VSTpol: the first large survey telescope for optical polarimetry

Polaroid

Alain Smette (ESO) Frans Snik (Leiden) Stefano Covino (INAF-Brera) Stefano Bagnulo (Armagh) Damien Hutsemékers (Liège) Antonio Mario Magalhaes (São Paulo) Olivier Hainaut (ESO) Koen Kuijken (Leiden) Alex van Vorstenbosch (Leiden)

Why polarimetry?

Polarization is produced when symmetry is broken

- in a radiative source, or
- between the source and the observer

Electron scattering

Dust scattering/absorption

Surface scattering

Optical/polarimetric support for CTA

	CTA OST requirements	VSTpol estimated performance		
Limiting magnitude (photometry)	~ 20	~ <u>22.9 – 24.8 for ugri</u>		
Limiting magnitude (polarimetry)	~ 17 *	~ 20		
Polarimetric sensitivity and accuracy	0.5 – 1%	36 min at V~16 for 0.16% sensitivity		
Field of view	5' x 5'	$1^{\circ} \times 1^{\circ}$		
Cadence	Intra-night	Possible, depends on time allocation		
Repointing speed	Better than 2'	(30+(separation in deg)/1.5) seconds		

Rapid Response Mode: start observation 6 to 8 min after trigger

- AGN and all cosmic "accelerators"
- Transients (GRBs...)
- VHE binary systems

* Markoff et al. (2018) Critical Assessment of Optical Support Needs for CTA Science and Consensus Proposal

Optical starlight polarization: 3D galactic magnetic field

O(3,000h): correlation with accurate Gaia parallaxes: 3D mapping of the magnetic field of MW, LMC, SMC + correlation with Planck

Classification of asteroids

S- and C-type asteroids can be classified through their polarization properties

Bagnulo (2018)

O(10,000h) VSTpol survey of the ecliptic increases by a factor of \sim 10 the number of V< 20 asteroids with polarimetric measurements

Comets: dust grain evolution

lon tail

Orientation of AGN polarization axis

Hutsemékers et al. (2014)

- Directions of AGN morphological axes as probed by measurements of polarisation position angle -show structures from 100 Mpc to ~ 500 Mpc
- Alignment with the large scale structure
- O(6,000h): polarization for 20,000 QSOs down to sensitivity ~ 0.3%
- VST would be 20 times more efficient than EFOSC/FORS2

GW electromagnetic counterparts

- GW localizations for good S/N events will be even better than 10°
- Early-time (hr) kilonova polarisation is a powerful and unique diagnostics.
- Only a large FoV polarimeter could make these observations feasible.
- Unique science!

This is true for any rapid transient without (yet) accurate localization

Many other science cases for VSTpol

- the Moon and planets
- Kordylewski clouds & Earth Trojans
- zodiacal light
- atmospheric structure of brown dwarfs
- "dark" clouds, low-mass star forming regions, HII regions
- planetary nebulae
- stars with disks (e.g., Herbig AeBe)
- white dwarfs
- SN afterglows
- light echoes
- weak gravitational lensing

Huge discovery space!

Polarimetric implementation

Polarimetric implementation

polarimetric sensitivity

polarimetric accuracy

Single-beam implementation is susceptible to temporal variations (seeing, sky transparency, Starlink trails, etc.).

Lenses before the polarizer induce polarization, and can convert source polarization into unmeasurable circular polarization. Both as a function of field position and wavelength.

However, many unpolarized stars in the field can help correct for these effects!

Polarimetric implementation

polarimetric sensitivity ~0.1% for 30 min V=16

polarimetric accuracy ~0.1%

Patat & Romaniello (2006)

Performance simulation: GRB afterglow

MCMC fit to GRB polarimetry observations

VSTpol: the first large survey telescope for optical polarimetry

- unique instrument, with no competitor
 - polarimeter
 - 2.6-m telescope x large FoV
 - maintains current capabilities
- perfect timing
- cost-effective
- strengthens Italian community
 - CTA
 - for transients
 - for asteroids
 - Planck
 - Rubin (LSST) follow-up

Other polarimetric surveys

Project	Telescope & diameter	FoV [deg^2]	(area* FoV) * T/#exp [m^2 * deg^2]	Polarimetric optics	Sensitivity	Status
SOUTH POL	1 m telescope	4	2.2/4 = 0.55	dual-beam polarimeter	For V=16, 0.16% in 2400s	1m tel. : project. Polarimeter is commiss. on 84cm tel.
MOPTOP (RINGO3's successor)	Liverpool @ La Palma: 2 m (shared with other instruments)	0.014	0.044/4 = 0.011	dual-beam polarimeter	For V=16: ~0.1% in 2000s	Commissioning?
<u>RoboPol</u>	Skinakas observatory (Crete): 1.3 m (shared with other instruments)	0.045	0.060	4-channel polarimeter	for R= 16 0.25% in ~ 1200s	Operational
<u>PASIPHAE</u>	Skinakas observatory (Crete), 1.3 m South African astron. obs., 1 m (shared with other instruments?)	0.25	0.33 0.20	4-channel polarimeter	For R=16.4 0.2% in 900s 1440 s	Project
VST pol	VST (Paranal), 2.6m (dedicated telescope, shared time with normal imaging?)	1	5.3*0.5/3 = 0.88	single-beam polarizer	For V=16, ~0.1% in 1800s	Proposal