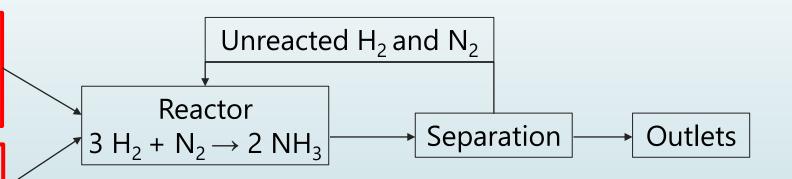
Feasibility study of low-carbon ammonia production in Europe

Marc Philippart de Foy

8th October 2020

Objective of the study

- Ammonia production: transition to a low-carbon emitting process
 - → technological and economical feasibility for 2030
 - → simulation with Aspen Plus and cost analysis (Turton et al.)
- Decarbonisation through water electrolysis with renewable electricity to produce pure H₂

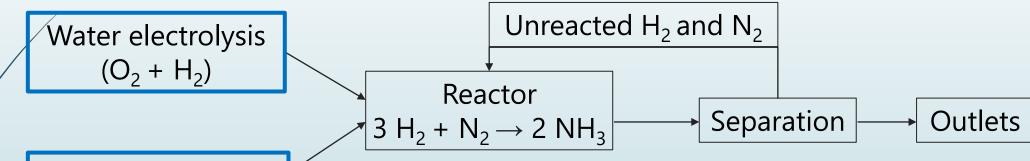


Modelling of the ammonia production

Common plants: → 2 t_{CO2}/t_{NH3}

Natural gas reforming (CO + H₂)

Air (source of N₂)



Modelling of the ammonia production

Decarbonised plant: → 0 t_{CO2}/t_{NH3}

Pure N₂

Cost analysis

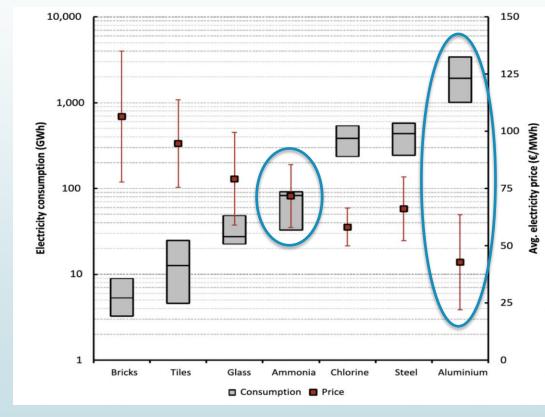
- Main variables influencing the cost:
 - Electricity price

(large consumption for the electrolysers)

- CO₂ emissions costs

(competitiveness compared to common processes)

- CAPEX
- Raw material/product prices



Cost analysis – electricity price

Common ammonia plants: 70 €/MWh

Decarbonised plant: 40 €/MWh

Peak shaving approach: 30 €/MWh

Conclusion

Assumptions to be economically viable:

- Low electricity price
- Increase of the cost of the CO₂ emissions

This study only makes sense if the electricity is produced from renewable energies.

Thank you for your attention Any question?

