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ABSTRACT 

In the North Sea, sympatric grey and harbour seals may compete for food resources impacted 

by intense fishing activities and a recent increase of seal populations. In order to reduce inter-

specific competition, sympatric species must segregate at least one aspect of their ecological 

niches: temporal, spatial or resource segregation. Using isotopes and Se and Hg 

concentrations, the foraging resources of grey seals and harbour seals and the potential 

competition between these species in the North Sea was studied. δ
13

C, δ
15

N and δ
34

S values 

were combined with the concentrations of Hg and Se in blood samples of harbour and grey 

seals from the North Sea. Blood samples were collected on 45 grey seals and 37 harbour seals 

sampled along German and Scottish coasts. This multi-tracer approach showed spatial and 

resource partitioning within grey and harbour seals. Data indicated the offshore foraging 

distribution of grey seals as reflected by the lower δ
15

N values and T-Hg concentrations and 

higher Se concentrations, and the inshore foraging distribution of harbour seals because of 

higher δ
15

N values and T-Hg concentrations and lower Se concentrations. The SIAR mixing 

model revealed a more selective diet of grey seals compared to harbour seals, and the 

importance of sandeels in grey seal diet reflected by their high δ
34

S values. Lastly, diet ellipse 

overlaps between grey seals and harbour seals sampled along the German coasts suggested a 

potential sharing of food resources, possibly due to the increase number of grey seals number 

in this area during the foraging season - all year except breeding and moulting periods. The 

multi-tracer approach provided a more robust discrimination among diet resources and spatial 

foraging distributions of grey seals and harbour seals in the North Sea. 
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1. INTRODUCTION 

In the North Sea, grey seals (Halichoerus grypus) (Fabricius 1791), and harbour seals (Phoca 

vitulina) (Linnaeus, 1758) are considered as sympatric species because of their overlapping 

habitats and space use (Jones et al. 2015). In order to coexist and reduce inter-specific 

competition, sympatric species must segregate at least one aspect of their ecological niches: 

temporal, spatial or resource segregation (Schoener 1974). Grey seals and harbour seals in the 

North Sea use the same areas on land and at sea, are  mainly piscivorous, and have 

comparable life cycles (McConnell et al. 1999; Brown et al. 2012). Nevertheless, the annual 

breeding and moulting cycles of grey seals and harbour seals in the North Sea are 

asynchronous (Hall and Thompson 2009; Burns 2009) but their at-sea distributions during 

foraging trips may overlap and foraging occurs at the same time for a large part of the year  

(McConnell et al. 1999; Das et al. 2003; Herr et al. 2009; Sharples et al. 2012; Vincent et al. 

2017). They may therefore be expected to display spatial and/or resource partitioning to some 

extent. To determine the potential for resource partitioning of the grey seals and harbour seals, 

and the potential competition between these species in the changing environment of the North 

Sea was investigated. Inadequate knowledge of the spatial and trophic ecology of grey and 

harbour seals compromises our understanding when using them as environmental 

bioindicators of the changing environment of the North Sea. For example, an unusual dietary 

behaviour has been described recently on several grey seal males in the North Sea. These 

individuals fed on other marine mammals such as harbour seals and harbour porpoises 

(Phocoena phocoena) (Haelters et al. 2012; Bouveroux et al. 2014; Jauniaux et al. 2014; van 

Neer et al. 2015; Leopold et al. 2015) or presented some case of cannibalism (Bishop et al. 

2016; Onoufriou et al. 2016; Brownlow et al. 2016; van Neer et al. 2019). This particular 

behaviour has been hypothesized to be a consequence of (i) increased competition for food 

resources as grey seal population size has increased (Lotze 2005; Brasseur et al. 2015; Russell 

2016) and (ii) of fishing intensity in the North Sea. Various tracers (e.g. stable isotope ratios, 

trace elements, fatty acids) have been useful in feeding and trophic ecology but previous work 

on grey and harbour seals has focused on understanding how each varies  (Walton et al. 2000; 

Walton and Pomeroy 2003; Herr et al. 2009; de la Vega et al. 2016). Some ecological studies 

have successfully combined stable isotopes with trace elements, or fatty acids or direct 

knowledge of spatial use through satellite telemetry to study other marine mammal species 

(Waite et al. 2012; Pinzone, Damseaux et al. 2019). 
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Stable isotope ratios of carbon (C) and nitrogen (N) have been widely used for more than 25 

years in ecological and trophic studies on fish and marine mammals (Newsome et al. 2010). 

Few research has been conducted on combining those with stable isotope ratio of sulphur (S) 

(Jardine et al. 2006; Tucker,  Bowen, and Iverson 2007; Newsome et al. 2010; Fry and 

Chumchal 2011; Jansen et al. 2013). Sulphur stable isotopes allow for discrimination between 

freshwater or marine environments, and between marine benthic or pelagic producers, 

depending on their source of S (Connolly et al. 2004; Wilson et al. 2012). Primary producers 

that use predominantly seawater sulphates, such as pelagic microalgae and phytoplankton, 

tend to be enriched in 
34

S (~18‰) (Connolly et al. 2004). Those using sedimentary sulphides 

such as marsh plants on the coasts or anaerobic bacteria found in the sea bottom, are instead 

more depleted in 
34

S (-10 to +5‰) (Connolly et al. 2004). The δ
34

S value may discriminate 

between marine benthic and pelagic food chains and provide information about foraging 

resources and foraging distributions of seals. The δ
13

C and the δ
34

S values do not vary a lot 

from one trophic level to another and so give information about the source of primary 

production on which the consumer depends (Connolly et al. 2004; Newsome et al. 2010). 

δ
15

N values show a sequential and predictable enrichment from one trophic level to the next, 

and is a good indicator of the trophic position of the animal (Minagawa and Wada 1984; 

Newsome et al. 2010). Moreover, the δ
13

C and δ
15

N values may give an indication on the 

foraging distributions of seals as their values decreased from coastal and open sea areas in 

German and Scottish parts of the North Sea (MacKenzie et al. 2014; Glew et al. 2019). In 

addition, isotopic ratios allow identification of the food resources on which a predator 

depends with the use of mixing models (SIAR). Moreover, the Stable Isotope Bayesian 

Ellipses (SIBER) approach - a newly developed technique - allows the use of stable isotope 

ratios to build geometric spaces (or “isospaces”). These can be used as proxies (variables that 

serve in place of an unobservable or immeasurable variable) of species' or populations' 

ecological niches commonly referred to “isotopic niches” (Newsome et al. 2007). Each 

dimension is linked with environmental and/or food resource requirements at both intra- and 

inter-individual level (Bearhop et al. 2004; Layman and Allgeier 2012). For this reason, it can 

be used as a proxy of the habitat and resources most commonly used by the species or the 

population (Layman and Allgeier 2012), and allows for quantification of the overlap of the 

isotopic or ecological niches of the species, and as such, allows a better understanding of the 

competition between them and the intensity (Parnell et al. 2010; Jackson et al. 2011).  
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Trace elements have been used extensively in ecotoxicology and pollution monitoring, and 

elements such as Hg and Se represent powerful tools in the study of feeding and trophic 

ecology of marine mammals (Bustamante et al. 1998; Becker et al. 2002; Stewart et al. 2004; 

Croteau, Luoma, and Stewart 2005; Lahaye et al. 2007; Ramos and Gonzalez-Solis 2012). 

Indeed, the biomagnification of Hg  reflects the trophic position of the animal in the food web 

as previously described in different aquatic species (Kidd et al. 1995; Atwell, Hobson, and 

Welch 1998; Bearhop et al. 2000; Aubail et al. 2011). Hg and Se concentrations may also 

vary among habitats:  higher Hg levels were recorded in coastal waters (1.6 – 69 ng.L
-1

) 

compared to offshore waters (0.25-41 ng.L
-1

) of the southern  North Sea (Borchardt et al. 

1988; Sheahan et al. 2001; Baeyens et al. 2003) as sediments act as a sink for 

decontamination of coastal areas in the North Sea (Huafang et al. 2012). The Se content of the 

algae/plants is a major factor controlling the Se status of herbivores and carnivores 

(Schomburg and Arnér 2017). The nutritional intake of Se by herbivores may differ 

considerably, depending on their geographical area and their spatial distribution (Schomburg 

and Arnér 2017). Thus, Se intake of carnivores differs considerably depending on their own 

food preferences and of those of lower trophic levels and local Se availability. 

The objectives of the present study were 1) to define the foraging niches of sympatric grey 

and harbour seals sampled alive along German and Scottish coasts using a multi-tracer 

approach (δ
13

C, δ
15

N and δ
34

S values and Hg and Se concentrations). Then, we will 2) 

compare their ecological niches and 3) assess potential competition for food resources.  
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2. MATERIAL AND METHODS 

2.1 Sampling of grey seals, harbour seals and fish 

This study used samples collected from grey seals and harbour seals from Scottish and 

German coasts (Map 1). In Scotland, grey seals were sampled on the Isle of May (56°11ʼN, 

2°33ʼW) in October – November 2016 and harbour seals were sampled on Orkney (59°05’N, 

2°97’W) in April – May in 2017 (Map 1). Both sites presented similar environmental 

characteristics such as sea surface and bottom temperatures and similar isotopic baseline 

values (MacKenzie et al. 2014; Glew et al. 2019). All Scottish seals were adults. All grey 

seals were females forming part of a wider demographic study. Scottish seals were 

immobilized with a mass dependent injection of Zoletil
®
 100, Virbac (Pomeroy et al. 1999) 

before collecting morphometric data and samples. All Scottish captures and sampling were 

performed under the UK Home Office licence (permit: # 60/3303). In Germany, grey seals 

were sampled on Helgoland (54°18’N, 7°88’E) in May 2015, and harbour seals were sampled 

on Lorenzenplate (54°38’N, 8°53’E) in April 2017 (Map 1). Seals sampled in Germany were 

caught with a net (3 m × 200 m), transferred into individual tube nets, and restrained manually 

for 45 minutes for sampling collection and measurements. Captures always occurred around 

noon, according to low tide. All German captures and sampling were performed under the 

National Park Office Schleswig - Holsteinpermit: AZ 312-72241.121-19. 

Whole blood samples were collected from the extradural vein in (i) Vacutainer
TM

 red top 

serum tubes including a silicone-coated interior and increasing silica act clot activator and in 

(ii) Vacutainer
TM

 royal blue tubes indicated for trace metal analyses. Within 3 hours of 

collection, blood collected in Vacutainer
TM

 red top serum tubes were centrifuged for 10 

minutes at 2000g. Serum was extracted, keeping only the red blood cells for stable isotope 

analysis. Samples were stored at -20°C until analysis.  

Fish muscles were sampled from catches landed in the port of St Monans (east coast, 

Scotland) in June 2016. Fish were caught in the along the Scottish coasts in the North Sea. We 

sampled 10 Atlantic herring (Clupea harengus), 4 Atlantic cod - juveniles - (Gadus morhua), 

6 European hake (Merluccius merluccius), 6 haddock (Melanogrammus aeglefinus), 6 

monkfish (Lophius piscatorius), 6 European plaice (Pleuronectes platessa) and 6 common 

sole (Solea solea). Stable isotope data on sandeels (Ammodytes marinus) sampled in Scotland 

were extracted from Käkelä et al. (2007). 

Prior to analysis, blood and fish muscle samples were freeze-dried, ground with a mortar and 

pestle into powder. Whole blood (containing red blood cells) does not require lipid extraction 
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because it contains only low levels of lipids. The major carrier of fatty acids in this tissue is 

serum albumin, meaning that the serum contains higher levels of lipids than the red blood 

cells (Habran, Damseaux et al. 2019). 

2.2 Stable isotope ratio analysis 

Approximately 2-2.5 mg of each sample was weighed and loaded into tin boats. All dried 

masses were measured to the nearest 0.01 mg. Stable isotope measurements were performed 

with an isotope ratio mass spectrometer (IsoPrime100) coupled to an N-C-S elemental 

analyser (Vario MICRO cube, Elementar) for automated analyses. Stable isotope abundances 

were expressed in delta (δ) notation as the deviation from standards in parts per thousand (‰) 

according to the following equation: 

 

𝛿𝑋 = (
𝑅𝑠𝑎𝑚𝑝𝑙𝑒 − 𝑅𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑

𝑅𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑
) 

 

where X is 
13

C, 
15

N or 
34

S and R is the corresponding ratio 
13

C/
12

C, 
15

N/
14

N or 
34

S/
32

S. The  δ 

values are multiplied by 1000 for easier understanding. The isotopic ratios were estimated 

relative to the international standards of Vienna Pee Dee Belemnite (vPBD) for carbon, 

Atmospheric Air for nitrogen and Vienna Canyon Diablo Troilite (vCDT) for sulphur.  

International Atomic Energy Agency certified reference materials (IAEA, Vienna, Austria) 

were used as analytical standard calibrated against the international isotopic references 

sucrose (IAEA-C6, δ
13

C = - 10.8 ± 0.5 ‰; mean ± SD), ammonium sulfate (IAEA-N2, δ
15

N = 

20.3 ± 0.2 ‰; mean ± SD) and silver sulfide (IAEA-S1, mean δ
34

S = - 0.3 ‰) as primary 

standards, and sulfanilic acid (δ
13

C= -25.6 ± 0.4 ‰; δ
15

N = -0.1 ± 0.5 ‰ ; δ
34

S= 5.9 ± 0.5 ‰ ; 

mean ± SD in each case) as secondary analytical standard. 

 

2.3 Total mercury analysis 

Approximately 10mg of freeze-dried whole blood and 2-2.5mg of freeze-dried muscle were 

weighed (0.01mg precision) and loaded into quartz boats (preheated to 450°C for 5min to 

remove any impurity of Hg (Damseaux et al. 2017)). T-Hg concentrations were determined 

by atomic absorption spectroscopy at 254nm (Direct Mercury Analyzer - DMA-80- 

Milestone) according to the US EPA standard method 7473. This method has been in-house 

validated for solid samples by measuring blanks (HCl 1%) levels and internal standardized 

solution (T-Hg 100 ppb) before every analysis. Quality control and quality assurance was 
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checked by Certified Reference Materials (CRMs) (DORM-2 Dogfish muscle = 4.64 ± 0.14 

µg g
-1 

dw, and Seronorm L-3 whole blood = 17.9 ± 1.8µg l
-1

). These were analysed at the 

beginning and the end of the analysis to monitor the drift of the instrument (Damseaux et al. 

2017). The percentage recovery for DORM-2 ranged between 101% and 105% and for 

Seronorm L-3 from 90% to 100% showing optimal run of the analyses. Concentrations are 

expressed as nanograms per gram of dry weight (ng g
-1

 dw). 

2.4 Selenium analysis 

Approximately 0.2-0.25g of freeze-dried whole blood and 0.18-0.22g of freeze-dried muscle 

were weighed. Samples were subjected to microwave assisted digestion in TeflonTM vessels 

with 2 ml HNO3 (65%), 1 ml H2O2 (30%) and 5 ml of 18.2 MΩ-cm deionized water. After, 

samples were diluted to 50 ml with 18.2MΩ-cm deionized water. Se concentrations were 

determined by inductively coupled plasma mass spectroscopy (ICP-MS, PerkinElmer, Sciex, 

DCR 2). Internal standards (CertiPUR®, Merck) were added to each sample and calibration 

standard solutions. Quality control and quality assurance for ICP-MS included field blanks, 

method blanks, Certified Reference Materials (CRMs) – DOLT-3 and Seronorm L-3 (DOLT-

3 Dogfish liver = 7.06 ± 0.48 µg g
-1 

dw, and Seronorm L-3 whole blood = 17.9 ± 1.8µg l
-1

). 

The percentage recovery for DOLT-3 ranged between 97% and 99% and for Seronorm L-3 

from 98% to 110% showing optimal run of the analyses. Concentrations are expressed in 

nanograms per gram of dry weight (ng g
-1

 dw). 

2.5 Data transformation 

In order to minimize the effect of the different isotopic baselines because of the different areas 

and sampling years of grey seals and harbour seals, we decided to standardized the isotopic 

and trace element values in order to decrease the data variation and so decrease the impact of 

year, place and therefore baseline variations on the data. We transformed our isotopic and 

trace element data following the Cucherousset and Villéger method (2015). This method 

creates a standardized multidimensional space where each axis is unitless and scaled to have 

the same range (0 to 1). Therefore, we corrected the δ
 
values (δ𝑘𝑠𝑡, equation 1) and trace 

element concentrations ([𝐶]𝑠𝑡, equation 2) for both species in the same area following 2 

equations: 
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(Cucherousset and Villéger 2015) 

 

 

 

(Pinzone, Damseaux et al. 2019) 

2.6 Isotopic and ecological niches using SIBER 

Following Jackson et al. (2011) we used the Stable Isotopes Bayesian Ellipses (SIBER) 

package (version 2.1.4) in R (version 3.6.0; R Core Team 2017) to explore variations in δ
13

C, 

δ
15

N, δ
34

S values and T-Hg, Se concentrations of grey seals and harbour seals of the North 

Sea. The isotopic niches of δ
13

C vs. δ
15

N and δ
15

N vs. δ
34

S and the ecological niches of δ
13

C 

vs. T-Hg, T-Hg vs. δ
15

N, δ
34

S vs. T-Hg, δ
13

C vs. Se, Se vs. δ
15

N and δ
34

S vs. Se were 

determined for each species at each site. SIBER was used to generate bivariate standard 

ellipses that represent the core range of values (a proxy of the trophic and habitat resources on 

which the consumer depends; Layman et al. 2007; Layman and Allgeier 2012). The geometric 

representation of a niche in SIBER is the standard ellipse area (SEA). It encompasses 40% of 

studied individuals and represents a bivariate equivalent of standard deviation. As such, it 

contains only the “typical” members of a population without being influenced by outlier 

individuals in the considered space (Newsome, Martinez del Rio, et al. 2007). For this reason, 

it can be used as a proxy of the spatial foraging distribution and resources most commonly 

used by the population (Layman and Allgeier 2012). To limit calculation biases when 

comparing small and/or unbalanced samples, standard ellipse areas were corrected for small 

sample size (SEAC) when the analysed groups contained less than 30 individuals (Syväranta 

et al. 2013). This choice does not cause bias in standard ellipse areas estimation for larger 

sample sizes, as SEA and SEAC tend to converge when sample size increases (Jackson et al. 

2011). Then, standard ellipse areas of each species were also estimated using Bayesian 

modelling (SEAB). SEAB involves the use of an iterative model based on Bayesian inference 

to estimate the covariance matrix from the data, with iterations set to 10
6
. SEAB is more 

effective at taking into account both natural and analytical variability in the data and provides 

a distribution of solutions rather than a single value - as for SEA and SEAC-, providing error 

Equation 1 δ𝑘𝑠𝑡 =  
(δ𝑘 − min(δ𝑘))

(max(δ𝑘) − min(δ𝑘))
 

Equation 2 [𝐶]𝑠𝑡 =  
([𝐶] − min([𝐶]))

(max([𝐶]) − min([𝐶]))
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estimates.. Model solutions were presented using percentages of model runs for pairwise 

comparisons 

 

2.7 Mixing models 

Bayesian stable isotope mixing models were applied to calculate the relative contributions of 

potential food resources to the diets of harbour seals and grey seals sampled along the Scottish 

coasts. Different potential food resources were sampled and used in the model based on 

general knowledge about the feeding preferences of the consumers (Hall et al. 1998; Walton 

et al. 2000; Walton and Pomeroy 2003; Sharples et al. 2009; Hammond and Rothery 2010; 

Brown et al. 2012). To reach the methodological requirements of the model, the potential 

food resources were grouped according to stable isotope composition similarity (Group 1: 

juvenile cod; Group 2: plaice and sole; Group 3: monkfish, European hake, haddock; Group 

4: herring; Group 5: sandeel). Fractionation factors of 0.8 ± 0.1‰ and 3.3 ± 0.1‰ obtained 

from hooded seal red blood cells were applied for δ
13

C and δ
15

N, respectively (Pinzone et al. 

2017). The model was run using SIAR (Parnell and Jackson 2015) on R version 3.6.0. Model 

was run for 10
6 

iterations, with no resource contribution data defined a priori (uninformative 

prior). Model outputs (percentages of contribution of each food resource to consumer diet) 

were presented using modes and 95% credibility interval of the posterior solution distribution 

function. 

 

2.8 Data analysis 

Because only female grey seals were sampled on the Isle of May, we restricted comparisons 

for Scottish samples to   results from female harbour seals. 

The normality of residuals was assessed using a Shapiro test (Shapiro et al. 1968) and the 

homoscedasticity using a Bartlett test. Because most of the values deviated from a normal 

distribution and did not present homogeneity of variances, the non-parametric Mann-Whitney 

U test (Whitney 1951) was used for species comparisons and the Spearman’s rank correlation 

ρ was used for correlations between trace element concentrations and stable isotope ratios. 

Moreover, log transformation of the data followed by parametric tests showed the same 

results as the non-parametric tests. Therefore, we decided to keep the non-parametric tests and 

more important the raw data making the link between Table 1 and linear regression results 

easier. 

For all tests, rejection of the null hypothesis was set at p-value < 0.05. Statistical analyses 

were conducted with Past software (PAleontological STatistics - Version 3.25).  
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3. RESULTS  

Scottish harbour seals displayed significantly higher δ
13

C values than grey seals (Table 1). 

For both locations, harbour seals displayed significantly higher δ
15

N values and T-Hg 

concentrations and lower δ
34

S values and Se concentrations than grey seals (Table 1). 

3.1 Stable isotopes and trace elements 

For both species and in both locations, δ
13

C and δ
15

N values were significantly correlated to 

T-Hg (for all, Spearman’s coefficient correlation. T-Hg-δ
13

C: grey seals: r = 0.260, p-value = 

0.019; harbour seals: r = 0.346, p-value < 0.001; T-Hg-δ
15

N: grey seals: r = 0.251, p-value = 

0.025; harbour seals: r = 0.634, p-value < 0.001; Fig. 1) and Se (for all, Spearman’s 

coefficient correlation. Se-δ
13

C: grey seals: r = -0.258, p-value = 0.021; harbour seals: r = -

0.150, p-value = 0.044; Se-δ
15

N: grey seals: r = -0.751, p-value < 0.001; harbour seals: r = -

0.234, p-value = 0.001; Fig. 1) concentrations in blood. No significant difference was found 

between δ
34

S and T-Hg or Se concentrations (for all, Spearman’s coefficient correlation, p-

value > 0.05).  

 

3.2 Isotopic niches 

The δ
13

C vs. δ
15

N plots did not display overlap between Scottish grey seal and harbour seal 

ellipses (Fig. 2A). In contrast, overlap between German seals represented 11% of the grey 

seal ellipse area and 24% of the harbour seal ellipse area (Fig. 2D). Scottish harbour seals 

presented larger δ
13

C vs. δ
15

N SEA (SEAc: 0.123‰
2
) than Scottish grey seals (SEA: 

0.091‰
2
) in 79% of model runs (Table 2). In contrast, German grey seals presented larger 

δ
13

C vs. δ
15

N SEA (SEAc: 0.187‰
2
), than German harbour seals (SEAc: 0.085‰

2
) in 98% of 

model runs (Table 2).  

 

The δ
34

S vs. δ
15

N plots did not display any overlap between grey seal and harbour seal ellipses 

in both areas (Fig. 2B-3B). Scottish harbour seals presented larger δ
34

S vs. δ
15

N SEA (SEAc: 

0.083‰
2
) than Scottish grey seals (SEA: 0.048‰

2
) in 95% of model runs (Table 2). In 

contrast, German grey seals presented larger δ
34

S vs. δ
15

N SEA (SEAc: 0.057‰
2
) than 

German harbour seals (SEAc: 0.041‰
2
) in 81% of model runs (Table 2). 

3.3 Ecological niches 

The δ
13

C vs. T-Hg plots displayed overlap between Scottish seals that represented 93% of the 

grey seal ellipse area and 53% of the harbour seal ellipse area (Fig. 2C). Ellipse overlap 

between German seals represented 4.4% of grey seal ellipse area and 4.9% of harbour seal 
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ellipse area (Fig. 2F). Scottish harbour seals presented larger T-Hg vs. δ
13

C SEA (SEAc: 

0.178‰
2
) than Scottish grey seals (SEA: 0.098‰

2
) in 97% of model runs (Table 2). In 

contrast, German grey seals presented larger δ
13

C vs. T-Hg SEA (SEAc: 0.140‰
2
) than 

German harbour seals (SEAc: 0.126‰
2
) in 57% of model runs (Table 2). 

The T-Hg vs. δ
15

N plots did not display overlap between grey seal and harbour seal ellipses in 

both areas (Fig. S1A-F, Table 2). Scottish and German grey seals presented larger T-Hg vs. 

δ
15

N SEA (SEA: 0.104‰
2
; SEAc: 0.141‰

2
; respectively) than Scottish and German harbour 

seals (SEAc: 0.082‰
2
; SEAc: 0.078‰

2
; respectively) in 72% and 93% of model runs, 

respectively (Table 2).  

The δ
34

S vs. T-Hg plots did not display overlap between grey seal and harbour seal ellipses in 

both areas (Fig. S1B-G, Table 2). Scottish and German harbour seals presented larger δ
34

S vs. 

T-Hg SEA (SEAc: 0.1127‰
2
; SEAc: 0.0575‰

2
; respectively) than Scottish and German grey 

seals (SEA: 0.0497‰
2
; SEA: 0.0289‰

2
) in 100% and 96% of model runs, respectively 

(Table 2).  

The Se vs. δ
13

C plots display overlap between Scottish seals that represented 2% of the grey 

seal ellipse area and 1.5% of the harbour seal ellipse area (Fig. S1C). Ellipse overlap between 

German seals represented 40% of grey seal ellipse area and 58% of harbour seal ellipse area 

(Fig. S1H). Scottish harbour seals presented larger δ
13

C vs. Se SEA (SEAc: 0.146‰
2
) than 

Scottish grey seals (SEA: 0.135‰
2
) in 57% of model runs (Table 2). In contrast, German 

grey seals presented larger δ
13

C vs. Se SEA (SEAc: 0.197‰
2
) than German harbour seals 

(SEA: 0.136‰
2
) in 81% of model runs (Table 2).  

The Se vs. δ
15

N plots did not display overlap between Scottish grey seals and harbour seal 

ellipses (Fig. S1D). In contrast, ellipse overlap between German seals represented shown16% 

of the grey seal ellipse area and 34.5% of the harbour seal ellipse area (Fig. S1I). Scottish and 

German grey seals presented larger Se vs. δ
15

N SEA (SEA: 0.133‰
2
; SEAc: 0.154‰

2
; 

respectively) than Scottish and German harbour seals (SEAc: 0.065‰
2
; SEAc: 0.071‰

2
; 

respectively) in 99% and 98% of model runs, respectively (Table 2).  

The δ
34

S vs. Se plots did not display overlap between grey seal and harbour seal ellipses in 

both areas (Fig. S1E-J). Scottish and German harbour seals presented larger δ
34

S vs. Se SEA 

(SEAc: 0.0927‰
2
; SEAc: 0.0666‰

2
; respectively) than Scottish and German grey seals 

(SEA: 0.0544‰
2
; SEAc: 0.0426‰

2
; respectively) in 95% and 88% of model runs, 

respectively (Table 2).  
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3.4 Mixing models 

The bi-plot of δ
13

C and δ
15

N values shows Scottish harbour and grey seals in the middle of the 

mixing space together with the potential prey values adjusted for trophic enrichment (Fig. 3). 

The SIAR mixing model suggests that the diet of the grey seals was represented by a high 

proportion of plaice and sole (mode: 50% of diet; Bayesian 95% credibility interval: 29–64%) 

followed by sandeels (mode: 46% of diet; Bayesian 95% credibility interval: 26–67%). 

Harbour seal diet was more diversified. Juvenile cod represented the most important food 

resource for harbour seals (mode: 30% of diet; Bayesian 95% credibility interval: 17–52%), 

followed by plaice and soles (mode: 29% of diet; Bayesian 95% credibility interval: 4–41%), 

and monkfish, European hake and haddock (mode: 23% of diet; Bayesian 95% credibility 

interval: 1–38%) (Fig. 4). 
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4. DISCUSSION  

Grey seals and harbour seals are considered as sympatric species in the North Sea. Therefore, 

they might be expected to show spatial and/or resource partitioning to some extent to reduce 

direct competition for prey (Brown et al. 2012). We found evidence of such partitioning based 

on stable isotope and trace element content of tissue samples obtained from seals in the North 

Sea, representing long term integrated dietary intake rather than short term stomach content 

analysis. 

 

4.1 Stable isotopes and trace elements 

δ
13

C, δ
15

N and δ
34

S values combined with Hg and Se concentrations in blood revealed spatial 

and resource partitioning for harbour seals and grey seals sampled in Germany and in 

Scotland.  

The δ
13

C values generally reflect the inshore vs. offshore foraging distribution of species 

(Newsome et al. 2010). In the North Sea, δ
13

C values decreased from coastal to open sea 

areas as previously shown by isoscape - model prediction of spatial distribution of stable 

isotope values along German and Scottish coasts (MacKenzie et al. 2014; Glew et al. 2019). 

Differences in water Hg concentrations between coastal and offshore areas are less frequent in 

the northern North Sea (Coquery and Cossa 1995) compared to the southern bay where higher 

Hg concentrations are always detected in coastal waters (1.6 – 69 ng.L
-1

) compared to 

offshore waters (0.25-41 ng.L
-1

) (Borchardt et al. 1988; Sheahan et al. 2001; Baeyens et al. 

2003). Positive correlation between δ
13

C values and T-Hg concentrations (Fig. 1) may be 

explained by a closer habitat to anthropogenic activities and so a more coastal foraging 

distribution of seals.  

The δ
15

N values show a sequential and predictable enrichment from one trophic level to the 

next one and so are widely used as an indicator of the trophic position of an animal 

(Minagawa and Wada 1984; Newsome et al. 2010). The positive correlation we found 

between δ
15

N values and T-Hg concentrations in blood reflects a biomagnification of T-Hg in 

grey seals and in harbour seals (Fig. 1). Such positive correlations between δ
15

N values and 

T-Hg concentrations have previously been described in different species such as birds, fish 

and marine mammals in marine and fresh water ecosystems (Kidd et al. 1995; Atwell et al. 

1998; Bearhop et al. 2000; Aubail et al. 2011).  

 

Correlation between the δ
13

C and δ
15

N values and Se concentrations also support offshore vs. 

inshore habitats for grey seals and harbour seals respectively. Se is an essential element and 
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its content in  algae/plants is a major factor controlling the Se status of herbivores and 

carnivorous (Schomburg and Arnér 2017). These photosynthetic organisms reflect Se 

availability of a specific area which depends on environmental deposition, pH, mineral pattern 

and other soil-specific characteristics. This interaction highlights that the nutritional intake of 

Se by herbivores may differ considerably, depending on their geographical area and so their 

spatial distribution (Schomburg and Arnér 2017). δ
13

C and δ
15

N values are lower in offshore 

areas compared to coastal areas in the North Sea (MacKenzie et al. 2014; Glew et al. 2019). 

This negative correlation between δ
13

C and Se was also found in blood of northern elephant 

seals (Mirounga angustirostris) that feed on epi- and mesopelagic prey in various offshore 

areas in the Northern Pacific (Habran et al. 2011) and in different tissues (muscle, liver, 

kidney and epidermis) of the bowhead whales (Balaena mysticetus) (Dehn et al. 2006). 

Bowhead whales feed on euphausids and copepods in pelagic areas (Lowry 1993) and so 

display offshore isotope composition in δ
13

C and δ
15

N (Dehn et al. 2006). Our results reveal 

that that depending on their foraging distribution, seals may undergo different Se exposure.  

The marine environment is presumed to be a major source of Se (between 45% - 77% of 

global emissions (Mosher et al. 1987)) which is dispersed by the atmosphere to the land 

(Mosher et al. 1987; Amouroux et al. 2001). Significant concentrations of Se occur in surface 

ocean waters. Biotransformation of dissolved Se by phytoplankton produces different 

compounds of gaseous Se as DMSe, DMDSe and DMSeS that will be dispersed by the 

atmosphere (Amouroux et al. 2001). Moreover, volatile Se compounds are dependent on 

plankton biomass and therefore on primary productivity. Total volatile selenide 

concentrations are linearly dependent on the primary productivity (Amouroux and Donard 

1996). We hypothesise  that natural Se maritime emissions decrease from inshore to offshore 

waters in the North Sea as primary productivity decrease in offshore and deeper waters 

(Richardson and Pedersen 1998; Škaloud et al. 2006; MacKenzie et al. 2014; Glew et al. 

2019). Thus, Se biotransformation by phytoplankton and therefore Se emissions will be less 

important in offshore areas compared to inshore areas. This has been shown in the 

Mediterranean Sea that is considered as 42% of offshore waters and 58% of coastal waters 

(Amouroux and Donard, 1996). Primary productivity is 3 times higher in coastal waters and 

therefore shown a Se air flux 3 times higher in coastal waters compared to offshore waters 

assuming Se depleted coastal zones (Amouroux and Donard 1996). We hypothesize that 

offshore waters and food webs should present higher Se concentrations than inshore waters in 

the North Sea environment, because of the negative correlations we found. This has been 

shown (i) in the north Pacific with a decrease of selenate (SeO4
2-

) concentrations along an 
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offshore-inshore transect (Cutter and Bruland 1984); (ii) in the south Atlantic where total 

dissolved Se concentrations drop in coastal zones suggesting additional Se removal perhaps 

by enhanced phytoplankton growth and release into the atmosphere (Cutter and Cutter 2001); 

(iii) in the eastern Canadian Arctic with sandeel that presented higher Se concentrations (1.15 

± 0.16 µg g
-1

 ww) than all other fish species, such as cod, (0.30-0.69 µg g
-1

 ww), which is 

explained by the more pelagic feeding of sandeel (Pedro et al. 2019). 

Further studies are needed to add support to this hypothesis. First, transects in the North Sea 

will be useful to determined Se concentrations in different areas (inshore vs. offshore). 

Secondly, the composition of the plankton in these areas will be important to determine as 

cocolithophorids (e.g. E. huxleyi) are strongly related to DMSe emissions (Amouroux et al. 

2001). Se could be valuable to obtain information about the food resources on which grey 

seals and harbour seals in the present case depend, and their foraging distribution (offshore vs. 

inshore areas). Inter-individual variability in Se concentrations could be related to sedentarily 

or travelling movements of grey seals and harbour seals. 

 

4.2 Spatial and resource segregation between sympatric grey seals and harbour seals 

As shown previously, the δ
13

C, δ
15

N, δ
34

S values and T-Hg and Se concentrations may 

discriminate between marine inshore or offshore areas in the North Sea (Connolly et al. 2004; 

Newsome et al. 2010; MacKenzie et al. 2014; Glew et al. 2019).  

4.2.1 Scotland 

Grey seals sampled along the Scottish coasts shown lower δ
13

C and δ
15

N values and higher 

δ
34

S values and Se concentrations than harbour seals (Table 1). All these ecological tracer 

values indicate a more offshore foraging behaviour of grey seals compared to harbour seals 

along Scottish coasts and therefore a spatial segregation between both species.   

Significantly higher δ
15

N values were observed in harbour seal than in grey seal blood 

sampled along Scottish coasts (Table 1, Fig. 2A). Seal diet depends of distance from the 

seals’ haul out sites and of prey’s biomass densities. Therefore, seal diet is also time 

dependent because of changing abundance of some prey at different areas and times. SIAR 

modelling revealed that grey seals sampled in Scotland presented a more selective diet as their 

diet is mostly comprised of flatfish and sandeels compared to harbour seals that have a 

generalist diet (Fig. 3-6). Our results showed that their diet is composed of 50% of plaice and 

sole but also 46% of sandeels against 30% of juvenile cod, 29% of plaice and sole and 23% of 

monkfish, European hake and haddock for harbour seals. In addition, several studies 
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compared the sandeel diet proportion in seal species and shown that sandeels constitute the 

primary part of grey seal diet (~78.5% for Scottish grey seals) compared to harbour seals (3-

19%) in various areas (Behrends 1985; Thompson et al. 1991, 1996; Bowen and Harrison 

1994; Hall et al. 1998; Das et al. 2003; Beck et al. 2007; Gilles et al. 2008; Breed et al. 2009; 

Hall and Thompson 2009; Hammond and Rothery 2010; Hammond and Wilson 2016; Hanson 

et al. 2017; Scharff-Olsen et al. 2018; ICES 2018). During the interpretation of these results, 

we have keep in mind that fish were sampled near Orkney as fish sampling along the Isle of 

May was not possible during grey seal sampling phase. Therefore, these results are carefully 

interpreted for grey seals from the Isle of May according to the literature (Hammond and 

Wilson 2016; Hanson et al. 2017). Stable isotope ratios were checked with the results 

obtained by Hanson et al. in 2017 for grey seal prey sampled along the Isle of May. The 

stable isotope ratios for our fish and those sampled for Hanson et al. 2017 were similar 

despite the different areas of sampling (Hanson et al. 2017). 

Grey seals may adapt their prey selection according to resource pulses and their foraging 

areas (Hall 1999; Walton and Pomeroy 2003; Beck et al. 2007; Thomas et al. 2011; Brown et 

al. 2012; Ramasco et al. 2017; Scharff-Olsen et al. 2018). For example, grey seals sampled at 

the Isle of May eat more sandeels in autumn and more cod in spring (Hammond and Rothery 

2010). This is also the case for harbour seals which eat more sandeels during winter (Sharples 

et al. 2009). This may, in part, explained the difference in δ
15

N values observed between grey 

seals and harbour seals sampled along the Scottish coasts. These species were sampled at 

different season and therefore at different resource pulses. Even if both species present 

seasonal variations, the diet stay quite different as grey seal may eat larger cods than harbour 

seals and prefer sandeels mostly present in offshore areas less frequented by harbour seals 

(Hall et al. 1998; Rindorf et al. 2019). As sandeels present lower δ
15

N values this may explain 

the lower δ
15

N values of grey seals compared to harbour seals in the present study (Table 1, 

Fig. 2A) (Minagawa and Wada 1984; Newsome et al. 2010). This also explained the lower T-

Hg concentrations in blood of grey seal compared to harbour seal (Table 1). The higher 

proportion of larger fish as cod, monkfish, European hake and haddock compared to sandeel 

explained the higher T-Hg concentrations in harbour seals compared to grey seals as Hg 

biomagnified (Kidd et al. 1995; Atwell et al. 1998; Bearhop et al. 2000; Aubail et al. 2011).  

The T-Hg vs. δ
13

C plot (Fig. 2C) of Scotland shown a significantly bigger SEA for harbour 

seals (Table 2). This shows how the feeding strategy (generalist vs. specialist) influences T-

Hg patterns of contamination in seals. Indeed, the generalist foraging diet of harbour seals 
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may lead to higher variability of T-Hg concentrations, while the more specialised foraging 

diet of grey seals lead to a very narrow range of T-Hg concentrations.  

The importance of sandeels in grey seal diet is fully supported by the δ
34

S vs. δ
15

N, δ
34

S vs. T-

Hg and δ
34

S vs. Se plots (Fig. 2A, S2A, S5A). These figures shown clear separations between 

grey seal and harbour seal ellipses sampled along Scottish coasts (Table 2). Harbour seals are 

known to forage on the seabed even if prey are less available but do not select specific prey 

(Tollit et al. 1998; Scharff-olsen et al. 2018). This was confirmed by the SIAR model that 

shown the more generalist diet of harbour seals compared to grey seals (Fig. 3-6). McConnell 

et al. shown that grey seals spend 40% of their dives near to the seabed in offshore waters 

(McConnell et al. 1999). Unfortunately, they were not able to determine if that specific time 

was related to foraging activities but supposed it because they were always diving in the 

presence of seabirds and always on a specific seabed type, a mix of gravel and sand; the 

favourite of sandeels (McConnell et al. 1999). Sandeels,  representing 46% of grey seal diet 

and less than 10% of the harbour seal diet,  mostly live in the sand in offshore waters and 

emerge into the water column for limited times (Hall et al. 1998; Rindorf et al. 2019).  

The δ
34

S values differed significantly between grey seals and harbour seals sampled along the 

Scottish coasts (Table 1, Fig. 2A). This apparent discrepancy may be linked to the source of S 

on which the primary producers depend (Connolly et al. 2004). Sandeels feed on copepods 

and fish larvae living in the water column and therefore depending of the water column 

sulphates (Christensen 2010). This explains the high δ
34

S values characteristic of pelagic 

resources we observed for grey seals. The δ
34

S values of harbour seals are explained by their 

diet composed of 30% of juvenile cods and 29% of plaices and soles, as suggested by the 

SIAR model. These fish feed on polychaetes, crustaceans and bivalves that depend on the 

seabed sulphides. This explained the lower δ
34

S values characteristic of benthic sources. 

Briefly, grey seal blood presents a pelagic isotopic composition and harbour seal blood a 

benthic isotopic composition along Scottish coasts.  

 

Along Scottish coasts, our results shown larger SEAB for the δ
34

S vs. δ
15

N, δ
34

S vs. T-Hg and 

δ
34

S vs. Se plots for harbour seals than for grey seals (Table 2). Orkney harbour seal numbers 

have decreased by 85% between 1996 and 2017 (SCOS 2018). A possible cause of decline 

could be competition for prey resources with other predators or commercial fishing (Russell et 

al. 2015). In 2014, Scottish government increased quotas for  mackerel (Scomber scombrus), 

herring (Clupea harengus), cod (Gadus marhua) and haddock (Melanogrammarus 

aeglefinus), in inshore waters around Orkney (Duncan 2018).  Sharples et al. (2012) shown 
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that harbour seals from Orkney had short duration trips at sea (~24-36h) in April and May 

(the sampling time of this study) therefore direct competition between inshore foraging seals 

and fisheries is likely. Other current hypotheses to explain the harbour seal decline include 

interactions with grey seals(Haelters et al. 2012; Bouveroux et al. 2014; Jauniaux et al. 2014; 

van Neer et al. 2015; Leopold et al. 2015), killer whales (Orcinus orca) and infection by 

Brucella and exposure to harmful algae toxins (Kershaw et al. 2017; SCOS 2018). Algal 

toxins may decrease prey quality of harbour seals such as plaice, whiting, and cod if these are 

contaminated (Jensen et al. 2015). Where prey quality decreases, harbour seals may switch 

foraging patterns in response. Thus the higher SEAB of Orkney harbour seals may be related 

to their foraging plasticity in response to increase of fishery activities and/or decrease of prey 

quality in this area.  

4.2.2 Germany 

Along the German coasts, we also observed significantly higher δ
15

N values in harbour seal 

compared to grey seal blood (Fig. 2D-B). This may be related to the important proportion of 

benthic resources such as flatfish (e.g. plaice and sole) (Behrends 1985; Das et al. 2003; 

Gilles et al. 2008; de la Vega et al. 2016; ICES 2018; Aarts et al. 2019) according to different 

stomach content and stable isotope studies on southeast bay of the North Sea. The lower δ
15

N 

values of German grey seals may also be related to the high proportion of sandeels in their 

diet mostly present in offshore areas less frequented by harbour seals (Hall et al. 1998; 

Rindorf et al. 2019). As sandeels present lower δ
15

N values (Fig. 3) this may also explain the 

lower δ
15

N values of German grey seals  as in Scottish grey seals (Fig. 3, Table 1) 

(Minagawa and Wada 1984; Newsome et al. 2010). Moreover, the important proportion of 

pelagic sandeels in German grey seal diet and of benthic resources in German harbour seal 

diet (Behrends 1985; Das et al. 2003; Gilles et al. 2008; de la Vega et al. 2016; ICES 2018; 

Aarts et al. 2019) is confirmed by the δ
34

S vs. δ
15

N, δ
34

S vs. T-Hg and δ
34

S vs. Se plots (Fig. 

2E, S2B, S5B) that shown clear separations between grey seals and harbour seals sampled 

along German coasts (Table 2). 

Russell et al. showed that 58% of grey seal females breeding in the UK did foraging in the 

southern North Sea (Russell et al. 2013; Russell 2016). Moreover, an important proportion of 

grey seals (50%) and harbour seals (80%) breeding and moulting in the Wadden Sea forage in 

the southern North Sea (Brasseur et al. 2014, 2015, 2018; Jensen et al. 2018). According to de 

la Vega et al., harbour seals breeding in the Wadden Sea might well depend on  benthic food 

resources during the foraging season (de la Vega et al. 2016). The δ
13

C vs. δ
15

N, δ
13

C vs. Se 
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and Se vs. δ
15

N plots in blood show more important overlap between grey seals and harbour 

seals sampled along the German coasts compared to the Scottish coasts (Fig. 2D, S3B, S4B). 

As the ellipses are proxies of the trophic niches, these overlaps indicate that both seal species 

may share more of their resource in this area.The important increase of grey seals and harbour 

seals in the southern waters for foraging season may explain the greater overlap we found 

between both species sampled along the German coasts compared to those sampled along the 

Scottish coasts. 

Grey seals sampled along the German coasts also show a higher SEAB for δ
13

C vs. δ
15

N (Fig. 

2D, Table 2) and Se vs. δ
15

N plots (Fig. S1I, Table 2). If the number of seals increased along 

the German coasts during the foraging season, this may lead to wider foraging distributions of 

grey seals to find their preferred prey in response to the intra- and inter-specific sharing of 

food resources and in order to avoid competition for food resources. Many studies show the 

philopatric aspect and the coastal distribution of harbour seals in the Wadden Sea and around 

the North Sea basin (Tougaard et al. 2008; Cunningham et al. 2009; Herr et al. 2009; Dietz et 

al. 2012; Sharples et al. 2012; Aarts et al. 2016; Vincent et al. 2017; Jensen et al. 2018; Aarts 

et al. 2019) contrasting with long trip durations and mostly offshore movements of grey seals 

(Bowen and Harrison 1994; Hall et al. 1998; McConnell et al. 1999; Herr et al. 2009; 

McClintock et al. 2012; Brasseur et al. 2015; Huon et al. 2015; Aarts et al. 2016; Vincent et 

al. 2017; Scharff-Olsen et al. 2018). Moreover, grey seals sampled along German coasts 

shown lower δ
15

N values and higher δ
34

S values and Se concentrations than harbour seals 

(Table 1). All these ecological tracer values indicate a more offshore foraging behaviour of 

grey seals compared to harbour seals along German coasts such as those sampled along the 

Scottish coasts.  

In both δ
13

C vs. T-Hg and T-Hg vs. δ
15

N plots of Germany (Fig. 2F, S4B), ellipses of harbour 

seals and grey seals aligned differently along axes. Grey seals ellipses aligned along the δ
13

C 

and the δ
15

N axes showing their wider foraging distributions. Indeed, the δ
13

C and the δ
15

N 

values decreased between coastal and open sea areas in the southern bay of the North Sea 

(MacKenzie et al. 2014; Glew et al. 2019).In contrast, harbour seals shown important 

variations in T-Hg concentrations (Fig. 2F). We can hypothesize that harbour seals sampled 

along the German coasts consume larger prey items (Grandjean et al. 1992; Hong et al. 2012). 

This could contribute to the wide range of Hg concentrations in harbour seal blood and be 

explained by the increase of harbour and grey seals in the southern bay of the North Sea 
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during the foraging season (Russell et al. 2013; Brasseur et al. 2014, 2015, 2018; Russell 

2016; Jensen et al. 2018). 

The δ
13

C vs. T-Hg plot (Fig. 2F) allows a good distinction of grey seals and harbour seals 

living along the German coasts. The coastal distribution of harbour seals in the southeastern 

North Sea compared to grey seals may explain the higher Hg concentrations we found (Table 

1) (Tougaard et al. 2008; Cunningham et al. 2009; Herr et al. 2009; Dietz et al. 2012; 

Sharples et al. 2012; Aarts et al. 2016; Vincent et al. 2017; Jensen et al. 2018; Aarts et al. 

2019). In general, mercury contamination appears to reflect the known inputs into coastal 

waters suggesting the addition of mercury of industrial origin at coastal sites (Sergeant and 

Armstrong 1973). Coastal areas are more influenced by the Hg anthropogenic pollution than 

offshore areas. Indeed, total dissolved Hg concentrations in coastal waters (1.6 – 69 ng L
-1

) 

are significantly higher than those in offshore waters (0.25-41 ng L
-1

) in the southern bay of 

the North Sea (Borchardt et al. 1988; Sheahan et al. 2001; Baeyens et al. 2003). Coquery and 

Cossa shown that offshore waters of the southern North Sea, as well as Scottish waters, 

showed lower total dissolved and particulate Hg concentrations than coastal waters and  Hg 

concentrations more than four times higher in German coastal waters  compared to those of 

Scotland (Coquery and Cossa 1995). This is potentially due to the demography of southern 

bay countries compared to Scotland. Moreover, the Meuse, the Scheldt, the Elbe and the 

Rhine flow into the southern bay of the North Sea. As European rivers they cross a lot of 

countries (e.g. the Netherlands, Germany, France and Belgium) and industrial and intensive 

agricultural zones. A lot of chemical compounds accumulated by these rivers during their 

trips are released into the North Sea. Studies shown the high concentrations of Hg in the 

Rhine (Pieters and Geuke 1994), the Meuse (van Vliet and Zwolsman 2008), the Scheldt 

(Coquery and Cossa 1995; Baeyens and Leermakers 1998; Leermakers et al. 2001; Baeyens 

et al. 2003) and the Elbe (Coquery and Cossa 1995). Indeed, the Elbe presented total Hg 

concentrations (512 µg L
-1

) higher than German coastal zone (12 µg L
-1

) and than open North 

Sea (3 µg L
-1

) (Coquery and Cossa 1995). The difference in Hg concentrations between 

coastal and offshore waters supports the influence of the foraging distribution on the T-Hg 

concentrations of seals sampled along the German coasts. In contrast Hg concentrations of 

Scottish seals are probably related to their diet - the most important route of exposure for Hg 

(Das et al. 2003; Lahaye et al. 2007) - and less to extrinsic factors because of less 

anthropogenic releases of Hg in the Scottish waters.  
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CONCLUSION 

The multi-tracer approach combining Hg, Se, δ
13

C, δ
15

N and δ
34

S values successfully 

discriminated among diet resources and spatial foraging distributions of grey seals and 

harbour seals in the North Sea. This approach indicates offshore foraging distribution and 

more selective diet of grey seals compared to inshore foraging distribution and more 

generalist diet of harbour seals along both Scottish and German coasts. Our results suggested 

some partitioning between theses sympatric species in order to avoid competition for food 

resources. Nevertheless, ellipses overlaps suggested potential sharing of food resources in 

German seals.  
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In the North Sea, sympatric grey and harbour seals may compete for food resources impacted 

by intense fishing activities and a recent increase of seal populations. In order to reduce inter-

specific competition, sympatric species must segregate at least one aspect of their ecological 

niches: temporal, spatial or resource segregation. Using isotopes and Se and Hg 

concentrations, the foraging resources of grey seals and harbour seals and the potential 

competition between these species in the North Sea was studied. δ
13

C, δ
15

N and δ
34

S values 

were combined with the concentrations of Hg and Se in blood samples of harbour and grey 

seals from the North Sea. Blood samples were collected on 45 grey seals and 37 harbour seals 

sampled along German and Scottish coasts. This multi-tracer approach showed spatial and 

resource partitioning within grey and harbour seals. Data indicated the offshore foraging 

distribution of grey seals as reflected by the lower δ
15

N values and T-Hg concentrations and 

higher Se concentrations, and the inshore foraging distribution of harbour seals because of 

higher δ
15

N values and T-Hg concentrations and lower Se concentrations. The SIAR mixing 

model revealed a more selective diet of grey seals compared to harbour seals, and the 

importance of sandeels in grey seal diet reflected by their high δ
34

S values. Lastly, diet ellipse 

overlaps between grey seals and harbour seals sampled along the German coasts suggested a 

potential sharing of food resources, possibly due to the increase number of grey seals number 

in this area during the foraging season - all year except breeding and moulting periods. The 

multi-tracer approach provided a more robust discrimination among diet resources and spatial 

foraging distributions of grey seals and harbour seals in the North Sea. 
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Fig. 2 - Relationship between δ13C and δ15N values (‰) in red blood cells and T-Hg and Se concentrations (ng g-1 dry 

weight) in whole blood of grey seals (grey) and harbour seals (black)  from the North Sea. Spearman’s rank correlation ρ (for 

all, p-value < 0.05) was used for correlations between trace element concentrations and stable isotope ratios. NO COLOR 

Fig. 3 - ẟ13C vs. ẟ15N (A and D),  ẟ34S vs. ẟ15N (B and E) and ẟ13C vs. T-Hg (C and F) biplots represented the potential 

overlap and the SEA(C) of harbour seal (black triangles) and grey seal (grey points) blood sampled along the Scottish (solid 

lines) and German (dotted lines) coasts. Isotopic and trace element data were transformed following the Cucherousset and 
Villéger method (2015). NO COLOR 

Fig. 3 - Bi-plot of carbon and nitrogen isotope composition (mean ± SD) of food sources and consumers species (grey seals 

and harbour seals) sampled along the Scottish coasts. Fractionation factors of 0.8 ± 0.1‰ and 3.3 ± 0.1‰ were applied for 

δ13C and δ15N values, respectively (Pinzone et al. 2017). COLOR 
Fig. 4 - Estimates of relative contribution of each potential food resource to Scottish grey seal (A) and harbour seal (B) diet 

calculated by SIAR model. Boxplots are posterior probability distributions of model estimations of proportions. The dark, 

intermediate and light boxes are the 50%, 75% and 95% credibility intervals. Sandeels values are extracted from Käkelä et al. 

2007. COLOR 

  

Map 1 – Sampling sites of grey seals (GS) and harbour seals (HS) in the North Sea; Helgoland and Lorenzenplate in the 

German Wadden Sea and Orkney and Isle of May along the Scottish coasts. Data are expressed as sampled species and year 

of sampling. Number of females and males and adults and juveniles sampled are giving for both species for all sampling 

sites. NO COLOR 
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Table 1 – Stable isotope values of δ13C, δ15N and δ34S (‰) in red blood cells and T-Hg and Se concentrations (ng g-1 of dry 

weight) in whole blood of grey seals and harbour seals (both sexes; adults and juveniles) sampled along the German coast, 

and of grey seals and harbour seals (adult females) sampled along the Scottish coast in the North Sea. Data are expressed as 

mean (median) ± SD (min – max). n = number of samples. Mann-Whitney test (p-value < 0.05) was used for species 

comparison; U and p-value are expressed in the table and significant p-values are in bold.  NO COLOR 

 German coast Scottish coast 

 Grey seals Harbour seals Grey seals Harbour seals 

δ
13

C 

-17.2 (-17.3) ± 0.8  

(-18.3 to -15.8) 

n = 11 

-17.4 (-17.3) ± 0.6  

(-18.6 to -16.7) 

n = 20 

-17.8 (-17.9) ± 0.4  

(-18.8 to -17.0) 

n = 34 

-17.5 (-17.5) ± 0.4  

(-18.6 to -16.9) 

n = 17 

Mann-Whitney, U = 101, p-value = 0.726 Mann-Whitney, U = 163, p-value = 0.012 

δ
15

N 

17.3 (17.8) ± 1.2  

(15.1 to 18.8) 

n = 11 

18.5 (18.6) ± 0.5  

(16.6 to 19.1) 

n = 20 

13.4 (13.2) ± 0.7  

(12.7 to 15.7) 

n = 34 

15.8 (15.9) ± 0.5  

(14.6 to 16.5) 

n = 17 

Mann-Whitney, U = 31, p-value = 0.001 Mann-Whitney, U = 10, p-value < 0.001 

δ
34

S 

17.4 (17.3) ± 0.9  

(15.9 to 19.3) 

n = 11 

8.8 (8.7) ± 1.2  

(6.7 to 10.5) 

n = 20 

14.6 (14.6) ± 0.9  

(12.2 to 16.9) 

n = 33 

9.6 (9.8) ± 2.0  

(6.5 to 12.4) 

n = 17 

Mann-Whitney, U = 0, p-value < 0.001 Mann-Whitney, U = 2, p-value < 0.001 

T-Hg 

794.9 (733.8) ± 283.2  

(370.1 to 1285.1) 

n = 11 

1376.9 (1338.2) ± 376.1  

(808.0 to 2430.2) 

n = 20 

300.7 (271.5) ± 147.5  

(122.4 to 944.5) 

n = 34 

364.6 (347.2) ± 108.4  

(179.3 to 544.4) 

n = 17 

Mann-Whitney, U = 19, p-value < 0.001 Mann-Whitney, U = 172, p-value = 0.020 

Se 

5164.0 (4670.0) ± 2097.8  

(3014.2 to 9175.4) 

n = 11 

3749.3 (3270.0) ± 2216.8  

(1476.9 to 11800.0) 

n = 19 

11636.1 (11455.9) ± 3736.6  

(3052.7 to 17948.1) 

n = 31 

4705.9 (4000.0) ± 2054.4 

(2000.0 to 10000.0) 

n = 17 

Mann-Withney, U = 50, p-value = 0.02 Mann-Withney, U = 27, p-value < 0.001 
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Table 2 – Summary of ellipse overlapping and SEAB of isotopic (δ13C vs. δ15N, δ15N vs. δ34S) and ecological niches (δ13C vs. 

T-Hg, T-Hg vs. δ15N, δ34S vs. T-Hg, δ13C vs. Se, Se vs. δ15N, δ34S vs. Se) of grey seal (GS) and harbour seal (HS) blood 

sampled along German and Scottish coasts. Presence of overlap between GS and HS SEA (standard ellipse area) is indicated 

by the “”  symbol ( = 0-5% of GS and HS ellipse overlap,  = 5-40% GS and HS ellipse overlap,  = 40-100% GS 

and HS ellipse overlap), absence of overlap is indicated by the “X” symbol. Significantly higher SEAB for GS is indicated by 

the “>” symbol, significantly higher SEAB for HS is indicated by the “<” symbol, and no significant difference in SEAB 

between both species is indicated by the “=” symbol. COLOR 

 Ellipse overlap 

Grey seals vs. Harbour seals 

SEAB 

Grey seals vs. Harbour seals 

 German coast Scottish coast German coast Scottish coast 

δ
13

C vs. δ
15

N  X > = 
δ

34
S vs. δ

15
N X X = < 

δ
13

C vs. T-Hg   = < 
T-Hg vs. δ

15
N X X = = 

δ
34

S vs. T-Hg X X < < 
δ

13
C vs. Se   = = 

Se vs. δ
15

N  X > > 
δ

34
S vs. Se X X = < 
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Graphical abstract 

 

Highlights 

 Foraging niches of sympatric grey and harbour seals were studied. 

 δ
13

C, δ
15

N and δ
34

S values and Hg and Se concentrations were used. 

 This approach allowed for better understanding resources utilized. 

 Grey seals exhibited a less complex diet and sandeels were an important component 

 SIAR and SIBER analyses provided information on specific diets  
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