
linked to the dissipated energy. Figure 11 shows a

reconstruction of the stroke for the passive (black con-
tinuous line) and for the hybrid (blue dotted line)
devices for a normalized impact at the free boundary
of the beam. Note that the actuator stroke cannot

Figure 8. Root locus of the a-controller as a function of the control gain (black continuous line) with the highpass filters (blue dotted

line), and experimental poles depending on the gain (m g¼ 1, # g¼ 3, � g¼ 9).

Figure 9. Zoom on the second mode of the frequency response functions, without control (gray), with passive TMD (black) and

with a-controller using various gains (g¼ 1 in blue, g¼ 3 in purple, g¼ 9 in red).
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be directly measured on this device. Consequently,
an experimental model feed with measured data
(Impact force and resulting acceleration of the beam)
is used to reconstruct the resulting actuator stroke.
One can see that the hybrid device presents a larger

stroke than the passive one, leading to the vibration
reduction previously observed. The small offset
observed at around 0:5s is due to the various integra-
tion steps of the signal. As the HP filters are tuned
to fc ¼ 1Hz, more time is needed to stabilize the

Figure 10. Integrated RMS value ½0� 500�Hz of the frequency response functions with passive TMD (black) and with a-controller

using various gains (g¼ 1 in blue, g¼ 3 in purple, g¼ 9 in red).

Figure 11. Actuator Stroke reconstruction, passive TMD (continuous black line) and hybrid one (blue dotted line, g¼ 3).
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command around zero. One of the most important
advantages of the hybrid device can be observed in
this figure, which is that the maximum stroke of the
actuator is reached at the first oscillation of the moving
mass. This means that the active part of the system

helps the absorber to start its movement. This is in
contrast to the passive device where it can take time
to reach the maximum stroke to dissipate energy; in
this case the actuator needs three oscillations to reach
its maximum.

Figure 12. Velocity response on the first mode with passive TMD (black continuous line), with various a-controllers using g¼ 3.

Gray dotted line: � ¼ 15 � 2� and 18 � 2�, blue continuous line: � ¼ 21 � 2�, gray thine line: � ¼ 24 � 2� and 27 � 2�.

Figure 13. Root locus variations around the first mode with various a-controllers using g¼ 3. Gray dotted line: � ¼ 15 � 2� and

18 � 2�, blue continuous line: � ¼ 21 � 2�, gray thin line: � ¼ 24 � 2� and 27 � 2�.
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To sum up, by looking at Figure 11, we can under-
stand that the active part increases the stroke of the
actuator and helps its start. This last advantage can
be of great utility in the case of nonlinear systems or
to stop structural instabilities.

4.3. Robustness analysis

The robustness of the a-controller is analyzed through
the variation of two parameters: (i) a variation of the
tuning parameter a in the control loop and (ii) a variation

Figure 14. Velocity response on the first mode without TMD (gray thine lines), with passive TMD (black continuous lines), with a
controller (blue dotted lines) using � ¼ 21 � 2� and g¼ 3, for different length of the beam.

Figure 15. Attenuation obtained for various length of the cantilever beam using a passive TMD (black line) and a hybrid one (blue line).
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of the resonance frequency of the structure. In a previous
paper, Collette and Chesne (2016) advise tuning the a-
parameter equal to the focused resonant frequency of the
main structure. Consequently, for the experimental val-
idation presented here, � ¼ 21 � 2� has been chosen.

The effect on the amplitude attenuation of detuning a
can be seen on the spectra plotted in Figure 12 (a¼ 15,
18, 21, 24 and 27 with g¼ 3). Even if these variations
represent and error greater than �30% on the optimal
theoretical value, the attenuation performance remains
very good. The stability is also not fundamentally mod-
ified as illustrated in Figure 13. Indeed, for the worst
case, (� ¼ 27 � 2�), the gain margin is 50dB at 2Hz.
No effect can be observed on higher order modes.

In order to change the resonance of the main struc-
ture, the length of the cantilever beam has been modi-
fied. Six different lengths (L ¼ 41cm, 46cm, 53 cm,
58 cm, 61 cm, and 65 cm) have been tested leading to
six different resonant frequencies ( f0 ¼ 39:6Hz, 32Hz,
24:2Hz, 21Hz, 19Hz, and 17Hz). The frequency
responses are plotted in Figure 14 for only three differ-
ent lengths (53cm, 58cm,and 61cm), for better readabil-
ity. The figure compares the velocity response without
TMD, with passive TMD and with the a-controller
(a¼ 21 and g¼ 3). The passive TMD is affected by the
detuning, and one of its poles rises in consequence. The
a-controller smooths these variations, and the ampli-
tudes of the responses are still very low. The Figure 15
sums up these tests by plotting the resulting attenuation
with TMD and the a-HMD. The reference value is the
case without TMD. While the efficiency of the TMD
fades out rapidly when it is detuned, the a-HMD main-
tains an outstanding efficiency (more than 28dB even
with a 50% detuning of the primary structure).

5. Conclusions

This paper has presented an experimental validation of
a robust hybrid mass damper that combines two fea-
tures: unconditional stability and a fail-safe character-
istic. Moreover, it has been shown that it responds
rapidly, which is an asset for applications in the aero-
space industry. The control law has been presented and
validated experimentally. Its robustness has been tested
and discussed.
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