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Abstract 

This paper presents a methodology to derive a reduced-order, “grey-box” model of an active distribution 

network. This dynamic equivalent is intended for dynamic simulations of large disturbances taking place 

in the transmission system. To deal with the uncertainty affecting dynamic model parameters, Monte-

Carlo simulations are used, and the parameters of the equivalent are adjusted to match as close as 

possible the average randomized system responses. To avoid over-fitting, multiple disturbances are 

considered; they are automatically selected among a set of candidates. Moreover, to reduce the 

computational burden, only parameters with significant impact are adjusted in the identification 

procedure. Simulation results are reported on a real Australian distribution grid. The latter hosts 

synchronous generators and residential photovoltaic units. Its loads are modelled with a static and a 

motor part. 

Index Terms: Active distribution network, inverter-based and synchronous generators, dynamic 

equivalent, grey-box model, Monte-Carlo simulations 
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1. Introduction 

Environmental concerns drive the sustained replacement of conventional generation units by Inverter-

Based Generators (IBGs) such as PhotoVoltaic (PV) units or wind turbines. An important part of these 

IBGs is connected to lower voltage levels, which increases the complexity of distribution systems, and 

the resulting Active Distribution Networks (ADNs) will have a growing influence on the whole power 

system dynamics [1]. This problem arises particularly in Australia where the total distributed PV 

capacity has significantly increased in the past few years and is expected to keep growing in the future, 

progressively replacing conventional generation units with Synchronous Generators (SGs) connected at 

transmission level [2]. This replacement induces a reduction of the short-circuit level in the transmission 

grid, which can result in severe voltage sensitivity, and exacerbates the influence of ADNs on power 

system dynamics following contingencies [3]. As an illustration, Fig. 1 shows the forecast of combined 

PV and battery installed capacity in the Australian national electricity market [4]. It is expected to 

increase to between 12 and 21 GW of capacity by 2030. 

 

 

Figure 1 Forecast of combined PV and battery installed capacity across the Australian electricity 

market 

 

Therefore, it becomes urgent for the Australian Energy Market Operator (AEMO), responsible for power 

system security, to account for the contribution of ADNs in their dynamic simulation studies. However, 

owing to the huge complexity of maintaining a combined transmission and distribution system model, 

it makes more sense for AEMO to use reduced-order models (or dynamic equivalents) that offer a good 

compromise between simplicity and accuracy. The parameters of those equivalents are tuned to match 

as closely as possible the unreduced ADN dynamic responses to disturbances. The latter response could 

be obtained either from measurements or by simulation. Considering that the focus of this work is on 

relatively rare, large-disturbance events (such as faults in the transmission grid), recorded measurements 

are not (or almost not) available, and a simulation-based approach is necessary. Hence, the first step 

consists in setting up a reference model for the original (unreduced) ADN. 

While it can be assumed that the network model is sufficiently accurate, dynamic models, on the other 

hand, are affected by uncertainty. For instance, parameters of motors are usually set to “typical” values 

(such as those that can be found in [5] and related references) to account for a population of small motor 

loads. Regarding IBGs, grid codes allow for a range of permissible behaviours [6], [7]. To deal with 

such uncertainties, a traditional approach is to resort to Monte-Carlo (MC) simulations [8]. For a given 
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disturbance, dynamic responses are generated for randomized variations of the uncertain parameters [9]. 

Averages and standard deviations of the time responses provide useful information on the time-varying 

impact of parameter uncertainty.  

Deriving the dynamic equivalent is the second step. A reduced model of the “grey-box” type has been 

considered, as defined and recommended in [10] and [11], for instance. It is intended to be attached to 

the transmission system model. The parameters of the equivalent are obtained by weighted least-square 

minimization, where the weights reflect the dispersion of the randomized dynamic responses. It should 

correctly reproduce the ADN response to large disturbances taking place in the transmission system. 

The latter is not modelled. Only the impact of faults on the voltage at the connection point with the ADN 

is considered. Multiple disturbances are used in order for the equivalent to not overfit one of them. Some 

disturbances cause partial disconnection of the ADN-connected IBGs. To avoid handling too many 

contingencies, they are processed recursively so as to select the smallest possible subset from an initial 

set of candidate disturbances, from which parameters of the equivalent model are adjusted. Finally, to 

make the reduced model more consistent and interpretable, a procedure is used to discard from the 

identification parameters with non-significant impact on the performance of the equivalent. 

Some of the methods reported in this paper have been described in previous publications by the authors 

(e.g. [9, 12]). The main novelty, however, lies in the simulation results, which have been obtained on a 

new, real and more complex ADN. One of its features is the presence of SGs, whose dynamic responses 

are significantly different from those of IBGs. It is noteworthy that the simulations have considered a 

plausible future scenario with Australian distributed PV units obeying an updated grid code similar to 

IEEE std 1547-2018, as suggested in [4], with retro-fitting of existing units. This illustrates the ability 

of the proposed grey-box equivalent model to follow changes in the grid code requirements. 

The rest of the paper is organized as follows. The models of the unreduced ADN and its equivalent are 

presented in Sections 2 and 3, respectively. Section 4 deals with the optimization of the equivalent 

parameters. Simulation results are reported in Section 5, while conclusions are offered in Section 6. 

2. Unreduced ADN modelling 

The ADN model aims at rendering the impact on transmission system dynamics of numerous loads and 

generators dispersed in a distribution grid. Rotor angle, frequency and voltage stability studies are 

targeted. The focus is on transients lasting up to 10 to 20 seconds after a large disturbance. 

2.1. Network 

The model of the Australian 22-kV distribution grid includes 92 buses. It is connected to the 63-kV sub-

transmission network through a single transformer. Its one-line diagram is given in Fig. 2. The grid hosts 

numerous small-scale dispersed PV units for a total capacity of 5.3 MW as well as eight SGs all 

connected to the same bus and accounting for a co-generation power plant. All SGs have the same 

technical characteristics, in particular a nominal apparent power of 1.5 MVA. Therefore, a single SG is 

considered in the model, whose capacity is scaled to the number of individual SGs in operation. 
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Figure 2 One-line diagram of the ADN 

 

2.2. Load model 

The generic load model considered is depicted in Fig. 3. It is split into a standard exponential model and 

a third-order Induction Motor (IM) model. Initially, the motor consumes a fraction 𝑚 of the total active 

power and the compensation capacitor is adjusted to satisfy a specified power factor cos 𝜙𝑚. The well-

known equivalent circuit of the IM with its parameters is given in Fig. 4, in which the electrical part is 

“static” and the rotor angular speed 𝜔𝑟 varies according to the rotor motion equation: 

2𝐻𝑚𝑜𝑡
𝑑

𝑑𝑡
𝜔𝑟 =  𝑇𝑒 −  𝑇𝑚𝑜(𝐴𝜔𝑟

2 + 𝐵𝜔𝑟 + 𝐶),                                             (1)  

where 𝐻𝑚𝑜𝑡 is the inertia constant, 𝐴 (resp. B) is the fraction of the mechanical torque varying 

quadratically (resp. linearly) with  𝜔𝑟, and  𝐴 + 𝐵 + 𝐶 = 1.   

 

Figure 3 Load model decomposed into exponential and motor parts 
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Figure 4 Equivalent circuit of the IM 

 

2.3. IBG model  

A generic model of IBG is used for each PV unit. It captures the variations of injected current with 

respect to the terminal voltage. The latter is shown in block-diagram form in Fig. 5. It involves time 

constants on the voltage measurement and on the current control loops. The embedded controls meet 

recent grid-code requirements (e.g. [6], [7]), such as Low Voltage Ride-Through (LVRT) and reactive 

current injection for voltage support. The LVRT curve implemented is defined by six parameters, as 

shown in Fig. 6.(a). For voltage support, the reactive current 𝑖𝑄 is a piecewise linear function of the 

measured voltage, as shown in Fig. 6.(b), where 𝑉𝑚 is the measured terminal voltage, 𝑖𝑄0 the pre-

disturbance reactive current and 𝐼𝑛𝑜𝑚 the IBG nominal current. 

 

Figure 5 Block diagram of the IBG model 
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Figure 6 IBG: controls responding to voltage deviation 

 

In low voltage conditions (𝑉𝑚 <  𝑉𝑄 in Fig. 6.(a)), priority is given to the reactive current injection 

which may lead to curtailing the active current, in order to not exceed the nominal current of the 

converter. Once the voltage returns to normal values, the IBG active current recovers its pre-

disturbance value, but with an upper limit on its rate of recovery. This rate has been chosen in the 

range given in [13]. 

Finally, the IBG phase-locked loop is taken into account, though with a generic model, since it 

introduces a delay that may affect the overall dynamic response of the IBG. 

Additional details on the model can be found in [14]. 

2.4. Synchronous generator model 

The SGs connected at distribution level are represented with a fifth-order model of the synchronous 

machine [15], a constant mechanical power and a generic model of the excitation system including a 

reactive power control loop and a simple exciter, as shown in Fig. 7. The model is inspired from “Var 

controller Type II” model in [16], p.38, which is representative of excitation systems for small 

synchronous machines connected at distribution level that are not supposed to regulate the system 

voltage. 

 

 

Figure 7 SG excitation system : 𝑄𝑔𝑒𝑛 is the reactive power produced, 𝑉 the terminal voltage and 𝑣𝑓 

the field voltage [16] 

 

2.5. Dealing with model uncertainties 

It is assumed that the dynamic models of loads and IBGs are qualitatively correct but involve uncertain 

parameters. On the other hand, due to their size, location and monitoring, the SGs are considered to have 

accurately known models and parameters.  
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As mentioned in the Introduction, MC simulations are used to assess the impact of this uncertainty on 

the dynamic response of the unreduced system. The uncertain parameters are randomized from one MC 

simulation to another but also from one load and one IBG to another. For the above-mentioned reason, 

the SG model is not randomized in the MC simulations. 

Let 𝑠 be the number of randomly drawn instances of model parameters, gathered in a vector 𝒑. The 

variables of interest are the active power 𝑃 and reactive power 𝑄 entering the ADN. For the 𝑗-th 

disturbance (𝑗 = 1, … , 𝑑), the 𝑖-th instance 𝒑𝑖 of 𝒑 (𝑖 = 1, … , 𝑠) and a discrete instant 𝑘, the following 

values are extracted from the MC simulations:  

𝑃(𝑗, 𝑘, 𝒑𝑖) the active power at time 𝑘 obtained with 𝒑𝑖 

𝑄(𝑗, 𝑘, 𝒑𝑖) the corresponding reactive power 

𝜇𝑃(𝑗, 𝑘)     the average of the 𝑠 values of 𝑃(𝑗, 𝑘, 𝒑𝑖) 

𝜇𝑄(𝑗, 𝑘)     the average of the 𝑠 values of 𝑄(𝑗, 𝑘, 𝒑𝑖) 

𝜎𝑃(𝑗, 𝑘)     the standard deviation of the 𝑠 values of 𝑃(𝑗, 𝑘, 𝒑𝑖) 

𝜎𝑄(𝑗, 𝑘)     the standard deviation of the 𝑠 values of 𝑄(𝑗, 𝑘, 𝒑𝑖) 

3. Dynamic equivalent model 

3.1. Topology of the equivalent  

The topology of the equivalent is shown in Fig. 8. The connection to the transmission grid is through a 

single transformer, which is retained in the equivalent. The dispersed loads, the dispersed IBGs and the 

SGs of the unreduced system are aggregated into respectively a single load, a single IBG and a single 

SG, behind equivalent impedances 𝑅𝑎 + 𝑗𝑋𝑎, 𝑅𝑏 + 𝑗𝑋𝑏 and 𝑅𝑐 + 𝑗𝑋𝑐, accounting for network effects. 

A configuration such as that of Fig. 8 is recommended in [17] as it can differentiate generators by 

technical characteristics and/or grid requirements. 

 

Figure 8 Topology of the equivalent 

 

3.2. Models in the equivalent 

The model used for the aggregated load in the equivalent is the same as that used for individual loads in 

the unreduced system (see Section 2.2). The same applies to the equivalent SG (see Section 2.4). 

The model used for the aggregated IBG includes the features of the model used for individual IBGs in 

the unreduced system (see Section 2.3). However, since the disconnection of IBGs under low voltage 

conditions can have a tremendous impact on the ADN response and, to some extent, on the whole power 
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system stability, the aggregated IBG must account for the tripping of some individual IBGs in the 

original system. Therefore, instead of following a LVRT characteristic, the aforementioned situation is 

accounted by providing the aggregated IBG with a “partial tripping” feature, as shown in Fig. 9. The 

variable 𝑙 represents the fraction of IBGs still connected. When the voltage 𝑉 of the equivalent IBG falls 

below the 𝑉𝑝𝑡 threshold, 𝑙 drops to 𝛾, which corresponds to loosing a fraction 1 − 𝛾 of the IBGs. For 

further voltage drops, 𝑙 decreases linearly with 𝑉. Full disconnection (𝑙 = 0) takes place for 𝑉 = 𝑉𝑓𝑡. 

As illustrated in Fig. 9, when V recovers, 𝑙 remains at the 𝑙𝑚𝑖𝑛 value corresponding to the voltage nadir. 

The technique is a simplified version of the one considered in [14] and similar to the one used in [18]. 

 

Figure 9 “Partial tripping” feature of the aggregated IBG 

 

4. Identification of the ADN equivalent 

To avoid over-fitting a particular scenario, a number 𝑑 of training disturbances are considered. Each of 

them consists of imposing large variations of the amplitude, the phase angle, or the frequency of the 

voltage source �̅�𝑡𝑟 replacing the transmission system (see Fig. 8). The accuracy of the equivalent is 

assessed on its active power 𝑃𝑒 and reactive power 𝑄𝑒.  

4.1. Weighted least-square identification   

The parameters to identify are grouped in a vector 𝜽. The latter is adjusted so that, for each discrete time 

𝑘 and for all disturbances 𝑗, the active power 𝑃𝑒(𝜽, 𝑗, 𝑘) (resp. the reactive power 𝑄𝑒(𝜽, 𝑗, 𝑘)) of the 

equivalent model approaches in the least square sense the average 𝜇𝑃(𝑗, 𝑘) (resp. 𝜇𝑄(𝑗, 𝑘)) defined in 

Section 2.5. 
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Thus the following constrained optimization is considered:  

      𝒎𝒊𝒏𝜽  𝐹(𝛉) =  
1

𝑑
∑[𝐹𝑃(𝜽, 𝑗) + 𝐹𝑄(𝜽, 𝑗) ]

𝑑

𝑗=1

 (2) 

                                            

 with       

𝐹𝑃(𝜽, 𝑗) =
1

𝑁
∑ [

𝑃𝑒(𝜽, 𝑗, 𝑘) − 𝜇𝑃(𝑗, 𝑘)

𝜎𝑃(𝑗, 𝑘)
]

2𝑁

𝑘=1

(3) 

 

 𝐹𝑄(𝜽, 𝑗) =
1

𝑁
∑ [

𝑄𝑒(𝜽, 𝑗, 𝑘) − 𝜇𝑄(𝑗, 𝑘)

𝜎𝑄(𝑗, 𝑘)
]

2𝑁

𝑘=1

(4) 

                                                                                                 

𝜽𝐿 ≤  𝜽 ≤ 𝜽𝑈 (5) 

where 𝑁 is the number of discrete times of the simulation. The bounds 𝜽𝐿 and 𝜽𝑈keep 𝜽 in feasible 

range of values. 

Note that each term in (3) (resp. (4)) is weighted by the inverse of the variance 𝜎𝑃
2(𝑗, 𝑘) (resp. 

𝜎𝑄
2(𝑗, 𝑘)) to reflect the dispersion of MC responses. The rationale is to allow a larger deviation from 

the average when the randomized responses are more widely dispersed, i.e. more uncertain. 

4.2. Solving the optimization problem 

Standard mathematical programming methods can hardly be envisaged to solve the least-square 

minimization problem (2)-(5). Instead, an Evolutionary Algorithm (EA), namely Differential Evolution 

(DE) [19], has been selected, after testing quite a number of the existing meta-heuristic methods. A 

systematic comparison with other algorithms is outside the scope of this research. While another method 

could offer a most welcome speed-up, DE has been found a reliable solver for the optimization problem 

(2)-(5) in a very large number of cases. More information can be found in [14], in particular regarding 

the proper tuning of the algorithm key parameters (e.g., the crossover and mutation factors).  

4.3. Selection of training disturbances 

When the number of disturbances 𝑑 increases, the risk of over-fitting one of them decreases. On the 

other hand, increasing the number of disturbances can substantially increase the computational burden 

of the minimization (2)-(5). To tackle this problem, a subset of the candidate disturbances is 

automatically selected, from which the parameters are identified. The idea is to progressively add 

training disturbances until the equivalent is found sufficiently accurate with respect to all the other, non-

trained disturbances. After a new disturbance is involved in the identification, 𝜽 is adjusted such that 

the equivalent is sufficiently accurate for all training scenarios. For a given estimate �̂�, the newly added 

disturbance is the one for which the currently identified equivalent shows the worst accuracy. 

4.4. Discarding “non-significant” parameters 

For a better interpretability and consistency of the model, a procedure is used to discard the less 

significant parameters of the least-square minimization. It consists of adding a penalty term to (2) : 

     𝒎𝒊𝒏𝜽  𝐹(𝜽) +  𝜆 ∑|𝜃𝑙
𝑟𝑒𝑓

− 𝜃𝑙|

𝑛

𝑙=1

 (6) 

where 𝜆 is a scaling factor, 𝑛 is the size of 𝜽 and 𝜽𝑟𝑒𝑓is a reference value for the parameters. The penalty 

term tends to make 𝜃𝑙 departs from 𝜃𝑙
𝑟𝑒𝑓

only if it yields a significant decrease of 𝐹(𝜽), i.e. if 𝜃𝑙 has a 

significant influence on 𝐹(𝜽), thereby making the dynamic response of the equivalent more accurate.  
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The procedure starts with a large value of 𝜆, which yields �̂� ≅ 𝜽𝑟𝑒𝑓. Then, 𝜆 is decreased steps by 

steps and, for each value the minimization problem (2)-(5) is solved with the penalty term as in (6). 

This is repeated until 𝐹(�̂�) falls below a tolerance. At this point, the components of �̂� and 𝜽𝑟𝑒𝑓are 

compared. If, for the 𝑙-th component (𝑙 = 1, … , 𝑛) :  

                                                           

|𝜃𝑙 − 𝜃𝑙
𝑟𝑒𝑓

|

𝜃𝑙
𝑟𝑒𝑓

 ≤  𝛿 (7) 

the parameter of concern is considered to have little impact and is removed from the least-square 

minimization problem.  

𝜽𝑟𝑒𝑓 is set to the middle of the interval in which the parameters of the equivalent vary (see (5)), i.e.  

𝜽𝑟𝑒𝑓 =  
𝜽𝐿 + 𝜽𝑈

2
 . (8) 

                                                        

While it is rather easy to choose such intervals for the dynamic model parameters (of the load, the IBG, 

and the SG), it is less the case for the equivalent network impedances 𝑅𝑎 + 𝑗𝑋𝑎, 𝑅𝑏 + 𝑗𝑋𝑏 and 𝑅𝑐 + 𝑗𝑋𝑐 

(see Fig. 8). Instead, a network reduction technique has been used to obtain the 𝜽𝑟𝑒𝑓 value of those 

impedances. The procedure is detailed in the Appendix.  

5. Simulation results 

5.1. Operating point and disturbances 

The system, presented in Section 2.1, has the following initial operating point. A single SG is in 

operation and produces 1 MW / 0.15 Mvar. The PV units operate at 50 % of their capacity, with unity 

power factor. The distribution grid feeds a total load of 18.2 MW. It receives a net power of 14.8 MW / 

3.2 Mvar from the upper voltage level.  

Only voltage dip disturbances are considered for the identification. The candidate disturbances are listed 

in Fig. 10 and are characterized by a depth ∆𝑉, which reflects the fault location in the transmission 

system and a duration ∆𝑇 typical of fault clearing by (main or back-up) protections. They are applied to 

the 𝑠 instances of the unreduced system and to the equivalent when optimizing its parameters 𝜽.  

The dynamic evolutions of the active power 𝑃 and reactive power 𝑄 entering the ADN are collected 

over four seconds. The RAMSES software for dynamic simulation in phasor mode has been used [20]; 

the average time step size is 0.005 s. 
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Figure 10 The 14 candidate disturbances used in MC simulations and in the equivalent identification 

 

5.2. Monte-Carlo simulations  

The parameters randomized in the MC simulations and their corresponding range of values are shown 

in Table. 1. For the IMs, the range of parameter values has been chosen based on [5]. For the IBGs, the 

range of parameter values are selected according to permissible behaviour allowed by grid codes [6], 

[7]. As previously mentioned, the parameters of the synchronous machine are not randomized since it 

is assumed that its model is accurately known. The nominal currents of IBGs are also assumed to be 

known, and are not randomized either. Last but not least, the minimum voltage threshold  
𝑉𝑚𝑖𝑛 in the LVRT curve (see Fig. 6.(a)) has been also randomized. It is treated as a discrete random 

variable that can take the values 0 or 0.3 pu. In the former case, the IBG never disconnects from the 

grid. In the latter case, disconnections occur for severe voltage dips. This allows to take into account the 

uncertainty on IBGs tripping in response to a short-circuit.  

Figures 11 and 12 show the randomized time evolutions of respectively 𝑃 and 𝑄 in response to 

disturbance No. 4 (see table in Fig. 10). Powers take positive values when entering the ADN. All curves 

start from the same value, since the same operating point is considered, and come back to that value, 

since this rather mild disturbance does not trigger PV units disconnection. 
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Table 1 List of randomized parameters and associated range of values 

Parameter Mathematical 

expression 

Related 

figure or 

equation 

Range of 

values 

Motor stator resistance 𝑅𝑠 Fig. 4 [0.03 0.13] pu 

Motor rotor resistance 𝑅𝑟 Fig. 4 [0.03 0.13] pu 

Motor magnetizing reactance 𝐿𝑠𝑟 Fig. 4 [1.8 3] pu 

Motor stator leakage reactance 

( 𝐿𝑠𝑠: stator reactance) 

𝐿𝑠𝑠 − 𝐿𝑠𝑟 Fig. 4 [0.07 0.15] pu 

Motor rotor leakage reactance 

( 𝐿𝑟𝑟: rotor reactance) 

𝐿𝑟𝑟 − 𝐿𝑠𝑟 Fig. 4 [0.06 0.15] pu 

Inertia constant of the motor 𝐻𝑚𝑜𝑡 Eq. (1) [0.26 1] s 

Motor fraction of quadratic 

mechanical torque 

A Eq. (1) [0.2 1] 

Motor load factor 

( 𝑆𝑛𝑜𝑚 :  nominal apparent power) 

𝑃𝑚𝑜𝑡0
𝑆𝑛𝑜𝑚

⁄  - [0.4 0.6] 

Fraction of initial motor active power 

consumption 

𝑚 Fig. 3 [0.1 0.3] 

Initial motor power factor 𝑐𝑜𝑠 ∅𝑚 Fig. 3 [0.9 0.95] 

Load static part exponent 𝛼 Fig. 3 [1 2] 

Load static part exponent 𝛽 Fig. 3 [1.5 3] 

IBG rate of active current recovery (𝑑𝑖𝑝/𝑑𝑡)
𝑚𝑎𝑥

 Fig. 5 [0.2 0.5] pu/s 

IBG : PLL response time 𝜏𝑃𝐿𝐿 Fig. 5 [0.05 0.15] s 

IBG : current controller time constant 𝑇𝑔 Fig. 5 [0.02 0.03] s 

IBG : slope of reactive current vs. 

voltage 
𝑘𝑅𝐶𝐼 Fig. 6.b [2 6] pu/pu 

IBG: voltage threshold of reactive 

injection 
𝑉𝑄 Fig. 6.b [0.85 0.95] pu 

IBG : minimum voltage threshold of 

LVRT 
𝑉𝑚𝑖𝑛 Fig. 6.a {0, 0.3} pu 
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Figure 11 Randomized evolutions of P; disturbance No. 4 

 

Figure 12 Randomized evolutions of Q; disturbance No. 4 

 

The plots also show the distributions of power values at 𝑡 = 0.5 s, as well as the corresponding 

𝜇𝑃 , 𝜎𝑃 , 𝜇𝑄and 𝜎𝑄  values. The small dispersion of reactive power evolutions is explained by the fact that 

they are mainly influenced by the SG response, whose parameters have not been randomized. 

The overall evolution is explained as follows. During the voltage dip, the load with exponential model 

decreases while the PV units curtail their active current to leave room for reactive current injection. 

This, together with the additional reactive current injection from the SG, causes a reactive power flow 

reversal during the voltage dip, as confirmed by Fig. 12 where reactive powers temporarily take negative 

values. The small reactive power oscillation after voltage recovery originates from the AVR of the SG. 

When the voltage recovers to its initial value, so do the powers of loads with exponential model, while 

the motors draw some additional power, due to their re-acceleration. The slight active power oscillation 

after the voltage dip comes from the SG. Furthermore, after voltage recovery, the PV units ramp up their 

active power. This takes between one and two seconds; the effect can be seen in Fig. 11. 

5.3. Identification of the equivalent 

In addition to the parameters listed in Table 1, the equivalent includes three resistances and three 

reactances (see Fig. 8) as well as three parameters accounting for the “partial tripping” (see Fig. 9). 

Although the corresponding parameters were not randomized in the MC simulations of the unreduced 

system, when dealing with the equivalent, the IBG nominal current 𝐼𝑛𝑜𝑚, the SG nominal apparent 

power  𝑆𝑛𝑜𝑚
𝑆𝐺  and the SG inertia constant 𝐻𝑆𝐺 have been included in 𝜽. Indeed, further simulations (not 

reported here) have shown that by slightly adjusting these three parameters, the accuracy of the 
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equivalent is significantly improved. All in all, 29 parameters are gathered in 𝜽. The method outlined in 

Section 4.4 allows discarding 19 parameters, which are merely set to typical values. The retained and 

the discarded parameters are listed in Table 2, respectively. 

 

Table 2 Retained and discarded parameters in the equivalent 

Component Retained Discarded 

Network - 𝑅𝑎, 𝑅𝑏, 𝑅𝑐, 𝑋𝑎, 𝑋𝑏, 𝑋𝑐 

Load 𝐿𝑠𝑠 − 𝐿𝑠𝑟, 𝐻𝑚𝑜𝑡 𝑅𝑠, 𝑅𝑟, 𝐿𝑠𝑟 , 𝐿𝑟𝑟 − 𝐿𝑠𝑟 , 𝐴,
𝑃𝑚𝑜𝑡0

𝑆𝑛𝑜𝑚
⁄ , 

𝑚, 𝑐𝑜𝑠 ∅𝑚, 𝛼, 𝛽 

IBG 𝐼𝑛𝑜𝑚 , (𝑑𝑖𝑝/𝑑𝑡)
𝑚𝑎𝑥

, 𝑘𝑅𝐶𝐼, 𝛾, 𝑉𝑝𝑡, 𝑉𝑓𝑡 𝜏𝑃𝐿𝐿, 𝑇𝑔, 𝑉𝑄 

SG 𝑆𝑛𝑜𝑚
𝑆𝐺 , 𝐻𝑆𝐺 - 

 

It can be seen that 𝐼𝑛𝑜𝑚,  𝑆𝑛𝑜𝑚
𝑆𝐺  and 𝐻𝑆𝐺 are retained as significant by the procedure of Section 4.4, which 

confirms that these parameters play an important role in the accuracy of the equivalent. On the other 

hand, neither the resistances 𝑅𝑎 , 𝑅𝑏 , 𝑅𝑐  nor the reactances 𝑋𝑎 , 𝑋𝑏 , 𝑋𝑐 are retained, which tends to confirm 

that the impedances estimated by network reduction (see Appendix) are accurate enough. It is recalled 

that those values are used in 𝜽𝑟𝑒𝑓 . 

The procedure of Section 4.3 is performed in two steps as described next. 

In a first step, scenarios without PV unit disconnection, namely disturbances No. 1 to 12 (see table in 

Fig. 10) are considered. The 𝜆, 𝑉𝑝𝑡 and 𝑉𝑓𝑡 parameters are left aside and the least square minimization 

is applied to a 𝜽 vector including the remaining seven parameters. The procedure outlined in Section 4.3 

selects five of the twelve disturbances, namely No 4, 5, 6, 7 and 12, in the training set. 

In a second step, the identification focuses on the 𝛾, 𝑉𝑝𝑡 and 𝑉𝑓𝑡  parameters. The previously seven 

parameters are fixed to the values determined in the first step. The whole set of 14 disturbances is now 

considered, thus including disturbances No 13 and 14, which trigger PV units disconnection. The 

procedure of Section 4.3 adds disturbance No 13 to the training set. 

5.4. Accuracy of the equivalent 

For illustration purposes, the accuracy of the equivalent is shown in response to disturbance No 14, for 

which some PV units disconnect. Note that this disturbance was not selected to enter the training set. 

Figure 13 shows with dotted line the evolution of the active power 𝑃𝑒 in the equivalent, for the 

intermediate �̂� obtained after the first step. As 𝛾, 𝑉𝑝𝑡 and 𝑉𝑓𝑡  have not yet been optimized, the tripping 

of PV units is ignored and the response is inaccurate. The corresponding response for the final �̂�  

obtained after the second step is shown with solid black line. It matches perfectly the average response 

𝜇𝑃, targeted by the least-square minimization, shown with red line. In particular both curves end up in 

the same value, demonstrating the ability of the equivalent to estimate the amount of disconnected PV 

units, even for a disturbance not involved in its training. 
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Figure 13 Active power responses to the non-trained disturbance No 14 

 

Similar curves relative to the reactive power 𝑄𝑒 in the equivalent are given in Fig. 14. They confirm the 

accuracy of the equivalent for the reactive part. 

 

Figure 14 Reactive power responses to the non-trained disturbance No 14 

 

5.5. Validation of the equivalent for another type of disturbance  

Figures 15 and 16 show the active and reactive power responses of the equivalent to a very different, 

non-trained disturbance, namely an oscillation of the magnitude and phase angle of  �̅�𝑡𝑟 (see Fig. 8). 

This would render the effect of a rather severe electromechanical inter-area oscillation taking place in 

the transmission system. The imposed variation of the voltage magnitude 𝑉𝑡𝑟 and phase angle 𝛿𝑉𝑡𝑟 are 

shown in Fig. 17. 

The curves in red in Figs. 15 and 16 show the average evolutions 𝜇𝑃 and 𝜇𝑄, obtained from the 

randomized responses of the unreduced system to the disturbance of concern.  
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Figure 15 Active power responses to an electromechanical oscillation 

 

Figure 16 Reactive power responses to an electromechanical oscillation 

 

Figure 17 Voltage magnitude and phase angle oscillation 
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The active power response of the equivalent matches almost perfectly the reference evolution. As 

regards the reactive power, while the overall accuracy is also very good, some discrepancies are 

observed during the first four voltage nadirs. This is due to a small lack of reactive power production 

by the equivalent IBG, with respect to the PV units dispersed in the original system. As an illustration, 

the reactive power produced by the equivalent IBG is plotted in Fig. 18. The four “pulses” correspond 

to the four nadirs of the reactive power evolution in Fig. 16. 

 

Figure 18 Reactive power produced by the equivalent IBG in response to an electromechanical 

oscillation 

6. Conclusion 

The fast growth of distributed generation capacity, such as PV units in Australia, raises a need for ADNs 

models to be used by transmission system operators in their dynamic simulations. The maintenance of 

a combined transmission and distribution systems model being totally impractical, dynamic equivalents 

are needed. 

In this paper, a methodology to identify ADN equivalents has been demonstrated on an real Australian 

distribution grid hosting SGs and PV units, assumed to follow future grid code. 

First, MC simulations are used to account for the uncertainty affecting the unreduced ADN model. Then, 

a weighted least-square minimization problem is solved to make the response of the equivalent approach 

the average of the randomized responses where the weights reflect the dispersion of the dynamic 

responses. Moreover, multiple disturbances are considered and a procedure is used to involve the 

smallest possible sub-set of them in the least-square minimization, with a guarantee of accuracy with 

respect to non-trained scenarios. Finally, a method is used to discard from the minimization those 

parameters with less significant impact. 

Simulation results show that the equivalent can reproduce the discontinuous controls of PV units, in 

particular the disconnection of some of them under low voltage conditions. Accuracy has been also 

checked in response to disturbances not used for training. 

An extension of this research is to consider a situation without retro-fitting of existing PV units. It is 

expected that this will increase the fraction of these IBGs that disconnect during the disturbances. 

However, the methodology outlined in this paper would still apply. Indeed, one advantage of grey-box 

models is their ability to reflect changes in IBG control characteristics. 
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Appendix. Network reduction 

Let us denote by 𝒀𝒏𝒆𝒕 the nodal admittance matrix of the unreduced network, as shown in Fig. 2, but 

without the main transformer. The procedure hereafter aims at finding a reference value for the 

equivalent impedances, namely 𝑅𝑎 + 𝑗𝑋𝑎 for the equivalent load, 𝑅𝑏 + 𝑗𝑋𝑏 for the equivalent IBG and 

𝑅𝑐 + 𝑗𝑋𝑐 for the equivalent SG, see Fig. 8. The derivation focuses on 𝑅𝑎 + 𝑗𝑋𝑎 but a similar procedure 

applies to the other two impedances. 

First, the load connected to a bus 𝑖 is replaced by an admittance consuming the same complex power:  

𝑌𝑙𝑑(𝑖) =  
𝑃(𝑖) − 𝑗𝑄(𝑖)

|�̅�(𝑖)|2
 (9) 

where 𝑃(𝑖) and 𝑄(𝑖) are the active and reactive power consumed by the load at bus 𝑖 and |�̅�(𝑖)| is the 

magnitude of the voltage at bus 𝑖. The nodal admittance matrix 𝒀 of the combined network and loads is 

obtained by adding the 𝑌𝑙𝑑  values to the corresponding diagonal terms of 𝒀𝒏𝒆𝒕, i.e.  

 𝒀(𝑖, 𝑗) = 𝒀𝒏𝒆𝒕 (𝑖, 𝑗)       𝑓𝑜𝑟 𝑖  𝑗

𝒀(𝑖, 𝑖) =  𝒀𝒏𝒆𝒕(𝑖, 𝑖) +  𝑌𝑙𝑑(𝑖). (10)
 

The equivalent impedance seen from the entry point of the network (bus 2 in Fig. 2) is given by the 

corresponding diagonal term 𝒁(2,2) of the impedance matrix:  

𝒁 =  𝒀−𝟏. (11) 

As shown in Fig. 19, 𝒁(2,2) is also the sought impedance 𝑅𝑎 + 𝑗𝑋𝑎 in series with a lumped 

impedance representing all loads in parallel, i.e. 

1

𝑌𝑙𝑑𝑡𝑜𝑡
=

1

∑ 𝑌𝑙𝑑(𝑖)𝑖
  . (12) 

The 𝑅𝑎 + 𝑗𝑋𝑎 impedance is thus simply obtained as: 

𝑅𝑎 + 𝑗𝑋𝑎 =  𝒁(2,2) −
1

𝑌𝑙𝑑𝑡𝑜𝑡
 . (13) 

This technique has been found to provide a good initial estimate of the network equivalent impedances. 

Indeed, none of them is retained in the identification after applying the procedure of Section 4.4.  

 

Figure 19 Network reduction technique to estimate the equivalent impedance 𝑅𝑎 + 𝑗𝑋𝑎 
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