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ABSTRACT

This study proposes a method for the cross calibration of tide gauges. Based on the combination of at least

three collocated sea level time series, it takes advantage of the least squares variance component estimation

(LS-VCE)method to assess both sea level biases and uncertainties in real conditions. Themethodwas applied

to a multi-instrument experiment carried out on Aix Island, France, in 2016. Six tide gauges were deployed to

carry out simultaneous sea level recordings for 11 h. The best results were obtained with an electrical contact

probe, which reaches a 3-mm uncertainty. The method allows us to assess both the biases and the precision—

that is, the full accuracy—for each instrument. The results obtained with the proposed combination method

have been compared to that of a buddy-checkingmethod. It showed that the combination of all the time series

also provides more precise bias estimates.

1. Introduction

Tide gauges aim at measuring the vertical distance

between the sea level and a reference level (or datum).

Historically, tide gauges were first used for tide pre-

diction and navigation (Cartwright 2000); today, their

applications have been extended (Pugh andWoodworth

2014). Clustered into networks of continuously operat-

ing stations, they are the key components of storm surge

or tsunami warning systems and climate-related moni-

toring programs, such as the Global Sea Level Observ-

ing System (GLOSS; IOC 2012).

Awide range of distancemeter technologies can serve

to implement a tide gauge, as long as it can resolve both

sea level and datum along the vertical. The datum of

a sea level station is a local and conventional refer-

ence level, independent from any instruments. It enables

the construction of long time series with successive or

overlapping tide gauges. The datum is defined through a

network of benchmarks grounded around the sea level

station; some of them can be benchmarks from leveling

networks (IOC 1985; Pugh and Woodworth 2014).

Thus, a preliminary step in field calibrations consists of

tying the reference gauge to the station datum or con-

trolling whether it is properly tied.

The simplest and oldest types of tide gauge are grad-

uated poles or tide poles placed against a vertical struc-

ture at the coast (Cartwright 2000). Tide poles requiring

human-made measurements are still in use, along with

electric tape probes for on-site field calibration of more

elaborated self-recording tide gauges. Since 1985, the

manuals of the Intergovernmental Oceanographic Com-

mission (IOC) have covered the basic principles of the

main types of tide gauges in use across the world, ranging

from mechanical float gauges (IOC 1985) to radar tech-

nologies (IOC 2016), including pressure and acoustic

gauges (IOC 2002, 2006).

Over the past decade, radar-based technologies

appeared as the preferred ones (IOC 2016). However,

new technologies are emerging, based on Global Navi-

gation Satellite System (GNSS) buoys (André et al.

2013),GNSS reflectometry (GNSS-R; Larson et al. 2017),

or laser distance measurement (MacAulay et al. 2008).

A tide gauge complying with GLOSS standards should

be capable of measuring instantaneous sea level with an

accuracy better than 1 cm, in all conditions of tide, waves,

currents, and weather (IOC 2016). As laboratory testings

do not ensure those performances, the practice hasCorresponding author: Kevin Gobron, kevin.gobron1@univ-lr.fr
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evolved toward field experiments (Martín Míguez et al.
2008a,b; Park et al. 2014; Pérez et al. 2014).
When dealing with accuracy requirements, it is useful

to distinguish random and systematic errors. The random

error is the error component that, in replicate measure-

ments, varies in an unpredictable manner, whereas the

systematic error is the error component that, in replicate

measurements, changes in a predictable manner (BIPM

et al. 2008).

Given the crucial role of tide gauges in coastal sea

level observation, the increasing number of available

technologies and the evolution of accuracy require-

ments, this study aims at providing a cross-calibration

method that quantifies both systematic errors (the

biases) and random errors (the uncertainties) of sea level

time series.

Determining the errors of given time series can be

achieved through three approaches: 1) the observed

time series can be compared with that from a more

precise instrument, 2) it can be compared with theory in

cases where the observed phenomena can be very pre-

cisely modeled, and 3) observed time series of three or

more instruments can be analyzed to obtain enough

information to determine the uncertainty of each.

The first approach, also known as buddy-checking,

is routinely used during calibration campaigns where

a pair of tide gauges are compared over a tidal cycle,

sometimes with the help of the so-called Van de

Casteele (VdC) diagram (Lennon 1968; IOC 1985). During

the last decade, several studies have investigated the per-

formances of radar gauges, pressures gauges, GNSS buoys,

or GNSS reflectometry based on this approach (Watson

et al. 2008; Martín Míguez et al. 2008a, 2012; Pérez et al.

2014; Larson et al. 2017; Pytharouli et al. 2018). Even if this

approach can provide bias estimates and general accuracy

metrics, such as mean error or root-mean-square error

(RMSE), it cannot rigorously separate the uncertainties of

each gauge.

The second approach would correspond to removing a

tide model from the measured sea level time series. But,

because of the complexity of meteorological and ocean

dynamics involved in sea level fluctuations, thesemodels

are not precise enough to assess the performance of tide

gauges at the targeted centimeter level.

The third approach is classically used in metrology

(Pálinká�s et al. 2017) and has often been used in ge-

odesy through the three-cornered-hat (TCH) estima-

tion method (Gray and Allan 1974), for example, to

determine the stability of reference station positions

(Feissel-Vernier et al. 2007; Abbondanza et al. 2015)

or the precision of space gravity model (de Viron et al.

2008; Valty et al. 2013). The TCH is not the only possible

implementation of the third approach: the more general

framework of variance component estimation (VCE) can

similarly address this problem, as shown by the theoret-

ical example (4.10) of Amiri-Simkooei (2007). The TCH

and VCE examples can separate the uncertainty of each

gauge, but assume the absence of sea level biases.

To take advantage of both the first and third ap-

proaches, this study proposes a combination model that

extends the use of the third approach to the analysis of

potentially biased time series. Assessing the tide gauge

uncertainties in addition to the sea level bias parameters

is made possible by the use the least squares variance

component estimation (LS-VCE) method (Teunissen

and Amiri-Simkooei 2008). As the model can handle an

arbitrary number of time series, it is suited for multi-

instrument experiments.

The method is applied to an on-site field calibra-

tion experiment carried out at Aix Island off the mid-

Atlantic coast of France, where a permanent radar gauge

has operated for several years (Gouriou et al. 2013), and

various types of tide gauges (including some emerging

technologies) were temporarily deployed during the ex-

periment withinmeters from each other over a tidal cycle

in 2016.

2. The Aix Island experiment

This experiment was carried out on 7 June 2016, by

a team of scientists (see acknowledgments). For 11 h,

they recorded one semidiurnal spring tidal cycle with an

amplitude of 5.22m using six different instruments.

The six tide gauges were a permanent radar gauge

(RADAR), a permanent tide pole (POLE), an electrical

contact probe (PROBE), two GNSS buoys (BUOY1 and

BUOY2), and a laser distancemeter (LASER).RADAR,

POLE, PROBE, and LASER are shown in Fig. 1 and the

two GNSS buoys in Fig. 2. All tide gauges and the refer-

ence GNSS station were referenced to the station datum

by leveling. Each gauge record is defined as an average

over a 2-min acquisition window every 10min.

The radar gauge (RADAR) is the primary tide gauge

of the permanent sea level observatory of Aix Island.

This station contributes to the French sea level obser-

vation network (RONIM) operated by the French hy-

drographic service (SHOM). It is a Krohne Optiwave

7300C gauge that measures the air range between the

transmitter fixed above the sea surface and the sea surface

with a sampling frequency of 1Hz using a frequency-

modulated continuous wave technology (IOC 2016).

The tide pole (POLE) is a permanent instrument made

of a plastic staff with graduations every 10cm fixed ver-

tically by a stainless steel structure (Fig. 1). The operator

estimates the sea level visually over the predefined 2-min

acquisition period.
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The electrical contact probe (PROBE) is a measur-

ing tape with millimeter graduations ended by an elec-

trical device that emits a short signal when detecting the

seawater surface.We used a Schill probe installed within

a stilling pipe anchored along the tide pole (Fig. 1).

A sea level record from PROBE is an average over

the 2min of human-made readings every 15 s. Electric

probes are typically used as the reference gauge in tide

gauge calibrations, so was it in our study. The stilling

pipe was too short to allow measurements at the lowest

sea levels, which resulted in a gap between 1000 and

1210 UTC.

The first GNSS buoy (BUOY1), designed at the Institut

de Physique duGlobe deParis (IPGP), is aGNSS antenna

installed above a lifebuoy and protected from the water

by a radome (Fig. 2). The second buoy (BUOY2), de-

signed by the Division Technique de l’Institut National

des Sciences de l’Univers (DT INSU), is a GNSS antenna

housed in the center of a tripod floating structure (Fig. 2).

The receivers and batteries of the buoys are located inside

FIG. 1. The four ground-based tide gauges: RADAR, POLE, PROBE, and LASER.

FIG. 2. The two GNSS buoys: BUOY1 and BUOY2.
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a metallic cylinder under each antenna. These two buoys

(BUOY1 and BUOY2) were already used in previous

campaigns (André et al. 2013). The heights between their

phase centers and the water surface are known at the

subcentimeter level thanks to previous testing carried

out under calm conditions.

The buoy vertical positions, that is, ellipsoidal heights,

fromGPSwere assessed bypostprocessing, using a double-

differences strategy with a baseline of about 300m from

the ILDX GNSS reference station. Only satellites with

elevation angles above 158 were used, with a combination

of both L1 and L2 frequencies. The centimeter level ac-

curacy was achieved, using full ambiguity resolution with

theRTKlib software suite with RTKPOST v2.4.2 program

(Takasu 2013).

LASER is a reflector-free distance-meterLeicaDISTO

A6. This type of instrument is built for solid surface

ranging but showed fair to good performances during this

experiment. This instrument uses an optical laser beam

with a wavelength of 635nm. Each LASER record cor-

responds to an average of measurements done every 4 s.

All instruments time series are presented in Fig. 3. Due

to data transmission loss and GNSS recording issues

during the experiment, some records from the LASER,

BUOY1, and BUOY2 instruments are missing.

3. Calibration methods

This study proposes a combination method to go be-

yond the classical difference methods, allowing a bet-

ter determination of the biases and their uncertainties.

For comparison, we processed the time series using both

the combination method and the classical difference

method used by the hydrography community, the Van

de Casteele diagram (Lennon 1968).

a. Sea level error model

Due to the short recording period, this study only

considers the influence of the three most common types

of range measurement biases on the resulting sea level

time series, namely, height reference, scale, and clock

synchronization errors (Watson et al. 2008; Martín
Míguez et al. 2008b).
While converting original range measurements into

sea level time series, range biases turn into sea level

biases that must be quantified and removed. This study

proposes a linear sea level bias model, which expresses

the sea level bias as a function of the measured sea level

itself. More precisely, the model links the ith sea level

time series yi(t) to the real sea level h(t) through

y
i
(t)5 h(t2 t

i
)1b

i
y
i
(t)1a

i
1 e

i
(t) , (1)

where biyi(t) 1 ai is the linear sea level bias model, and

ei(t) is a random error modeled by a centered normal

distribution of unknown variance s2
i .

In Eq. (1), ai corresponds to the intercept: a constant

term representing the sea level bias when yi(t)5 0. It may

result from a height reference error, but also from the in-

fluence of a scale error, asmentioned by (Pérez et al. 2014).
Parameter bi corresponds to the scale error: a multiplying

factor that causes a sea level bias proportional to the tidal

range. It can result from both instrument and installation

defaults. Finally, ti is the time delay between different tide

gauges: it results from clock synchronization issues.

The measured sea level yi(t) depends nonlinearly on

the time delay ti, which makes linear determinations, like

the one proposed in this paper, impossible. However, it

can be corrected before the other bias estimations, for

example, by computing the delay thatmaximizes the cross

FIG. 3. Sea level time series yi recorded by all tide gauges.
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correlation between a tested signal and a reference signal.

Obtaining ti by cross correlation avoids any assumptions

on the periodicity of the measured signal. In our case, the

time delay estimation showed that the best correlation

was achieved with no delays added, that is, ti 5 0, "i.
The sea level bias model directly quantifies the

amplitude of the bias associated with the measure-

ment yi(t). The correction of the sea level time series

can be done after the calibration experiment by sub-

tracting the estimated bias model from the measure-

ments. This linear model can be adapted to other types

of biases. For example, longer time series analysis

(several days, months, or years) may require to con-

sider time-dependent biases such as trends and jumps

(Pytharouli et al. 2018).

b. The difference-based calibration method

Difference-based methods (DIFF) consist in ana-

lyzing the differences Dyi(t)5 yi(t)2 yref(t) between

the time series of a tested instrument yi(t) 5 h(t) 1
biyi(t) 1 ai 1 ei(t) and that of a reference instrument

yref(t) 5 h(t) 1 eref(t).

A commonly used tool for DIFF methods is the VdC

diagram, which represents the sea level difference Dyi(t)

as a function of yi(t). Initially developed in 1962, for

mechanical tide gauges (IOC 1985), the VdC diagram is

nonetheless still applicable for modern sea level mea-

surement technologies (Martín Míguez et al. 2008b).

The most attractive feature of this diagram is a fast, vi-

sual, detection of possible biases with only one tidal

cycle. Figure 4 shows the sea level error patterns re-

sulting from the most common range measurement er-

rors (IOC 1985).

In the presence of the linear biases mentioned before,

Dyi(t) follows

D
yi
(t)5b

i
y
i
(t)1a

i
1 e

i
(t)2 e

ref
(t) . (2)

In other words, estimates of the sea level bias param-

eters ai and bi of Eq. (1) can be obtained by a linear re-

gression of Dyi(t) on yi(t), which corresponds to fitting a

line on a VdC diagram.

Assuming that both random errors ei(t) and eref(t) are

uncorrelated, the term ei(t) 2 eref(t) in Eq. (2) follows a

centered normal distribution with an unknown variance

s2
i 1s2

ref. Themerge of the random errors ei(t) and eref(t)

in the differences Dyi(t) implies that, without assump-

tion, the DIFF methods can only assess the variance

s2
i 1s2

ref, which is just an upper bound to the tested

gauge variance s2
i (Lentz 1993; Martín Míguez et al.

2008b; Pytharouli et al. 2018). To separate s2
i and s2

ref,

an additional piece of information is needed: a third

time series.

c. The combination-based calibration method
(COMB)

When more than two time series are available, it be-

comes possible to assess the uncertainties and biases from

each tide gauge by estimating a weighted combination of

all the time series, using a variance component estimation

method. In the following, the acronym COMB refers to

the combination method.

1) FUNCTIONAL MODEL

Noting yi the ith gauge k 3 1 observation vector (or

time series), the full pk3 1 stacked vector y, containing

all observations from the p instruments, can be written as

y5
h
yT1 � � � yTi � � � yTp

iT
.

The functional model links the expectationE(�) of the
pk 3 1 observations vector y to q unknown parameters

using a model of observation equations. When there is

no theoretical model for the observed signal, one can

estimate a k 3 1 combined solution h from the p mea-

sured time series, so that

h5
�
h
1

� � � h
j

� � � h
k

�T
.

In the case of unbiased gauges, the functional model

would be E(yi) 5 h for each gauge. In the case of the

cross calibration of possibly biased time series, the

functional model should also account for the biases:

E(y
i
)5

�
h , if the ith gauge is unbiased

h1b
i
� y

i
1a

i
, otherwise

.

(3)

Because biases are always defined with respect to a

conventional reference, at least one time series must

be considered as conventionally unbiased to avoid an

ill-posed equation system. Hence, in the following, the

first time series y1 will be considered as conventionally

unbiased.

This functional model can be written using matrix

algebra, so that

E(y)5Ax5 ½Ah
A

a
A

b �
24 h

a

b

35 , (4)

where h5 [h1 � � � hk]T is the combined solution vector,

a 5 [a2 � � � ap]
T is the intercept parameter vector, and

b 5 [b2 � � � bp]
T is the scale error parameter vector.

In Eq. (4), the combination design pk 3 k matrix Ah

corresponds to p stacked identity matrices Ik3k such as
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A
h
5

2664
I
k3k

..

.

I
k3k

3775 ,
and both the intercept design pk 3 (p 2 1) matrix Aa

and the scale error design pk 3 (p 2 1) matrix Ab are

constituted with block nonzero vectors so that

A
a
5

26666666664

0
k31

� � � � � � 0
k31

1
k31

1 1 ..
.

0
k31

1 1 ..
.

..

.
1 1 0

k31

0
k31

� � � 0
k31

1
k31

37777777775
,

and

A
b
5

26666666664

0
k31

� � � � � � 0
k31

y
2

1 1 ..
.

0
k31

1 1 ..
.

..

.
1 1 0

k31

0
k31

� � � 0
k31

y
p

37777777775
,

where 0k31 and 1k31 refer to k 3 1 vectors respectively

filled with zeros and ones.

2) STOCHASTIC MODEL

The stochastic model describes the variance var(�)
of the observation vector y. Considering that all

FIG. 4. Synthetic examples of VdC diagrams for the most common types of range measurement errors:

(a) random measurement errors only, (b) random measurement errors and a height reference error, (c) random

measurement errors and a scale error, and (d) random measurement errors and a clock error.
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measurements are statistically independent and that

the uncertainty of the ith instrument follows a multi-

variate normal distribution with a variance s2
i , the

pk 3 pk covariance matrix of the observations

var(y) 5 Qy reads

Q
y
5

26666666664

s2
1Ik3k

0
k3k

� � � � � � 0
k3k

0
k3k

1 1 ..
.

..

.
1 s2

i Ik3k
1 ..

.

..

.
1 1 0

k3k

0
k3k

� � � � � � 0
k3k

s2
pIk3k

37777777775
, (5)

where Ik3k and 0k3k are respectively the k 3 k identity

and null matrices.

To use the LS-VCEmethod,Qy needs to be expressed

as a linear combination of cofactor matrices Qi such as

Q
y
5s2

1Q1
1 � � � 1s2

pQp
5�

p

i51

s2
iQi

, (6)

where s2
i are referred to as variance components, and

correspond to the instrument uncertainties.

In this study, the Qi are known pk 3 pk cofactor

matrices that follow

Q
i
5

26666666666664

0
k3k

� � � � � � 0
k3k

..

.
1 ..

.

0
k3k

I
k3k

0
k3k

..

.
1 ..

.

0
k3k

� � � � � � 0
k3k

37777777777775
.

3) LEAST SQUARES ESTIMATION

According to the least squares estimation theory

(Caspary 1987; Teunissen 2000), for normally distributed

observations, an unbiased and minimum variance esti-

mation of the q 3 1 parameter vector x can be achieved

by solving a normal equation system Nx 5 c, where N is

the normal q 3 q matrix defined by N5ATQ21
y A and c

is a q 3 1 vector defined by c5ATQ21
y y. Hence, the es-

timator of the functional parameter vector x̂ is given by

x̂5N21c5 (ATQ21
y A)

21
ATQ21

y y , (7)

and its covariance matrix Qx̂ follows

Q
x̂
5N21 5 (ATQ21

y A)
21

. (8)

In the case of a lack of knowledge on the on-site

precision of the tide gauges, that is, on Qy, a variance

component estimationmethod can be used to assess the

uncertainty of each gauge. As the minimum variance

property of least squares estimates requires a realistic

weighting between sea level time series, the use of a

variance component estimation method also allows for

more realistic estimates of the parameter vector x̂ and

its covariance matrix Qx̂.

4) LEAST SQUARES VARIANCE COMPONENT

ESTIMATION

A review of most variance component estimation

methods can be found in Fotopoulos (2003) and Amiri-

Simkooei (2007). Here, we consider the application of

the LS-VCE, which is based on the same least squares

estimation principles used in section 3. LS-VCEwas first

introduced in 1988 by Teunissen (1988) and further de-

veloped by Amiri-Simkooei (2007) and Teunissen and

Amiri-Simkooei (2008). Under the assumption of the

multivariate normal distribution considered in section 2,

the method provides an unbiased and minimum vari-

ance estimator of the variance components. It can also

be shown that the LS-VCE estimates maximize the re-

stricted likelihood function of the considered normal

distribution (Amiri-Simkooei 2007). This property is

common to most rigorous VCE methods. However, the

LS-VCE is more generally applicable and offers addi-

tional features, including a direct derivation of the un-

certainty of each variance component estimate (Teunissen

and Amiri-Simkooei 2008).

The LS-VCEmethod consists in using the redundancy

of information of a system to infer the variance of the

observations. In the case of a linear parametric func-

tional model, one can compute a residual pk3 1 vector

ê such as

ê5 y2Ax̂5P?
Ay , (9)

where P?
A is a projector matrix defined by

P?
A 5 I2A(ATQ21

y A)
21
ATQ21

y . (10)

The residual vector ê gives pieces of information

about observation uncertainties, potential model mis-

specifications, and the presence of outliers. By assuming

the absence of outliers and model misspecifications, the

LS-VCE provides an estimator of the observation un-

certainties using ê and P?
A .

As for the standard least squares estimation, the LS-

VCE method estimates the unknown variance compo-

nents p 3 1 vector ŝ2 5 [cs2
1 � � �cs2

p]
T by solving a normal

equations system:
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ŝ2 5N21c5

266666666664

n
11

� � � � � � n
1p

..

.
1 ..

.

n
ij

..

.
1 ..

.

n
p1

� � � � � � n
pp

377777777775

21266666666664

c
1

..

.

c
i

..

.

c
p

377777777775
, (11)

where the normal matrix N and the vector c are spe-

cific to the stochastic model, and thus different from the

normal matrix N and vector c in Eq. (7).

For the stochastic model defined in section 2, for

which all variance components are to be estimated,

the elements nij and ci of N and c are defined by

(Amiri-Simkooei 2007)

n
ij
5
1

2
tr(Q

i
Q21

y P?
AQj

Q21
y P?

A) (12)

c
i
5

1

2
(êTQ21

y Q
i
Q21

y ê) (13)

where tr(�) stands for the trace operator.

Note that ŝ2 is involved in the definition of nij and ci
throughQ21

y . Hence, Eq. (11) expresses ŝ2 as a function

of Qy, which is already a function of ŝ2 in Eq. (6). Such

system of equations, where the equations for the un-

knowns include functions of the unknowns, can be nu-

merically solved using an iterative procedure starting

with an initial guess on the unknowns: the prior variance

component vector s2
0.

The first iteration consists in using the prior vector s2
0

and cofactor matrices Qi to compute Qy and P?
A , which

are necessary to build the normal equations system (11).

Solving this normal equations system (11) leads to the

estimation of an updated variance component vectors2
1.

The next n iterations consist in successively updating the

variance component vector ŝ2
n by solving the normal

equations system (11) built using the previously estimated

variance component vector ŝ2
n21. The iterations stopwhen

the difference between two estimated variance component

vectors becomes negligible. To obtain more details on the

implementation of the LS-VCE method, a symbolic algo-

rithm can be found in Fig. 4.2 of Amiri-Simkooei (2007).

When encountering convergence issues with an arbi-

trary prior variance component vector, using more re-

alistic prior tide gauge uncertainties may be necessary.

One could, for example, use the information provided

by the tide gauge manufacturers. However, in the case

of convergence, changes in the prior variance compo-

nents should not change the final LS-VCE results as the

method should reach the restricted maximum of likeli-

hood regardless of the starting point.

Once convergence is achieved, an insight into the quality

the variance component estimates ŝ2—the covariance

matrix of the variance component estimates—can be

obtained by inverting the normal matrix N:

Q
ŝ2 5N21 , (14)

The ith diagonal element of Qŝ2 corresponds to the

variance of the ith variance component s2
ŝ2
i

. As for Qx̂,

the uncertainties of variance component estimates de-

pend on the system redundancy and the precision of the

observations.

To get interpretable variance component estimates,

one can change variance components ŝ2
i into standard

deviation components ŝi 5
ffiffiffiffiffi
ŝ2
i

p
. To obtain variance

component uncertainties with interpretable units, one

can follow Amiri-Simkooei et al. (2009), and approxi-

mate the new variance of the standard deviation com-

ponent s2
ŝi
by applying variance propagation law through

the linearized square root function:

s2
ŝi
’s2

ŝ2
i
3

1

2
ffiffiffiffiffi
ŝ2
i

p !2

, (15)

Themore interpretable standarddeviationof the standard

deviation component sŝi
5

ffiffiffiffiffiffiffi
s2
ŝi

q
can then be derived by

taking the square root of both sides of Eq. (15), which gives

s
ŝi
’

s
ŝ2
i

2ŝ
i

, (16)

where sŝ2
i
is the standard deviation of the ith variance

component sŝ2
i
5

ffiffiffiffiffiffiffi
s2
ŝ2
i

q
.

Hence, one can express the uncertainty estimate of

the ith tide gauge as ŝi 6sŝi
(cm).

4. Results

To compare COMB and DIFF methods on a simi-

lar basis, the PROBE time series has been considered

conventionally unbiased for both methods.

To remove the influence of potential outliers, residuals

time series were computed using Eq. (9) before the actual

processing of both methods. The functional model (4) and

the covariance matrixQy 5 I were considered in Eq. (10).

Observations that showed residuals above 5 times the

median absolute deviation of the gauge residual time se-

ries were removed from the dataset. In practice, it con-

cerned less than two observations by time series.

a. Calibration with the COMB method

Before the assessment of the unknown bias parame-

ters and the combined solution, a realistic covariance
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matrix Qy was first computed using LS-VCE. An arbi-

trary standard deviation of 0.8 cm for all the time series

was used to build the prior variance component vector.

Starting with s2
0, the iterative procedure, summarized in

section 4 and fully described in Amiri-Simkooei (2007),

provided the final variance components vector estimate

ŝ2 and its covariance matrix Qŝ2 . As the elements of

both ŝ2 and Qŝ2 are not directly interpretable, the

Eq. (16) was used to express each tide gauge uncertainty

estimate as ŝi 6sŝi
(cm).

The bias parameters and the combined solution were

estimated by solving the functional model (4) using the

final variance component estimates: ŝ2 was substituted

in Eqs. (7) and (8) through Eq. (6) to obtain the vector x̂

and its covariance matrix Qx̂.

Both estimated sea level bias parameters and un-

certainties for 10min records are given, in centimeter,

in Table 1. The electrical PROBE is found to be the

most precise gauge in this experiment, with an un-

certainty of 0.3 cm. The least precise gauges are the

tide pole POLE (1.23 cm) and the BUOY1 (1.25 cm).

BUOY1 is nearly 2 times less precise than BUOY2

(0.74 cm).

In Table 1, four time series (RADAR, LASER,

BUOY1, and BUOY2) show intercept estimates bai

significant at the 3saib—or 99%—confidence level. Their

TABLE 1. Tide gauge cross-calibration results obtained using the

COMB method. PROBE scale error and intercept are conven-

tionally set to zero.

Gauges bai 6saib (cm) bbi 6s
bic (cmm21) bsi 6s

sic (cm)

RADAR 21.87 6 0.30 0.52 6 0.07 0.81 6 0.08

PROBE — — 0.31 6 0.10

POLE 20.13 6 0.39 20.32 6 0.09 1.23 6 0.12

BUOY1 24.30 6 0.41 0.00 6 0.11 1.25 6 0.14

LASER 23.42 6 0.35 0.13 6 0.08 0.90 6 0.10

BUOY2 23.53 6 0.30 0.17 6 0.07 0.74 6 0.09

FIG. 5. Residual time series of each tide gauge for the estimated linear combination model.
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amplitudes range from 21.87 cm (RADAR) to

24.30 cm (BUOY1). For the scale errors bbi, only

RADAR and POLE show estimates above 3s
bic, with

about 0.5 and 20.3 cmm21, respectively.

The residual time series of each tide gauge are pre-

sented in Fig. 5. BUOY1 exhibits a mean shift of about

22 cm between 0720 and 0940 UTC. This artifact ap-

pears in the residual time series because it cannot result

from the combination model. It means that the other

gauges did not observe such a shift, otherwise, it would

have been modeled by the combined solution. The

presence of this artifact in the BUOY1’s residual time

series lowers its precision inTable 1. For the other gauges,

no clear pattern appears in the residual time series, which

suggests that their biases are correctly modeled.

The combined solution ĥ and its uncertainty sĥ are

presented in Fig. 6. Eachmissing value in one of the time

series increases the uncertainty of the combined solu-

tion to an extent proportional to its precision. The

available measurements are displayed for each tide

gauge, in the bottom of Fig. 6. When the most precise

tide gauge (PROBE) is not recording, between 1000 and

1210 UTC, the uncertainty sĥ of the combined solution

increases by almost a factor of two. Despite the missing

values of PROBE, the combined solution is estimated for

the entire experiment period because all available ob-

servations are taken into account.

To investigate whether PROBE is found to be the

most precise gauge because it is the conventionally

unbiased gauge, the calibration has been reprocessed

by instead considering BUOY1 as conventionally un-

biased. The alternative calibration results are presented

in Table 2. The choice of another conventionally un-

biased gauge does not change uncertainty estimates but

changes bias parameter estimates and their uncertainties.

Bias parameters are the most affected because they in-

trinsically depend on the definition of a convention. As

BUOY1 does not exhibit any scale error in Table 1, the

changes in scale error estimates in Table 2 are not dra-

matic. The sea level time series uncertainty estimates

are identical in both alternatives because all biases are

considered in each case. An alternative functional

model ignoring an existing bias would not have pro-

vided identical results.

FIG. 6. (top) Combined solution, (middle) the standard deviation of the combined solution,

and (bottom) available observations for each gauge.
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b. Comparison with the DIFF method

Using PROBE as the reference gauge, we plotted the

VdC diagram for RADAR, POLE, LASER, BUOY1,

and BUOY2. A linear regression on each diagram pro-

vided intercept and scale error estimates for each gauge.

The DIFF method estimates are presented in Table 3.

The differences with the COMBmethod estimates are

summarized in Table 4.

The discrepancies between COMB andDIFFmethods

reach 0.75cm for the intercepts (BUOY1) and 0.15cmm21

for the scale errors (BUOY1). In Table 5, changes in

bias uncertainties between methods are expressed in

terms of uncertainty reduction percentages. The DIFF

method provides slightly different results from theCOMB

method because it only considers a smaller subset of the

dataset for each pair of gauge and because it does not take

into account the precision of each time series. In this

study, the DIFF method can only take into account

the overlapping observations between PROBE and

the tested gauges. Given that PROBE has no obser-

vation between 1000 and 1210 UTC, the DIFFmethod

ignores several observations, which deteriorates the

precision of bias estimates. As a consequence, Table 5

shows that the COMB method provides 30%–55%

smaller uncertainties than the DIFF method for bias

parameter estimates.

The presence of the scale error induces a height de-

pendency of the sea level bias models and their confidence

intervals. To illustrate this, Fig. 7 displays the estimated sea

level bias models and their uncertainties, obtained with

both methods, on the VdC diagram for BUOY1, which is

the time series with the most substantial differences be-

tween the two models. At the lowest tide, sea level bias

models obtained with COMB andDIFFmethod differs of

about 3mm. Besides, both sea level bias models are more

precise around the mean tide than near the tidal extrema.

As a consequence, the combined solution of the COMB

method is also less precise near the tidal extrema, which

results in the fewmillimeter changes for sĥ that appears in

Fig. 6 at lowest tide: between 1000 and 1210 UTC.

A representation of all bias estimates obtained with

both DIFF and COMB methods is given in Fig. 8. Bias

estimates are shownas points in the bias parameter space–

intercept versus scale error. Their uncertainties appear

as 1s confidence ellipses. The correlations between bias

parameters, always around 20.9, induce an inclination

of the ellipses.As the cause of the correlation is the same—

same signal and same biasmodel—for every time series, so

are the inclinations in Fig. 8. Figure 8 also shows that, while

providing more precise estimates, the COMBmethod still

globally agrees with the DIFF method for bias detection.

5. Discussion

a. Performance of the tide gauges

The PROBE time series is twice more precise than

that of the next most precise tide gauge. Its good per-

formance results probably from the use of the stilling

pipe, which stabilizes the water level and allows accurate

readings on the measuring tape. This result comforts the

use of electrical probes as references in tide gauge cali-

bration campaigns. The results also show that RADAR,

LASER, and BUOY2 uncertainty estimates are below

the centimeter level, which confirms that they could

provide sea level records with the level of accuracy

specified by the IOC with a confidence level of more

than 67% if they were not affected by biases.

Among the six tested gauges in this work, only two,

of which one automatic gauge, present an uncertainty

above 1 cm: POLE (1.23 cm) and BUOY1 (1.25 cm).

The 1.23-cm uncertainty of POLE might result from

the limitation of human eye reading on the 10-cm

TABLE 2. Alternative tide gauge cross-calibration results ob-

tained using the COMB method and by defining BUOY1 as the

conventionally unbiased gauge. BUOY1 scale error and intercept

are conventionally set to zero.

Gauges bai 6saib (cm) bbi 6s
bic (cmm21) bsi 6ssic (cm)

RADAR 2.34 6 0.42 0.55 6 0.11 0.81 6 0.08

PROBE 4.18 6 0.42 0.03 6 0.11 0.31 6 0.10

POLE 4.07 6 0.49 20.29 6 0.13 1.22 6 0.12

BUOY1 — — 1.25 6 0.14

LASER 0.72 6 0.45 0.15 6 0.12 0.90 6 0.10

BUOY2 0.68 6 0.42 0.19 6 0.11 0.74 6 0.09

TABLE 3. Tide gauge calibration results obtained using the DIFF

method. PROBE is the reference gauge.

Gauges bai 6saib (cm) bbi 6s
bic (cmm21)

RADAR 21.54 6 0.47 0.42 6 0.10

PROBE — —

POLE 0.09 6 0.66 20.36 6 0.14

BUOY1 25.05 6 0.72 0.15 6 0.18

LASER 23.07 6 0.77 0.12 6 0.17

BUOY2 23.42 6 0.47 0.18 6 0.10

TABLE 4. Difference between DIFF and COMB calibration

results.

Gauges Dbai (cm) Dsaib (cm) Dbbi (cmm21) Ds
bic (cmm21)

RADAR 20.33 20.17 0.10 20.03

PROBE — — — —

POLE 20.22 20.27 0.04 20.05

BUOY1 0.75 20.31 20.15 20.07

LASER 20.35 20.42 0.01 20.09

BUOY2 20.11 20.17 20.01 20.03
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graduations. The lower performance of BUOY1 com-

pared to BUOY2 is assigned to the presence of the ar-

tifact between 0720 and 0940 UTC. Considering its

floating structure is less stable than the more recent

model BUOY2, this artifact could be due to the buoy

instability in the presence of currents during the ebb

tide. BUOY2 did not measure when BUOY1 observed

the artifact; one cannot exclude that the artifact is due

to a mismodeling of the GNSS data.

b. Nature of the biases

Separating instrumental and environmental contri-

butions in bias estimates is difficult, especially when

the gauges are not fully collocated. We can nonethe-

less draw some hypotheses for bias attribution.

Usually, significant intercept estimates are due to

instrumental height errors. But in this experiment,

other explanations are plausible for BUOY1, BUOY2,

LASER, and RADAR.

BUOY1 and BUOY2 show similar intercept estimates

while being deployed a few tens of meters away from the

ground-based instruments. Hence, changes in the dy-

namic topography due to currents likely impacted their

intercept estimates (Pérez et al. 2014). In that case, an

environmental effect is detected, not an instrumental bias.

As LASER is not dedicated to water surface mea-

surements, the intercept estimate is certainly due to the

penetration of the laser beam into the water. More ap-

propriate laser systems have already been developed,

using floating mirrors (MacAulay et al. 2008).

For RADAR, the significant intercept estimate is

influenced by the strong scale error. Theoretically,

LASER, RADAR, and POLE could show scale error

in the case of vertical alignment defaults. This cause is

plausible for RADAR and LASER. However, the

vertical alignment of POLE can be considered as re-

liable and the human reading is the most likely source

of its scale error.

Even though the nature of significant bias parame-

ters ai and bi could remain unclear, one can still obtain

corrected sea level time series by subtracting the bias

model biyi(t) 1 ai to the measured sea level yi(t).

c. Improvement over difference based methods

The proposed calibration method provides an unbi-

ased and minimum variance estimate of the tide gauge

uncertainties, their sea level biases, and the com-

bined solution from all the time series. The variance

of all estimates, including tide gauge uncertainties, is

also determined. Thus, the COMB method leads

to a more complete tide gauge calibration than the

DIFF method.

The application to theAix Island experiment revealed

that the proposed methodology also leads to more pre-

cise bias estimates. This improvement is attributed to

the combination of all available observations along with

the realistic weighting between each gauge. The drastic

precision improvement, from 30% to 55% on the un-

certainty of the bias parameters, mostly shows that this

method is more robust to the missing values of the most

precise time series (PROBE), which is used as a refer-

ence to build the VdC diagrams.

For comparison purposes, this study considers only

one conventionally unbiased time series. However, the

COMB method allows using several unbiased time se-

ries and partially unbiased time series at the same time,

which is not possible with the DIFF method. Adding

unbiased time series should further improve the results

of the COMB method.

6. Conclusions

The present contribution proposes a method for the

cross calibration of tide gauges. Based on the combination

of multiple collocated time series, it takes advantage

TABLE 5. Reduction of the standard deviations of the bias pa-

rameters obtained using the COMB method with respect to the

DIFF method.

Gauge Dsaib (%) Ds
bic (%)

RADAR 236 230

PROBE — —

POLE 241 236

BUOY1 243 239

LASER 255 253

BUOY2 236 230

FIG. 7. VdC diagram of BUOY1. The sea level bias model esti-

mated with the COMB method is displayed in blue, and the one

estimated with the DIFF method is displayed in red.
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of the least squares variance component estimation

(LS-VCE) method to assess both instrumental biases

and measurement uncertainties in real conditions.

The method was applied to a multi-instrument experi-

ment carried out at Aix Island in 2016. Six instruments

were deployed and performed simultaneous sea level

recordings for 11h, with a 10-min sampling.

The electrical probe was found to be 2–4 times more

precise than the other gauges. RADAR, LASER, and

BUOY2 uncertainty estimates are below the centimeter

level, which confirms that, in those conditions, they could

provide sea level records with the level of accuracy

specified by the IOC if they were not affected by

biases. We showed that, within our time series, sig-

nificant bias parameters were found for all the tested

gauges. Hence, this study shows that it is possible to

assess both the biases and the precision—that is, the

full accuracy—for each gauge.

The results obtained with the combination method

have been compared to that of a difference basedmethod.

It showed that the combination of all the time series also

provides more precise bias estimates.

Because this study is based on an 11-h experiment,

time-dependent biases and random errors have not been

considered. Further studies using the COMB methods

are necessary to investigate the time dependency of sea

level bias parameters and tide gauge precision.
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