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Abstract

Perovskite solar cells (PSC) have been under the spotlight of the photovoltaics community since the past decade due notably to high
instrinsic absorption of pervoskite. However, little is known on the impact of structuring the active material using photonic crystal
layers. We present here numerical simulations showing the effect of photonic crystal structuring on the integrated quantum efficiency
of perovskite solar cells. The photo-active layer is structured using opal-like perovskite layers (monolayers, bilayers or trilayers) made
of perovskite (full or truncated) spheres, including hybrid uniform/structured layers, embedded in a TiO, matrix. Fano resonances are
exploited in order to enhance the absorption, especially near the electronic bandgap of perovskite material. The excitation of quasi-
guided modes inside the absorbing spheres increases the integrated quantum efficiency and the photonic enhancement factor. A
genetic algorithm approach allows us to determine the optimum structure among more than 1.4 10° potential combinations. These
numerical results of the benefits of photonic structuring on perovskite solar cells are also compared to experimental studies on

selected configurations of perovskite solar cells.

Photonic structures and materials
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Numerical methods and figures of merit

 Numerical simulations are performed using the Rigorous Coupled Wave Analysis (RCWA) method [1]
The global absorptance A, (A4) is deduced from the energy conservation law: A;(41) = 1 —R(1) — T(4)

Two figures of merit (FOMs):

v' Integrated quantum efficiency 1 : represents the percentage of incident photons that are absorbed
in the whole structure
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where ¢4 (@inc) is the spectrally integrated absorbed (incident) photon flux, S(4) is the normalized solar spectrum
AM1.5G, A,,;n, = 310 nm and A,,,4, = 800 nm corresponding respectively to the lower bound of the solar spectrum
and to the perovskite band gap.

v’ Photonic gain G,p,.: evaluates the enhancement of the generation of photo-electrons due to the
photonic structuring in comparison with an equivalent unstructured photonic slab structure
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Benefits of photonically structuring the photo-active perovskite layer [1]

Optimization using a Genetic Algorithm
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