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Résumé 

Le virus Usutu (USUV), un flavivirus zoonotique transmis par les moustiques et découvert en 

1959 en Afrique de Sud, s’est propagé au cours des vingt dernières années sur une grande partie du 

continent européen, provoquant des mortalités aviaires importantes. Chez l’homme, l’infection est le 

plus souvent asymptomatique, ou d’une expression clinique bénigne. Toutefois, des complications 

neurologiques, telles que des encéphalites ou méningoencéphalites, ont été décrites, similaires àc equi 

est décrit pour le virus West Nile (WNV), un flavivirus apparenté au USUV. L’histoire récente de 

flambées épidémiques d’autres arboviroses invite la communauté scientifique à la plus grande 

vigilance quant à l’évolution génétique de ce virus, même si, à ce jour, les cas humains restent 

exceptionnels. Par ailleurs, le USUV présente une grande proximité sur le plan génétique avec les 

autres membres du sérogroupe de l’encéphalite japonaise (dont le WNV) et les autres flavivirus 

transmis par les moustiques, dont le virus de la Dengue et le virus Zika. A ce titre, le USUV constitue 

un modèle d’étude de premier plan pour la compréhension de la pathogénie et le développement de 

solutions prophylactiques et thérapeutiques pour ces flavivirus proches. En effet, il est le seul membre 

de ce groupe qui puisse être manipulé en conditions de biosécurité de niveau 2, les souches de terrain 

sont facilement accessibles et présentent un haut degré de variation génétique naturelle. En dépit de 

ces avantages, les connaissances concernant la physiopathologie de ce virus émergent sont, pour 

l’heure, très sommaires. Nos travaux ont, donc, visé à mieux comprendre la pathogenèse de son 

infection, en combinant une approche descriptive de cas spontanés chez des oiseaux sauvages et le 

développement de modèles expérimentaux.  

Ayant débuté ce travail en pleine épizootie du USUV chez les oiseaux sauvages en Belgique 

en 2016, nous avons entrepris une étude descriptive et systématique de ces cas spontanés. Nous avons 

mis en évidence l’endémISAtion de ce virus en Belgique, avec la survenue fréquente d’épizooties 

aviaires en 2017 et 2018 et une co-circulation de souches génétiquement variables et en constante 

évolution. De plus, nous avons élargi le spectre d’hôtes au sein des hôtes aviaires, en détectant le virus 

chez une nouvelle série d’espèces, notamment la macreuse noire (Melanitta nigra), qui constitue, à 

l’heure actuelle, la seule espèce de la famille des Anatidae qui est hautement sensible au virus. Nous 

avons, également, isolé des souches virales de terrain qui nous ont permis d’établir des modèles 

d’infection. Ensuite, nous avons testé la sensibilité au virus de deux modèles aviaires d’infection, un 

modèle Gallus gallus in ovo et un modèle in vivo, le canari domestique (Serinus canaria) et d’un 

modèle « mammifère », les souris 129/Sv. Nous avons réussi à démontrer que, contrairement aux 

résultats de trois études indépendantes menées par des équipes européennes renommées, le USUV est 

capable, non seulement de se répliquer dans les œufs embryonnés de poulet, mais aussi d’éliciter une 

virulence marquée et un tropisme cellulaire étendu. Ensuite, comme nous avons constaté que la 

membrane chorioallantoïdienne était un site de prédilection pour la réplication virale, nous avons isolé 
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des cellules de ce tissu et évalué la cinétique de réplication des souches virales en utilISAnt ce modèle 

in vitro. Nous avons, ensuite, établi le premier modèle in vivo, le canari domestique, adéquat pour 

l’étude du USUV et sa transmission. Enfin, notre infection expérimentale pilote des souris 

immunocompétentes 129/Sv a conclu à la pertinence de ce modèle murin pour l’étude de la 

neuroinvasivité du USUV et de la possibilité d’une transmission directe chez les mammifères.  

Dans l’ensemble, à travers l’examen d’oiseaux infectés naturellement ou de différents 

modèles in ovo et in vivo infectés au laboratoire, nous avons réussi à mettre en exergue des différences 

majeures dans la pathogénie de l’infection par le USUV, selon qu’il s’agisse d’hôtes aviaires ou 

mammifères, ou même entre espèces aviaires différentes. Nous pensons que l'utilISAtion future de ces 

modèles favorisera une compréhension significative de la neuropathogenèse induite par le USUV et de 

sa réponse immunitaire et permettra le développement futur de médicaments et de vaccins contre le 

USUV ou d’autres virus apparentés d’importance zoonotique majeure, en bénéficiant de l’avantage de 

l’immunité croisée entre ces virus. 
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Summary 

Usutu virus (USUV), a mosquito-borne zoonotic flavivirus discovered in South Africa in 

1959, has spread to many European countries over the last twenty years, causing significant bird 

mortalities. Human infections most often remain asymptomatic, or with a benign clinical expression. 

However, neurological complications, such as encephalitis or meningoencephalitis, have been 

described, reminiscent of infections with West Nile Virus (WNV), a USUV-related flavivirus. The 

recent history of outbreaks linked to other arboviruses invites the scientific community to be 

extremely vigilant about the genetic evolution of USUV, even if, to date, human cases remain 

exceptional. In addition, USUV is genetically very close to other members of the Japanese 

encephalitis serogroup (including WNV) and other mosquito-borne flaviviruses, including Dengue 

virus and Zika virus. As such, USUV is a leading model for the study of the flaviviral pathogenesis 

and the development of prophylactic and therapeutic solutions against these more pathogenic 

flaviviruses. Indeed, it is the only member of this group that can be handled under level 2 biosafety 

conditions, field strains are easily accessible and have a high degree of natural genetic variation. 

Despite these advantages, knowledge about the pathophysiology of this emerging virus is, for the 

moment, very sketchy. Our work has, therefore, aimed to better understand the pathogenesis of its 

infection, by combining a descriptive approach of spontaneous cases in wild birds and the 

development of experimental models.  

Indeed, since this work started during the USUV epizootic in wild birds in Belgium in 2016, 

we undertook a descriptive and systematic study of these spontaneous cases. We have highlighted the 

endemization of this virus in Belgium, with the frequent occurrence of avian epizootics in 2017 and 

2018 and a co-circulation of genetically variable and constantly evolving strains. In addition, we have 

expanded the avian host spectrum by detecting the virus in a new series of species, including the 

common scoter (Melanitta nigra), which is currently the only known species of the Anatidae family 

that is highly susceptible to the virus. We also isolated several field viral strains which allowed us to 

properly establish models of infection. Then, we tested the susceptibility to the virus of two avian 

models, a Gallus gallus model in ovo and an in vivo model, the domestic canary (Serinus canaria), and 

a "mammalian" model, 129/Sv mice. We succeeded to demonstrate that, unlike the results of three 

independent studies conducted by renowned European teams, USUV is able not only to replicate in 

embryonated chicken eggs but also to elicit a marked virulence and an extended cellular tropism 

within the chick embryo. Subsequently, as we found that the chorioallantoic membrane was a site of 

predilection for viral replication, we isolated cells from this tissue and evaluated the replication 

kinetics of viral strains using this model in vitro. We, then, established the first avian in vivo model, 

the domestic canary, suitable for the study of USUV and its transmission. Finally, our experimental 
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infection of 129/Sv immunocompetent mice concluded that this murine model is useful for the study 

of USUV neuroinvasivity and its possible direct transmission in mammals.  

Overall, through the examination of naturally infected birds and different in ovo and in vivo 

models in the laboratory, we highlighted major differences in the pathogenesis of USUV infection, 

according to avian or mammal hosts, or even between different avian species. We believe that the 

future use of these models will promote a significant understanding of the USUV-induced 

neuropathogenesis and its immune response and allow the future development of drugs and vaccines 

against USUV or other related viruses of major zoonotic importance, based on the known cross-

immunity between these viruses. 
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USUV is an arbovirus of the family Flaviviridae and genus Flavivirus. Among these viruses 

are some of the most important arboviruses for humans, such as the dengue virus (DENV), Zika virus 

(ZIKV), yellow fever virus (YFV), West Nile virus (WNV), or the Japanese encephalitis virus (JEV).  

Responsible for recurrent epizootics since 1996 in the European avifauna, USUV is now 

recognized as the causative agent of potentially severe neurological disorders in humans. Its recent 

geographic spread to a large number of European countries, the frequent occurrence of USUV-

associated bird epizootics and the co-circulation of several lineages of genetically different strains 

warrant specific research studies. 

In this thesis, USUV surveillance in Belgium and research models were developed. The aim 

of this thesis was to better understand the pathogenesis of the infection with this virus linked to the 

genetic diversity of its strains. In this manuscript, we aim to (1) make a state of the art knowledge 

about USUV and other mosquito-borne flaviviruses pathogenic for birds and to (2) investigate the 

pathogenesis of USUV infection in naturally-infected birds or using laboratory models. 
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1. Mosquito-borne flaviviruses pathogenic for birds 

1.1 Overview 

According to the World Health Organization, 61% of all human pathogens are of an animal 

origin, and 75% of the emerging animal diseases can be transmitted to humans (WHO, 2006). Except 

for some emerging zoonoses such as the Severe Acute Respiratory Syndrome and the Highly 

Pathogenic Avian Influenza H5N1, the vast majority of zoonotic diseases are strikingly not a priority 

in health systems at both national and international levels and are, therefore, considered as neglected 

(WHO, 2006). Among these neglected pathogens, many are vector-borne, among which the 

arboviruses. The most important arboviroses in human health are those caused by the Alphavirus 

(Togaviridae family, including for example the Chikungunya virus), Orthobunyavirus and 

Phlebovirus (Bunyaviridae family, including the California encephalitis virus and Rift Valley Fever 

virus, respectively) and Flaviviruses (family Flaviviridae). Recent epidemics associated with the Zika 

virus (ZIKV) in South America, Chikungunya virus in the Indian Ocean or the West Nile Virus 

(WNV) in North America or Europe (Bakonyi et al., 2013) illustrate the severe consequences of the 

emergence of these neglected arboviruses for both public health and animal health. 

The Flaviviridae family includes four genera: Flavivirus, Pestivirus, Pegivirus, and 

Hepacivirus (Simmonds et al., 2017). The genus Flavivirus is the largest of the four, including more 

than 70 species (MacKenzie and Williams, 2009), the majority of which are zoonotic arboviruses. 

This genus is divided into three distinct groups: mosquito-borne (about 50%), tick-borne (28%) and 

those whose vector is, to date, unknown (Moureau et al., 2015; Simmonds et al., 2017). The group of 

mosquito-borne viruses can be subdivided according to their reservoir/vector into two clades (ICTV, 

10th report). Aedes clade viruses (anthropophilic mosquitoes), such as the Dengue (DENV), yellow 

fever (YFV) or ZIKV, have a primate reservoir and are responsible in most cases for hemorrhagic 

diseases in humans. Culex (mosquitoes that may feed on birds and many mammalian hosts) clade 

viruses have an avian reservoir, are neurotropic and frequently cause meningoencephalitis 

(Lindenbach et al., 2013; Mazeaud et al., 2018; Mazzon et al., 2009). Among these viruses are the 

WNV, Japanese encephalitis virus (JEV) and the Usutu virus (USUV). 

From the antigenic side, flaviviruses are divided into 8 different serocomplexes (Simmonds et 

al., 2017). A serocomplex is defined as a group of viruses sharing common antigenic sites on their 

surface, which promotes serological cross-reactions (ICTV, 10th report). The JEV serocomplex 

includes 8 viral species, including the WNV and USUV (Table 1). The Ntaya serocomplex contains 

the Israel turkey meningoencephalitis virus (ITV), Bagaza virus (BAGV) and Tembusu virus 

(TMUV). These five viruses are the only mosquito-borne flaviviruses considered as “epornitic” 

(capable of causing epizootics in birds) (ICTV, 10th report). 
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Table 1: Main Characteristics of viruses from the JEV serocomplex 

Virus 
Geographical 

distribution 
Reservoir Main vector Disease 

Cacipacoré virus Brazil Birds? Culex spp? 
A human case with 

febrile syndromes 

Japanese 

encephalitis virus 
Asia Birds - pigs Culex spp 

Neurological in humans, 

cattle and horses 

Koutango virus 

Senegal - 

Central African 

Republic- Somalia 

Rodents? 
Ticks? 

Aedes aegypti? 

Neurological in 

experimental mice 

Murray Valley 

encephalitis virus 

Australia et New 

Guinea 
Birds Culex spp 

Neurological in humans 

and horses 

Saint Louis 

encephalitis virus 

United States of 

America 
Birds Culex spp 

Neurological in humans 

and horses 

Usutu virus 

Africa - Europe 

and the Middle 

East 

Birds Culex spp 

Systemic in birds. 

Neurological (rare) in 

humans 

West Nile virus Worldwide Birds Culex spp 

Systemic in birds. 

Neurological (rare) in 

humans and horses 

Yaoundé virus Cameroon - Ghana Birds 
Culex 

nebulosus 
? 
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1.2  Manuscript n°1 - Mosquito-borne epornitic flaviviruses: an update and review 

Some vertebrates, such as birds, play the role of "reservoirs" in the flavivirus epidemiological 

cycle. They are hosts capable of replicating and transmitting the virus to other ones, thus maintaining 

the virus in the environment. These reservoir hosts can sometimes show clinical signs, even 

mortalities, following the infection. This has been described in birds infected with five mosquito-

borne flaviviruses: WNV, USUV, ITV, BAGV, and TMUV. These arboviruses have had a significant 

impact on the health of birds and the poultry industry and are capable of infecting humans (Bondre et 

al., 2009; Colpitts et al., 2012; Gaibani and Rossini, 2017; Tang et al., 2013b), except the ITV. 

After a careful reading of the scientific literature on these flaviviruses, we found that there 

was no comprehensive review of virological, epidemiological, pathological, and prophylactic data for 

this particular group of viruses. Consequently, we developed a review of the literature incorporating 

these aspects. In particular, we analyzed different results from reports on the circulation of these 

pathogens in order to describe the specific host tropism of each of these viruses. In addition, by 

analyzing studies of vaccine candidates targeting these viruses in avian hosts, we developed an update 

on the advancement in the prophylactic strategies against these pathogens, for which there is currently 

no etiological treatment. This review is published in the Journal of General Virology*. 

 

 

 

 

 

 

 

 

 

* Supplementary material included in this review is presented in Appendix 1.
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Abstract 
 
West Nile Virus, Usutu virus, Bagaza virus, Israel turkey encephalitis virus and Tembusu virus currently constitute the five flaviviruses 

transmitted by mosquito bites with marked pathogenicity for birds. They have been identified as the causative agents of severe 

neurological symptoms, drop in egg production and/or mortalities among avian hosts. They have also recently shown an expansion of 

their geographic distribution and/or a rise in cases of human infection. This paper is the first up-to-date review of the pathology of these 

flaviviruses in birds, with a special emphasis on the difference in susceptibility among avian species, in order to understand the 

specificity of the host spectrum of each of these viruses. Furthermore, given the lack of a clear prophylactic approach against these 

viruses in birds, a meta-analysis of vaccination trials conducted to date on these animals is given to constitute a solid platform from 

which designing future studies. 

 

 

INTRODUCTION 
 
West Nile virus (WNV), Usutu virus (USUV), Tembusu virus 

(TMUV), Bagaza virus (BAGV) and Israel turkey meningo-

encephalitis virus (ITV) are positive-sense, single-stranded 

RNA viruses, included in the mosquito-borne clus-ter of the 

genus Flavivirus, family Flaviviridae [1]. Their natural life 

cycle mainly involves birds and mosquitoes, whereas humans 

and other vertebrates are considered inci-dental hosts [2–5]. A 

remarkable hallmark of these arbovi-ruses is their ability to 

invade new territories. The most recent examples of this 

feature are the introduction into Europe of USUV in 1996 [6], 

WNV lineage 2 in 2004 [7], BAGV in 2010 [8] and of TMUV 

into China in 2010 [9]. In avian hosts, these flaviviruses are 

considered as epornitic (capable of causing epizootics in 

birds). Consequently, we will refer to them in this review as 

mosquito-borne epornitic flaviviruses (MBEF). MBEF have 

been detected in an increasing number of bird species and can 

be deadly for a wide range of them. Moreover, when poultry 

flocks become infected by ITV and TMUV, high mortality, 

drop in egg production and heavy control measures constitute 

an eco-nomic burden for the infected countries. 

 

Besides their impact on bird health and the poultry industry, 
MBEF are capable of infecting humans [10–13], except ITV,  

 

 

of which the zoonotic potential is still to be determined. Most 

human infections remain asymptomatic, but symptoms rang-

ing from transient flu-like syndrome (fever, headache) to 

severe neurological illness and death can be observed in some 

cases of WNV and USUV infections [13, 14]. 
 
In this article, we will review the genome structure, classifi-

cation, eco-epidemiology, pathology and preventive meas-ures 

related to MBEF. We will list avian species currently known 

to be susceptible to the infection and we will provide an 

overview of vaccination trials conducted to date on birds to 

boost their immune system against these viruses. 
 
Genome structure 
 
The MBEF group are positive-sense, single-stranded RNA 

viruses [15]. Spherical and enveloped virions measure 40– 60 

nm in diameter [1]. Their ~11 kb viral RNA genome contains 

a unique open reading frame (ORF) flanked by a capped 5¢-

terminal non-coding region (NCR) and a 3¢-terminal NCR 

(Fig. 1). The two NCRs form specific secondary structures 

necessary for genome replication and translation and are 

implicated in the pathogenicity of flaviviruses [16]. The single 

polyprotein encoded by the ORF is processed by viral and 

host proteases into three structural and seven non-structural 

proteins [1]. The structural proteins comprise: (1) an envelope 

protein E, involved in receptor binding, viral entry and 
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Fig. 1. Virion structure and genomic organization of epornitic mosquito-borne flaviviruses. The single-stranded, positive-sense RNA genome 

contains a single unique ORF, encoding for a polyprotein which is processed into three structural proteins (C, PrM, and E) and seven non-structural 
proteins (NS1, NS2A, NS2B, NS3, NS4A, NS4B, and NS5). UTR, untranslated transcribed region.  
 
 

 

membrane fusion; (2) a membrane protein M, which results 

from the cleavage of a membrane precursor prM upon matu-

ration of the virion; and (3) a capsid protein C, involved in the 

assembly of the nucleocapsid and its incorporation into new 

virions [17]. The E protein carries both flavivirus cross-reac-

tive and virus-specific epitopes, and hence it constitutes the 

main target of neutralizing antibodies and the base of several 

vaccine candidates against these viruses [18]. Alternatively, a 

truncated E (TE) protein without a membrane anchor region 

 
 

 
can be used to increase secretion of the E protein ectodomain, 

carrying major immunogenic epitopes [18]. The prM protein 

protects the E protein from premature fusion during the 

exocytosis of viral particles and participates in the folding and 

assembly of viral particles [1]. The prM-E proteins of fla-

viviruses can self-assemble into subviral particles, which share 

features similar to the antigenic structure of the virions [17]. 

Therefore, many vaccine candidates for the immunization of birds 

have been based on prM and E proteins. 
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The non-structural proteins (NS1, NS2A, NS2B, NS3, 

NS4A, NS4B, and NS5) regulate RNA transcription and 

replication [1], determine virus evasion mechanisms from 

the host immune system (e.g. limit interferon (IFN) gene 

expression by attenuating the signaling through the JAK/ 

STAT pathway) [19, 20] and play an important role in 

avian host competence and virulence [21, 22]. Among these 

proteins, NS3 is a serine protease that cleaves NS2A/B, 

NS2B/ NS3, NS3/NS4A and NS4B/NS5 [20]. This protein 

also has RNA helicase activity, allowing the genome to be 

unwound during viral replication, and RNA triphosphatase 

activity, involved in the dephosphorylation of the 5¢ end of 

the genome before the addition of a cap [1]. NS5 is a highly 

conserved protein among flaviviruses and is also a multi-

functional protein: at the N-terminus, it has methyltransfer-

ase activity required for the formation of mRNA (RNA 

capping); and at the C-terminus, it has an RNA-dependent–
RNA-polymerase activity necessary for copying genomic 

RNA [1]. 
 
Lineages and strains 
 
The MBEF members belong to the genus Flavivirus, family 
Flaviviridae [1]. This family is divided, according to the 
transmission routes of its members, into three clusters (Fig. 

2): (1) arthropod-borne viruses, transmitted horizon-tally 
by mosquito or tick bites to vertebrate hosts and thus 
considered as dual-host viruses; (2) unknown vector 
flaviviruses, also called vertebrate-specific flaviviruses, 
presumed to infect only rodents or bats; and (3) insect-

specific or mosquito-only flaviviruses that can replicate 
only in insects, especially mosquitoes [23]. 
 
The most important flaviviruses in regard to humans and 
animals belong to the first cluster, for which birds can act 
as the reservoir [23]. Among these, some are transmitted by 
ticks, mostly Ixodes sp. [24], and can severely impact the 
health of human (e.g. Tick-borne encephalitis virus) [25] or 
avian hosts, such as Louping-ill virus, which is deadly for 
the red grouse (Lagopus lagopus) [26]. 
 
Other arthropod-borne flaviviruses are transmitted by mos-
quitoes, with some being non-pathogenic for birds but 
highly virulent in humans, such as Murray Valley encepha-
litis virus [27] and Saint Louis encephalitis virus [28]. 
WNV, USUV, TMUV, BAGV, and TMEV are the only 
mosquito-borne viruses having known pathogenicity for 
birds (Table 1). 
 
The MBEF members are serologically classified within two 

different groups: (1) the Japanese encephalitis serocomplex, 

including WNV and USUV, and (2) the Ntaya serocomplex, 

including AMEV and TMUV [29, 30] (Table 1). 

 
Viruses from the Japanese encephalitis 
serocomplex: USUV and WNV 
 
Isolates of USUV are currently classified into eight lineages 

(Africa 1, 2 and 3 and Europe 1, 2, 3, 4 and 5) [31]. Molecu-

lar studies on nucleotide and amino acid sequences of these 

isolates from vectors, birds, and humans reveal significant 

 

 

substitutions, some of which have been suggested as being 
related to viral neuro-invasiveness [32]. The effective role 
of such candidate mutations in the development of both 
viral infectivity and virulence remains to be determined. 
 
At present, up to nine lineages have been proposed to classify 

WNV strains [33]. Lineage 1 is subdivided into clades 1a and 

1b (or Kunjin virus) and 1 c [34], and is the most widespread 

in the USA (NY99 strain), Africa (KN3829), Europe and the 

Middle East [33]. Virulence is highly variable among WNV 

lineages. For instance, lineage 3 (Rabensburg virus) has never 

been isolated from humans and did not experimentally infect 

mammalian or avian cell cultures, the house sparrow (Passer 

domesticus) (HOSPs) or specific-pathogen-free (SPF) chicken 

eggs [35]. On the contrary, WNV lineages 1 and 2 have been 

responsible for major outbreaks in animals and humans [35, 

36]. Viral strains from the same lineage (and clade) can also 

express variation in pathogenicity. For instance, despite the 

high genetic relatedness between strains KN3829 and NY99 

(a total of 11 amino acid differences between the strains) [22], 

the latter exhibits a strikingly different avian virulence 

phenotype, eliciting significantly higher viremia and mortality 

in the American crow (Corvus brachyrhyncos; AMCR) [22, 

37]. A mutation in the NS3 gene resulting in a T249P amino 

acid substitution was involved in increased pathogenicity in 

AMCR [38], and this mutation was proposed as a key 

determinant of WNV pathogenicity. Furthermore, the NS3-

249 residue was shown to be under strong positive selective 

pressure because birds can drive adaptive evolution in WNV 

[38]. However, the mere presence of Pro at NS3-249 was 

neither sufficient nor necessary to enhance the virulence of 

WNV strains in theHOSP [39, 40], red-legged partridge [41] 

and SPF chicken [42]. Variation in virulence for avian species 

in regard to this mutation remains unexplained. Nonetheless, 

one study showed that WNV virulence in AMCR is corre-

lated with increased ATP hydrolysis due to direct interaction 

between the NS3-249 residue and unknown host factors [43]. 

Helicase activity, however, did not differ between NS3 

proteins with proline or threonine at position 249, and thus 

could not explain the in vivo effects in AMCR [43]. Other 

studies showed that the NS3-249 residue modulates 

replication in avian leukocytes [22, 44] and hence could affect 

the host immune response in a temperature-dependent manner 

and under the control of NS proteins [22]. 

 
 

 

Viruses from the Ntaya serocomplex: BAGV, ITV, 
and TMUV 
 
The BAGV strains comprise isolates from the Central 

African Republic, India, and Spain, with high nucleotide 

identity (>92 %) [8]. ITV includes strains from Israel and 

South Africa, with <0.9 % of divergence [30]. Both viruses 

have shown cross-neutralization activity and nucleotide 

sequence identity >84 % and were proposed to be 

considered as a single virus species, named avian 

meningoencephalitis virus [23, 30]. However, the Interna-

tional Committee on Taxonomy of Viruses species 
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Fig. 2. Phylogeny of conserved partial gene sequences coding for the non-structural protein 5 of certain representative strains from the family 

Flaviviridae. ClustalW (implemented in Geneious 10.2.3) was used to create multiple alignments for the sequences. The phylogenetic tree was 

constructed from the sequence alignment by the maximum likelihood method based on the Kimura 2-parameter model [149] with a gamma 

distribution (five categories) and invariant sites (G+I) computed with MEGA 7 [150]. The tree is drawn to scale, with branch lengths measured 

according to the number of substitutions per site. Data were bootstrap re-sampled 500 times; values 70 % are shown next to the branches. Mosquito-

borne epornitic flaviviruses are framed.  
 
 
 

 

demarcation criteria for viruses of the genus Flavivirus 

include geographic, vector, host and disease associations 

and ecological characteristics [45] and, thus, these viruses 

should still be considered as separate species [15] because 

they differ in some of these aspects (Table 1). TMUV is a 

genetically distinct member of the Ntaya virus group and 

includes highly homologous isolates that were previously 

considered separate virus species, including the Sitiwan 

virus [46], duck egg-drop syndrome virus [47], Perak virus 

[48] and Baiyangdian virus [49]. 

 
 
 

 

Genetic features underlying the infection and disease out-

come associated with these viruses are still poorly under-

stood. Recently, N-glycosylation on residue 154 of TMUV 

E protein has appeared as a determinant of pathogenicity in 

ducks, as shown for WNV in other avian species [50–53]. 

In fact, an S156P mutation in the E protein of one TMUV 

strain (FX2010) resulted in the loss of the E-glycosylation 

motif, leading to limited virus replication and the 

abrogation of vector-free transmission of TMUV in ducks 

[54]. 
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Table 1. Epornitic mosquito-borne flaviviruses: classification and main epidemiological and pathological features 
 

MBEF Serocomplex First detection in Most susceptible Major clinical Lesions Geographic distribution 

  birds bird species signs   
       

WNV Japanese 1953 in Egypt. Order: Sudden death Encephalitis Worldwide 

 encephalitis WNV lineage-2 : Passeriformes Neurological Necrosis in the liver, North America: frequent 

  2004 in Europe (Corvidae) signs heart and spleen Europe: occasional epizootics 

  1999 in North    Elsewhere: infrequent 

  America     
USUV  1972 in Africa Orders:   Africa: sporadic 

  1996 in Europe Strigiformes   Europe: seasonal epizootics 

   Passeriformes    

   (Turdus    

   merula)    

BAGV Ntaya 2010 in Spain   Encephalitis Spain: sporadic 

   Phasianids:  Necrosis in liver, Central African Republic, Cameroon, 

   partridge  heart and spleen Mauritania, Senegal, India: reported in 

     Oophoritis mosquitoes 

ITV  1958 in Israel  Sudden death  Israel: sporadic 

   Phasianids: Neurological  South Africa: sporadic 

   turkey signs   

TMUV  1976 in Malaysia Duck, goose Egg drop  Southeast Asia (Malaysia, Thailand, Indonesia, 

      China) 

      Enzootic in China and Malaysia 
       

 
 

 

Geographic repartition 
 
USUV  
USUV was detected for the first time in 1959, by B.R. McIn-

toch, from Culex naevi (historically named Culex univitatus) 

captured near the Usutu river in Swaziland, South Africa [55]. 

The virus was later detected in mosquitoes in several African 

countries until its identification as the causative agent of mass 

mortality in the Eurasian blackbird (Turdus merula), barn 

swallow (Hirundo rustica) and great grey owl (Strix nebulosa) 

in and around Vienna (Austria) in 2001 [56]. Proof of the 

introduction of this virus in Europe prompted a retrospective 

analysis of tissue samples, collected from a dead blackbird in 

the Tuscany region of Italy in 1996 [6]. The results were 

positive for USUV, providing evidence of its circulation 

before its isolation in dead birds in Austria. In subsequent 

years, the virus range expanded to several European countries 

and it was detected in avian species (Appendix 1, available in 

the online version). Senegal has been suggested as the origin 

for virus introduction in Central Europe [57], and the 

identification of an African strain in August 2015 from the 

carcasses of two juvenile great grey owls in Berlin (Germany) 

has revealed the continuous introduction of the virus [58]. 
 
WNV 
 
This virus has disseminated globally since it was first isolated 

in the West Nile province of Uganda in 1937 [59] and has had 

a major impact on human, equine and avian health  
The virus was first isolated in avian species in Egypt in  
1953 from the blood of two rock pigeons (Columba livia) and 

one hooded crow (Corvus cornix) [60]. It has since been 

associated with two major epornitics, the first in the migratory 

white stork (Ciconia ciconia) and domesticated goose 

 
 

 

(Anser anser domesticus) in Israel, between 1997 and 2000 
[61], and the second in AMCR in the USA, where strain 
NY99 was introduced in 1999 [62]. High mortality in birds 
has been a common feature of WNV activity in the USA, 
with infection detected in dead birds of to up to 342 species  
Besides, the virus has resulted in infection since its emergence 

in over 27 000 horses [64] and in neuro-invasive disease in 48 

183 humans (2163 deaths), according to the Centers for 

Disease Control and Prevention [65]. In contrast, WNV only 

sporadically caused infections and neurological illnesses in 

humans and horses in Europe [36]. Wild bird mortality events 

have been even more infrequent, with small and isolated 

episodes and a limited number of avian species testing 

positive for WNV infection (24 species to date, as shown in 

Appendix 2). This variability in the clinical impact of WNV 

infections in humans, horses and birds has been linked to both 

intrinsic (e.g. vector competence, mosquito feeding 

preferences and longevity, and host immunity) and extrinsic 

factors (e.g. host and mosquito density, composition of host 

and vector populations and environmental conditions) [59, 

66]. 
 
BAGV and ITV 
 
Bagaza virus was first isolated in the Bagaza district of the 
Central African Republic (CAR) in 1966, from a pool of 
Culex spp. mosquitoes [67]. Subsequently, this virus has 
been isolated from various species of mosquito in Central 
and West African countries [68], and in India, where 
serological investigations implicated its involvement in 
human encephalitis [10]. In September 2010, BAGV was 
found to be associated with high mortality in game 
partridge and pheasant in southern Spain [8, 69]. This was 
the first time the virus had been detected in Europe and the 
first proof of BAGV adaptation to avian species. The 
closely related ITV 
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has been reported as affecting turkey (Meleagris gallipavo) 
since 1958, in Israel and in South Africa [70]. Apart from 
Israel, ITV has been reported only in South Africa, but also 
in the domesticated turkey [71]. 
 
TMUV  
This virus was first detected in mosquitoes in Kuala 

Lumpur in 1955 [46], and it has frequently been isolated 

from Culex and Aedes mosquitoes in Malaysia [72] and 

Thailand [2]. Sitiawan virus was the first TMUV strain 

reported to cause encephalitis and retarded growth in 

broiler chickens in Malaysia [46]. In 2010, egg-drop syn-

drome and encephalitis were observed in both meat and 

laying ducks in China, and TMUV was identified as the 

causative agent [73]. In addition, a similar TMUV dis-ease 

also emerged in duck flocks in Malaysia in 2012 [48] and 

in Thailand in 2013–2014 [74]. TMUV has not  

 

 

been associated with human disease, but the detection of 

neutralizing antibodies to the virus has been reported in 

human sera from Malaysia and Indonesia [75]. Detection 

of antibodies against TMUV in healthy duck industry 

workers in Shandong, China provided evidence of TMUV 

duck-to-human transmission [12]. Although it has not been 

shown, to date, to result in either clinical manifestations or 

viremia in non-human primates [76], the potential 

emergence of strains virulent for humans should be 

considered [12]. 
 
Life cycle and host range 
 
Viruses in the MBEF group are maintained in nature by a 

cycle (Fig. 3) involving adult ornithophilic mosquitoes, 

principally Culex spp., as vectors, and competent birds (those 

that express sufficiently high viremia levels to infect naive 

mosquitoes) as the reservoir [2, 4, 5, 13, 77]. BAGV,  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig.  3. Basic transmission cycle and pathogenesis of mosquito-borne epornitic flaviviruses.  
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WNV, USUV, and TMUV can incidentally infect many 

hosts, including humans [10–13], with varying degrees of 

pathogenicity, ranging from asymptomatic infection to 

severe neurological illness – attributed to WNV [14] and, 

less frequently, to USUV [13]. While little is known about 

other potential hosts of BAGAV, ITV, and TMUV, both 

WNV and USUV have been shown to naturally infect dog, 

bat [78], red deer [5, 79] and equids [80]. Only in equids 

have encephalitis and death following WNV infection been 

reported [64]. The vertebrate host range of WNV even 

encompasses other animals such as reptiles (e.g. alligator, 

snake) and amphibians (e.g. frog), yet only a small number 

of host species contribute to vector-borne transmission [5]. 

Some tick species can replicate WNV, but their role in the 

introduction and maintenance of WNV infections remains 

uncertain [81, 82]. 
 
Migratory birds are thought to be the principal agent for the 

global spread of WNV and the introduction of USUV to 

Europe. Avian migratory status did not appear to reduce 

WNV viremia titers or inhibit the migratory behavior of 

passerines, demonstrating that long-distance migratory 

birds can carry the virus to new territory [83, 84]. In addi-

tion, infectious viremia was detected in birds during 

autumn migration in the Atlantic and Mississippi flyways 

in 2002 and 2003 [83]. Isolation of WNV and detection of 

virus activity by RT-PCR in the brain of white stork in 

Israel, during migration from Europe within two days of 

arrival at a stop-over site, provides further evidence of virus 

dispersal via these hosts [61]. A dispersal pattern of WNV 

across the USA via avian flyways was phylogenetically 

predicted [85]. Similarly, long-distance migratory birds 

were suggested as playing a key role in the introduction of 

USUV in Europe, because the genetic structure of the virus 

follows the geographical location and pattern of migratory 

flyways [57]. 
 
The MBEF group has a heterogeneous spectrum of pathoge-

nicity according to avian species. Since its emergence in 

Europe, evidence of USUV circulation has been detected in at 

least 93 species from 35 families (Appendix 1). Some of these 

species showed evidence of silent infection, which was 

revealed by anti-USUV antibodies. However, the presence of 

viral RNA in dead birds of 36 species, mainly from the orders 

Passeriformes and Strigiformes, may indicate a specific 

virulence of the virus towards these avian species (Appendix 

1). Eurasian blackbird (Turdus merula) is the species most 

affected in Europe (Appendix 1). In Germany, USUV has been 

demonstrated as causing a 15.7 % decline in the population of 

T. merula during the five years following its first detection in 

the southwest of that country in 2011 
 
As a general rule, Passeriformes (especially Corvidae) and 

Charadriiformes (Laridae) are considered highly susceptible to 

WNV infection, with differences in viremia lev-els depending 

on the species and viral strain [70]. The emergence of BAGV 

in Spain in 2010 resulted in high mortality rates in two game 

bird species, red-legged partridge (Alectoris rufa) and 

common pheasant (Phasianus colchicus) 

 

 

(Appendix 3). Following experimental infection with 
BAGV, red-legged partridges showed a mortality rate of 30 
% [87], while grey partridges (Perdix perdix) showed 40% 

of mortality with severe neurological symptoms, but the 
level of viremia was not sufficiently high in the latter spe-
cies for it to be considered a competent host, in contrast to 
the former [88]. 
 
Fatal disease has been reported in turkeys infected with ITV  
(Appendix 4), while TMUV has frequently been reported 
in ducks and occasionally in chickens and geese [46, 90] 
(Appendix 5). 
 
The age of birds also seems to be an important factor in 
determining the course of mosquito-borne viral infections. 

Increased duration or intensity of viremia in nestlings and 
juveniles, compared to adult birds, was noted after 
infection with different lineages of WNV [70]. Young 
ducks and tur-keys are more susceptible to infection by 

TMUV and ITV, respectively, as they show more severe 
symptoms and lesions along with a lower neutralizing 
antibody response and a higher mortality rate [71, 91, 92]. 
There are no studies to date addressing the effect of age in 
regard to susceptibility to USUV and BAGV infections. 
 
Besides age, there is an influence of gender on the 
morbidity and severity of ITV- and BAGV-associated 
diseases, with the female being more susceptible than the 
male in turkey [71], partridge [87] and pheasant [93]. 
 
Non-vector-borne transmission 
 
The capability of MBEF to be transmitted in a vector-borne 
free manner is variable. 
 
USUV  
Contact transmission of USUV did was not possible in 
laboratory experiments in chicken (Gallus domesticus) [94] 
and domestic goose [95], species in which lethal infection 
has not been described to date. The use of susceptible bird 
species, including Passerines or Strigiformes, might be 
more useful in investigating the occurrence of direct USUV 
transmission. 
 
WNV  
In humans, cases of transmission of WNV through blood 

transfusion, organ transplantation, intrauterine exposure, and 

breastfeeding have been reported [11]. In avian hosts, contact 

transmission of WNV has been demonstrated in six bird 

species: common goose [96], chicken [97], ring-billed gull 

(Larus delawarensis), blue jay (Cyanociatta cristata), black-

billed magpie (Pica hudsonia) and AMCR [98]. WNV-

contaminated water infected the common grackle (Quiscalus 

quiscula), HOSP and AMCR [98]. Besides, oral transmission 

was experimentally demonstrated after ingestion of WNV-

infected mice by five bird species: great horned owl (Bubo 

virginianus) [98, 99], eastern screech owl (Megascops asio) 

[100], black-billed magpie (Pica hudsonia), AMCR [98] and 

American kestrel (Falco sparverius) [99]. An AMCR showed 

viremia after ingestion of an infected HOSP carcass, and the 

same was observed in a house finch 
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after the consumption of an infected mosquito [98]. This 
observation supports the hypothesis that WNV-infected 
birds in nature, especially corvids, constitute a source of 
contamination for birds of prey via the oral route [101]. 
 
BAGV and ITV  
Direct transmission of BAGV in experimentally infected 
partridge remains controversial. While some researchers 
have demonstrated direct transmission in red-legged par-
tridge [87], a recent study confirmed the absence of this 
transmission path in grey partridge [88]. Interestingly, the 
presence and persistence of viral load in feather pulp was 

found in Gyr–Saker hybrid falcon (Falco rusticolus Falco 
cherrug) infected with WNV [102], in red-legged partridge  
and in grey partridge [88] infected with BAGV, suggesting 
possible transmission via feather-picking. Further-more, 
ITV was detected and amplified from feather pulp and this 
technique was proposed to evaluate the proper 
administration of live vaccines [103]. However, contagion 
did not occur in turkey experimentally infected with ITV  
Similarly, the vertical passage of this virus was not found 
using the turkey as experimental models [71]. 
 
TMUV  
TMUV is considered a contagious virus since horizontal 

transmission through direct contact, ingestion or inhalation 

of contaminated materials in duck (Anas platyrhynchos) 

and the goose was demonstrated under both field and 

laboratory conditions [9, 91, 105–107]. Besides, the 

vertical transmission was demonstrated in TMUV-infected 

duck [108]. The transmissibility of TMUV in duck is 

largely attributable to the E protein. Recently, the I domain 

of E protein has been found to directly impact virus 

replication in duck lung, thereby modulating virus shedding 

which is crucial for vector-free transmissibility of TMUVs 

in duck [54]. Besides, the amino acid Ser at position 156 in 

the E protein was shown to be responsible for virus tropism 

and transmission in duck, because a mutation of this 

residue led to the loss of N-linked glycosylation and the 

abrogation of non-vector-borne transmission of TMUV in 

duck [54]. 
 
Pathogenesis and immune response 
 
The pathogenesis of MBEF proceeds in three major phases: 

(1) local infection and primary viremia, (2) virus spread 

and peripheral replication and (3) neuro-invasion (infection 

of the central nervous system (CNS) and neurovirulence 

(damage to neuronal cells) [109] (Fig. 3). 

 

After experimental inoculation, primary viremia usually 

develops in less than 24 h [91, 104, 110, 111]. A viraemia 

level of 10
5
p.f.u. ml 

1
 is necessary to infect mosquitoes with 

WNV after a blood meal [112]. The dose and number of 

feeding mosquitoes directly affect the speed at which WNV 

spreads systemically [113]. Development of the disease results 

from the invasion of major organs such as the liver, spleen, 

kidney, heart, and CNS, in which the virus induces autophagy, 

apoptosis and the production of cytokines and chemokines, 

which promote leukocyte invasion, 

 

 

inflammation and necrosis [1]. Typical neurological signs 

appear at this stage, such as ataxia and paralysis [48, 87, 93, 

114, 115] and non-specific signs, such as lethargy, ruffled 

feathers and weight loss [8, 69, 90, 91, 116]. Lesions are like-

wise developed and include necrotizing hepatitis, splenitis, 

myocardial degeneration and/or myocarditis, necrosis of 

striated muscles, non-suppurative encephalitis and neuronal 

necrosis [29, 48, 69, 74, 108, 110]. Haematogenous and/or 

neuronal dissemination of WNV and BAGV to the eye has 

been described in birds showing blindness [117, 118]. Severe 

egg drop (up to 90 %) and mortality (up to 30 %) in laying 

turkeys infected with ITV, and in layer chicken, ducks and 

geese infected with TMUV, have been reported [49, 71, 73]. 

The corresponding lesions are oophoritis, ovarian atrophy, 

hemorrhage and necrosis [9, 49, 71]. Although egg produc-

tion can recover within 3–4 weeks after epizootic TMUV 

infection, both fertility and hatchability rates of eggs from 

breeding ducks were permanently lowered [119]. Reduced 

sperm production, spermatocyte swelling, and vacuolar 

degeneration occurred in the testes of infected male ducks, 

with focal lymphocytic infiltration in the later stages [111]. In 

ducklings, TMUV infection caused hyperglycemia (due to 

acute pancreatitis), neurological disease [47] and multi-organ 

failure leading to death [91]. 
 
In a manner similar to humans and horses, birds utilize the 2¢ 

5¢-oligoadenylate synthase pathway in the innate immune 

response against these flaviviruses [120]. This pathway 

ultimately induces apoptosis with other components of the 

innate immune response, including IFNs, inflammatory 

cytokines, complement factors, natural killer cells (NK) and 

autophagy to inhibit viral replication [1, 76]. Neutralizing 

antibodies, which primarily target the viral E glycoprotein, 

and antibodies against NS proteins constitute the major 

humoral immune response to flavivirus infection  
Seroconversion, as well as the persistence of antibodies, is 

variable among birds. Importantly, maternal antibodies in 

young chicks can serve for rapid protection from WNV and 

TMUV infections [120, 122]. In addition to effective host 

humoral immunity, cellular immunity is triggered to 

control viral infection and dissemination [1]. Flaviviruses 

have developed numerous strategies to avoid the host 

immune system, including the limitation of initial steps of 

PAMP detection, type I IFN signaling by blocking the host 

gene expression and inhibition of the complement system 

and NK cells [19]. 
 
Once infected with WNV, most susceptible birds remain 

asymptomatic because the immune response eliminates the 

virus from the organism within two or three weeks [98]. In 

some cases, infection with WNV can become persistent 

and viral RNA may be detected for several months after 

infection, as has been demonstrated for house finch 

(Haemorhous mexicanus), HOSP, western scrub-jay 

(Aphelocoma californica), kea (Nestor notabilis) and rock 

pigeon (Columba livia) [123–125]. However, the question 

of whether 
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persistently infected birds could trigger a mosquito–bird 
transmission cycle remains unresolved [123]. 
 
Prevention and control 
 
To monitor MBEF circulation, several approaches have 
been used in many European countries, including sero-sur-
veillance in birds and viral identification in dead birds and 
in pooled mosquito samples [126, 127]. 
 
Given the lack of specific treatment for MBEF infection in 

birds and mammals, preventive measures should be applied to 

decrease the risk of infection. Mosquito control and indoor 

housing of captive animals is suggested to prevent mosquito 

bites [128]. The use of pyrethroid-based insecticides and the 

elimination of mosquito habitats where these insects can lay 

eggs should be implemented in affected areas  
Widespread ultra-low-volume application of insecticides 

has been successfully applied to reduce human WNV 

infection [129, 130], but this alternative is challenging in 
wild territories in regard to free-ranging birds. Lowering 

viremia in competent avian hosts is another solution to pre-
vent infection following mosquito bite [131] and, thus, to 

prevent human infections with the two major MBEF mem-

bers, WNV and USUV. Biosecurity measures and the 
development of vaccines are crucial in preventing major 

economic losses in the poultry industry due to ITV and 

TMUV infections. While no vaccine against USUV or 
BAGAV has been tested on birds to date, many others have 

been developed against WNV, ITV, and TMUV and tested 
in these animals. 
 
Vaccines against WNV 
 
Inactivated vaccines  
The first licensed WNV vaccine for veterinary use was 

dedicated to the horse. A formalin-inactivated WNV 

lineage 1 vaccine was developed in 2003 by Fort Dodge 
Animal Health and commercialized in the USA under the 

trade name West Nile-Innovator (in Europe: Equip WNV 
Zoetis, previously Duvaxyn WNV). This vaccine elicited 

variable antibody responses across bird species and the 

majority of vaccine trials were not conclusive, as they 
lacked a virus challenge test (Appendix 6). A three-

injection scheme with this vaccine was, however, suggested 

for falcons as it was able to provide protection from lethal 
testing, although minor clinical signs and lesions, as well as 

viremia and virus shedding, occurred following the 
vaccination/challenge test [132]. 
 
Subunit/DNA vaccines  
Subunit vaccines based on WNV TE proteins were trialed 
in domestic goose, red-legged partridge and Hawaiian 
goose ēnē (Branta sandvicensis), but protection was 
assessed only in partridge, which remained fully protected 
after a challenge test (Appendix 7A). 
 
Two DNA vaccines encoding the TE protein of WNV line-
ages 1 and 2 without prM caused local inflammation at the 
site of injection and did not prevent death in all vaccinated 
falcons after lethal testing [133]. DNA vaccines expressing 

 

 

WNV prM and E proteins were trialed in birds, including the 

pCBWN vaccine and the Fort Dodge WN-Innovator DNA 

equine vaccine (Overland Park, KS) (Appendix 7B). The 

former was shown to fully protect fish crow (Corvus 

ossifragus) via the intramuscular route [134]. In contrast, the 

latter failed to induce an antibody response in island scrub-

jays (Aphelocoma insularis) [135] and did not prevent mor-

tality, lesions, and high viremia levels after a challenge test in 

western scrub-jay (Aphelocoma californica) [133]. For large-

scale immunization, oral administration of pCBWN was 

trialed in AMCR [136] and fish crow [134] but failed to 

provide protection in either species. 
 
Chimeric vaccines 
 
Using live attenuated strains of other viruses as a genetic 

backbone, multiple versions of chimeric vaccines against 

WNV have been designed and explored for immunogenicity 

in birds (Appendix 7C). A recombinant live canarypox 

ALVAC viral vector expressing WNV prM and E proteins, 

RecombiTEK, Merial-Sanofi Aventis, was licensed in 2004 

for veterinary use [137]. Vaccine safety was not satisfactory as 

the vaccine induced local inflammatory and necrotic lesions at 

the injection site. Besides, it failed to induce an immune 

response in western scrub-jay [138]. However, three injections 

succeeded in reducing mortality after the virus challenge in 

falcon [132]. A recombinant adenovirus vaccine, expressing 

WNV E or NS3 proteins, induced a specific antibody response 

in Japanese quail (Coturnix japonica) but the protection level 

was not assessed [139]. 
 
Three chimeric vaccine candidates, currently under trial for 

humans, the use were tested in birds. The first was 

ChimeriVax-WN, where WNV prM and E protein-coding 

genes were incorporated into the genome of the 17D non-

structural genes of the yellow fever virus. In the second, 

chimeric WN/ DEN4, prM and E protein-coding genes of 

dengue virus type 4 were replaced with the corresponding 

genes from WNV while in the third, WN/DEN4-3’D30, a 30-

nucleotide deletion in the non-coding region of the DEN4 

component of chimeric WN/DEN4 was introduced. These 

vaccines failed to prevent clinical symptoms, viremia or death 

after the challenge test as they could not be replicated in these 

avian hosts, probably due to the fact that the backbone viruses 

were not adapted to these hosts [140, 141]. 
 
Heterologous vaccines 
 
To assess the advantage of flavivirus cross-reactivity for 
heterologous protection, an attenuated vaccine against ITV 
was tried in goose, and resulted in 39–72 % protection 
against WNV challenge in field-vaccinated birds [142]. 

 

Vaccines against ITV and TMUV 
 
Since the emergence of ITV in Israel, commercial attenuated 

virus vaccines (Biovac Biological Laboratories, Akiva, Israel 

and Phibro, Beth Shemesh, Israel) based on virus strain JQ4E4 

[143, 144] have been used in that country as a routine control 

strategy for the disease. Minor clinical signs have often been 

observed after vaccination [143]. 
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To date, attenuated and killed vaccines have been commer-
cialized to protect ducklings and layer ducks against 
TMUV, including Duck Tembusu Virus Vaccine Live 
(FX2010-180P strain) (ZHENGYE, Jilin, China), 
attenuated by serial passage in chicken embryo fibroblasts 
[107], and an inactivated TMUV vaccine (HB strain, 
Rinpu, Tianjin, China) (Appendix 8). 
 
Attenuated Salmonella typhimurium SL7207 (pVAX-C) has 

been used as a vehicle in oral delivery of TMUV prM and E 

antigens to ducks [18]. Alternatively, another study used this 

attenuated bacteria to immunize ducks with TMUV C protein 

to induce a systemic immune response [145]. These two 

vaccines showed 100 % survival among duck, with minor 

clinical signs after lethal testing [18, 145]. 
 
To develop multivalent vaccines, recombinant avian viruses, 

such as Duck enteritis virus and Newcastle disease viruses, 

were used as vectors for prM/E [146–148] and succeeded in 

fully protecting duck following a challenge test. 
 
Conclusions 
 
Birds play a key role in the life cycle of many flaviviruses 
as amplifying hosts, with an important contribution to their 
transmission and spread either locally or to new territories. 
MBEF are highly pathogenic for certain avian species. Fur-
thermore, WNV, and USUV occasionally cause severe neu-
rological disease in humans and, thus, constitute a concern 
for both veterinary and public health. 
 
Eradication of these pathogens is virtually impossible because 

the viruses are maintained in a complex life cycle involving 

several animal reservoirs, some of which remain unknown. 

Preventive measures remain the only solution to help reduce 

and control their circulation, but such measures are hampered 

by the unresolved transmission routes of these viruses, the 

limited cost-effectiveness of vaccination and the 

underestimation of seasonal infection and mortality rates. In 

fact, MBEF infections often occur unnoticed, because many 

birds develop an asymptomatic form of the disease or die 

without collection by competent authorities. Formulating 

cheap and completely protective single-dose or oral vaccines 

would be the golden goal for simple and large-scale 

immunization of domestic and wild birds. More studies need 

to be carried out to evaluate the actual prevalence and 

incidence of these MBEF, to study their pathogenesis and to 

fully elucidate their life cycles and transmission routes, as 

preliminary steps towards the preservation of wild bird 

species, the reduction of the impact on domestic birds and the 

prevention of human infections.  
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2. Epidemiology 

2.1 Geographical distribution 

USUV was isolated for the first time in Ndumu, South Africa, in 1959, from a mosquito 

(Culex neavei). The virus was named according to the river near which the vector had been captured 

(Woodall, 1964). Over the next four decades, its circulation has been identified in several African 

countries: Senegal, Central African Republic, Nigeria, Uganda, Burkina Faso, Ivory Coast, Tunisia, 

Morocco and Algeria (Durand et al., 2016; Hassine et al., 2014; Medrouh et al., 2020; Nikolay et al., 

2011). In these countries, the infected hosts were mainly Culex mosquitoes, wild birds and, 

exceptionally, humans (Nikolay et al., 2011). Genetic analyzes of USUV strains suggested that the 

virus has probably emerged more than 500 years ago in Africa (Engel et al., 2016). 

Until 2001, USUV was neglected and considered exclusively African, non-pathogenic for 

domestic animals and exceptionally zoonotic. In 2001, USUV was isolated from blackbirds (Turdus 

merula) found dead during an epizootic which affected the resident passerines and Strigiformes in 

Austria (Weissenböck et al., 2003). Retrospective analyses have shown that the high mortality of 

blackbirds in Tuscany in 1996 was also due to this virus (Weissenböck et al., 2013). In the following 

years, USUV was detected in various European countries in dead birds and/or mosquitoes: in Hungary 

(2005) (Bakonyi et al., 2007), Spain (2006) (Busquets et al., 2008), Switzerland (2006) (Steinmetz et 

al., 2011), Germany (2000) (Linke et al., 2007), Belgium (2012) (Garigliany et al., 2014), France 

(2015) (Lecollinet et al., 2016), The Netherlands (2016) (Rĳks et al., 2016) and Slovakia (2018) 

(Vichov and Zubr, 2019). Infection with this virus has also been demonstrated for the first time by 

serology in avian hosts in the Czech Republic (2005) (Hubálek et al., 2008a), England (2001-2002) 

(Buckley et al., 2003), Poland (2006) (Hubálek et al., 2008b), Serbia (2012) (Petrović et al., 2013) 

and Greece (2010) (Chaintoutis et al., 2014). In 2009, the virus was associated for the first time in 

Europe with neurological disorders in two immunocompromised people, who received blood 

transfusions and it was isolated from the blood of one of them, in Italy (Cavrini et al., 2009; Pecorari 

et al., 2009). Between 2009 and 2017, a total of 28 acute USUV infections were reported in humans 

(Clé et al., 2018), with serious neurological disorders such as meningoencephalitis (Roesch et al., 

2019) and facial paralysis (Simonin et al., 2018). In 2018, a record number of infected people in 

Austria was registred (Aberle et al., 2018) and three patients with meningoencephalitis in Croatia 

were diagnosed positive for USUV by RT-PCR and sequencing (Vilibic-Cavlek et al., 2019). During 

the same year, the first case of meningitis associated with USUV in Hungary was identified by RT-

PCR in an immunocompetent individual (Nagy et al., 2019). Serological surveys indicate that USUV 

is circulating at significant levels in humans in Europe, although it is rarely associated with clinical 

diseases. More than 80 cases of subclinical infections have been described in blood donors or healthy 

patients in Italy, Serbia, the Netherlands, and Germany during the surveillance of WNV circulation 
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(Allering et al., 2012; Cvjetković et al., 2016; Gaibani et al., 2012; Grottola et al., 2016; Percivalle et 

al., 2020, 2017a; Pierro et al., 2013; Zaaijer et al., 2019). Seroprevalence studies have even shown 

that humans are more exposed to USUV than to WNV in northern Italy, where both viruses co-

circulate (Grottola et al., 2017; Percivalle et al., 2017b). In addition, the co-infection with WNV and 

USUV is possible and was reported in 2013 in Croatia in 3 patients with neurological disease (Kaic et 

al., 2014). 

Finally, the virus has spread to the Middle East, with the first detection of USUV genomic 

RNA in Israel in Culex mosquitoes (Cx pipiens and Cx perexigus) and Aedes albopictus probably by 

migratory birds (Mannasse et al., 2017) (Figure 1). 

2.2 Phylogeny 

USUV virus belongs to the family Flaviviridae, genus Flavivirus, JEV serocomplex, 

transmitted by mosquitoes. The genetic variability of USUV has been explored through phylogenetic 

studies conducted on the complete viral sequences, as well as on genes encoding for the envelope (E) 

and non-structural protein 5 (NS5) (Engel et al. , 2016). These analyses grouped the USUV strains 

into 8 distinct lineages: Africa 1, 2 and 3 and Europe 1, 2, 3, 4 and 5 (Figure 2). 

According to the phylogenetic studies, USUV (Lineage Europe 1) was introduced in Western 

Europe (Spain) by birds from Africa (Senegal) via the East Atlantic migratory corridor between 1950-

1960 (Engel et al., 2016). An introduction event in Central Europe would have occurred in the 1980s 

following a "Black/Mediterranean seas" migratory corridor (Engel et al., 2016) (Figure 1). The recent 

evidence was given by Cadar et al. (2015) of a new USUV lineage in Germany (the Usutu-BONN 

strain), more similar to the African than European strains, which supports the hypothesis of 

continuous sporadic introductions from Africa (Cadar et al., 2015). In addition, the circulation of 

phylogenetically identical or closely-related viral strains in birds and mosquitoes in some countries 

such as Austria, Germany, and Italy suggests the presence of a local cycle allowing the virus to be 

maintained during the winter and to restart an infectious cycle in the following year (Ashraf et al., 

2015). 
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Figure 1: Geographical distribution of USUV, according to Roesch et al., 2019. Countries, where the 

virus has been detected in wild animals (birds, mosquitoes, horses, etc.), are indicated in green; 

countries, where the virus has been detected in healthy blood donors, are shown in blue, and countries 

where the virus has caused symptomatic infections are indicated in orange. The arrows represent the 

presumed bird migration events that led to the introduction of USUV in Europe. 
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Figure 2: USUV maximum likelihood phylogenetic tree based on the analysis of the partial gene 

encoding the NS5 protein of 158 circulating strains, according to Roesch et al., 2019. Strains isolated 

from birds, mosquitoes and mammals are indicated in green, blue and red, respectively. The African 

and European variants are shaded in pink and grey, respectively. The bar at the bottom of the tree 

indicates the evolutionary distance, in the number of base substitutions per site. Broken branches 

(indicated by oblique lines) have been shortened by 50% for a better graphical representation. 

2.3 Transmission cycle 

USUV is maintained by an enzootic cycle between passerines, mainly blackbirds (Turdus 

merula) and Strigiformes, such as the Great Grey Owl (Strix nebulosa), as amplifying hosts and 

ornithophilic mosquitoes as vectors. Humans and other mammals are considered accidental hosts (Clé 

et al., 2019). 
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The transmission dynamics of arboviruses are generally influenced by biological and 

environmental factors, such as the presence and abundance of vector and reservoir populations, 

humidity, temperature, host immunity, etc. (Beck et al., 2013). In this context, USUV shares with 

WNV several characteristics: both viruses are mainly transmitted by mosquitoes of the Culex genus, 

the migratory birds serve as the main host amplifier and humans and other mammals constitute 

accidental hosts (Table 2). It is therefore not surprising that in Europe, both viruses co-circulate in at 

least 10 countries and in 34 bird species (Nikolay, 2015), as well as in horses (Barbic et al., 2013; 

Durand et al., 2016; Hassine et al., 2014). In addition, 9 avian cases (Buckley et al., 2003; Tamba et 

al., 2011) and 3 human cases (Aberle et al., 2018; Kaic et al., 2014) showed positive serology for both 

viruses to date. 

Table 2. Comparison of the main features of WNV and USUV. 

 West Nile Virus Usutu Virus 

Geographical distribution Worldwide 
Africa, Europe and the 

Mmiddle Eeast 

Main transmission channel Mosquito bite 

Alternative transmission 

channels 

In humans: organ 

transplantation / transfusion / 

transplacental 

In birds: oral / contact (under 

experimental conditions) 

? 

Main vector Culex spp. 

Main amplifier host Birds 

Spectrum of virulence Birds (Corvidae and Anatidae) - 

horses - Man 

Birds (Turtidae and Strigidae) -

Man 

Clinical signs in humans 

Often an asymptomatic infection 

Febrile Syndrome 

Neurological complications: encephalitis, meningoencephalitis 

More serious signs, and deaths in the case of WNV infection 

Clinical signs in birds 

Often an asymptomatic infection 

Neurological signs: encephalitis, meningoencephalitis 

Death 
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2.3.1 Vectors 

To date, USUV has been detected in mosquitoes belonging to 7 genera (Aedes, Anopheles, 

Coquillettidia, Culex, Culiseta, Mansonia and Ochlerotatus) (Nikolay, 2015). However, it seems to be 

most often associated with Culex pipiens (Busquets et al., 2008; Eiden et al., 2018; Kemenesi et al., 

2018; Mancini et al., 2017). USUV has never been detected in ticks, even in Italy, where the virus 

circulation is important (Llopis et al., 2016; Mancini et al., 2013). 

2.3.2 Reservoirs 

The main natural reservoir hosts of USUV are birds. The presence of USUV was 

demonstrated in 98 bird species belonging to 16 orders and 36 families (Appendix 1, Table 1). 

However, the natural virulence spectrum of the virus remains poorly studied and seems rather limited, 

with a marked virulence in a small number of species belonging to the order of Passeriformes 

(example: blackbird, Turdus merula) and Strigiformes (example: Great Grey Owl, Strix nebulosa). 

Indeed, mass mortalities induced by this virus in Austria (Chvala et al., 2004), Germany (Becker et 

al., 2012), France (Lecollinet et al., 2016) and The Netherlands (Rĳks et al., 2016) have had dramatic 

consequences for the populations of these species. In Germany, for example, a 15.7% drop in the 

blackbird population was attributed to USUV five years after its emergence (Lühken et al., 2017). 

European migratory species, such as the kestrel (Falco tinnunculus) and the lesser whitethroat 

(Sylvia curruca), are thought to be responsible for the introduction of USUV in Europe (Engel et al., 

2016), while resident species, such as blackbird, magpie (Pica pica) and house sparrow (Passer 

domesticus) are thought to be responsible for the local amplification of the virus (Nikolay, 2015). 

Following viral spillover and outbreaks, a decreasing phase in fatalities may occur due to the rise of 

herd immunity in the reservoir birds (Rizzoli et al., 2015). The best example of such a phenomenon 

since the introduction of USUV in Europe is the Swiss USUV-outbreak during 2001-2002 and then 

the decrease in USUV-associated deaths from 2003-2005 in the area, although USUV detection 

persisted in bird tissues (Meister et al., 2008). Unfortunately, the knowledge on herd immunity to 

USUV for many European bird species is still lacking. It is dependent on host longevity and the rate of 

renewal of the host population (Rizzoli et al., 2015). Monitoring the circulation of USUV in migratory 

and resident birds would provide a better understanding of the introduction patterns of viral strains, 

the genetic evolution of the virus within the local reservoirs and the development of flock immunity. 

2.3.3 Accidental hosts 

Besides humans (Roesch et al., 2019), USUV has been detected in many mammalian species 

considered as dead-end hosts. Serological conversions have been reported in equids in Tunisia 
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(Hassine et al., 2014), Morocco (Durand et al., 2016), Spain (Vanhomwegen et al., 2017), Serbia 

(Lupulovic et al., 2011), Poland (Bażanów et al., 2018) and Croatia (Barbic et al., 2013). In 2012, 

military dogs in Morocco presented specific anti-USUV antibodies (Durand et al., 2016). Neutralizing 

antibodies specific to USUV were also detected in four wild boars (Sus scrofa) hunted in Serbia in 

2011-2012 (Escribano-Romero et al., 2015). A retrospective serological survey carried out between 

2003 and 2014 in Spain in wild ruminants detected USUV seroconversion in red deer (Cervus 

elaphus) (García-bocanegra et al., 2016). Likewise, tree squirrels (Sciurus vulgaris) in Italy (Romeo et 

al., 2018) presented neutralizing antibodies specific for USUV. The virus was isolated from rodents 

(Mastomys natalensis, Crocidura spp. and Rattus rattus) in Senegal between 2012 and 2013 (Diagne 

et al., 2019) and from Chiroptera in East Africa (Rousettus aegyptiacus) (Simpson et al., 1968) and 

Germany (Cadar et al., 2014), questioning the potential role of these hosts as viral reservoirs and their 

role in the transmission of this arbovirus (Fagre and Kading, 2019). Recently, other mammals, such as 

the Malayan tapir (Tapirus indicus), chimpanzee (Pan troglodytes), giant panda (Ailuropoda 

melanoleuca), common eland (Taurotragus oryx) and white rhinoceros (Ceratotherium simum) 

(Caballero-Gómez et al., 2020) as well as reptiles (green lizards (Lacerta viridis) (Csank et al., 2019)) 

presented neutralizing antibodies specific for USUV, further enlarging the host spectrum of this virus. 

3. Genomic organization and viral proteins 

3.1 General genomic organization 

The flaviviruses share a similar viral structure and genomic organization (Slon Campos et al., 

2018). They are enveloped viruses, 40-65 nm in size, with an icosahedral symmetric nucleocapsid and 

a monocistronic single-stranded RNA viral genome (coding for a single polyprotein) of positive 

polarity and of approximately 11 kb (Simmonds et al., 2017). This viral RNA (vRNA) is composed of 

a cap at the 5 'end, followed by a short non-coding region UTR (Untranslated region) in 5’, then a 

single open-reading-frame and finally a 3’ UTR (about 400 to 700 nucleotides) lacking a poly-

adenylated sequence (Roby et al., 2014) (Figure 3, A). The vRNA has high structural plasticity 

because it must undergo conformational changes involved in the various stages of the virus life cycle. 

For example, for efficient replication, it adopts a pan-handle structure, circularized through long-range 

RNA-RNA interactions between the 5' and 3' ends (Figure 3, B). One of the main cyclization elements 

involved in this process is the "conserved sequences" (CS). They consist of eight (or more) 

nucleotides located in the 5' region of the coding sequence for the capsid and in the conserved domain 

of the 3' UTR (Mazeaud et al., 2018). The long-distance interaction of AUG regions at 5' and 3' 

(DAR: Downstream AUG region) is also an important determinant of the genome circularization. 
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Figure 3: Schematic representation of the flavivirus genomic RNA (Mazeaud et al., 2018) 

(A) Detailed secondary structures of the 5’ UTR, the coding region for the capsid protein and the 

3' UTR. The different regions involved in local pseudoknots and long-range RNA-RNA interactions 

are indicated. (B) Predicted structure of the vRNA in its circularized conformation. The coding 

sequence (except the 5 'coding region of the capsid) is represented by a dashed line.  

SLA: Stem-loop A; SLB: Stem-loop A; 5’UAR: 5’ upstream AUG regions; ORF: Open Reading 

frame; CS: Cyclization sequence; sHP: Small hairpin; cHP: capsid-coding region hairpin; TL: 

Terminal loop; DAR: Downstream AUG region; UFS: 5’ UAR-flanking stem; CCR1: Capsid- coding 

region 1; dCS: Downstream Cyclization sequence; DB: Dumbbells structures; 5’ψ et 3’ψ: Patterns of 

pseudoknots 

3.2 Viral proteins 

Viral proteins are the product of the polyprotein cleavage, during or after translation, by viral 

and cellular proteases (Simmonds et al., 2017). These viral proteins are divided into three structural 

proteins, which form the virion, and seven nonstructural proteins (Roby et al., 2015). 
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3.2.1 Structural proteins 

The E protein 

The E protein, of a 54-kDa-molecular weight, is a highly glycosylated protein composed of 

500 amino acids (aa) (PalanISAmy and Lennerstrand, 2017). It is composed of a soluble portion and a 

membrane anchor. The soluble portion is divided into three structural domains (DI, DII, and DIII) 

which are separated by flexible joints and organized as antiparallel homodimers in mature virions 

(Lindenbach et al., 2013) (Figure 4). DI is the central domain, allowing the articulation of the DII and 

DIII. DII has an elongated finger shape and contains a hydrophobic fusion peptide, which is involved 

in the fusion of the viral E protein with the endosomal membranes; this domain, highly conserved in 

all flaviviruses, is located between the aa 70 and 115 of the E protein (Seligman and Bucher, 2003). 

Upon acidification of the endocytotic vesicle, the E protein homodimers dissociate into monomers and 

then rearrange into trimers with the DII fusion peptides exposed to the membrane, with which the viral 

particle fuses (Seligman and Bucher, 2003). DIII has an immunoglobulin-like morphology and is 

involved in cell-receptor recognition (Chambers et al., 1990; Pierson and Diamond, 2009).  

Three antigenic domains were identified on the E protein and were then correlated to the 

structural domains DI, DII and DIII (Pierson and Diamond, 2009). The epitopes which are recognized 

by the cross-reactive antibodies are localized in the DII (in particular within the fusion loop). The 

majority of neutralizing antibodies produced in the infected hosts are directed against DIII (Beasley 

and Barrett, 2002; Pierson and Diamond, 2009; Sánchez et al., 2005; Seligman and Bucher, 2003). 

The Membrane and precursor-membrane proteins 

The membrane (M) glycoprotein, with an 8-kDa-molecular weight, is anchored at its 

C-terminal portion in the lipidic envelope of mature virions (Roby et al., 2015) (Figure 4). It derives 

from a precursor, prM, of 19-21 kD. The N-terminal portion of the prM contains one to three 

glycosylation sites and six conserved cysteine residues that form disulfide bridges, cleaved during 

replication (Lindenbach et al., 2013). This cleavage is processed by cellular furin in the Trans-Golgi 

apparatus at an acidic pH (Lindenbach et al., 2013, Roby et al., 2015). 

The prM protein protects the E protein from a premature fusion during the exocytosis of viral 

particles and participates in the folding and assembly of viral particles (Lindenbach et al., 2013). 

Incomplete cleavage of the prM affects the infectivity, conformation, and antigenicity of the virus 

(Heinz and Allison, 2000).  
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Figure 4: Schematic representation of the flaviviral particle and the E protein (Lindenbach et al., 

2013; Slon Campos et al., 2018) 

A) Left: immature virion, covered by prM-E complexes of 60 heterodimers; right: mature, smooth 

virion coated with 90 homodimers of the E protein; sE: the soluble form of the E protein without the 

membrane anchor and the adjacent cytoplasmic sequence. 

B) Top view of the E protein in its homodimeric form, present on the surface of the mature virion. It is 

organized into three domains: DI (red), DII (yellow) and DIII (blue) and contains the fusion peptide 

(green). 

C) Representation of the trimeric form of the E protein during the endosome fusion step. 
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The Capsid protein  

The capsid protein C has a molecular weight of 14 kDa. Its C terminal domain serves as a 

signal peptide for the endoplasmic reticulum (ER)-translocation of the M protein, which allows the 

assembly of the nucleocapsid and its incorporation into new virions (Roby et al., 2015). Like the M 

protein, intracellular expression of the C protein is associated with the activation of apoptosis (Catteau 

et al., 2003; Yang et al., 2002). 

3.2.2 Non-structural proteins 

Non-structural protein 1 

Non-structural protein 1 (NS1) is a glycoprotein of 46 to 55 kDa (depending on its 

glycosylation state). It is cleaved from the E protein by a cellular signalase and from the NS2A by an 

unknown cellular protease (Roby et al., 2015). It is a highly conserved protein in the genus Flavivirus 

and constitutes the only secreted NS protein in mammalian cells infected with this group of viruses 

(Lindenbach et al., 2013). This protein can have three different forms. In infected mammalian cells, it 

is synthesized as a soluble monomer. It dimerizes after the post-translational modification in the ER 

lumen. Then, it can be transported to the cell-surface and accumulates extracellularly as hexamers 

(Avirutnan et al., 2010). The intracellular form plays a key role in viral replication, interacting with 

NS4A (Melian et al., 2010), while the membrane and secreted forms regulate the immune response 

(Lindenbach et al., 2013). A -1 ribosomal frameshift at a conserved heptanucleotide (YCCUUUU) at 

the beginning of the NS2A-coding gene results in the production of the prolonged NS1' protein, 

specific of the JEV serogroup (Melian et al., 2010). The NS1’ protein facilitates viral replication and 

participates in the neuroinvasion of this group (Melian et al., 2010; Takamatsu et al., 2014). 

Since the NS1 protein is not a component of the virion, the antibodies produced against it are 

not neutralizing (Pierson and Diamond, 2009). The NS1 is rather implicated in the immune response 

in murine models, controlling the viral spread by complement-mediated lysis of the infected cells. On 

the other hand, the NS1 of DENV can contribute to viral pathogenesis by increasing the permeability 

of the capillaries (Cedillo-Barrón et al., 2018) and inducing a strong inflammatory response 

(Modhiran et al., 2015).  

Non-structural protein 2 

The non-structural protein 2 (NS2) is cleaved to NS2A and NS2B by the viral serine protease 

NS3. The 22-kDa-NS2A hydrophobic protein is involved in the virion assembly and interacts with the 

NS3 and NS5 proteins as well as the 3' UTR of the vRNA. The NS2B protein, with a 14-kDa 
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molecular weight, is a cofactor of the NS3 protein protease domain (Lindenbach et al., 2013). This 

protein induces a cell-mediated immune response (Co et al., 2002). 

Non-structural protein 3 

The non-structural protein 3 (NS3) is a large (70 kDa) and multifunctional protein: at the 

N-terminus, it acts as a serine protease that cleaves the NS2A/B, NS2B/NS3, NS3/NS4A, and 

NS4B/NS5; at the C-terminus, it has an RNA helicase activity, allowing the genome to unwind during 

viral replication, and an RNA triphosphatase activity to dephosphorylate the 5' end of the genome 

before the addition of a cap (Lindenbach et al., 2013). Finally, the NS3 protein stimulates the humoral 

response and apoptosis (Co et al., 2002; Prikhod et al., 2001). 

Non-structural protein 4 

The non-structural protein 4 (NS4) is cleaved into the NS4A (16 kDa) and NS4B (27 kDa) 

proteins by a cell protease (Lindenbach et al., 2013). This cleavage releases the 2K peptide, which 

serves as a signal sequence for the NS4B protein translocation into the ER lumen (Lin et al., 1993). 

The NS4A protein is involved in the replication of the vRNA via its interaction with the NS1, while 

the NS4B modulates the host immune response by suppressing the interferon (IFN) α/β signaling 

pathway (Apte-Sengupta et al., 2014). 

Non-structural protein 5 

The non-structural protein (NS5) is a highly conserved protein among the flaviviruses and is 

also a multifunctional protein: at the N-terminus, it has a methyltransferase activity necessary for the 

RNA capping; at the C-terminus, it has an RNA-dependent-RNA-polymerase activity for copying the 

genomic RNA (Albentosa-González et al., 2019; Lindenbach et al., 2013). The NS5 is an antagonist 

of the IFN cascade and plays a key role in the immune evasion of flaviviruses (Shilong Chen et al., 

2017; Ye et al., 2013). 

In addition to their roles in the viral replicative cycle, flaviviral proteins are involved in 

complex mechanisms to evade host immune responses (see section 4.2.) and efficiently establish 

infection in the host. Flavivirus replication and pathogenicity are also controlled by both 5’ and 3’ 

non-coding regions. 

3.3 Non-coding regions 

The 5' and 3' UTR form secondary hairpin structures necessary for genome replication and 

translation (Simmonds et al., 2017).  
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3.3.1 Non-coding region in 5’ (5’UTR) 

The 5' UTR region is short, counting about 100 nucleotides upstream of the capsid gene. This 

region contains an m7GpppAmp’ cap and two conserved loop regions (Stem-loop SLA and SLB) 

(Figure 3). In addition to its role in initiating the vRNA translation, the cap labels the vRNA as "self" 

which helps the virus escape the host immune response (Bradrick, 2017; Ng et al., 2017). The SLA 

and SLB sequences are respectively about 70 and 30 nucleotides in length; their removal abolishes the 

virus production (Cahour et al., 1995, Yu and Markoff, 2005). The SLA activates the NS5 polymerase 

to initiate RNA synthesis at the 3' end of the circular genome. The SLB is located near the start codon 

of the ORF and contains a UGR (Upstream AUG region) sequence necessary for the long-range RNA-

RNA interaction for genome replication (Mazeaud et al., 2018). 

3.3.2 Non-coding region in 3’ (3’UTR) 

The 3' UTR is composed of stem-loop structures (SL) and two DB structures, in which there 

are conserved sequences (CS) (Figure 3). The length of the 3' UTR varies according to the virus 

species and is involved in the cyclization of the vRNA and in the vRNA translation by interacting with 

the NS2A, NS3 and NS5 proteins (Lindenbach et al., 2013). 

The pseudoknots in this region confer resistance to a cellular exoribonuclease (XRN-1). The 

flaviviruses exploit this enzyme used by cells to destroy RNA in order to produce several short 

subgenomic RNAs called sfRNA (subgenomic flavivirus RNA) (Chapman et al., 2014). The role of 

these sfRNAs in the evasion from the immune system of vertebrate and invertebrate hosts and in the 

pathogenesis of flaviviral infection is currently actively explored (Chapman et al., 2014; Ng et al., 

2017; Roby et al., 2014).  

4. Pathogenesis of the flaviviral infection 

We explained in the previous section that flaviviruses share common features in terms of 

structure and replication cycle. However, they constitute a very diverse viral genus, infecting a wide 

range of vertebrate and arthropod hosts. The main human diseases caused by these viruses can be 

grouped into encephalitis and hemorrhagic diseases. So far, the molecular pathogenesis of flavivirus 

infection is still poorly understood. Factors such as the viral replication and the host immune response 

are under study and our current knowledge has greatly benefited from experimental models of 

infection. 
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4.1 4.1 Viral cycle 

The flavivirus replication cycle has the same characteristics, whether it takes place in a 

vertebrate or an arthropod cell. It is entirely cytoplasmic, lasts about 12 hours, and involves close 

interactions with the host cell membranes (Lindenbach et al., 2013) (Figure 5). 

4.1.1 Fixation of the virus to cellular receptors and internalization by endocytosis 

The flavivirus replication cycle begins with the attachment of the E glycoprotein to the 

membrane receptors, using the 16 aa conserved fusion peptide located in the DII region (Seligman, 

2008). The cellular receptors responsible for USUV adherence and internalization into the cell are still 

largely unknown. In one study addressing this question using human astrocytes, USUV replication was 

not modulated by blocking either the TAM receptor AXL or the C-type lectin receptor DC-SIGN, 

indicating that, in contrast to Zika virus (ZIKV), USUV does not use these specific cellular receptors for 

viral entry (Salinas et al., 2017). To date, among the well-characterized cell-receptors for flaviviruses 

in general, we can find the TAM (Receptor tyrosine kinases: TYRO3, AXL, and MER), 

phosphatidylserine receptors PtdSer, TIMs (T-cell immunoglobulin and mucin domain), integrins 

αvβ3, host pathogen-recognition receptors (PRRs) such as the TLR3 (Toll-like receptor 3) and the 

type C lectin receptors CLR (C-type lectin receptor), such as the DC-SIGN (Dendritic Cell-Specific 

Intercellular Adhesion Molecule-3-Grabbing Non-integrin), the Mannose Receptors (MR) and Heat 

Shock Family Proteins (HSP70 and HSP90) (Gratton et al., 2019; Laureti et al., 2018; Lindenbach et 

al., 2013; Meertens et al., 2013). 
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Figure 5: Replicative cycle of flaviviruses (Slon Campos et al., 2018). (1) The flaviviral particles are 

a mixture of fully mature, partially mature and totally immature structures, depending on the 

efficiency of the prM cleavage. The virus binds to the cell surface through the interaction with 

attachment factors. (2) This binding is followed by interactions with secondary receptors that mediate 

the virus internalization via endocytosis. (3) Alternatively, in the presence of non-neutralizing 

antibodies, (4) the opsonized viral particles can be internalized via Fcγreceptor-mediated endocytosis. 

(5) The acidification of the endosomes triggers the E trimerization and the fusion of the virus with the 

endosome membranes, (6) thus releasing the nucleocapsid into the cytosol (7). The viral genome is 

then translated and processed before replication begins. (8) Nucleocapsids are formed, (9) and the 

assembly is initiated by budding in the endoplasmic reticulum lumen. (10) Immature viruses follow 

the pathway of secretion, (11) in which the decrease in pH of the trans-Golgi network triggers the prM 

processing by the furin protease. (12) The produced virions are then secreted by the cell and the 

precursor is released from the viral surface (13). 

 

TIM: T-cell immunoglobulin and mucin domain; DC-SIGN: Dendritic Cell-Specific Intercellular 

adhesion molecule-3-Grabbing Non-integrin; HSP: heat shock protein; ssRNA: Single-stranded RNA; 

C: capsid protein; M: membrane protein; NS: non-structural. 

 

A single mutation (S139N) in the viral polyprotein (in the prM protein after the polyprotein 

cleavage) increases the ZIKV infectivity in human and murine neural progenitor cells (NPCs), 

suggesting that prM could also contribute to the entry of the virus into the cell (Yuan et al., 2017). The 

host immune system may also promote the entry of viruses by an antibody-dependent enhancement 

(ADE) mechanism (see section 4.2.2). 
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TIM and TAM receptors 

The TAM receptors are expressed on the surface of macrophages, dendritic cells (DCs), 

Sertoli cells, retinal pigment epithelial cells and neuronal cells, such as the Purkinje cells. The TIM 

receptors are mainly expressed by cells of the immune system, particularly T cells (Gratton et al., 

2019). TAM and TIM are normally involved in capturing apoptotic or autophagic cell debris 

expressing PtdSer. Flaviviruses use these receptors involved in "cleaning apoptotic debris" cells to 

enter their target cells (Gratton et al., 2019, Laureti et al., 2018, Meertens et al., 2013).  

The ZIKV can effectively infect fetal endothelial cells, unlike WNV and DENV, thus 

highlighting its unique tropism among flaviviruses. This difference has been attributed to the ability of 

this virus to effectively use one of the TAM receptors (AXL) to enter the endothelial cells of the 

human umbilical vein (Stéphanie et al., 2017). 

PRRs 

The TLR3s are essential to induce an inflammatory response and for the penetration of WNV 

into the brain (Cho and Diamond, 2012). TLR3 recognizes the vRNA of DENV in the infected cells 

and its overexpression stimulates viral replication (Mazeaud et al., 2018). 

The CLRs such as the DC-SIGN (CD209) and DC-SIGNR are strongly expressed on myeloid 

cells, including the monocytes, macrophages, and DC, and play a central role in the activation of the 

host's immune defenses (Mazzon et al., 2009). The viruses bind to the DC-SIGN(R) via mannose-rich 

glycans. Mosquito-derived viral particles have been shown to contain more mannose-glycans than 

virions produced by mammalian cells (Davis et al., 2006). This appears to be important for the 

infection of the macrophages or DCs in the skin as a result of an infected mosquito bite, and mosquito-

derived WNV was able to inhibit the double-strand RNA-induced cytokine production (Davis et al., 

2006). 

While the CLRs and TIMs are expressed by some central nervous system (CNS) cells, such as 

glial cells, they are not by neurons (Laureti et al., 2018). 

HSPs  

The HSPs are chaperone proteins. HSP70 and HSP90 proteins have been implicated in the 

entry as well as in the replication of DENV in the C6/36 mosquito cell line (Laureti et al., 2018). 
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After binding to cellular receptors, the internalization of viral particles occurs by endocytosis. 

Several pathways involved in flaviviruses endocytosis, including the clathrin-dependent endocytosis, 

are currently known (Lindenbach et al., 2013). 

4.1.2 Release of the viral RNA after decapsidation 

After virus internalization by endocytosis, the acidification of the endosome leads to the 

conformational modification of the E protein, exposure of the fusion peptide, the fusion of the 

envelope to the endosome, and release of the viral capsid as well as the vRNA in the cytoplasm.  

The vRNA is immediately translated to produce all viral proteins (including the RNA 

polymerase) which are absent in the infectious viral particle (Mazeaud et al., 2018). 

4.1.3 Translation and replication of the vRNA 

The released viral genome is translated, generating a unique polyprotein, which is cleaved by 

proteases from the host and the virus into ten proteins. Whereas the structural C, prM and E proteins 

assemble with the vRNA in new virions, the NS proteins (NS1, NS2A, NS2B, NS3, NS4A, NS4B, 

and NS5) are responsible for the replication of the vRNA (Chatel -Chaix et al., 2016). 

Production of viral proteins 

The flaviviral genome, like the cellular messenger RNAs (mRNAs), contains a cap at the 

5' end, which allows the initiation of its translation. The addition of this cap is mediated by the 

methyltransferase activity of the NS5 protein in combination with the NS3 nucleotide triphosphatase 

activity. In addition to the canonical initiation of translation, cap-independent translation mechanisms 

have also been described for DENV (Edgil et al., 2006) and ZIKV (Song et al., 2019). 

Unlike the cellular mRNA, the vRNA does not contain a poly-A tail, which is important for 

the stability and the translation’s initiation. Indeed, this poly-A tail is associated with the poly-A 

binding protein (PABP), which interacts with the eIF4F (Eukaryotic initiation factor) cap-binding 

complex and facilitates the circularization of the mRNA for translation (Mazeaud et al., 2018). In 

spite of the absence of this poly-A tail, the 3' end can interact with the PABP thanks to the two 

pseudoknot motifs 5' ψ and 3 'ψ, containing A-rich sequences framing the DB structures upstream of 

the 3’ SL (Mazeaud et al., 2018). The cHP is also important for initiating the translation from the 

correct start codon and for generating a functional C protein (Clyde et al., 2008). 

It is important to note that flaviviruses manipulate the expression of host cell genes involved 

in the translation to promote the production of their proteins and to generate a cell state favorable to 
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their replication. Indeed, they sequester the internal antigen-1 of T lymphocytes (TIA-1) and TIAR 

proteins, which induce the formation of stress granules, in the sites of their replication within the ER 

and interact with their 3'SL, in order to downregulate the translation of host mRNAs, but without 

impacting the cytosolic synthesis of their own proteins  (Mazzon et al., 2009; Roth et al., 2017; 

Vasudevan et al., 2018). 

Synthesis of new vRNA strands  

The vRNA synthesis is initiated by the NS5 protein binding to a secondary structure located at 

the 5' UTR region of the genome, the SLA (Figure 3). The circularization of the vRNA through long-

distance interactions between the 5' and 3' UTRs (Figure 3) results in a decrease in the affinity 

between the NS5 and the 5' UTR and promotes its transfer at the 3' UTR end, thus correctly 

positioning the polymerase for the synthesis of negative-strand RNA. The NS5 protein synthesizes a 

first negative-stranded intermediate RNA molecule, using the positive-stranded vRNA as a template. 

Subsequently, new copies of vRNA are produced from this negative-stranded RNA, with a higher 

proportion of positive-stranded vRNA products (Selisko et al., 2014).  

The high error rate of the NS5 RNA-dependent RNA-polymerase, the lack of a mutation-

repairing capacity (proof-reading) and the high rate of replication of RNA viruses have given rise to 

the concept of viral "quasispecies" (Ciota et al., 2007). This term refers to a population of genetically 

related viruses ("cloud or spectrum of mutants") distributed around a so-called "consensus" sequence, 

average for each position of the most common nucleotide in the population (Lauring et al., 2013). It is 

likely to reflect selective constraints resulting from the vector and vertebrate hosts’ infection, resulting 

in highly variable populations ensuring efficient phenotypes for replication and transmission between 

its hosts (Ciota et al., 2008, 2007; Coffey and Vignuzzi, 2011). 

The replication is coupled with the translation and assembly of structural proteins into neo-

particles. 

4.1.4 Assembly of virions on the surface of the ER 

The assembly begins when the C protein binds to the vRNA through electrostatic interactions 

(Byk and Gamarnik, 2017). Since the C protein molecules outnumber the vRNA copies, the vRNA 

packaging must be regulated to obtain an optimal intra-viral stoichiometry and infectivity (probably a 

copy of the genome per virion) (Byk and Gamarnik, 2017). The acquisition of the E is realized by the 

immature virion budding from the ER (Lindenbach et al., 2013). 
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4.1.5 Maturation of virions in the Golgi apparatus 

The virions’ maturation occurs during the transit through the acidic Golgi compartments, 

where the furin-like cellular proteases-mediated cleavage of the prM results in a smooth shape of the 

viral particle (Figure 4) (Lindenbach et al. al., 2013). Once cleaved, the pr remains bound to the E 

protein dimers, overlying the hydrophobic fusion loop and, thus, preventing premature fusion of the 

viral membrane with the host cell (Perera and Kuhn, 2008). 

The maturation is a critical process in the infectivity of the flavivirus and its cellular tropism. 

The absence of this step leads to an inappropriate reorganization of the E protein and the interaction 

between the prM and PtdSer, which contributes to a wider range of cells receptive to the viral 

infection (Gratton et al., 2019). The virion maturation also affects the humoral response against 

flaviviruses, giving rise to viral particles of heterogeneous structure (Slon Campos et al., 2018) 

(Figure 6). Maintaining incomplete cleavage is an immunological escape mechanism (see section 

1.4.2.2). 

 

 

Figure 6: Structural heterogeneity of flavivirus particles during the virus maturation (Slon Campos et 

al., 2018). 

a) A representation of the immature virion at a neutral pH after budding in the endoplasmic 

reticulum shows the "spicules" on the surface of prM3E3. The exposure to an acidic pH 

induces a conformational change to aprM2E2 flat dimeric form on the immature particle. On 

the right, mature M2E2 "smooth" dimeric structure after the cleavage by a furin protease and 

release of the particle into the extracellular compartment. 

b) A representation of a partially mature particle, showing a mixture of smooth and spiky 

surfaces resulting from an incomplete cleavage. Below, there are electron microscopic images 

of two WNV preparations. The red, blue and green arrows indicate fully mature, completely 

immature and partially mature particles, respectively. Scale bars, 500 Å. Domains I, II and III 

are represented in red, yellow and blue, respectively; the prM (pink) is also represented. 



Chapter 1    Introduction 

 

45 

4.1.6 Release of virus particles in the extracellular compartment 

The mature virions are released by exocytosis into the extracellular compartment. The pr part 

covering the E protein dissociates after the virus release from the infected cell, thereby producing an 

infectious virus (Perera and Kuhn, 2008). 

Subviral particles (SVP) are regularly released in flaviviral infections. These SVPs are 

assembled in the ER and undergo the same post-translational modifications as the infectious particles 

before being released by the host cell. They contain E and M proteins without nucleocapsid or vRNA 

(Mukhopadhyay et al., 2005). Coexpression of the prM and E glycoproteins induces the formation of 

virus-like particles commonly referred to as recombinant subviral particles (RSVPs). Despite their 

small diameter (about 30 nm), the RSVPs share multiple antigenic and immunogenic properties 

common to the mature full virions and have been used in vaccinology and serologic diagnosis 

(Merino-Ramos et al., 2014). 

4.1.7 Replication factories 

For an efficient flavivirus replicative cycle, the translation, synthesis, and packaging of the 

vRNAs must be tightly coordinated in time and space. To achieve this condition, flaviviruses, like the 

vast majority of the positive-stranded-RNA viruses, induce massive rearrangements of the ER 

membranes to create a replication-favorable microenvironment, called "replication factories" (Cortese 

et al., 2017; Paul and Bartenschlager, 2015). They consist of several substructures (Vesicle packets 

VP, convoluted membrane CM and virus bags VB). The VPs are spherical vesicles induced by the ER 

invaginations connected to each other or to the cytoplasm by pores of 10 nm in size (Cortese et al., 

2017; Miorin et al., 2013). The vRNA replication occurs in the VPs as they contain double-stranded 

RNA as well as several viral NS proteins essential for replication, such as the NS5, NS3, NS1, NS4A, 

and NS4B proteins (Miorin et al., 2013). The CMs, specifically enriched in NS2B/3, NS4A, and 

NS4B proteins, have been proposed as sites of protein synthesis and cleavage as well as modulators of 

the host innate immune response (Chatel-Chaix et al., 2016). The newly assembled virions accumulate 

in the BVs, which are RE-derived cisterns (Cortese et al., 2017). 

In order to create the replication factories, the flaviviruses rearrange the lipid metabolism of 

the host cells by promoting the synthesis and accumulation of specific cellular lipids (fatty acids, 

glycerophospholipids, sphingolipids, and cholesterol). The synthesis and extension of fatty acids are 

targets of antiviral treatment (Merino-ramos et al., 2016). 
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The formation of these replication complexes causes ER stress, which is considered as the 

primary mechanism by which flaviviruses trigger autophagy, to enhance their own replication and 

initiate the infection (Gratton et al., 2019). 

4.2 The vertebrate host antiviral response  

4.2.1 Innate immune response 

Factors of the innate immunity 

The innate response is the first defense mechanism against the invasion of a pathogen. It is 

initiated in the skin after inoculation of an arthropod-borne flavivirus, where various target cells are 

present, including the DC, NK (Natural Killer) cells, neutrophils, keratinocytes and fibroblasts 

(Cedillo-Barrón et al., 2018). The IFN-activated NK cells induce the death of the infected cells by the 

release of cytotoxic granules and cytokines. The intraepithelial γ/δ T lymphocytes are crucial for the 

control of viral replication by a direct mechanism involving the secretion of IFN-γ and perforins 

(Cedillo-Barrón et al., 2018; Suthar et al., 2013). The complement system plays an antagonistic role. 

On the one hand, it limits the viral replication, but on the other hand, it exacerbates the inflammatory 

response when it is excessively activated, increasing the severity of the disease (Conde et al., 2017). 

Type I interferon response 

Type I IFNs include IFN-α, IFN-β, IFN-ε, IFN-ω and recognize a common cell-surface 

receptor, the IFN α/β receptor (IFNAR). The role of these IFNs is not limited to the induction of an 

antiviral cellular state. They participate in the maturation and trafficking of DCs, the direct activation 

of T and B lymphocytes and the preservation of the newly activated T cells (Suthar et al., 2013). 

Finally, IFN-α/β controls the permeability of the blood-brain barrier (BBB) at the level of the 

endothelial cell junctions (Diamond, 2009). 

The type II IFN (IFN-γ or gamma) has its own receptor (IFN-γ receptor). It is produced by 

NK cells and intraepithelial γ/δ T lymphocytes and, once the adaptive response has been established, 

by the CD8 + T lymphocytes and Th1 CD4 + T cells. It is an important macrophage activator and it 

induces the expression of MHC II on the surface of the antigen-presenting cells, promoting the 

presentation of viral antigens captured by phagocytosis or pinocytosis (Shrestha et al., 2006). 

The type III IFN (IFN-λ or lambda) targets a heterodimeric receptor different from type I and 

II IFNs and is restricted to cells of epithelial origin. Nevertheless, if the receptors are different 

between IFNs type I and III, they activate in a wide variety of target cells the same signaling cascade 

leading to an antiviral state (Donnelly and Kotenko, 2010). 



Chapter 1    Introduction 

 

47 

Signal induction  

The induction of the IFN type I response by the flaviviruses starts after the cell recognizes a 

danger signal. Many PRR, including the TLRs, RIG-I (Retinoic acid-inducible gene I) and the MDA5 

(Melanoma differentiation-associated gene 5) are involved in identifying the signals generated during 

the pathogen invasion or cellular stress (Kawai and Akira, 2006; Schlee, 2013). 

The TLRs are present on the outer surface of cells or on the internal membranes such as 

endosomes or lysosomes (Kawai and Akira, 2006). Three TLR members (TLRs 3, 7 and 8) are 

involved in the recognition of double-stranded (3) and single-stranded (7 and 8) RNA. 

The TLR3 plays a crucial role in the activation of the immune response by recognizing 

double-stranded RNA in endosomes, presumably at the time of virus entry (Daffis et al., 2008; Gao 

and Li, 2017). When the TLR encounters a ligand, its intracellular domain activates proteins such as 

the MyD88 (Myeloid differentiation factor 88) or TRIF (TIR-domain-containing adapter-inducing 

IFN-β) which will activate transcription factors such as NF-kB (Nuclear factor kappa-light-chain-

enhancer of activated B cells), factors of the IFN regulation (IRF) such as IRF3 and lead to the 

production of pro-inflammatory molecules and type I IFN (Kawai and Akira, 2006). 

RIG-I and MDA5 belong to the RIG receptor family (RLR: RIG-I-like receptor) and activate 

the same antiviral response. RIG-I specifically targets double-stranded RNA and the 5' tri-diphosphate 

portion of the uncapped short RNA segments while MDA5 targets the long-chain double-stranded 

RNAs (Schlee, 2013). It is interesting to note that chickens, unlike other birds such as ducks, geese, 

and finches (Fringilla coelebs) for example, lack the RIG-I (Chen et al., 2013). However, they express 

MDA5, which functionally compensates for the absence of RIG-I (Chen et al., 2013). Once activated, 

RIG-I and MDA5 interact with the mitochondrial antiviral signaling protein (MAVS) on the surface of 

mitochondria via their CARD (Caspase Activation and Recruitment Domains). This interaction results 

in a signaling cascade via the NF-κB and IRF3 transcription factors and ultimately leads to the 

expression of type I IFN and pro-inflammatory cytokines (Suthar et al., 2013). 

More recently, it has been demonstrated that the GMP-AMP cyclic synthase (cGAS)/IFN gene 

stimulator (STING), which normally detects the DNA virus infection and damaged mitochondrial 

DNA, is also activated when cells are infected with RNA viruses (including DENV and WNV) and 

induces the production of type I IFN (Lazear et al., 2015; Schoggins et al., 2014). In addition, the fact 

that the NS2B and NS3 proteins of DENV are able to neutralize the functions of cGAS and STING 

highlights the importance of this pathway for the IFN-response activation (Mazeaud et al., 2018). 

  



Chapter 1    Introduction 

 

48 

Amplification of the type-I IFN response 

Following the activation of IFNAR receptors by type I IFNs, the JAK1 (Janus kinase) and 

Tyk2 (Tyrosine kinase) associated with the cytoplasmic domains of IFNAR receptors are 

phosphorylated and transmit the signal to the Signal Transducer and Activator of Transcription factors 

STAT1 and STAT2, which are in turn phosphorylated. This activation cascade results in the 

translocation into the nucleus of a trimeric complex called the interferon-stimulated gene factor 3 

(ISGF3), consisting of STAT1, STAT2 and IRF9, which binds to the IFN Stimulated Response 

Elements (ISREs) present in the Interferon Stimulated Gene (ISG) promoter. This ISGF3 bound to the 

ISRE induces the transcription of more than 100 ISGs genes. The ISGs encode a wide range of 

antiviral factors that are able to inhibit the viral cycle at different stages, from the virus entry to the 

release of neoformed particles (Suthar et al., 2013). The oligoadenylate synthetase (OAS) family is 

one of the key ISGs for the amplification of the antiviral response (Deo et al., 2014). When interacting 

with double-stranded RNA, the OAS activates an RNAse L-endoribonuclease that degrades the single-

stranded RNAs, including the vRNA, thus attenuating the production of viral proteins (Deo et al., 

2014). 

Evasion of the innate antiviral response  

During their replication, the flaviviruses are involved in complex mechanisms to escape the 

host's immune response and effectively establish their infection. Here, we will give some examples. 

Production of replication factories 

The production of replication factories, notably the VP, allows the flaviviruses to hide the 

double-stranded viral RNA from the cell recognition and delays the IFN production (Espada-Murao 

and Morita, 2011; Fredericksen et al., 2008; Overby et al., 2010) (Figure 7). 
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Figure 7: The formation of vesicle packets as an immune evasion strategy (Mazzon et al., 2009). 

WNV and other flaviviruses induce the VP formation by regulating the cholesterol synthesis and 

redistributing it from the plasma membrane to the VP, resulting in phospholipid bilayer disruption and 

inhibition of the Jak/Stat signaling pathway regulated by the IFN. The sequestration of the viral 

double-stranded RNA intermediates into the cholesterol-rich membrane structures allows the virus to 

avoid recognition by the cytoplasmic cellular RNases and escape the host antiviral defenses. 

Inhibition of the IFN response (Figure 8) 

The NS1 protein and the WNV E glycoprotein are capable of inhibiting the TLR3-mediated 

signal transduction, which precludes the nuclear translocation of IRF3 and NF-kB (Chen et al., 2017). 

The WNV NS2A protein inhibits the IFN-β gene transcription while that of the DENV inhibits the 

RIG-I/MAVS signaling by blocking the phosphorylation of the TBK1/IRF3. Finally, the NS4B and 

NS5 proteins prevent the accumulation of the phosphorylated form of STAT1 and STAT2 (Chen et 

al., 2017). 
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Figure 8: Signaling pathway of type I interferon and flavivirus escape strategies (Ye et al., 2013). 

 

(A) Cells detect the single-stranded and double-stranded flavivirus RNAs via the RIG-I and TLR3/7 

pathogen recognition receptors. These receptors activate their adapter molecules IPS-1, TRIF, MyD88, 

respectively, initiating the signaling cascades (IKK-β, TBK1, RIP-1, and IRAK4), which in turn 

activate IRF-3, IRF-7, and NF-kB, leading to the transcription of the IFNα/β gene. The immune 

evasion strategy of flavivirus includes a delay in the vRNA recognition by the PRRs; alteration of the 

RIP-1 signaling by the high mannose carbohydrates on the E protein; the attenuation of TLR3 

signaling by the NS1 protein; and a reduction in the transcription of the IFNα/β gene by the NS2A 

protein. 
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 (B) The type I IFN binding to the IFNα/ß receptor (IFNAR) activates the JAK/STAT pathway. More 

specifically, the activation of the Tyk2 and Jak1 kinases results in the generation, phosphorylation and 

assembly of the trimeric complex ISGF3. This complex is translocated in the nucleus, binds to IFN-

stimulated response elements and induces the production of these factors. The flavivirus escape 

mechanisms include: blocking the phosphorylation of Tyk2 and Jak1 by the NS5 protein; reducing the 

expression of the STAT2 gene by the NS5 protein; the STAT signaling inhibition by various NS 

proteins; downregulating the IFNAR by the redistribution of the cellular cholesterol; and by altering 

the functions of the ISGs.  

 

E: Envelope; IFNAR: Interferon-Alpha/Beta Receptor; IKK: Inhibitor of nuclear factor kappa-B 

kinase; IPS: IFN-β promoter stimulator; IRAK: Interleukin-1 receptor-associated kinase; 

IRF: Interferon regulation factors; ISG: Interferon Stimulated Gene; JAK: Janus kinase; MyD88: 

Myeloid differentiation primary response 88; NF-kB: Nuclear factor kappa-light-chain-enhancer of 

activated B cells; PRR: Pattern Recognition Receptor; RIG: Retinoic acid-inducible gene; RIP-1: 

Receptor-interacting proteins; STAT: Signal Transducer and Activator of Transcription; TBK: 

TANK-binding kinase; TLR: Toll-like receptor; TRIF: TIR-domain-containing adapter-inducing 

interferon-β; Tyk: Tyrosine Kinase. 
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Alteration of the antiviral functions of the ISGs 

The flaviviruses can individually target the ISGs to counter the antiviral responses in the host. 

For example, the members of the tetratricopeptide repeat (TPR) family are ISGs that are involved in 

the inhibition of the replication of certain viruses by interacting with eIF3 and, thus, limiting the 

translation of the viral mRNA. However, the 2'-O methylation of the flavivirus 5 'cap can modulate 

the antiviral effects of these TPRs (Ye et al., 2013). 

Delayed detection of the PRRs 

Some flaviviruses, such as DENV (Lozach et al., 2005), YFV (Barba-Spaeth et al., 2005) and 

JEV (Aleyas et al., 2009), may alter the phenotype of the antigen-presenting cells and, consequently, 

the antigen-presenting function (Ye et al., 2013). The viral quasi-species production during the 

infection can allow, not only the escape of the humoral response but also facilitate the viral evasion of 

the recognition of the MHC molecule and the T cell receptor (TCR) (Ye et al., 2013). 

Evasion of the complement system 

Flaviviruses have also developed strategies to counteract the complement system. The soluble 

or membrane-associated NS1 protein of WNV blocks the alternative pathway of the complement by 

recruiting a regulatory protein (factor H), which facilitates the inactivation of C3b and prevents the 

formation of the membrane attack complex. Besides, the NS1 protein of DENV, WNV, and YFV 

blocks the classical and lectin pathways through its direct interaction with the C4/C4b proteins (Chen 

et al., 2017). 

4.2.2 Adaptive immune response 

Upon activation, the mature DCs migrate to the draining lymph nodes where they present the 

antigen to naive T lymphocytes. This results in the proliferation and differentiation of these T cells 

into effector cells, which triggers the adaptive immune response. The activated CD functions include 

the regulation of class I and II MHC expression as well as the release of cytokines and 

proinflammatory chemokines which promote their ability to stimulate the T cells. The secretion of 

type-I IFN by the DCs contributes to the generation of the innate and adaptive antiviral immune 

responses. Therefore, DCs play an important role in the interface between the innate and adaptive 

immune responses (Ye et al., 2013). 
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Humoral immunity 

Viral components targeted by the humoral immunity 

The development of neutralizing antibodies is considered crucial for virus clearance. In the 

case of flaviviruses, the E, prM and NS1 proteins are the main targets of the humoral response (Rey et 

al., 2018). 

Although neutralizing epitopes have been described on the three E structural domains, 

monoclonal antibodies targeting the DIII often have potent neutralizing activity. The anti-prM 

antibodies have been described in patients infected with DENV and WNV. They show a low in vitro 

and in vivo neutralization capacity, which reaches a plateau at about 50% neutralization, probably 

because viruses at different levels of maturation contain few or no prM proteins (Slon Campos et al., 

2018). 

Early studies have shown that passive immunization with anti-NS1 monoclonal antibodies 

protects mice against the lethal effect of YFV and DENV (serotype 2), possibly depending on the 

complement-mediated lysis of the infected cells. The anti-NS1 IgG2a-induced antibody-dependent 

cytotoxicity contributes to protection against the WNV infection in mice (Chung et al., 2007). In 

contrast, the DENV anti-NS1 antibodies appear to participate in the virus pathogenesis, by promoting 

the development of a hemorrhagic syndrome by inhibiting the thrombin activity and enhancing the 

fibrinolysis (Jayathilaka et al., 2018; Slon Campos et al., 2018). 

Flaviviruses neutralization 

The flavivirus antibodies-mediated neutralization follows a "multihit" model, which relies on 

a critical number of virion-related antibodies. This antibody threshold depends on the antibodies' 

affinity to the epitopes and the accessibility of these epitopes. For example, it was shown that the 

minimum stoichiometry for the neutralization of WNV is about 30 antibodies per particle (Rey et al., 

2018). Highly-neutralizing antibodies generally target highly accessible epitopes, whereas poorly-

neutralizing antibodies tend to bind to cryptic epitopes. As the exposed surfaces show the highest 

degree of variation among flaviviruses, most of the potent neutralizing monoclonal antibodies are 

type-specific, whereas the antibodies which can enhance the infection tend to target high cross-

reactive epitopes, particularly in the DII (Slon Campos et al., 2018). 
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Mechanisms of escape to the humoral immunity 

Antigenic variations 

The flaviviruses have low-fidelity RNA-dependent-RNA-polymerases that can generate a 

spectrum of mutants. Mutations in the DIII of the E protein allow escaping the neutralizing effect of 

antibodies in WNV, DENV, YFV, and Tick-borne encephalitis virus (TBEV) (Beasley and Barrett, 

2002; Jennings et al., 1994; Lok et al., 2001; Ye et al., 2013). 

Partial maturation 

In the case of DENV or WNV, the prM cleavage is particularly inefficient and leads to the 

release of mature (smooth), immature (spiky) particles and a wide variety of partially mature virions, 

in which the surface structure is a mixture of mature and immature regions. Maintaining a sub-optimal 

cleavage represents an immunological escape mechanism, with the induction of predominant 

antibodies to the prM and the fusion loop, which have a low neutralizing activity and promote the 

entry of the virus in the cell via an ADE phenomenon (Slon Campos et al., 2018, Ye et al., 2013). 

Antibody-dependent enhancement of the infection 

The ADE mechanism was first described in 1964 by Hawkes for WNV and Murray Valley 

encephalitis virus in chicken fibroblasts (Hawkes, 1964), and observed for DENV over ten years later 

(Halstead and O’Rourke, 1977). It consists of the internalization of opsonized viral particles by 

phagocytosis via the Fc gamma receptors (FcγR) in macrophages, monocytes, and DCs, thus 

facilitating the entry of the virus (Figure 5). 

The ADE has been associated with cross-reactive antibodies against flaviviruses (Pierson et 

al., 2007; Priyamvada et al., 2016). In fact, it has been suggested that the cross-reactive antibodies 

induced after vaccination against JEV are associated with an increased risk of DENV-associated 

disease and prolonged viremia following the injection of an attenuated vaccine against YFV (Slon 

Campos et al., 2018). Similarly, one fatal case of human WNV infection has been reported with a 

hemorrhagic syndrome linked to previous exposure to DENV (Paddock et al., 2006). However, a 

recent study has shown that ADE is correlated with the titer of neutralizing antibodies, in particular, 

the IgG and IgM; only patients presenting low levels of neutralizing antibodies in their serum are 

predisposed to develop ADE (Ly et al., 2018). In fact, the neutralizing antibodies, even at low 

concentrations, directed against the E DIII domain were able to block the viral entry of the four 

serotypes of DENV without inducing an ADE of the infection. In the opposite, non-neutralizing 

antibodies promote the Fcγ receptor-mediated endocytosis with the prM, which is subsequently 

cleaved, allowing the fusion of the virus M with the endosome (De Alwis et al., 2014). An alternative 
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ADE mechanism independent of the Fcγ receptor has recently been described for the TBEV 

(Haslwanter et al., 2017). In this model of ADE, the antibody binding to the viral particle induces 

structural rearrangements of the E protein, which exposes the fusion peptide and promotes the 

endocytosis (Haslwanter et al., 2017). 

The implication of T-cell responses in the context of an ADE has been studied. The CD8 + T 

cells protected mice from an ADE in DENV infection despite the presence of sub-neutralizing cross-

reactive antibody titers (Zellweger et al., 2015). 

Cellular immunity 

The CD8 + T cells proliferate following the identification of infected cells which express the 

class-I MHC proteins on their surface and secrete proinflammatory cytokines. They induce infected-

cell lysis using perforins and granzymes A and B or via Fas-Fas ligand interactions that activate 

apoptosis. The CD4 + T lymphocytes contribute significantly to the control of flaviviral infection 

through a variety of mechanisms, including the direct cytotoxicity and cytokine production 

(interleukins and IFNγ), which activate the proliferation and maturation of B and T CD8 + cells 

(Samuel and Diamond, 2006). 

Following the CNS viral infection, chemokines (CCL5, CXCL10, and RANTES) are 

produced by the circulating leukocytes, resident astrocytes, and microglia (Potokar et al., 2019). The 

increase of these chemokines allows the recruitment of CD8 + and CD4 + T cells and monocytes to 

the CNS for viral clearance (Huang et al., 2017; Jain et al., 2017; Jurado et al., 2018; Shrestha et al., 

2012, 2006). 

The amplitude of the T cell response plays a role in determining the severity of the disease. 

Cytokines are fundamental for the coordination of different elements of the immune response and a T 

cell CD8 + mediated cytotoxicity is critical for the clearance of the pathogen. However, excessive 

production of pro-inflammatory cytokines and excessive cytotoxicity may result in tissue damage of 

the infiltrated organs (Slon Campos et al., 2018). Indeed, an exacerbated infiltration of CD8 + T cells 

in response to the infection with JEV, WNV, and ZIKV contributes to the neuropathogenesis in mice 

(Jurado et al., 2018; Wang et al., 2003). Similarly, in humans, cytotoxic lesions mediated by CD8 + T 

lymphocytes have been described in the tissues of patients infected with YFV (Quaresma et al., 2007), 

and the magnitude of the T cell response was correlated to the severity of DENV infection 

(Duangchinda et al., 2010; Mongkolsapaya et al., 2003). The CD4 + and CD8 + lymphocytes produce 

pro-inflammatory cytokines which can induce cell death in glial cells and neurons (Lim et al., 2011). 
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Regulatory T cells play an important role in the immune modulation during the acute phase of 

infection, particularly by WNV, and the depletion of these cells leads to an increase in the 

pathogenicity of WNV and an increase in CD8 + T cells response in humans (Lanteri et al., 2009; 

Suthar et al., 2010). 

4.2.3 Cellular stress, autophagy and apoptosis 

The ER is an essential organelle involved in many cellular functions, including protein folding 

and secretion, lipid biosynthesis, and calcium homeostasis. A control mechanism ensures only 

correctly folded proteins exit the ER, while incorrectly folded proteins are retained and degraded. The 

accumulation of misfolded or unfolded proteins can trigger cellular stress. To cope with this stress, the 

cells activate an intracellular signaling pathway called the unfolded protein response (UPR). Members 

of the Flavivirus genus, such as DENV, WNV, JEV, TBEV, and USUV activate the various 

components of the UPR (Blázquez et al., 2014). 

The UPR acts as a double-edged sword during flaviviral infections. It has been associated with 

the creation of a favorable environment for virus replication, such as the cap addition, membrane 

biogenesis, and the STAT1 phosphorylation and nuclear translocation response. However, it induces 

general translation inhibition, mRNA degradation and apoptosis, which are not beneficial for viral 

replication (Blázquez et al., 2014). 

Autophagy is a cellular process involved in the innate immunity, by trapping and degrading 

pathogens within autophagosomes. It also plays a crucial role in the adaptive immunity during viral 

infections, by the treatment of cytosolic antigens and their presentation via the class II MHC 

molecules (Gratton et al., 2019). 

By facilitating the removal of damaged organelles and aggregates of cytoplasmic proteins, 

autophagy is essential for cellular homeostasis. Changes in the architecture or composition of the ER 

may trigger autophagy via the activation of the UPR components. One of the most widely used 

indicators of autophagy is the cytoplasmic aggregation of the light chain protein 3 (LC3) associated 

with microtubules which mark the autophagic vacuoles (Blázquez et al., 2014). The induction of the 

autophagic pathway, characterized by an increase in LC3 levels, was observed after the infection by 

several flaviviruses, including USUV (Blázquez et al., 2013). The role of autophagy in viral infections 

is not well defined. In some systems, autophagy works as an antiviral process, while in others it can be 

requisitioned and used to facilitate the viral replication. Indeed, the autophagic response in flavivirus-

infected cells has been associated with various functions, including the reorganization of lipid 

metabolism to support strong viral replication, inhibition of apoptosis, or escape from the innate 

immunity. In contrast, strong activation of autophagy has been associated with lower neurovirulence 
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of JEV (Li et al., 2012) and protection from neuronal cell death induced by WNV infection (Shoji-

Kawata et al., 2013), suggesting a protective role of autophagy. 

Finally, apoptosis is a highly conserved mode of programmed cell death, which represents a 

well-established host defense mechanism against viral infections. It is differentiated from necrosis by 

its ability to control the release of cellular components into apoptotic bodies, which can be recovered 

by phagocytic cells, thereby decreasing any inadequate immunological response. Apoptosis can be 

induced in vertebrates by two known pathways: the extrinsic pathway or the cell death receptor 

pathway, and the intrinsic pathway or mitochondrial pathway (Prasad et al., 2013). Apoptotic cell 

death has been described as a cytopathological mechanism in several flaviviral infections, such as the 

DENV infection (Desprès et al., 1996), JEV (Liao et al., 1997), WNV (Parquet et al., 2001) and 

USUV (Blázquez et al., 2014). These viruses block apoptosis by activating the phosphoinositide-3-

kinase signaling at an early stage of the viral infection, which then initiates a survival signal to 

maintain cells under favorable conditions for longer virus production. This can be considered as an 

effective strategy for the immune evasion of flaviviruses (Ye et al., 2013). 

4.3 USUV infection 

Given the epidemiological cycle of arboviruses, involving the alternation between arthropod 

and vertebrate hosts, the adaptation to very different hosts is required to ensure the survival and 

maintenance of these viruses. The difference in the course and outcome of infection according to the 

hosts indicates varying degrees of adaptation. The kinetics of USUV infection in both invertebrate and 

vertebrate hosts are not well-known and they are often drawn from data concerning WNV infection. 

4.3.1 Vectors 

Before USUV emergence in Europe, only one study  (McIntosh, 1985) registered 

experimental infections with USUV in mosquitoes. It showed the susceptibility of Cx. neavei to 

USUV but no effective transmission to hamsters could be demonstrated  (McIntosh, 1985). After 

USUV detection in dead birds and several ornithophilic mosquitoes species in many European 

countries, the vector competence of European, African, and even American mosquitoes populations 

were addressed through experimental infections of these invertebrate hosts. Cx pipiens has been used 

as the major experimental model (in 4/7 studies). This can be justified by the abundance of this vector 

and the fact that USUV has been frequently detected (Clé et al., 2019) and co-circulating with WNV 

(Calzolari et al., 2012; Rudolf et al., 2015) in biotypes of this mosquito complex collected in nature. 

Some North American and European populations of Cx. pipiens pipiens, Cx. pipiens molestus, Cx. 

quinquefasciatus and/or hybrid forms have shown that both European and African strains of USUV 

effectively infect their bodies and accumulate in their saliva under laboratory conditions (Abbo et al., 
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2020; Cook et al., 2018; Fros et al., 2015). However, two UK strains of Cx. pipiens infected with a 

USUV strain of African origin showed a very low vector competence, which could be due to the 

genetic variability of USUV strains or mosquitoes populations from the same species (Hernández-

Triana et al., 2018). Further, the infectivity of USUV in Cx. pipiens showed a pronounced temperature 

dependency (Fros et al., 2015). A clear relationship between virus titer in the blood sample and the 

infection rate of Cx. naevi was demonstrated (Nikolay et al., 2012). Thus, a range of factors should be 

carefully considered to compare the competence of a particular mosquito species to the same virus.  

The vector competence of Cx pipiens for USUV was compared to that for WNV and ZIKV. 

While none of the tested mosquitoes accumulated ZIKV in the saliva and were considered as 

incompetent vectors for ZIKV, Cx. pipiens molestus and Cx. pipiens pipiens were shown to be 

susceptible to USUV infection and to disseminate the virus in their salivary glands (Abbo et al., 

2020). The infection and transmission rates with USUV (80% and 69% respectively) were 

significantly higher than with WNV (46% and 33% respectively) under elevated temperature (28 °C) 

in these mosquitoes (Fros et al., 2015). 

Two mosquito species of the genus Aedes were assessed for their vector competence to 

USUV, namely Ae. Albopictus, repeatedly found infected in Northern Italy (Puggioli et al., 2017) and 

Ae. japonicas, which is  invading Europe and disseminating USUV in Graz (Austria) (Camp et al., 

2019). North American and European populations of Ae. albopictus appeared to be experimentally 

incompetent vectors for USUV (Cook et al., 2018; Puggioli et al., 2017) and the detection of USUV 

from field-collected Ae. albopictus was explained by simple recent engorgement from viremic birds 

(Cook et al., 2018). In the opposite, field-collected Ae. japonicus mosquitoes from the Netherlands 

showed USUV-positive saliva after 14 days at 28˚C, and, therefore, could play a role in the 

transmission cycle of the virus in Europe (Abma-henkens et al., 2020). A key step in flavivirus 

transmission and vector competence is crossing the midgut barrier, which acts as a physical and 

immune barrier that limits the replication and spread of the virus in the insect (Moskalyk et al., 1996). 

In this regard, the midgut acts as the major bottleneck for the dissemination of USUV, as female Cx. 

pipiens and Ae. japonicas intrathoracically injected with USUV showed higher transmission rates than 

those infected via the oral route (Abbo et al., 2020; Abma-henkens et al., 2020; Fros et al., 2015). The 

induction of antiviral responses, including Small RNA pathways is also a determinant of viral 

replication and dissemination after a blood meal of the female mosquito. USUV elicits a strong 

expression of RNA-derived small interfering RNAs (siRNAs), which are 21 nucleotides sized RNA 

products from viral double-stranded RNA cleavage by the endoribonuclease Dicer-2 (Abma-henkens 

et al., 2020; Fros et al., 2015). The 25–30 nt Piwi-interacting RNAs (piRNAs) were not identified in 

USUV infected Ae. Japonicas (Abma-henkens et al., 2020) and Cx. pipiens (Fros et al., 2015), 

suggesting that siRNAs were the major group of small RNAs targeting USUV in these mosquitoes 
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(Abma-henkens et al., 2020; Fros et al., 2015). The induction of selective pressure may influence 

virus replication in mosquitoes, but there is currently no data about RNA hot spots during USUV 

infection in mosquitoes. 

4.3.2 Humans and other mammals 

The pathogenesis of USUV infection in mammals remains unclear to date. Nevertheless, the 

mechanisms of USUV infection are suggested to be similar to those of WNV. Studies using animal 

models of infection have identified three distinct phases of WNV pathogenesis: initial infection and 

spread (the early infection phase), peripheral amplification of the virus (the viral visceral diffusion 

phase) and neuroinvasion (the CNS phase) (Suthar et al., 2013) (Figure 9). 

Early infection phase 

During a blood meal, mosquitoes feed directly on vessels or the extravasated blood. In 

addition to viral factors which temporary block the host immune response (Macneil et al., 2019; 

Schneider et al., 2006; Schneider and Higgs, 2008; Styer et al., 2011), a mosquito injects saliva, which 

contains anti-coagulant and anti-inflammatory molecules to optimize its meal. The early phase is 

defined by the virus local replication in the keratinocytes (Lim et al., 2011) and Langerhans cells 

(epidermal DC) and dermal DCs (Johnston et al., 2000). Infected DCs migrate to the loco-regional 

lymph node, resulting in a primary viremia. 

Peripheral diffusion phase 

Viremia leads to virus spread to the organs, including the spleen, the primary site of WNV 

peripheral replication (Bai et al., 2010). Specific target cells for WNV infection in the spleen and 

other peripheral tissues are not well defined but are thought to be a subset of DCs, macrophages, and 

possibly neutrophils (Bai et al., 2010). By the end of the first week of infection, WNV is eliminated 

from the serum and peripheral organs, and the CNS infection can be observed (Samuel and Diamond, 

2006). 

Neuroinvasion phase 

The neuropathogenesis of a flavivirus depends on its ability to enter the CNS and to spread 

efficiently in target cells, including neurons and glia. The mice which succumb to WNV infection 

develop CNS pathology similar to that seen in human cases of infection, including neuronal necrosis 

in the brainstem, hippocampus and spinal cord (Samuel and Diamond, 2006). Entry into the CNS may 

occur following the destruction of the BBB, triggered by endothelial cell permeability changes, 

induced by vasoactive cytokines (including tumor necrosis factor (TNF)). Further, host proteins such 
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as death-associated protein kinase 2 (Drak2), intercellular adhesion molecule (ICAM-1), MIPs 

(Macrophage Inflammatory Proteins) and matrix metalloproteinase 9 (MMP-9) have been associated 

with an alteration of the blood-brain barrier by the WNV (David and Abraham, 2016). Other 

mechanisms proposed for viral entry into the CNS include the olfactory bulb infection via the 

olfactory neurons, a "Trojan horse" mechanism, whereby the virus is transported to the CNS by the 

infected immune cells and direct retrograde axonal transport of the infected peripheral neurons (Suthar 

et al., 2013). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9: Pathogenesis of West Nile fever virus in humans, based on Suthar et al., 2013. 
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While most cases of USUV infection in humans are asymptomatic, some cases of USUV-

associated meningoencephalitis have been described (Roesch et al., 2019). The full clinical spectrum 

of the infection needs to be better defined. Symptoms such as fever, rash, headache, nuchal rigidity, 

facial paralysis and hand tremors have been described (Santini et al., 2014). In addition, the 

experimental infection of one-week-old suckling mice led to paraplegia and paralysis and was 

associated with apoptosis and demyelination of neuronal and glial cells (Weissenbock et al., 2004). In 

horses and other susceptible mammals, the infections are, until now, asymptomatic, leading only to 

seroconversion in animals. Similarly, the immunocompetent mice generally resist the lethal effect of 

the virus (Blázquez et al., 2015) (see section 4.1.3). 

4.3.3 Birds 

The pathogenesis of USUV infection in birds is poorly understood. As for WNV, it was 

shown that the virus can be detected in the blood 30 to 45 minutes after the blood meal of mosquitoes, 

suggesting that the early phase (local replication) is not required for viremia in avian hosts (Reisen et 

al., 2007). 

USUV can reach the CNS of certain birds (Becker et al., 2012; Borm et al., 2017; Garigliany 

et al., 2014; Savini et al., 2011; Steinmetz et al., 2011) but the mechanisms by which it crosses the 

BBB remain unknown. Some species, such as the blackbird (Bakonyi et al., 2007; Becker et al., 2012; 

Chvala et al., 2004), house sparrow (Garigliany et al., 2017; Steinmetz et al., 2011) and great grey 

owl may exhibit prostration, disorientation, locomotor disorders and death (Garigliany et al., 2017). 

Death may occur without premonitory symptoms (Lecollinet et al., 2016). The two macroscopic 

lesions most commonly observed at autopsy are splenomegaly and hepatomegaly (Chvala et al., 

2004). Under the microscope, inflammatory and necrotic lesions, with histiocytic and 

lymphoplasmacytic infiltrates, have been described in the heart, lung, liver, kidney, spleen, and brain 

of the infected birds (Bakonyi et al., 2007; Chvala et al.., 2004). The co-infection of birds with other 

pathogens, such as Plasmodium spp., might increase the severity of the disease (Rĳks et al., 2016, 

Rouffaer et al., 2018). In some bird species, such as chicken (Gallus gallus domesticus) or goose 

(Anser anser f domestica), experimental inoculation of USUV did not induce clinical signs or 

mortalities (Chvala et al., 2006, 2005). Future research will help determine which virological and 

immunologic factors affect the USUV pathogenesis, species tropism, and comorbidities in susceptible 

birds. 

4.4 Experimental models for the study of USUV  

Study models are critical to understanding host-pathogen interactions. Preclinical antiviral and 

vaccine candidate trials are also performed using these models. 
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Rodents, birds and monkeys are the main animals used in flavivirus research (Monath et al., 

2002; Pletnev et al., 2006; Wang et al., 2016). Monkeys are traditionally used to study human viruses 

(Chesnut et al., 2019). However, the acquisition of primates in a laboratory is expensive and has strict 

biosecurity requirements in the facilities (Chesnut et al., 2019). Birds and mice are less expensive and 

more practical and have helped to model flavivirus neurological disease, study host-pathogen 

interactions which influence the disease progression, and determine the efficacy and safety of vaccines 

and therapeutic molecules (Clark et al., 2015). However, the natural resistance of some avian species 

or mouse strains sometimes limits their use. The use of IFNAR -/- mice (KO for the type 1 interferon 

receptor) (Segura et al., 2018; Zompi and Harris, 2012) and/or alternative injection routes for viruses, 

including the Intracranial (IC) route (Diagne et al., 2019) could help in these cases. 

In vitro and in silico models are considered important tools in the study of flaviviruses. The 

recent use of organotypic cell cultures, specific brain models or multilayer cell cultures has greatly 

facilitated the study of certain flaviviruses infections (Chesnut et al., 2019). Mathematical modeling 

can help estimate the levels of USUV circulation in a given region and to study the dynamics of 

USUV transmission (Brugger and Rubel, 2009; Cheng et al., 2018; Lühken et al., 2017; Walter et al., 

2018).  

We will present in this manuscript the cellular, in ovo and in vivo models, which were used to 

study USUV. 

4.4.1 Cellular models 

To date, the virus was shown to infect a large spectrum of cells from mammalian and avian 

species, and one reptile (Turtle, Terrapene carolina) (Barr et al., 2016). The first USUV in vitro 

replication assay was performed in porcine kidney (PK) cells in 1969 (DeMadrid and Porterfield, 

1969). Later, Bakonyi et al. (2005) demonstrated the USUV replication in a wide range of cells. 

However, only African green monkey kidney cells (Vero), PK-15 pig epithelial cells, and goose 

embryo fibroblasts have developed cytopathic effects (CPE) (Bakonyi et al., 2005). Like other 

flaviviruses, USUV replicates efficiently in Vero and mosquito (Aedes albopictus) C6/36 cells, which 

are commonly used for virus isolation from both clinical and animal (birds/rodents/mosquito) samples 

(Diagne et al., 2019; Ziegler et al., 2016) and often after replication in these cells, other cellular or 

animal models are used. The particular susceptibility and the extent of CPE observed in Vero cells 

explain their use for virus culture and viral titer studies such as 50% tissue culture infectious dose 

TCID50 and plaque reduction neutralization tests (Savini et al., 2011). In these cells lacking the IFN-α 

and IFN-β genes (Matskevich et al., 2009), the USUV infection activates cellular stress and 

autophagy, promoting viral replication (Blázquez et al., 2013). Further, USUV can establish a 

persistent infection for at least 80 days and present full-length and defective viral genomes (DVGs), 
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containing truncations at the 5’ end, which may be a key determinant in the cell survival and 

persistence of the infection (Sempere and Arias, 2019).  

USUV replicates differently in rodent species and rodent-derived cell types. The woodchuck 

(Marmota monax) liver cells (WCH-17, ATCC No: CRL-2082), rat (Rattus norvegicus) brain cell line 

(C6), and hamster (Mesocricetus auratus) kidney cell line (BHK-21) allowed USUV infection but did 

not display CEP (Bakonyi et al., 2005; Barr et al., 2016). However, primary astrocytes, microglial 

cells, and neurons of a wild-type mouse (Mus musculus) supported efficient USUV replication and 

showed CPE (Salinas et al., 2017). While a bank vole (Myodes glareolus) kidney cell line (BVK168, 

RRID: CVCL_A014) showed CEP following USUV infection (Binder et al., 2019; Essbauer et al., 

2011), the virus did not replicate at all in the lung cells of this animal and did not show CPE in kidney 

or brain cells of the common vole (Microtus arvalis) (Binder et al., 2019). Likewise, USUV could 

infect human cells from different origins, including the upper respiratory tract, brain, and retina, but 

only a few of these cells exhibited CPE (Table 2).  

Cellular systems are used to investigate the viral tropism as well as some aspects of the 

USUV-infection pathogenesis, including the inflammatory response and the cell-intrinsic innate 

response. In primary human nasal epithelial cells, the USUV infection triggered a pro-inflammatory 

(IL6, IL8, and IP10) and antiviral (IFN types I and III) responses (Vielle et al., 2019). In vitro, USUV 

(Vienna 2001-blackbird, GenBank AY453411 and SAAR-1776 strain, GenBank AY453412) induced 

high levels of TNF and IFN-α and -β in human and porcine DCs (Cacciotti et al., 2015; García-

Nicolás et al., 2019). USUV has also been found to be very sensitive to the antiviral effect of IFN in 

A549 cells (human lung epithelium cells): the replication was 10-fold lower than that of WNV in the 

presence of a large variety of subtypes of IFN-α, -β and γ (Cacciotti et al., 2015). The USUV-infected 

human DC induced higher levels of IFN than those infected with WNV (NY99 strain 1, GenBank 

AF196835 and goshawk Austria 361/10, GenBank HM015884) (10-100 fold, depending on the 

multiplicity of infection) (Cacciotti et al., 2015). In Hep-2 and Vero cells, USUV (Vienna 2001-

blackbird) was highly sensitive to the antiviral actions of type I and III IFNs when cells were treated 

with these cytokines prior to the viral infection (Scagnolari et al., 2013). However, the USUV 

infection weakly induced the production of these types of IFNs on untreated Hep-2 cells (Scagnolari et 

al., 2013). Altogether, these data suggest that USUV may escape the innate response by inhibiting the 

IFN response but less effectively than WNV. Moreover, the low pathogenicity of USUV and some 

WNV strains to humans may be due to their susceptibility to the IFN and their limited ability to block 

the host innate antiviral response (Cacciotti et al., 2015). Actually, the control of the IFN activation 

pathway seems to be fundamental in the virulence of WNV strains. Keller et al (2006) demonstrated 

experimentally in a mouse model that one lineage 1 strain (the Texas strain 2002 (TX02)) and another 

of lineage 2 strain (the strain Madagascar 78 (MAD78)) resulted in 90% and 0% of mortalities, 
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respectively (Keller et al., 2006). They proposed, in an in vitro model, that the MAD78 strain was 

avirulent because it can not inhibit the JAK/STAT pathway. Conversely, the NS5 protein of the TX02 

strain blocks the tyrosine Tyk2 phosphorylation, which prevents the phosphorylation of STAT1 and 

STAT2 and their translocation to the nucleus. The virulence of the MAD78 strains is restored during 

the infection of mice with a non-functional IFNα/β receptor (Perwitasari et al., 2011). 

A position in the NS5 viral polymerase (aa 898) gene of USUV has evolved under significant 

positive selection, possibly reflecting an ongoing host-pathogen evolutionary interaction (Engel et al., 

2016). It is interesting to note that another substitution of the NS5 protein-coding gene was observed 

in the Bologna/09 viral strain (Gaibani et al., 2013) derived from a USUV infected patient recovering 

from an orthotopic liver transplant (Cavrini et al., 2009). As viral sequences become available, the 

viral determinants influencing the USUV-infection pathogenesis can be identified, as well as the 

involvement of other factors such as the IFN response evasion in this process. The availability of 

avian cell cultures would allow testing this hypothesis in birds and explaining the potential role of the 

innate immune response in the particular species tropism and the in vivo pathogenicity of USUV.  

An in vitro study demonstrated that USUV can induce cytopathic effects in a wide range of 

neural cells such as mature neurons, microglia, human neuronal precursors and primary human 

astrocytes (Salinas et al., 2017). This same study demonstrated that USUV is able to establish a 

productive infection, induce apoptosis and/or stop neuronal cell proliferation in a more efficient way 

compared to ZIKV (Salinas et al., 2017). Despite the induction of a strong antiviral response, USUV 

was shown to target neurons in the CNS, leading to their apoptosis by caspase-3 activation (Salinas et 

al., 2017). In addition to direct damage, USUV was suggested to disseminate to neurons via 

astrocytes, which stop proliferation following USUV infection (Salinas et al., 2017). USUV infectious 

particles were efficiently released by human brain-like endothelial cells  and were suggested to reach 

the CNS via this route, without compromising the blood-brain barrier (BBB) integrity (Clé et al., 

2020). Importantly, in all these models, cytokines such as CXCL10 were upregulated (Clé et al., 2020; 

Salinas et al., 2017), potentially recruiting inflammatory cells in vivo. These pro-inflammatory 

cytokines can induce neuron apoptosis or direct damage in neuronal cells (Lim et al., 2011) and 

constitute a double-edged sword in USUV neuropathogenesis, as they participate in viral clearance 

from the brain but enhance cellular death and cytotoxicity when inflammation is exacerbated (Slon 

Campos et al., 2018). The development of avian cellular models of neuropathogenesis following the 

USUV infection remains of key importance, given the neurotropism and neurovirulence of the virus. 

A primary line of human nasal epithelial cells showed a productive infection of Usutu virus 

without cytopathic effects (Vielle et al., 2019), suggesting that the human upper respiratory tract 

epithelium is a target for the virus (strain SAAR-1776) and could potentially play a role in spreading 
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the infection to other compartments or outside the body, potentially leading to direct transmission. 

This hypothetical non-vector transmission mode remains to be tested, using animal models. 

4.4.2  In ovo models 

Embryonated Chicken Eggs (ECE) are effective, inexpensive and environmentally friendly 

bioreactors (Blyden and Watler, 2010). Their use is easy and ethically acceptable (Ribatti, 2016). The 

chicken embryo closely reflects the neuronal development of the human fetus and the sequencing of 

the chicken genome has opened up new possibilities for discovering the molecular basis of 

development and changes associated with viral infections (Pena et al., 2018). Several human vaccines 

are still being produced with this model, including influenza A and YFV (Matthews, 2006). 

Although ECE have been used to study many flaviviruses, including ZIKV (Goodfellow et al., 

2016; Thawani et al., 2017), WNV (Crespo et al., 2009), YFV (de Abreu Manso et al., 2015) and 

TMUV (Yan et al., 2011), they were resistant to USUV infection (Bakonyi et al., 2005, Segura et al., 

2018) and did not allow virus isolation from dead blackbird tissue in Italy, unlike Vero cells used in 

the same study (Savini et al., 2011). 

In the embryonated eggs of geese, no mortalities or significant lesions were observed on the 

4th day following inoculation of the virus by the intra-allantoic route. However, antigenic signals were 

detected by immunohistochemistry (IHC) in some embryonic tissues (retina, autonomic ganglia, 

skeletal muscle, fibroblasts and renal tubular cells) (Chvala et al., 2006). 

4.4.3 Vertebrate animal models 

The pathogenicity of USUV has been rarely investigated in laboratory animals and most of 

these studies have used only murine models. 

Murine models 

Recently, USUV was isolated for the first time from mice (Mastomys natalensis) in Senegal, 

with no symptoms or lesions detected when these animals were captured (Diagne et al., 2019). This 

indicates that, in nature, mice could act as a reservoir host of the virus, without known natural  
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Table 3: A review of reports using mice to model the USUV infection 

 

Study 
Strains of 

mice 
Sex 

Age 

(weeks) 

Viral strains 

(Genbank) 

Doses and routes 

of inoculation 
Results 

(Diagne et al., 

2019) 

Swiss 

Webster 

(CFW) 

 

NI 3-4 

KC754955 

AY453412 

MH727238 

10
3
 PFU IC 

Weight loss/tremors, apathy and paralysis of the posterior limbs 

4 days after infection 

100% mortality between the 8th and the 10th day 

10
3
 PFU IP 

Mortality of 1/10 at 10 days post-infection with KC754955 

60% of morbidity of and 50% of mortality at 15 days post-

infection with AY453412 

10
3
 PFU SC 

No effect after the injection of MH727238 

No effect on the injection of KC754955 et MH727238 

Weight loss and 30% mortality at 15 days post-infection with 

AY453412 

(Segura et al., 

2018) 
AG129* NI 8-14 KJ438730 

10
1
, 10

2
, 10

3
, 10

4
, 

10
5
, 10

6 
IP 

75-100% mortality - Weight Loss, Apathy 

Conjunctivitis and neurological symptoms (mobility disorders, 

paralysis of the lower limbs) 

(Martín-Acebes 

et al., 2016) 

129 SvEv ** M 

and 

F 

6 KU760915*** 10
4 
PFU IP 

Ruffled fur, hunching and ataxia. 

89% mortality at d10 post-infection 

129 SvEv No signs nor mortalities 

(Blázquez et al., 

2015) 
Swiss F 

8 
AY453412 

102 ou 104 PFU 

IP 

No signs nor mortalities 

1 Dose-dependent mortality (15.8% and 60% respectively) 

(Merino-Ramos 

et al., 2014) 
Swiss F 10 AY453412 104PFU IP 

No signs nor mortalities 

USUV IgG induction is stimulated by a heterologous WNV 

vaccine based on RSVPs 

(Weissenbock 

et al., 2004) 
NMRI NI 

1 
AY453411 10

3
 TCID50  IP 

Clinical signs: disorientation, paraplegia, paralysis 

100% of mortality after 11 days of infection 

Neuronal and glial cells apoptosis 

Neuronal demyelination 

>1 No signs nor mortalities 
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(Williams et al., 

1964) 
Swiss NI 

 

 

Suckling 

mice 

AY453412 

IC (isolation of 

the viral strain) 

Clinical signs at days 8 and 9 post-infection 

Morbidity: 8/20 and 15/60 

Mortality at day 11 

2nd passage: 

>10
6,5 

TCID50 
Mortality at day 4 

5-6 

 

>10
6,5 

TCID50  IP No mortalities 

 

* KO for the type 1 and 2 IFN receptor 

** KO for the type 1 IFN receptor 

*** derivative of the strain AY453412 by passages on cells 

M: Male; F: Female; IC: Intra-cerebral; IP: Intra-peritoneal; NMRI: Naval Medical Research Institute; NI: Not indicated; SC: Subcutaneous; 

TCID50: 50% Tissue culture infective dose.  
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pathogenicity so far. Experimentally, almost no mortalities were observed after the intraperitoneal (IP) 

or subcutaneous inoculation of mice-derived USUV isolates to 3-4 week-old Swiss Webster (CFW) 

mice (Diagne et al., 2019). While the same study described mortalities and/or significant weight loss 

of mice infected with the SAAR-1776 strain, another study by Blázquez et al. (2015) did not describe 

any susceptibility to the same strain. The number of virus cells passages or the mouse strains as well 

as the mice age could underlie the variation in the outcome of the infection (Table 3). In one-week-old 

Swiss or NMRI mice, the IP USUV infection leads to clinical signs such as disorientation, depression, 

paraplegia, paralysis and coma, which are associated with neuronal degeneration and demyelination of 

the neurons and spinal cord (Blázquez et al., 2015, Weissenbock et al., 2004). In these studies, all 

surviving mice were protected from the infection by a highly virulent strain of WNV, demonstrating 

cross-protection against this virus provided by the USUV infection. However, USUV immunity did 

not reduce WNV replication in these mice (Blázquez et al., 2015). In contrast to WNV, no mortality 

was recorded in USUV-infected adult mice (aged 6-8 weeks), illustrating its limited pathogenicity in 

immunocompetent mice compared with WNV (Blázquez et al., 2015; Martín-Acebes et al., 2016). On 

the other side, adult IFNAR -/- mice (KO for the type I IFN receptor) were susceptible to the USUV-

infection (Martín-Acebes et al., 2016, Segura et al., 2018). 

Bird models 

USUV can be highly pathogenic in wild and captive birds due to its extensive tropism and 

virulence in various tissues and organs. Experimentally, USUV was nonpathogenic to the domestic 

chicken (Gallus gallus domesticus) (Chvala et al., 2005) and the domestic goose (Anser anser f 

domestica) (Chvala et al., 2006). No in vivo avian model of USUV study has been validated for the 

moment. 

5. Laboratory diagnosis 

In the laboratory, the direct diagnosis of an acute USUV infection is based on the detection of 

viral RNA in different samples (blood, urine, cerebrospinal fluid, tissues) by RT-PCR, specific for the 

nucleotide sequences of the virus (Cavrini et al., 2011; Jöst et al., 2011; Nikolay et al., 2014) or 

common to a broad panel of flaviviruses, targeting a conserved region of 260 base pairs (bp) of the 

gene coding for the NS5 protein (Becker et al., 2012; Patel et al., 2013; Scaramozzino et al., 2001; 

Vina-rodriguez et al., 2017) followed by the amplicons sequencing. The latter approach, commonly 

called "pan-flavivirus", has a dual interest. On the one hand, it allows combined surveillance of other 

co-circulating flaviviruses in the same geographical area, notably WNV, which is present in more than 

ten European countries where USUV circulates (Nikolay, 2015). On the other hand, the amplicon 

sequencing, which is necessary to identify the virus species, allows at the same time a phylogenetic 

analysis of the detected strains (Cadar et al., 2016; Engel et al., 2016; Garigliany et al., 2017). 
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The direct diagnosis can also be achieved by isolating the virus on cell cultures, including 

C6/36 mosquito or Vero 6 cells, in which the virus has a cytopathic effect. The identification of the 

virus can then be done through sequencing or hybridization (Vina-Rodriguez et al., 2017). 

Indirect diagnosis of the USUV infection is based on serology, the specificity of which may 

be affected by cross-reactivity between several Flavivirus species. Therefore, the detection of 

antibodies is carried out by immunoassay (ELISA) or immunofluorescence tests (Gaibani et al., 2012). 

Then, each positive result must be confirmed by sero-neutralization tests, to exclude cross-serological 

reactions between related flaviviruses. 

6. Prevention and control of USUV 

6.1 Antiviral molecules against USUV 

Currently, USUV is primarily an avian pathogen, whose pathogenicity is rather limited to 

certain wild bird species, although some sporadic neuroinvasive human cases have been documented 

(Roesch et al., 2019). Therefore, in the current epidemiological situation, the use of anti-USUV 

molecules will only be useful in very rare circumstances, for example for captive birds, including 

endangered species. In any case, it should be kept in mind that USUV can become a major pathogen 

for humans, as did other viral infections such as ZIKV or WNV (Martín-Acebes et al., 2016). As a 

result, with regard to the USUV-specific antiviral molecules, studies are carried out in vitro and using 

murine infection models and are intended to develop a treatment against the neuroinvasive forms. 

The interaction between autophagy and USUV was used as a therapeutic target. Indeed, 

autophagy inhibitors, such as 3-methyladenine and wortmannin, significantly reduced the USUV 

replication in Vero cells (3-5 fold) (Blázquez et al., 2013). 

The host lipid biosynthetic pathways, required for the production of infectious viral particles, 

were also targeted: the inhibition of the acetyl-CoA carboxylase enzyme by two different drugs 

strongly inhibits both the WNV and USUV replication (Merino-ramos et al., 2016). 

The antiviral strategy of lethal mutagenesis, which uses nucleoside drugs inducing increased 

virus mutation rates, was investigated with USUV infection in vitro and showed variable efficiency. 

Favipiravir, a purine analog, was able to inhibit USUV replication only when added to the infected 

cells during the first six hours of infection of Vero E6 cells (Segura et al., 2018). This molecule, along 

with another purine analog (ribavirin) and 5-fluorouracil (a pyrimidine analog) led to sustained 

decreases in virus titers but not to complete viral extinction in Vero cells supernatants. In the same 

study, ZIKV was inhibited more efficiently by ribavirin and favipiravir, while USUV replication was 

affected to a greater extent by 5-fluorouracil (Bassi et al., 2018). Similarly, a 10-days exposure to 
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favipiravir, ribavirin, or a combination of both drugs could lead to the complete extinction of 

infectivity and vRNA in the cell-culture supernatants but not inside Vero cells persistently infected 

with USUV. Besides, withdrawal after treatment resulted in a relapse in virus titers (Sempere and 

Arias, 2019).  

6.2 Vaccination 

The success of anti-flavivirus vaccines in humans is equivocal: although efficient vaccines 

against YFV, JEV and TBEV are available, human vaccines against WNV and USUV are lacking and 

the only vaccine approved for DENV Sanofi-Pasteur's DENV Dengvaxia® has significant limitations 

(Halstead, 2017). 

For WNV, three equine vaccines have a European Marketing Authorization (MA): Zoetis 

Equip® WNV, Intervet International BV's Equilis® West Nile and Merial's Proteq® West Nile. 

Reducing the risk of birds’ infection with USUV comes by reducing the chances of mosquito-

borne viral transmission to these animals (Steinmetz et al., 2011). The use of pyrethroid-based 

insecticides and the elimination of mosquito habitats where these insects can lay their eggs should be 

implemented in areas of the high prevalence of the disease (Garcia-Bocanegra et al., 2012). At the 

same time, the vaccination of avian species capable of infecting mosquitoes would reduce viremia in 

these hosts and prevent infection of the vectors as a result of blood meals (Kilpatrick et al., 2010). The 

vaccination would also contribute to the immunization of susceptible species and reduce mortality 

associated with USUV infection. 

Two vaccination trials against this virus have been conducted so far in mice: (1) a 

heterologous vaccination of adult mice with WNV RSVPs (Merino-Ramos et al., 2014) and (2) a 

plasmid DNA vaccine candidate encoding the prM and E proteins of WNV (Martín-Acebes et al., 

2016). Since Swiss mice are not susceptible to USUV infection, the protective effect from the lethal 

challenge was impossible to do in the first study, although a small specific humoral response was 

detected after vaccination (Merino-Ramos et al., 2014). In the second study, the use of IFNAR [-/-] 

mice revealed a cross-protection against USUV and WNV and a production of neutralizing antibodies 

(Martín-Acebes et al., 2016).  
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The above-reviewed scientific literature on mosquito-borne flaviviruses, and in particular on 

USUV, highlights our poor understanding of the pathogenesis of flaviviral infection. This work has 

started during the epizootic of USUV in wild birds in Belgium. A descriptive and systematic study of 

these spontaneous cases was undertaken as early as 2016, aiming at gaining knowledge about the host 

spectrum of the virus, its tissue and cell tropism and its evolution in Europe. Importantly, we isolated 

field strains that were indispensable for our planned experimental work. 

On another side, although the circulation of USUV has resulted in significant mortalities 

among wild bird populations in many European countries, there is currently no validated avian model 

for the study of its infection. As a result, knowledge of species susceptibility and pathogenic 

characteristics of USUV infection is, to date, very limited. Similarly, despite the growing public health 

threat posed by this virus, the only "mammalian" models available have a strongly altered innate 

immune response, which hampers the study of the contribution of these factors to the host 

resistance/susceptibility to infection. An immunocompetent murine model is, therefore, required for 

the investigation of the neurological disease sporadically observed in humans. 

On this basis, our contribution to the study of USUV infection combined a descriptive 

approach of spontaneous cases in wild birds and the development of experimental models (Figure 10). 

1) Study of the pathogenesis of the USUV infection in spontaneous cases in wildlife and 

monitoring of the virus evolution  

In order to understand the host spectrum in birds and the viral tropism, lesional and 

immunohistochemical analyses were carried out on samples from the carcasses of wild birds obtained 

through a collection network set in place during the mosquito activity-period between 2016 and 2018. 

A systematic genetic characterization of the viral strains involved was undertaken, allowing the 

monitoring of the phylogenetic evolution of Belgian strains of USUV. In parallel, virus isolation 

attempts were systematically performed on Vero cell cultures from RT-qPCR-positive tissue samples. 

More specifically, this approach aimed to: 

a) Investigate the host spectrum of USUV in Belgium among avian species; 

b) Study the pathological profile and cellular tropism characteristic of the infection in birds; 

c)  Dispose of infectious field viral strains necessary for the development of experimental 

models; 

d) Genetically-characterize the virus strains detected and/or isolated during this study. 
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2) Development of experimental models of USUV infection 

a) In ovo model 

Three independent studies by renowned European teams failed to amplify USUV in 

ECE.However, this model is widely used for many closely-related flaviviruses, including WNV. Thus, 

it seemed essential for us to compare the capacity of infection of ECE with USUV strains belonging to 

different phylogenetic lineages. 

b) In vivo avian models: the domestic canary (Serinus canaria) 

The blackbird appears to be the most-affected bird species by USUV in Europe, with a 

dramatic decline in its population (Becker et al., 2012; Ziegler, Jost, et al., 2015; Ziegler et al., 2015; 

Cadar et al., 2016; Lühken et al., 2017), while the domestic chicken, for example, is completely 

resistant to the infection (Chvala et al., 2005). The mechanisms explaining this particular tropism are, 

so far, unknown. In addition, non-vector borne transmission of WNV was experimentally 

demonstrated via contaminated food, water or air in birds (Komar et al., 2003). Thus, alternative 

transmission routes of USUV should be assessed using a susceptible avian model. As a matter of fact, 

the domestic canary (Serinus canaria), belonging to the same order (Passeriformes) as the blackbird, 

is a recognized study model of WNV (Hofmeister et al., 2018) and epidemiological evidence has 

shown its natural infection by USUV (Becker et al., 2012, Ziegler et al., 2015, Michel et al., 2019). 

We, therefore, will undertake a preliminary experimental infection of this species with USUV to 

unravel their susceptibility to the virus and to assess their suitability as a model of infection with 

USUV.  

c) In vivo mammalian model: immunocompetent 129/Sv mice 

In the absence of an immunocompetent mouse model, the study of the role of innate immunity 

in the pathogenesis and tropism of USUV infection in mammals is, to date, impossible. Our laboratory 

has a long experience in the development and validation of murine models of infection by many 

viruses. The 129/Sv mouse line is one of the most susceptible laboratory mouse lines for the different 

viruses that we studied. Thus, we will perform an experimental infection of these mice by different 

injection routes. 
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Figure 10: Strategy for the study of the USUV-infection pathogenesis 
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Preamble 

In Belgium, while the circulation of WNV has never been described, USUV was first detected in 2012 

and re-emerged in 2016, causing large outbreaks in avian hosts. In Italy, France, Germany, Austria, 

Croatia and Hungary, the emergence of avian epizootics due to this virus has been concomitant with 

the identification of several cases of human infections. In addition, the circulation of WNV in 

neighboring countries such as France and Germany suggests the strong possibility of this virus 

introduction in the near future. Surveillance of these two viruses in Belgium is, thus, crucial for 

detecting the potential emergence of WNV and for monitoring USUV evolution in the Belgian 

territory, particularly in terms of interaction with local bird species and other potential reservoirs (e.g. 

bats). 

This work, in the absence of an appropriate avian model, also intended to take advantage of the USUV 

epizootic which has begun in 2016 in Belgium to study the host spectrum, tissue and cell tropism and 

the genetic evolution of the virus. In addition, this first step aimed at validating the laboratory 

techniques (RT-qPCR, immunohistochemistry IHC, etc.) and at isolating some representative viral 

strains required for the next steps of this project. As a result, passive surveillance of USUV circulation 

in wild birds and, to a lesser extent, in bats (Pipistrellus pipistrellus) was conducted in southern 

Belgium in 2017 and 2018. Through this study, we described a series of avian species and Pipistrellus 

bats as receptive to infection. We subsequently attempted to demonstrate the involvement of USUV in 

the death of these birds by pathologic and immunohistochemical analysis of tissue sections from 

infected birds. In parallel, we attempted the isolation of some viral strains in order to establish 

experimental infection models. Finally, we characterized, using a "pan-flavivirus" PCR, the phylogeny 

of the detected and/or isolated strains during this study to undercover the genetic evolution of this 

virus in its hosts. The results of this study were published in the journal Vector-borne and zoonotic 

diseases*. 

As part of the surveillance of USUV circulation described here above, a particular event drew our 

attention. In August 2018, high mortalities in common scoters (Melanitta nigra) in five private 

waterfowl parks were detected in Passendale, Merelbeke (Flanders) as well as The Netherlands 

(N = 33). This episode was consistent with WNV infection, known to be highly pathogenic for 

Anatidae and seemed unlikely to be linked to USUV, to which these birds were known to be resistant 

(Chvala et al., 2006). Surprisingly, USUV was indeed the causal agent of this epizootic.  

 

* Supplementary material included in this article are presented in Appendix 2. 



Chapter 3    Experimental secrtion 

78 

Clinical signs observed in scoters included depression, fluffed feathers and sudden death. Necropsy 

revealed splenomegaly and hepatomegaly in most animals. The histopathological lesions consisted 

mainly of subacute necrotizing hepatitis. The RT-qPCR detected USUV RNA and the IHC revealed 

structural antigens of this virus. A complete analysis of the virus genome identified a specific strain 

from the Africa 3 lineage.  

Based on the data generated by the USUV circulation reports in birds (Appendix 1, Table 1), 

seroconversions in 6 species of Anatidae have been reported so far, in the absence of any 

symptomatology or mortality: the Emperor Goose (Chen canagica) (Spain, 2013-2014) (Cano-terriza 

et al., 2015), red-breasted goose (Branta ruficollis) (Switzerland, 2006-2007) (Buchebner et al., 2013), 

mallard duck (Anas platyrhynchos) (Spain 2011, Italy 2012) (Jurado-tarifa et al., 2016; Llopis et al., 

2015), ruddy Shell duck (Tadorna ferruginea), steamer duck (Tachyeres pteneres) (Switzerland, 2006-

2007) (Buchebner et al., 2013) and common swan (Cygnus olor) (Serbia, 2012) (Petrović et al., 

2013a). It is, therefore, the first report of the natural pathogenicity of USUV in an Anseriformes 

species, the common scoter (Melanitta nigra), suggesting that variants of this virus may be pathogenic 

for these species. This work was also published in the journal Vector-borne and zoonotic diseases. 
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Abstract 
 

Wildlife surveillance allowed the monitoring of the zoonotic mosquito-borne Usutu virus (USUV) in birds and bats 

(Pipistrellus pipistrellus) in southern Belgium in 2017 and 2018. USUV-RNA was detected in 69 birds  (of 253) from 15 species, 

among which 7 species had not previously been reported to be susceptible to the infection. Similarly, 2 bats (of 10) were detected 

positive by reverse transcriptase quantitative polymerase chain reaction (RT-qPCR). USUV-associated lesions were mainly found in 

Eurasian Blackbirds (Turdus merula), in which USUV antigens were demonstrated by immunohistochemistry in the brain, heart, 

liver, kidney, intestine, and lung. Partial nonstructural protein 5 gene-based phylogenetic analysis showed several identical or 

closely related strains from 2016, 2017, and 2018 clustering together within Europe 3 or Africa 3 lineages. Further, one USUV strain 

detected in a common chaffinch (Fringilla coelebs) manifested a close genetic relationship with the European 1 strains circulating in 

Hungary and Austria. Our data provide evidence of USUV endemization in southern Belgium in local birds and bats, extension of the 

host range of the virus and ongoing virus introduction from abroad, likely by migratory birds. Our results highlight the need for 

vigilance in the forthcoming years toward new virus-associated outbreaks in birds and possible human infections in Belgium. 

 

Keywords: Usutu virus, Belgium, wild birds, monitoring 
 
 

Introduction 

 
sutu virus (USUV) is a member of the Japanese en- 

cephalitis serocomplex within the family Flaviviridae 

(Kuno et al. 1998). Previously distributed in the African 

continent (Nikolay et al. 2011), USUV has expanded to 

Europe (Weissenböck et al. 2002, 2013, Bakonyi et al. 2007, 

Jöst et al. 2011, Garigliany et al. 2014, Lecollinet et al. 2016) 

and to the middle east (Mannasse et al. 2017). It is trans- 

mitted through the bites of adult ornithophilic mosquitoes 

(Eiden et al. 2018) to avian hosts, which can show different 

clinical forms of infection according to the species, ranging 

from unapparent portage to severe neurological disease and 

death, which often occurs in blackbirds (Turdus merula) 

(Benzarti et al. 2019). Other animals, including rodents 

(shrews) (Diagne et al. 2019), dogs (Durand et al. 2016), bats 

(Cadar et al. 2014), red deer (Garc´ıa-bocanegra et al. 2016), 

and equids (Hassine et al. 2014), can be naturally infected 

with the virus, without reports of associated pathogenicity. 

The zoonotic potential of USUV, initially observed in Africa 

(Nikolay et al. 2011), has been recently documented in Europe 

by the presence of viral RNA or antibodies against the virus in 

blood donor samples (Pierro et al. 2013, Bakonyi et al. 2017b, 

Percivalle et al. 2017). Besides, similarly to its close relative 

West Nile virus (WNV), USUV was shown to cause neuro- 

logical disorders in both immunocompromised (Cavrini et al. 

2009, Pecorari et al. 2009, Kaic et al. 2014) and immuno- 

competent humans (Kaic et al. 2014, Simonin et al. 2018) and, 

thus, constitutes a growing source of public health concern. 

In Belgium, USUV infection was first detected in the Meuse 

Valley in a captive Eurasian bullfinch (Pyrrhula pyrrhula) 

and in a wild great spotted woodpecker (Dendrocopos major), 

both with neurological signs, in 2012  (Garigliany et al. 

2014). Four years later, high bird mortalities linked to 
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2
Bernhard Nocht Institute for Tropical Medicine, WHO Collaborating Centre for Arbovirus and Haemorrhagic Fever Reference and 

Research, Hamburg, Germany. 
3
Faculty of Mathematics, Informatics and Natural Sciences, University of Hamburg, Hamburg, Germany.  



  

81 

 

Table 1. Virological and Immunohistochemical Findings in Birds Examined for Usutu Virus Infection 
in Southern Belgium in 2017 and 2018 

No. of positive/tested 
Bird species 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B.F, Brabant Flamand; Brux, Bruxelles; Hai, Hainaut; IHC, immunohistochemistry; Lie, Liege; Lux, Luxembourg; N, negative; Nam, Namur; 
NT, not tested; RT-qPCR, reverse transcriptase quantitative polymerase chain reaction; Ud, undetermined. 

* Cycle threshold (Ct) values below 32 were regarded as positive, from 32 to 40 as suspicious, and above 40 as negative.  

 

 
Family 

 
Common name 

 
Latin name 

 
Province 

RT-

qPCR* 
RT-PCR 

Pan-flavivirus 

 
IHC 

Virus 
isolation 

Anatidae Canada goose Branta canadensis Nam 1/1 0/1 N N 
 Egyptian goose Alopochen Nam 2/2 1/2 N N 
  aegyptiaca      

 Mallard duck Anas platyrhynchos Lux 1/1 1/1 N N 
 Mute swan Cygnus olor Ud 1/1 0/1 N N 

Accipitridae Common buzzard Buteo buteo Nam 0/5 0/5 NT NT 
 Red kite Milvus milvus Nam 0/1 0/1 NT NT 
Apodidae Common swift Apus apus Lie, Nam 3/12 0/12 N N 
   Lux, Hai     

Charadriidae Northern lapwing Vanellus vanellus Nam 0/1 0/1 NT NT 
Laridae Black-headed gull Chroicocephalus Nam 0/2 0/2 NT NT 

Scolopacidae Greater yellowlegs 
ridibundus 
Tringa melanoleuca Ud 0/1 0/1 NT NT 

Ciconiidae White stork Ciconia ciconia Ud 0/1 0/1 NT NT 
Alcedinidae Common kingfisher Alcedo atthis Nam 0/2 0/2 NT NT 

Columbidae Common wood pigeon Columba palumbus Nam 0/2 0/2 NT NT 
 Domestic pigeon 

European turtle dove 

Columba livia 
domestica 
Streptopelia turtur 

Nam 

Lie 

12/14 

0/1 

2/14 

0/1 

N 

NT 

N 

NT 

Cuculidae Common cuckoo Cuculus canorus Nam 0/1 0/1 NT NT 

Falconidae Common kestrel Falco tinnunculus Nam 0/6 0/6 NT NT 
 Peregrine falcon Falco peregrinus Nam 0/1 0/1 NT NT 
Phasianidae Common pheasant Phasianus colchicus Nam 0/2 0/2 NT NT 

Rallidae Common moorhen Gallinula chloropus Nam 0/2 0/2 NT NT 

Corvidae Carrion crow Corvus corone Lie 0/3 0/3 NT NT 
 Eurasian jay Garrulus glandarius Hai 1/1 0/1 N N 
 Eurasian jackdaw Coloeus monedula Nam 0/1 0/1 NT NT 
 European magpie Pica pica Nam 2/14 1/14 N N 
Fringillidae Common chaffinch 

European greenfinch 

Fringilla coelebs 

Chloris chloris 

Lie, Lux, 
Nam 
Lux 

2/5 

0/5 

2/5 

0/5 

N 

NT 

N 

NT 
 Eurasian bullfinch Pyrrhula pyrrhula Nam 0/1 0/1 NT NT 
Hirundinidae Common house martin Delichon urbicum Nam 0/6 0/6 NT NT 
Muscicapidae European robin Erithacus rubecula Hai, Nam 0/5 0/5 NT NT 

Motacillidae White wagtail Motacilla alba Ud 1/1 1/1 NT NT 

Paridae Great tit Parus major Nam 0/13 0/13 NT NT 
Passeridae House sparrow Passer domesticus Nam, Lie 2/11 0/11 N N 
Prunellidae Dunnock Prunella modularis Nam 0/2 0/2 NT NT 

Regulidae Common firecrest Regulus ignicapilla Nam 0/1 0/1 NT NT 
Sittidae Eurasian nuthatch Sitta europaea Hai 0/1 0/1 NT NT 
Sturnidae Common starling Sturnus vulgaris Nam 0/1 0/1 NT NT 

Sylviidae Garden warbler Sylvia borin Brux, Nam 0/2 0/2 NT NT 

Troglodytidae Eurasian wren Troglodytes Nam 1/3 0/3 N N 

Turdidae Eurasian blackbird 
troglodytes 

Tudus merula Lie, Nam, 37/97 24/97 5/36 4/36 

  

Song thrush 

 

Turdus philomelos 

B.F, Brux, 
Hai 
Lux, Hai 

 

1/8 

 

1/8 

 

N 

 

N 
Ardeidae Grey heron Ardea cinerea Nam 0/2 0/2 NT NT 
 Barn owl Tyto alba Nam 0/4 0/4 NT NT 
 Eagle owl Bubo bubo Ud 0/2 0/2 NT NT 
Strigidae Little owl Athene noctua Nam 0/1 0/1 NT NT 
 Tawny owl Strix aluco Nam 2/4 1/4 N N 

Total    69/253 34/253 5/69 4/69 
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USUV infection were documented all over the country (Cadar 

et al. 2016, Borm et al. 2017, Garigliany et al. 2017, Rouffaer 

et al. 2018), underlining the need for vigilance facing the re- 

emergence and rapid spread of this virus. 

Here, we report the findings of USUV dead bird surveil- 

lance in 2017 and 2018 in southern Belgium, which was 

implemented in 2016 after a massive blackbird die-off in this 

area (Cadar et al. 2016). The passive surveillance also in- 

volved pipistrelle bats (Pipistrellus pipistrellus) and aimed 

(1) to provide up-to-date information about the virus activity 

in the surveilled zone, (2) to explore the host range of USUV 

among local bird species, (3) to investigate USUV infection 

in pipistrelle bats, and (4) to gather insights into the phylo- 

genetic relationship between the circulating strains. 

 
Materials and Methods 

Sample collection and necropsy 

Dead wild birds and bats were submitted for laboratory 

investigations through the Surveillance Network for Wildlife 

Diseases of the Veterinary Faculty of Liège, by the centers 

for the revalidation of animal species living in the wild 

(CREAVES) in Temploux and Namur and by cooperative 

citizens who were media solicited to submit dead birds and/or 

bats to the nearest collection centers. 

 
Detection and isolation of USUV 

Brain and liver samples from dead birds and pipistrelle bats 

were collected and used for the detection of USUV RNA using 

reverse transcriptase quantitative polymerase chain reaction 

(RT-qPCR). Total RNA extraction was conducted as described 

in Garigliany et al. (2017). USUV-specific RT- qPCR  was  

performed  using  the  protocol  described  by  Jöst et al. (2011). 

Extracted RNA samples were further analyzed for the 

presence of flavivirus RNA using a modified pan- flavivirus 

reverse transcription PCR targeting a segment of 

 
the nonstructural protein 5 (NS5) gene (Becker et al. 2012). 

Fresh or frozen brain and liver homogenates of wild birds, 

which were diagnosed USUV positive by RT-qPCR, were 

subjected to virus isolation in African green monkey kidney 

cells (Vero, American Type Culture Collection, CCL-81), as 

described in Savini et al. (2011). 

At necropsy, a macroscopic lesion score was established for 

each case for hepatomegaly and splenomegaly, both con- 

sidered as typical lesions in case of USUV infection (0: 

absence of hypertrophy, 1: slight hypertrophy, 2: moderate 

hypertrophy, 3: severe hypertrophy). The liver, brain, spleen, 

kidney, heart, and lung samples were collected for histo- 

logical and immunohistochemical analyses. Tissue samples 

were fixed in 4% neutral buffered formalin. After embed- 

ding in paraffin wax, tissue sections were stained with he- 

matoxylin and eosin and examined microscopically. 

Microscopic scores were assigned for each tissue corre- 

sponding to RT-qPCR-positive birds based on the presence of 

inflammation, necrosis, or hemorrhage (0: absent, 1: mild, 2: 

moderate, 3: severe) in the collected organs. Then, the dif- 

ference between the cycle threshold (Ct) of the sample and 

the corresponding Ct value of the messenger RNA of beta- 

actin (DCt) was calculated to determine the coefficient of 

correlation (R
2
) between the relative amounts of viral genome 

to both macroscopic and microscopic lesion scores assigned 

to each of the positive cases. 

Paraffin-embedded sections from positive birds were sub- 

jected, after dewaxing and rehydration, to immunohistochem- 

istry (IHC) as described in Garigliany et al. (2017) using the 

monoclonal anti-E protein 4E9 antibody at a 1/200 dilution. 

 
Genetic characterization of the detected USUV strains 

To investigate the phylogenetic relatedness between the 

circulating Belgian strains in 2017 and 2018 and those available 

in databases, partial NS5 gene sequences were aligned using 

ClustalW implemented in Geneious 10.2.3 (Biomatters, New 

 

FIG. 1. Number of collected and USUV-positive dead birds and bats during seasonal outbreaks in southern Belgium in 2017 
(A) and 2018 (B). USUV, Usutu virus. 
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Table 2. Summary of Macroscopic and Microscopic Findings Observed in Usutu Virus-Infected Birds 
 

  
Blackbird 

Egyptian 
goose 

Eurasian 
jay 

House 
sparrow 

Eurasian 
magpie 

Tawny owl Song 
thrush 

Gross findings 
Nutritional status 

       

Good 26/36 2/2 1/1 2/2 2/2 — — 
Mild emaciation 6/36 — — — — — — 
Cachexia 4/36 — — — — 1/1 1/1 
Lung Hemorrhage 5/36 Fibrinous 

pneumonia 
— — — Fibrinous — 

pneumonia 
Splenomegaly 22/36 (2 atrophic) 0/2 1/1 1/2 1/2 0/1 0/1 
Hepatomegaly 11/36 0/2 0/1 0/2 0/2 0/1 0/1 
Enteritis 9/36 0/2 0/1 0/2 0/2 0/1 1/1 

Histological findings        

Nonpurulent encephalitis 25/36 (11/36 autolysis) 0/1 0/1 0/2 0/2 0/1 — 

Myocardial necrosis 21/36 (6/36 autolysis) 
1 autolysis 

0/2 0/1 0/2 0/2 0/1 — 
Pneumonia/hemorrhage 14/36 2/2 0/1 0/2 0/2 1/1 — 
Hepatitis/hepatonecrosis 19/36 (9/36 autolysis) 1/2 0/1 0/2 0/2 0/1 — 
Splenitis/necrosis 17/36 (9/36 autolysis) 0/2 1/1 1/2 1/2 0/1 — 

Nephritis/tubular necrosis 13/36 (11/36 autolysis) 0/2 1/1 0/2 0/2 0/1 — 

 

Zealand), with representative USUV strains retrieved from 

GenBank. The phylogenetic tree was then constructed as de- 

scribed in Cadar et al. (2016). Complete genomic sequences of 

USUV strains isolated in cell culture in 2017 were obtained by 

multiple overlapping PCRs using 17 pairs of primers and 

Sanger sequencing as in Cadar et al. (2014). The full-length 

genome sequences were generated using Geneious v10.2.3. The 

consensus sequences were subsequently aligned with full-

genome or polyprotein coding sequences of all USUV strains 

available in databases to evaluate specific variations within 

these new strains. Both the nucleotide and the deduced amino 

acid sequences were compared using Geneious v10.2.3. 

Results 

Detection of USUV infection and pathological findings 

In total, 253 dead birds were collected in 2017 and 2018, of 

which 27.3% and 13.4% were found USUV positive by RT- 

qPCR and pan-flavivirus RT-PCR, respectively (Table 1). Ten 

dead bats were tested for the presence of USUV RNA, two of 

which contained USUV RNA (one found in Namur in 2017 

and the other in Liege in 2018). The latter also tested positive 

with the pan-flavivirus RT-PCR. The first positive case in 

2017 was collected in April while that of 2018 was found   

1 month earlier (Fig. 1). All the bats were tested RT-qPCR 

negative for the presence of Lyssavirus (data not shown). 

 

 

 

 

FIG. 2. Pathological findings in 
a USUV-positive blackbird 
dead in August 2017, 
hematoxylin and eosinn,  Scale  
bars:  50 lm.  (A) Cerebral 
cortex, blackbird. Lymphocytic 
perivascular encephalitis. (B) 
Heart, blackbird. Myocardial 
necrosis with mild infiltration of 
heterophils and lymphocytes. (C) 
Liver, blackbird. Focal 
coagulative necrosis with 
massive heterophilicc and 
lymphocytic infiltrationn. (D) 
Kidney, blackbird. Acute focal 
tubular necrosis with 
lymphocytic interstitial 
nephritis. 
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FIG. 3. Correlation between the relative amount of Usutu 
genomic RNA (DCt = Ct sample - Ct of messenger RNA of 
beta-actin) and the macroscopic lesional score attributed to 
birds. Ct, cycle threshold. 

 
A complete necropsy could not be conducted in seven birds 

due to the autolytic status of the carcasses. Similarly, the 

microscopic analysis could not be performed in 37 (53.6%) 

of the positive birds detected by RT-qPCR due to autolysis. 

Lesions observed in USUV-infected cases are summarized in 

Table 2 and shown in Fig. 2. 

A low coefficient of correlation (R
2
 = 0.1827 and 0.1446, 

respectively) was found between the relative abundance of 
viral genomes (DCt) and the score of splenomegaly and 

hepatomegaly or the microscopic lesion scores, respectively 

(Fig. 3). 

USUV was successfully isolated from fresh liver and brain 

tissues of four blackbirds collected in August 2017, all found 

in the province of Liege (Seraing, Grivegnee, Villers-aux- 

tours, and Richelle) and each of these strains was named 

accordingly. No virus isolates were obtained from dead birds 

in 2018. 

 
The IHC revealed the presence of USUV antigens in the 
brain, heart, lung, liver, kidney, and spleen of four black- 
birds, which were necropsied shortly after death and another 

blackbird stored at -20 C before necropsy (Fig. 4). 

The labeled cells corresponded to degenerate neurons, car- 
diomyocytes, pneumocytes, renal tubular cells, enterocytes, 

endothelial cells in the spleen, lymphocytes, and macrophages. 

 
Genetic characterization of the detected USUV strains 

The amplicons obtained with the pan-flavivirus RT-PCR 

(partial gene sequences coding for the NS5 protein) were 

submitted to GenBank (MK230894-MK230924). Phyloge- 

netic analysis showed that most Belgian strains belong to 

Europe 3 lineage and some to Africa 3 lineage (Fig. 5). Be- 

sides, one strain, detected in a common chaffinch (Fringilla 

coelebs), was clustered in Europe 1 lineage. 

Full-genome sequences of the four USUV strains isolated in 

cell culture were successfully obtained: Villers/2017 

(Genbank: MK230890), Seraing/2017 (Genbank: MK230892), 

Richelle/2017 (Genbank: MK230893), and Grivegnee/2017 

(Genbank: MK230891). The first three strains revealed to be 

in Europe 3 lineage, while the fourth was classified in Africa 

3 lineage (Fig. 4). 

The genetic distance calculated with the complete nucle- 

otide sequence between the four strains ranged between 

97.1% and 99.6%. At the amino acid level, the strains 

Villiers/2017 and Seraing/2017 were almost identical (99.9%, 

5 amino acid substitutions) and showed *99.0% of simi- 

larity with Richelle/2017 and Grivegnee/2017 (for more de- 

tails, see Supplementary Tables S1 and S2). 

Comparative analysis of the four USUV  isolates  with all 

USUV sequences available in the databases revealed     3 

unique silent mutations in Villers/2017, 4 in Grivegnee/ 2017 

and Richelle/2017,  and 10 others  in Seraing/2017. A few 

substitutions resulted in unique changes in amino acid 

 

 

 

 

 

 

 

 
 
FIG. 4. Immunohistoche- 
mical labeling of USUV an- 
tigens, natural infection with 
USUV, Blackbird. Mayer 
hematoxylin counterstain, scale 
bars:    50 lm.    Staining    in 
antigen-positive cells from the 
heart (A), lung (B), liver (C), 
and small intestine (D). 
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FIG. 5. Phylogenetic tree of USUV variants circulating in wild birds and bats, Belgium, 2017–2018. The tree is based on the 

partial NS5 gene and shows the placement of USUV variants that were detected during the surveillance period in comparison 

with representative USUV sequences from GenBank. Statistical supports of grouping from Bayesian posterior probabilities 

(clade credibilities ‡ 90%) are indicated at the nodes with asterisks. To improve visualization, Africa 1 lineage (KC754958 

Central African Republic_Mosquito_1969) is not represented in the figure, and phylogenetic positions of the newly USUV 

detected strains are bold. Taxon information includes the GenBank accession number, isolation/detection year, and country in 

which the virus was detected. Scale bar indicates the mean number of nucleotide subst itutions per site. 
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residues of Seraing/2017 (K1576R and G2325I), Richelle/ 

2017 (T369M), and Grivegnee/2017 (S125F and M2094I) 

(for details, see Supplementary Table S3). 

 

Discussion 

USUV is an emerging mosquito-borne flavivirus highly 

pathogenic to several wild bird species. After its emergence 

in Italy in 1996 (Weissenböck et al. 2013), it has spread to 

several European countries, including Belgium in 2012, where 

it re-emerged in 2016 (Cadar et al. 2016, Borm et al. 2017, 

Garigliany et al. 2017, Rouffaer et al. 2018). In this study, 

we show that USUV infection in wild birds occurred in 

southern Belgium during the two subsequent years (2017–

2018). In addition, the virus was detected in overwintering 

C. pipiens pools collected in 2016 by RT-qPCR (Cadar et 

al. 2016) and in bats in 2017 and 2018. Together, these 

findings highly suggest that USUV has managed to 

establish a transmission cycle between local bird, bat, and 

mosquito species and to overwinter in affected areas, 

where it is becoming endemic. USUV infections were 

detected in >90 bird species belonging to 35 families, but 

massive die-offs were mainly reported in blackbirds and 

great gray owls (Strix nebulosa) (Benzarti et al. 2019). In 

this study, more than half of the RT-qPCR-positive cases 

were blackbirds. Hepatomegaly, splenomegaly, 

necrotizing and nonsuppurative inflammation in these 

tissues were indicative of a viral disease but without 

correlation to the abundance of the virus within the tissues. 

Many hypotheses can explain this observation, such as the 

poor preservation of viral RNA, the difference in the stages 

of infection (Lecollinet et al. 2016), or the occurrence of 

simultaneous fatal infection with other pathogens. USUV 

RNA was found in a series of new bird species, namely the 

Egyptian goose (Alopochen aegyptiaca), mallard duck (Anas 

platyrhynchos), common swift (Apus apus), common chaf- 

finch (F. coelebs), Eurasian wren (Troglodytes troglodytes), 

tawny owl (Strix aluco), and white wagtail (Motacilla alba). 

The mere presence of USUV RNA does not mean that the 

virus infection was the cause of death (Savini et al. 2011). 

Pathognomonic lesions and USUV antigen were not observed 

in these birds, and this may indicate a simple portage or a 

hyperacute infection (Lecollinet et al. 2016). These species 

might nevertheless play a role in the transmission cycle of the 

virus. The potential pathogenicity of USUV for these species, 

in particular the development of virulence in Anatidae, de- 
serves further investigations. 

The pan-flavivirus surveillance using conventional RT- 

PCR demonstrated that no other flavivirus than USUV is 

circulating in birds and bats from Belgium. Such surveillance 

is very important for monitoring the possible introduction 

of WNV, which is endemic in many southern, eastern, and 

central European countries and has recently emerged in 

Germany in birds and horses (Lühken et al. 2019). 

Phylogenetic analysis revealed the reoccurrence of the 

same or closely related USUV strains in southern Belgium 

during three consecutive years and supports the endemiza- 

tion of these strains rather than their constant introduction 

each season. The potential role of Pipistrellus bats in the 

overwintering of the virus and in the epidemiological cycle of 

USUV as an amplifying host was suggested (Cadar et al. 

2014) and here sustained by the detection of bat-derived 

strains phylogenetically similar to the strains circulating in 

birds in Belgium. In the meantime, ongoing introduction 

events of USUV are demonstrated in this study by the 

detection of a new USUV strain in 2018 from a common 

chaffinch, which was classified in Europe 1 lineage. The 

distribution of European 1 lineage strains was previously 

restricted to Austria, Hungary, and Serbia. While in Austria 

the circulation of viruses from this lineage has not been 

reported since 2005 (Chvala et al. 2007), virus activity of 

European 1 lineage strains has been described in Hungary in 

2005, 2010, 2011, and 2015 (Bakonyi et al. 2017a) and 

lineage expansion to Serbia was detected in 2014 (Kemenesi 

et al. 2018). The introduction route of USUV Europe 1 

lineage strain in Belgium is unclear. Mechanisms such as 

bird migration (Engel et al. 2016), international bird trade, or 

mosquitoes dispersal could be involved (Ziegler et al. 2016). 

Finally, due to its increasingly recognized zoonotic poten- 

tial and to our data of USUV continuous circulation, public 

health authorities and physicians in Belgium should be aware 

of the risk of USUV infection in humans and include this virus 

in their differential diagnosis of neurological disease. Con- 

tinuous monitoring of bird deaths combined with serological 

studies in wild birds and other vertebrate hosts of USUV 

should be conducted in Belgium with the aim to keep track of 

the virus evolution, to fully understand the virus dynamics, 

and to provide an early prediction of human infections. 
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Abstract 

 
While fatal infections caused by the Usutu virus appeared to concern only passerines (especially the blackbird) 
and Strigiformes (especially the great gray owl), we report herein that the virus also naturally causes a fatal 
disease in an Anseriformes species, the common scoter (Melanitta nigra). 
 
Keywords: Usutu virus, common scoter, Belgium, the Netherlands 
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Usutu virus (USUV) is a positive sense, single-stranded 

RNA virus included in the mosquito-borne cluster of the genus 

Flavivirus, family Flaviviridae (Lindenbach et al. 2013). Its 

natural life cycle mainly involves ornithophilic mosquitoes 

(mostly Culex spp.) as vectors and competent birds (those 

expressing viremias sufficiently high to infect naive 

mosquitoes) as amplifying hosts, whereas other vertebrates, 

including humans, are considered incidental hosts (Nikolay et 

al. 2011). Most human infections remain asymptomatic, but 

symptoms ranging from transient flu-like syndrome (fever, 

headache) to neurological illness have been observed in some 

cases (Gaibani and Rossini 2017). USUV was detected for the 

first time in 1959 from Culex neavei captured near the Ndumo 

game reserve, South Africa (Woodall 1964). Over the 

following years, the virus was isolated from mosquitoes in 

several African countries, until its identification as the 

causative agent of mass mortalities in Eurasian blackbirds 

(Turdus merula), in Tuscany, Italy, 1996, barn swallows 

(Hirundo rustica), and great gray owls (Strix nebulosa) in and 

around Vienna (Austria) in 2001 (Weissen-bo¨ck et al. 2002). 

In the following years, the virus expanded to several European 

countries, where susceptibility to infection (seropositivity 

and/or viropositivity) has been detected in 93 bird species and 

susceptibility to disease (viropositivity in dis-eased/found-

dead birds) has been detected in 36 bird species (Benzarti et 

al. 2019). Eurasian blackbird (T. merula) is the most affected 

species in Europe where epidemics were demonstrated to 

cause a 15.7% decline in population (Lu¨hken et al. 2017). 
Of the thousands of seropositive bird sera detected so far, 

only about 20 belonged to the Anatidae family: 1 emperor 
 

 
 
       

goose [Chen canagica (Cano-terriza et al. 2015)], 1 Egyp-tian 
goose [Alopochen aegyptiaca (Benzarti et al. 2019)], 3 

mallard ducks [Anas platyrhynchos (Llopis et al. 2015, 
Jurado-tarifa et al. 2016, Benzarti et al. 2019)], 1 red-breasted 
goose [Branta ruficollis (Buchebner et al. 2013)], 1 ruddy 
shell duck [Tadorna ferruginea (Buchebner et al. 2013)], 1 
steamer duck [Tachyeres pteneres (Buchebner et al. 2013)] 
and 13 Eurasian coots [Fulica atra (Strakova et al. 2015, Lim 
et al. 2018)]. Here we report, for the first time in an Anatid, 

the occurrence of a fulminating, fatal disease unequivocally 
caused by natural infection by USUV. 

 

The Study 
 

The infectious episode took place during August 2018 in 

five different locations (from north to south: ‘tWaar, Schie-

dam, Leerdam, Merelbeke, and Passendale), which describes a 

polygon spread along the southern edge of the North Sea, 

straddling Belgium and The Netherlands (Fig. 1). These were 

five private parks whose owners are waterfowl lovers who 
hold several species simultaneously, among which are the 

long-tailed duck (Clangula hyemalis), Harlequin duck (His-

trionicus histrionicus), spectacled eider (Somateria fischeri), 

velvet scoter (Melanitta fusca), or common scoter (Melanitta 

nigra). Recently, they reported a similar story that specifi-cally 

concerned common scoters without affecting the other anatids 

in their collection. The testimony of D.H. of Merelbeke is 

emblematic of the five events. Five common scoters were 

born on July 12, 2018. On the morning of August 7, one of the 

birds was found dead while he had presented no sign

1
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FIG. 1. Location of the five private parks where the 34 common scoters died from USUV in August 2018. They form an 
elongated polygon spread along the southern edge of the North Sea, straddling Belgium and the Netherlands. From north 
to south: ‘tWaar, Schiedam, and Leerdam in the Netherlands, then Merelbeke and Passendale in Belgium. USUV, Usutu 
virus. 
 

 

the day before. On the evening of the same day, two other 2017, no disease signs were recorded in held common 
young scoters showed signs of illness: drowsy, ruffled, and scoters, while blackbirds and sparrows living in the same 
without appetite. They were found dead the next morning. parks died in large numbers due to USUV. Hence the hy- 
On August 10, the last two young birds were found dead pothesis of a recent genetic variation that would have made 
too. Between August 15 and 30, six adult birds showed the virus virulent for common scoters. To examine this 
signs of illness for 3–4 days and then died. In all, 34 hypothesis, the genome of the virus present in the spleen of 
common scoters died in August 2018 at the five sites (11 in one of Passendale’s birds was amplified by RT-PCR using 
Passendale, 11 in Merelbeke, 7 in Leerdam, 3 in ‘tWaar, overlapping primers and sequenced by the Sanger method 
and 2 in Schiedam) without any of the other waterfowls (GenBank #MK419834). To investigate the genetic rela- 
occupying the same parks or aviaries showing signs of tionship between the USUV strain responsible for this out- 
disease. Twenty were autopsied (>2 per location). The only break and the representative USUV strains, a phylogenetic 
reproducible macroscopic lesions in common were hepa- tree was subsequently generated as described in Cadar et al. 

tomegaly  and  splenomegaly,  similar  to  those  seen  in (2017). The common scoter virus belongs to the Africa 3 
blackbirds and gray owls. Furthermore, as in the latter, lineage and its phylogenetically closest cousin has been 
histopathological examination revealed necrotizing lym- sequenced from a blackbird found dead in Leipzig, Ger- 
phoplasmacytic hepatitis. The genome of the USUV was many, in 2016 (KY199557, Fig. 3). The genome of the virus 

detected by reverse transcription qPCR in the spleen of all carries 13 unique silent nucleotide substitutions: C337T, 
the birds tested, and the proteins of the virus were detected C1935T, A2172G, C3015T, C4030T, G5823A, C5874T, 
in several organs by immunohistochemistry (Fig. 2). These C6204T, A/T/C7500G, C7779T, C7921T, T10416G, and 
observations suggest that the birds studied here succumbed T10937C.  Furthermore,  one  unique  nonsilent  substitu- 
to a fatal infection with the USUV. To our knowledge, the tion was also detected, C3667T, leading to Leu1191Phe 
common scoter is the only species within the Anatidae in substitution in the NS2a protein. The effective role of these 
which virulence has been detected. 15 candidate mutations in adaptation to and development  

The evidences collected from the bird owners also con- of viral virulence in common scoters still remains to be verge 
on another aspect: during the summers of 2016 and examined. 
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FIG. 2. Immunohistochem- 
istry of USUV-infected 
myocardium (A) and liver 
(B) from a common scoter     
using a USUV-specific murine 
monoclonal antibody showing 
USUV-positive cells, singly or 
in clusters. Scale bar = 100 
lm. 
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FIG. 3. Bayesian tree representing the phylogenetic placement of USUV strain from the common scoter (gray text) compared 
with representative USUV strains based on partial NS5 gene nucleotide sequences. GenBank accession numbers, countries and 
hosts of origin for sequences, as well as years of detection of USUV strains are indicated on the branches. Scale bar indicates 
mean number of nucleotide substitutions per site. Figure 3 can be viewed in greater detail online. 
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Preamble 

Embryonated chicken eggs (ECE) have been widely used for the production of human and 

veterinary vaccines (Blyden and Watler, 2010; Ianconescu et al., 1975; Lin et al., 2015), as well as for 

the amplification and study of important flaviviruses for humans, such as ZIKV (Goodfellow et al., 

2016, Thawani et al., 2017) and YFV (Abreu Manso et al., 2015, Ishikawa et al., 2014). Although they 

are able to replicate many pathogenic flaviviruses for birds, such as WNV (Crespo et al., 2009) and 

TMUV (Sun et al., 2014), ECE were reported to resist USUV infection (Bakonyi et al., 2005, Segura et 

al., 2018) and they did not amplify the virus from positive samples of dead birds in Italy, unlike the Vero 

cells used in the same study (Savini et al., 2011). These results, quite unexpected, were explained by the 

resistance of the chicken to the viral infection in the natural and experimental conditions (Chvala et al., 

2005) and by the resistance of the cells originating from this species (fibroblasts and liver cells of 

chicken embryos) cultured in vitro (Savini et al., 2011). This argument is, however, questionable, as the 

susceptibility of experimental models of USUV infection may differ even though they derive from the 

same bird species. For example, while USUV has not been associated with experimental pathogenicity 

or tissue infection in domestic geese (Chvala et al., 2006), tissue replication in goose embryos and 

cytopathic goose embryo fibroblasts have been described (Bakonyi et al., 2005). 

The chicken embryo is an immunocompetent, inexpensive, easy to handle and ethically 

acceptable model. Similarly, it is able to closely reflect the development of the human fetus and is 

suitable for drug screening and large-scale virus production for vaccine development (Pena et al., 2018, 

Schilling et al., 2018). Our experience with ECE shows that many viruses can be amplified in this 

model, with or without an adaptation phase. On these bases, and in order to characterize the 

pathogenicity in ovo of the genetically different strains of USUV, we injected four viral strains (two 

isolated in our laboratory and two reference strains provided by Istituto Zooprofilattico Sperimentale 

dell'Abruzzo e del Molise Giuseppe Caporale (Teramo, Italy)) to ECE. 

We succeeded in demonstrating that, contrary to what is described in the literature, USUV is 

able not only to replicate in ECE but also to elicit a marked virulence and an extended cellular tropism. 

Then, as we found that the chorioallantoic membrane (CAM) was a predilection site for viral replication, 

we isolated cells from this tissue and evaluated the kinetics of replication of USUV strains using this 

model in vitro. The following report is the first to use chicken embryo and CAM derived cells as 

experimental models to study the histopathological features and viral tropism involved in the 

pathogenesis of USUV infection. 
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Abstract: Usutu virus (USUV) is a mosquito-borne flavivirus, closely related to the West Nile virus 

(WNV). Similar to WNV, USUV may cause infections in humans, with occasional, but sometimes 

severe, neurological complications. Further, USUV can be highly pathogenic in wild and captive birds 

and its circulation in Europe has given rise to substantial avian death. Adequate study models of this 

virus are still lacking but are critically needed to understand its pathogenesis and virulence spectrum. 

The chicken embryo is a low-cost, easy-to-manipulate and ethically acceptable model that closely 

reflects mammalian fetal development and allows immune response investigations, drug screening, 

and high-throughput virus production for vaccine development. While former studies suggested that 

this model was refractory to USUV infection, we unexpectedly found that high doses of four 

phylogenetically distinct USUV strains caused embryonic lethality. By employing 

immunohistochemistry and quantitative reverse transcriptase-polymerase chain reaction, we 

demonstrated that USUV was widely distributed in embryonic tissues, including the brain, retina, and 

feather follicles. We then successfully developed a primary cell line from the chorioallantoic 

membrane that was permissive to the virus without the need for viral adaptation. We believe the 

future use of these models would foster a significant understanding of USUV-induced 

neuropathogenesis and immune response and allow the future development of drugs and vaccines 

against USUV. 
 

Keywords: flavivirus; chicken embryo; model; Usutu virus; chorioallantoic membrane; primary 

culture; replication 

 

 

1. Introduction 

    Usutu virus (USUV) is a zoonotic arbovirus related to Japanese encephalitis (JEV) and West Nile 

(WNV) viruses (genus Flavivirus, family Flaviviridae) [1]. Initially restricted to Africa, it emerged in 

Europe in 1996 and managed to establish an endemic mosquito–bird life cycle and to co-circulate with 

WNV in many European countries [2,3]. Further, its rapid geographic spread across Europe led to a 

noteworthy recrudescence of infections in birds, recorded in over 96 species from 36 families [4– 6], as 

well as substantial avian mortalities, especially in Eurasian blackbirds (Turdus merula) [7,8]. 

     As for WNV, most human USUV infections are asymptomatic. In total, more than 80 cases of 

subclinical infections were described in blood donors or persons with risk of exposure in Italy, Serbia,  

the  Netherlands,  and  Germany  during  WNV  surveillance  surveys,  until  now  [9–13]. 
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Seroprevalence studies showed that humans are more exposed to USUV than to WNV in northern 

Italy, where both viruses co-circulate [11,12]. Rare cases with mild flu-like illness or neuroinvasive 

disease may, however, occur due to USUV infection. Between 2009 and 2018, more than 32 USUV 

symptomatic infections were reported in humans [14–16], including cases with meningoencephalitis 

[14,15,17–19]. Signs like headache, fever, nuchal rigidity, hand tremor, hyperreflexia [19], and facial 

paralysis [20] were described. Whether these cases of infection represent an emerging part of the 

iceberg and whether the incidence of USUV diseases may be underdiagnosed is still uncertain [19]. In 

fact, USUV might be misdiagnosed as WNV when the signs are quite similar and the diagnosis is 

based only on antibody detection due to cross-reactivity [21]. Besides, given the similarities in the 

biological, ecological, and epidemiological properties with WNV, USUV has the potential to be 

introduced into North America in the future [22]. Further, the ability of RNA viruses to mutate rapidly 

and adapt to their hosts is well known [23] and USUV could emerge as a major risk for public health 

in the forthcoming years or decades. Thus, there is an urgent need for research work into this virus 

using appropriate experimental models. 

Embryonated chicken eggs (ECE) are considered a valuable, low-cost and ethically acceptable model 

for human and veterinary [24–26] vaccine manufacturing and for the amplification and study of 

important flaviviruses for humans, such as Zika virus (ZIKV) [27,28] and Yellow Fever virus [29,30]. 

Prior studies suggested that ECE were resistant to USUV infection [31,32] and did not amplify the 

virus from positive dead bird samples in Italy, unlike Vero cells used in the same study [8]. In 

contrast, chicken embryos were successfully infected with other mosquito-borne flaviviruses known to 

be pathogenic for birds, such as WNV [33] and Tembusu virus [34]. Hence, the finding that ECE were 

refractory to USUV infection was unexpected, as birds are known to be the most susceptible hosts for 

USUV [8,31]. Previous studies using the MR766 ZIKV strain showed that primary embryonic chicken 

cells were not susceptible to infection [35], while recent studies demonstrated that the DF-1 chicken 

fibroblast cell line [36] and chicken embryos were susceptible to infection by currently-circulating 

ZIKV strains [27,28]. Therefore, to characterize the pathogenicity in ovo of contemporary USUV strains 

[37] and to research for a useful avian model for the study of this epornitic virus, we inoculated ECE 

with high doses of a USUV strain that we isolated during an avian outbreak in Belgium in 2017 [37]. 

Unexpectedly, this USUV strain replicated in the allantoic fluids (AFs) and embryonic tissues and 

induced dose-dependent mortality rates in chicken embryos. We subsequently infected ECE with three 

other strains, each representative of a different lineage of USUV (Africa 3 and Europe 1 and 2). In 

parallel, as we identified the chorioallantoic membrane (CAM) as a predilection site for viral 

replication, we isolated cells from this tissue and assessed the growth kinetics of USUV strains using 

this in vitro model. 
 

2. Materials and Methods 
 

2.1. Viruses and Embryonated Chicken Eggs 

Size-matched fertile chicken eggs (Lohmann Brown strain) were obtained from De Biest 

(Kruishoutem, Belgium). USU-BE-Seraing/2017 (Genbank: MK230892, lineage: Europe 3, passage 5) and 

USU-BE-Grivegnee/2017 (Genbank: MK230891, lineage: Africa 3, passage 5) strains were isolated in our 

laboratory from dead Eurasian blackbird (Turdus merula) tissues collected in Belgium in 2017 [37]. 

USUV strain Vienna 2001 (Genbank: AY453411, lineage: Europe 1, passage 17) was isolated from a dead 

blackbird in 2001 in Austria and UR-10-Tm strain (GenBank: KX555624, lineage: Europe 2, passage 5) 

was isolated from a dead blackbird in 2010 in Italy. Viruses were amplified in African Green Monkey 

Vero cells (ATCC CRL-1586 VERO C1008) using Dulbecco’s Minimum Essential Medium (DMEM, 

Lonza, Verviers, Belgium) cell culture medium supplemented with 1% penicillin/streptomycin. The 

culture supernatants were titrated by the 50% tissue culture infective dose (TCID50) technique and kept 

at –80 °C until use. 
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2.2. In Ovo Characterization of USU-BE-Seraing/2017 

For the survival study, three different doses of USU-BE-Seraing/2017 strain (104, 105, or 106 TCID50 

dispersed in 100 µL of infected Vero cell culture supernatant diluted using DMEM) were each injected 

into nine 10-day-old ECE via the allantoic route. The eggs were subsequently incubated together with 

nine mock-infected controls at 37.5°C and 55% relative air humidity. All eggs were daily checked by 

candling for embryonic vitality during 6 days post-infection (dpi). After the identification of 

embryonic death, the corresponding allantoic liquid was harvested and samples from the CAM, liver, 

skeletal muscle, heart, and brain were collected and examined by histology and immunohistochemistry 

(IHC) as in [38]. Virus isolation in 24-well plates containing a confluent monolayer of Vero cells was 

attempted from the allantoic fluid and liver tissues of each dead embryo [8]. 

To study the time-course of infection using the USU-BE-Seraing/2017 strain, a set of 62 ECE in the 

tenth day of development was incubated at 37.5°C following allantoic cavity inoculation with 100 µL 

of infected Vero cell culture supernatant yielding an infectious dose of 105 TCID50. As negative 

controls, 30 eggs were injected via the allantoic route with 100 µL of virus-free DMEM. Over 5 dpi, 

dead embryos were opened and AFs were harvested to quantify RNA loads by RT-qPCR. In parallel, 

eight live infected and six uninfected age-matched embryos were randomly selected each day for 

euthanasia by decapitation. AF samples (200 µL) from the infected embryos were harvested to assess 

viral replication by RT-qPCR. Tissue samples from the CAMs, livers, hearts, and brains of five 

embryos were collected for RT-qPCR, histology, and IHC examination [38]. Viral RNA copies (VRC) in 

each tissue were calculated using a standard curve, which was constructed as described in [39]. The 

remaining embryos (three infected and one uninfected) were dissected as follows: for each embryo, 

the head, whole wings, and whole legs were separated from the trunk, which was transversely 

sectioned. All fragments were then immersed in 10% neutral buffered formalin for histopathological 

examination. On day 5 post-infection (pi), embryos were weighted to evaluate the impact of USUV 

infection on their growth. 
 

2.3. Virulence of other USUV Strains in ovo 

To compare the virulence of USU-BE-Seraing/2017 strain in ovo with that of other USUV strains, three 

different doses of USU-BE-Grivegnee/2017, Vienna 2001, and UR-10-Tm strains (104, 105, or 106 TCID50 

dispersed in 100 µL of infected Vero cell culture supernatants diluted using DMEM) were each 

injected into nine 10-day-old ECE via the allantoic route. The ECE were kept at a controlled 

temperature of 37.5 °C and 55% relative air humidity. The eggs were then candled daily over 6 days. 

Upon detection of embryo mortality, the corresponding egg was opened and processed as previously 

described. 
 

2.4. Preparation of Primary Chorioallantoic Membrane Cells 

Primary chicken CAM cells were prepared from one 10-day-old embryo as follows: the CAM was 

carefully dissected, washed with phosphate-buffered saline (PBS, Gibco), and then minced into small 

fragments using a sterile blade. Next, the tissue was digested with 5 mL of TrypLE Select solution 

(Gibco, Life Technologies) at 37 °C for 10 min in a 15 mL sterile tube. The trypsinate was homogenized 

in the middle of the reaction by vigorous agitation of the tube. Digestion was stopped by adding 10 

mL of DMEM, supplemented with 10% fetal bovine serum and 1% penicillin/streptomycin. After 

centrifugation at 400 g for 5 min, the supernatant was removed and CAM cells were re-suspended in 

10 mL of the same cell culture medium. Next, the cells were filtered through a 100 µm filter and 107 

cells were distributed in a 25 cm2 flask. The cells were subsequently incubated at 37 °C with 5% CO2. 

The culture medium was renewed every three days and confluence was obtained within 7 days. The 

cells were passaged in a 75 cm2 flask; every 10 days, subcultures were obtained with a split ratio of 

1:3. 

http://www.mdpi.com/journal/viruses


Viruses 2020, 12, 531 
 

100 

 Viruses 2020, 12, 531; doi:10.3390/v12050531 www.mdpi.com/journal/viruses 

 

 

2.5. Characterization of USUV Strains Growth Kinetics in Chorioallantoic Membrane Cells 

Chicken CAM cells (passage 4) were seeded in 24-well culture plates to a confluence of 80%. The four 

USUV strains were diluted in DMEM supplemented with 1% penicillin/streptomycin to three different 

multiplicities of infection (MOI, 0.1, 0.01, and 0.001). Then, cells were rinsed once with PBS and each 

inoculum was added to 3 wells (1mL per well). After 4 h of incubation at 37 °C, the inoculums were 

removed and the cells were washed with PBS. Fresh DMEM supplemented with 1% 

penicillin/streptomycin were added to each well (2mL per well) and the cells were incubated at 37 °C 

and 5% CO2 for the duration of the experiment. Mock-infected CAM cells incubated with an 

uninfected Vero cell culture supernatant were used as controls. For 6 days, 200 µL of supernatant was 

harvested daily from each well and held at −80 °C in cryotubes for viral absolute quantification by RT-

qPCR, as previously described. Cell monolayers were visually controlled for the presence of 

cytopathic effects (CPE). By the end of the experiment, cells were rinsed with PBS, fixed with 1 mL of 

4% paraformaldehyde and subsequently stained by IHC as in [37], but without the antigen retrieval 

step. 
 

2.6. Statistical Analyses 

Survival curves were plotted and compared using the log-rank and Gehan-Breslow Wilcoxon tests 

(GraphPad Software, La Jolla, CA). 

To compare the RNA load per organ per day of infection, the Statistical Analysis System (SAS) 

Univariate procedure was used to test the normality of the data. Logarithmic transformation was 

performed to normalize the distribution of the data, which was revealed as nonparametric. The 

general linear model (Proc GLM, SAS 2001) was used to test the effects of the day, organ, or strain and 

day-organ interaction on the studied variables. The same procedure was used to compare viral load 

per strain per MOI in CAM cells. The comparison between the infected embryos weights with those of 

age-matched uninfected ones was performed by analyses of variance (ANOVA). The GLM was used 

to compare the viral RNA loads in the AFs of infected euthanized embryos per day of infection. All 

tests used in the previous analyses were implemented in SAS (SAS Institute Inc., Cary, NC, USA). A p 

< 0.05 was considered statistically significant. 

All the data imputed in GraphPad and SAS are provided in the Supplementary Materials. 
 

3. Results 
 

3.1. In Ovo Characterization of USUV USU-BE-Seraing/2017 
 

3.1.1. Survival Study 

Kaplan–Meier survival curves (Figure 1) showed significant differences in mortalities according to the 

dose by both the log-rank (Mantel-Cox) (χ2 = 16.9, p = 0.0002) and the Gehan-Breslow Wilcoxon tests (χ2 

= 16.03, p = 0.0003) plotted in GraphPad Software. Mock-inoculated embryos remained alive until the 

end of the experiment. 

 

Figure 1. Kaplan–Meier survival curves for chicken embryos inoculated with three different doses of USU-

BE-Seraing/2017 strain using the allantoic route. 
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The infected dead embryos were hemorrhagic and severely swollen with edema (Figure 2). 
 

Figure 2. Chicken embryos after infection with USU-BE-Seraing/2017 strain using the allantoic route. 

(A) The infected chicken embryos showed cutaneous hemorrhage compared with the non-infected 

controls. (B) Unlike the non-infected embryo, the infected embryos (in the middle and on the right of 

the picture) died and showed cutaneous hemorrhage and pallor in the liver. 

 

Microscopically, the most relevant feature in all of the eggs was multifocal to diffuse areas of 

degeneration and necrosis in the CAM, with moderate to massive infiltration of heterophils and 

lymphocytes (Figure 3). Most slides showed absent or severely autolytic brain tissue. 
 

Figure 3. Chorioallantoic membrane from chicken embryos inoculated with the USU-BE-Seraing/2017 strain 

via the allantoic route. (A) Negative control two days after mock inoculation; (B) diffuse necrosis in the 

chorionic layer indicated by cell vacuolization (arrows) and massive nuclear fragmentation (stars) at two 

days post-infection (dpi); (C) massive infiltration of lymphocytes and heterophils in the stroma on day 5 

post-infection; (D) Severe degeneration with vacuolization (arrows) and necrosis (stars) of cells in both 

epithelial layers (5 dpi). Abbreviations: ae, allantoic epithelium; ce, chorionic epithelium; st, stroma. 

Hematoxylin and eosin stain. Scale bars = 50 µm. 
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IHC revealed abundant USUV antigen in the CAM (epithelial and mesenchymal cells) and in 

developing myoblasts in the skeletal muscle and myocardium on day 5 pi (Figure 4A–D). A few 

hepatocytes were positive in a dead embryo on day 3 pi (not shown). 
 

Figure 4. Immunohistochemical staining of Usutu virus antigens and chicken embryos. (A) Chorioallantoic 

membrane (CAM) on day 3 post-infection (pi); (B) skeletal muscle on day 3 pi; (C) heart on day 5 pi; (D) 

retina on day 3 of negative control; (E) retina on day 3 pi, degeneration of the neuronal layer with focal loss 

of the pigmented epithelium; (F) epidermis and feather follicle pulp on day 5 pi; (G) intestine, on day 5 pi; 

(H) brain on day 5 pi, UR-10-Tm strain; (I) pituitary gland on day 6 pi, USU-BE-Grivegnee/2017 strain. 

Mayer hematoxylin counterstain. Scale bars = 50 µm. 

 

Infectious viruses were successfully isolated on Vero cell cultures from the AFs and liver tissues of all 

infected dead embryos. 
 

3.1.2. Course of Infection 

USUV RNA was detected in the AFs of all eggs infected with the USU-BE-Seraing/2017 strain (Figure 

5). RNA loads in this region significantly varied over the infection time-course (p = 0.0049) and peaked 

on day 3 pi. Likewise, significantly higher RNA loads were found in AFs from dead embryos when 

compared to those from infected and euthanized ones (not shown). 

 

 

Figure 5. Viral RNA loads in the allantoic fluids from embryonated chicken eggs infected with USU-BE-

Seraing/2017 strain at a dose of 105 50% tissue culture infective dose (TCID50). Data are representative of five 
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samples per day (error bars represent the standard deviations). n = 5 per day of infection; “*” indicates a p-

value < 0.05. 

 

On day 5 pi, impaired growth (p = 0.002) was detected in the infected embryos compared to controls 

(Figure 6). The pathomorphological analysis revealed cutaneous hemorrhage without specific 

microscopic findings, except for the CAM, where cell necrosis and inflammation were marked. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6. Comparison of the body weights on day 5 of the experiment between control and infected chicken 

embryos with the USU-BE-Seraing/2017 strain using the allantoic route. Bars indicate means 

± standard deviation; n = 5 per condition; “*” indicates a p-value < 0.05. 

 

Varying amounts of viral antigens were demonstrated by IHC in the different tissues mentioned 

earlier, but also in the eye (retina), skin (epidermis and feather follicle pulp), and intestine (Figure 4D–

G). USUV-antigen staining in the muscle bundles of the head, trunk, legs, and wings was mild but 

reproducible in the majority of the infected embryos. No USUV antigens were detected in the brain, 

kidney, or lung at any time of infection with this viral strain. 

The CAM, brain, heart, and liver samples all tested positive by USUV-specific RT-qPCR during the 

infection (Figure 7). A higher viral RNA load was found in the CAM compared to the other three tested 

tissues (p < 0.001). The heart and brain ranked second (p = 0.606), with higher amounts of RNA 

compared to those detected in the liver (p < 0.001 and p = 0.002, respectively). 
 

 

Figure 7. Usutu virus RNA loads detected by RT-qPCR in the brain, heart, liver, and chorioallantoic 
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membrane (CAM) samples of chicken embryos inoculated with USU-BE-Seraing/2017 strain (105 TCID50) via 

the allantoic route. The data show the mean log 10 viral RNA copies/mL ± standard deviation. n = 5 per 

tissue per day of infection. 

3.2. Virulence of other USUV Strains In Ovo 

Kaplan–Meier survival curves (Figure 8) revealed dose-dependent mortalities by both the log-rank 

(Mantel-Cox) and the Gehan-Breslow Wilcoxon tests following infection with USU-BE-Grivegnee/2017 

(χ2 = 11.06 and p = 0.004), Vienna 2001 (χ2 = 7.994, p = 0.0184, and χ2 = 7.7, p 

= 0.0204) and UR-10-Tm (χ2 = 7.919, p = 0.0191, and χ2 = 7.15, p = 0.028) strains. 
 

 

Figure 8. Kaplan–Meier survival curves for chicken embryos inoculated with three different doses of 

(A) Vienna 2001, (B) UR-10-Tm, and (C) USU-BE-Grivegnee/2017 Usutu virus strains using the allantoic 

route. 

 

No statistical differences were found in the embryonic mortality rates induced by the four USUV 

strains (Table 1). Similar findings were further observed with European 3 lineage strains USU-BE-

Villers aux Tours/2017 (Genbank: MK230890, passage 5) and USU-BE-Richelle/2017 (Genbank: 

MK230893, passage 5) [37] (data not shown). Moreover, no lethal effect was observed with doses of less 

than 104 TCID50 using all USUV available in our laboratory (data not shown). 

 

Table 1. Chicken embryo mortality rates comparison following the infection with three different doses of 

four Usutu virus strains and using log-rank (Mantel-Cox) and Gehan-Breslow Wilcoxon tests. 
 

Viral dose (TCID50) 
  Log-Rank (Mantel-Cox)  Gehan–Breslow Wilcoxon  

χ2 p χ2 p 

106 3.846 0.2752 3.537 0.316 

105 2.033 0.5655 2.203 0.5113 

104 0.03672 0.9981 8.845e-032 >0.9999 

Gross and microscopic lesions, as well as IHC results, were similar to those observed after infection 

with USU-BE-Seraing/2017 strain, with some new sites of virus replication. Embryos that died on day 5 

pi with USU-BE-Grivegnee/2017 and UR-10-Tm strains presented few antigen-positive cells in the 

brain (Figure 4H). An embryo infected with USU-BE-Grivegnee/2017 strain showed abundant viral 

antigens in the pituitary gland on day 6 pi (Figure 4I). An overview of the IHC findings using USUV 

strains is given in Table 2. As for the USU-BE-Seraing/2017 strain, infectious viruses from the AFs and 

liver tissues of the dead embryos infected with the three USUV strains used in this study were 

successfully isolated on Vero cell cultures. 
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Table 2. Usutu virus antigens distribution in the selected tissues samples of infected chicken embryos, as 

determined by immunohistochemistry. 
 

 

Tissue 

Infection with 

  USU-BE-Seraing/2017  

 

IHC findings in embryos infected with other 

USUV strains*     dpi    

 1 2 3 4 5  

 
CAM 

 
- 

  
+++ 

 
+++ 

 
+++ 

 
Common to all strains 

  +     

 

Brain 

 

- 

 

- 

 

- 

 

- 

 

- 

Positive staining when infected with 

USU-BE-Grivegnee/2017 and UR-10-Tm strains 

(day 5 pi) 

Heart - - + + + Common to all strains 

Liver - - + - - Only with USU-BE-Seraing/2017 

Skeletal 

muscle 
- + + + + Common to all strains 

Intestine - - - - + Positive staining with USU-BE-Grivegnee/2017 

Eye - + + - - Only with USU-BE-Seraing/2017 

Skin and feather 

follicles 

 

- 

 

- 

 

+ 

 

++ 

 

+++ 

 

Common to all strains 

+++: high; ++: moderate; +, low; -: no antigen detected; IHC: immunohistochemistry; c.e: chorionic 

epithelium; dpi: days post-infection; USUV: Usutu virus. * Data gathered from dead embryos tested during 

the lethal test with three USUV strains, i.e., USU-BE-Grivegnee/2017, Vienna-2001, and UR-10-Tm. 
 

3.3. Characterization of USUV Strains Growth Kinetics in Chorioallantoic Membrane Cells 

The RT-qPCR quantification of the USUV genome in the supernatant of CAM cells infected with 

different USUV strains showed significant variation in viral load according to both MOI (p = 0.0004 for 

USU-BE-Grivegnee/2017 and p < 0.0001 for the other strains) and strain. The USU-BE-Seraing/2017 

strain produced the highest amounts of viral RNA at all MOI (the difference between Vienna 2001 

strain p = 0.007, the difference between UR-10-Tm strain and USU-BE-Grivegnee/2017 strain p < 

0.0001), up to 8.25 log10 VRC/mL with an MOI of 0.1 on day 3 pi (Figure 9a). The Vienna 2001 USUV 

strain ranked second in terms of RNA amplification in CAM cells (the difference with UR-10-Tm 

strain p = 0.007 and with USU-BE-Grivegnee/2017 strain p < 0.0001), followed by USU-BE-

Grivegnee/2017 and UR-10-Tm strains, which resulted in similar virus amounts (p = 0.279) (Figure 9b–

d). Increases of 2- to 70-fold in the RNA loads of USU-BE-Seraing/2017, Vienna 2001 and UR-10-Tm 

strains were found after the first 72 h for all the MOI tested (Figure 9). On day 4 pi, a drop in VRC was 

concomitant with massive lysis of CAM cells (not shown). USU-BE-Grivegnee/2017 strain production 

in CAM cells peaked on day 4 pi with MOIs of 0.1 and 0.001 and on day 5 pi with an MOI of 0.01 

(Figure 9d). 
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Figure 9. Viral RNA loads in the supernatants of primary cultures of chorioallantoic membrane (CAM) cells 

infected with different USUV strains (a) USU-BE-Seraing/2017 (b) Vienna 2001, (c) UR-10-Tm, and (d) 

USU-BE-Grivegnee/2017, as determined by RT-qPCR. CAM cells were infected with USUV at MOIs of 0.1, 

0.01, and 0.001. Data are representative of three wells per day for each MOI, each performed in duplicate 
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(error bars represent standard deviations). 

At the end of the experiment, CPEs were markedly pronounced in the wells infected with MOIs of 0.1 

and 0.01 (not shown). The CPEs were characterized by the appearance of rounded, retractile cells 

followed by cellular death and destruction of the cell monolayer. Abundant antigen signals were seen 

in the cells remaining in the bottom of the wells, as seen by IHC staining (Figure 10). 
 

Figure 10. Immunohistochemical staining of USUV antigens performed on chicken chorioallantoic 

membrane cells. (A) Mock-inoculated cells; (B) USUV-infected cells. Mayer hematoxylin counterstain. Scale 

bars = 50 µm. 

 

4. Discussion 

In this report, we showed that all four USUV strains injected at high doses in the ECE via the allantoic 

route successfully replicated in the AF and caused deaths to chicken embryos. These results were in 

contradiction with three previous studies that inoculated USUV to ECE. In the study carried by Segura 

et al. [32], the authors infected 10-day-old ECE with high doses (104, 105, or 106 Plaque-Forming Units 

PFU) of USUV strain V18 (Genbank: KJ438730, lineage 3) via the allantoic route. Only low USUV titers 

were detected in the AFs from 14% of the eggs, and the chicken embryos developed normally [32]. In 

the study by Bakonyi et al. [31], Vienna 2001 USUV strain was injected into the allantoic sac of 10-day-

old ECE at a high dose (6 x 105 TCID50). The infected chicken embryos did not show death or lesions 

after four days of incubation and were negative according to IHC [31]. In contrast, the same strain in 

our study induced mortality in one embryo at a dose of 105 TCID50 and in three out of nine embryos at 

a dose of 106 TCID50 after four days of infection. In our hands, both live and dead embryos at this stage 

presented pathomorphological changes in the CAM and virus antigens in many tissues (typically in 

the CAM and skeletal muscle) that were highly indicative of USUV infection (data not shown). In the 

study by Bakonyi et al. [31], the original USUV isolate (before passaging) and USUV passaged twice in 

Vero cells exhibited negative results. However, the strain we used for ECE inoculation was passaged 

17 times in Vero cells, which may have induced specific genomic changes that increased its 

pathogenicity for ECE. Another possible explanation for the different infection outcomes by this USUV 

strain is that susceptibility to the virus might be variable according to the chicken breed from which 

the embryonated eggs were obtained. Indeed, the immune response to a given pathogen can differ 

according to chicken lines, contributing, at least in a part, to these differences in the infection 

phenotype. For instance, the innate immune response to Newcastle disease virus infection was shown 

to be breed-dependent using chicken embryos [40] or hatched chicks [41] as infection models. 

Evidence of the role of the interferon response in the control of USUV infection was shown using 

several in vitro [42,43] or murine models [32,44–46]; thus, a breed-dependent, innate immune response 

to USUV could be the underlying mechanism of the selective pathogenicity of USUV to chicken 

embryos. The immune response of the developing chicken embryo would be an excellent tool to 

evaluate the still-unexplored avian innate immune mechanisms in response to USUV infection. 

Likewise, the investigation of line-dependent chicken embryo immune responses would offer valuable 

 

 

http://www.mdpi.com/journal/viruses


Viruses 2020, 12, 531 
 

108 

 Viruses 2020, 12, 531; doi:10.3390/v12050531 www.mdpi.com/journal/viruses 

 

answers to the question of the selective pathogenicity of USUV infection among avian species in 

general. 

The lethal effect of USUV was highly linked to the infective dose, as seen with other flaviviruses, such 

as ZIKV [28], WNV [33], and Japanese encephalitis virus [47], when injected into ECE. No lethal effect 

was observed with a dose of less than 104 TCID50, and USUV poorly replicated in the AFs and 

embryonic tissues at a dose of 103 TCID50 or less (data not shown). Hence, ECE are likely to have 

limited efficiency for virus isolation from low-concentrated field samples. This may explain why ECE 

resisted infection by USUV from dead bird samples in the study of Savini et al. [8], contrary to the Vero 

cells used in the same study. 

In goose embryos, infection with the Vienna 2001 USUV strain did not cause mortality nor significant 

gross or microscopic lesions [48]. However, USUV replication was detected in the retina, some 

autonomic ganglia, skeletal muscle, renal tubular cells, and connective tissue cells [48]. In our report, 

through intra-allantoic injection of high doses of USUV, the infected chicken embryos showed stunted 

growth and cutaneous hemorrhage, which are common features of infection with some other 

mosquito-borne epornitic viruses, such as WNV [49] and Tembusu virus [50,51]. Microscopically, focal 

necrosis and non-suppurative inflammation were the hallmarks of infection in the CAM. High RNA 

loads and viral antigens were detected in other tissues, such as the brain, heart, and liver. The lack of 

inflammation in these organs is not yet well understood. This same feature was found after infection of 

ECE with the Yellow Fever 17DD vaccine virus [30]. Correspondingly, the liver showed very obvious 

macroscopic lesions and yielded infectious virus detectable by Vero cell culture; yet, no spectacular 

histopathological changes, lower RNA loads compared to other tissues, and very few positive 

hepatocytes were detected by IHC. As a possible explanation, some of the viruses revealed by RT-

qPCR and Vero cell cultures were possibly simply circulating in the blood [28]. 

The brain and pituitary gland tissues of embryos occasionally showed viral antigens. USUV was 

shown to infect several murine and human neuronal cells and to replicate in mature human astrocytes 

more efficiently than ZIKV [52]. The impact of ZIKV on the development of the central nervous 

system of chicken embryos was already assessed [27,28], and we estimate that our in ovo USUV model 

provides ground for similar studies in the future. 

In our study, viral antigens were detected in the retinas of the chicken embryos on the second and 

third days of infection, consistent with the presence of viral antigens in the retina of experimentally 

USUV-infected goose embryos [31] and the dissemination of USUV to the eye demonstrated by RT-

qPCR in experimentally infected canaries (Serinus canaria) [39]. Visual impairment and ocular lesions 

were described in naturally WNV-infected raptors [53,54]. Another flavivirus, Bagaza virus (BAGV), 

was reported to cause blindness and ocular lesions in common pheasants (Phasianus colchicus) and 

partridges (Alectoris rufa [55] and Perdix perdix) [56]. Further in vivo experiments in avian and murine 

models would be necessary to characterize the visual disorders potentially induced by USUV 

infection. Likewise, during embryonic development in chickens, we demonstrated for the first time the 

possibility of viral replication in feather follicles. This finding was in accordance with the excretion of 

USUV via the immature feathers of canaries during the early stages of experimental USUV infection 

[39]. These preliminary observations suggested that feathers may potentially play a role in the spread 

of the virus. Fully grown feathers from either dead or live birds of all ages and molt cycles could 

provide a simple method for the detection of WNV infection [57]. Further, the Israel turkey 

encephalitis virus, a deadly flavivirus for turkeys in Israel, could be amplified from feather pulps; 

virus detection from such samples was proposed to evaluate the proper administration of live 

vaccines [58]. More studies are needed to characterize the capacity of USUV to disseminate via the 

feathers in both naturally and experimentally infected birds [39]. 

The virus replicated in different regions of the egg, preferentially in the AF and CAM. In the AFs, the 

significantly higher RNA loads detected during the first four days of infection compared to the first 

day could indeed rule out a simple detection of remnants of the viral inoculum by RT-qPCR. A peak 

was found in the RNA loads of the infected embryos on day 3, making it the most suitable day to 

collect AF for virus amplification. Infectious virus was systematically retrieved from the AFs of dead 

embryos using Vero cell-culture, further indicating the active replication of the virus in this region of 
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the egg. Higher VRC were found in the AFs from dead embryos than in those from surviving ones, 

suggesting that higher replication in this site prompts fatal outcomes of USUV infection. The Yellow 

Fever-17D vaccine is considered to be among the most successful live-attenuated human vaccines and 

was used to develop other flavivirus vaccines by chimerization [29]. It was obtained by serial passages 

of the virus in chicken embryo tissues to remove its neurotropic properties [29]. Our ECE model could 

be beneficial to test the protective effect of vaccine candidates, but its efficiency to amplify virus 

particles in large amounts as needed for the vaccine industry is questionable due to the high virus 

input needed to obtain viral replication in the AF. 

Evidence of strong viral replication was seen in the CAM. This result resembled that observed 

following infection of ECE with WNV [49], but it did not match with that obtained with the Yellow 

Fever 17DD vaccine virus, which did not replicate in the CAM [30]. Consequently, CAM cells were 

isolated in vitro and showed susceptibility to USUV infection, as evidenced by the appearance of 

characteristic CPE and viral RNA production. To our knowledge, goose embryo fibroblasts were the 

only available in vitro avian model for the study of USUV, until now [31]. Here, we developed the first 

cellular model from domestic chicken (Gallus gallus domesticus) allowing the study of USUV. Virus 

quantities were directly related to seed virus input, which may limit the cost-effectiveness of this 

model in vaccine production. The yield of virus per cell [59] should be determined to characterize the 

production efficiency of this virus using this model. 

Primary chicken CAM cells were used to compare the replicability of multiple phylogenetically 

distinct USUV strains, and differences in growth kinetics were observed. The USU-BE-Seraing/2017 

strain showed the highest viral replication using this model, providing an interesting model for the 

evaluation of the USUV sensitivity to antivirals, for instance. Whether the passage of virus in CAM 

cells led to the selection of genetic variants needs to be determined by nucleotide sequence analyses 

and in ovo pathogenicity assessment of CAM cell-derived strains. 
 

5. Conclusions 

In conclusion, this report is the first to use ECE and chicken embryo-derived cells as artificial models 

to study the histopathological lesions and virus tropism involved in the pathogenesis of USUV. Our 

data suggested that USUV infection in Gallus gallus domesticus embryos is systemic and lethal in a 

dose-dependent manner. The CAM seems to be the main replication site of USUV, with severe 

histopathological changes and abundant cell staining by IHC. Cells from the CAM were highly 

permissive to USUV when cultured in vitro. We believe the use of this model, along with ECE, could 

further foster a significant understanding of the pathogenesis and provide grounds for the 

development of vaccines against USUV. 
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Preamble 

USUV can be highly pathogenic for the avifauna, as we have demonstrated in natural 

conditions. Among the various avian species naturally susceptible to USUV infection, blackbirds have 

had the highest mortality rate (Appendix 1, Table 1). The origin of this selective virulence remains 

unknown. Experimental infections in avian species with USUV have, so far, been limited to the 

domestic goose (Anser anser f domestica) and chicken (Gallus gallus domesticus) (Chvala et al., 2006, 

2005). Both species were clinically resistant to infection with this virus. So, to date, there is no valid in 

vivo avian model for the study of USUV pathogenicity. 

The domestic canary (Serinus canaria) is phylogenetically relatively closely-related to the 

blackbird. It is accustomed to captivity and considered an excellent model for WNV infection 

(Hofmeister et al., 2018). Epidemiological surveys carried out in Germany between 2011 and 2013 

and 2017-2018 have detected USUV genomic RNA in this species, indicating their natural 

susceptibility to the infection (Becker et al., 2012; Michel et al., 2019; Ziegler et al., 2015). However, 

the potential virulence of USUV in canaries was never assessed. To answer this question, we 

considered the experimental infection of domestic canaries with two different doses of a viral strain 

isolated in the laboratory. 

During a training course on the serological techniques for the diagnosis of flaviviruses 

infections at the Istituto Zooprofilattico Sperimentale dell'Abruzzo and Molise Giuseppe Caporale 

(Teramo, Italy), Dr. Giovanni Savini, Head of the Virology Laboratory at this Institute, let us know 

about a current project in his laboratory on the hemorrhagic syndrome linked to flavivirus infection in 

animals. He experimentally demonstrated with his team, for the first time, the possible occurrence of a 

fatal hemorrhagic syndrome in CD1 mice inoculated once with a high dose of USUV and a second 

time with the same dose of USUV (Figure 26) or WNV (unpublished results). Another pathogenic 

flavivirus for birds, TMUV, was capable of generating an ADE in mice. Indeed, a strain of TMUV 

adapted to Vero cells induced a low seroconversion during a first infection in Balb/c mice, whereas a 

second immunization with the same virus caused clinical signs (Liu et al., 2013). As a result, he 

suggested that USUV-USUV reinfection may lead to the phenomenon of ADE in birds, which 

explains the occurrence of hemorrhagic lesions occasionally observed in nature. As a matter of fact, 

hyperemia and hemorrhages in the spleen, lungs, liver, meninges and brain have been found in wild 

birds dead following USUV infection (Chvala et al., 2004; Manarolla et al., 2010; Savini et al., 2011). 

He, therefore, proposed, in the framework of an international collaboration, to carry out the same 

procedure of infection (by the same strain that they inoculated to the mice) in a "bird" model to see if 

these phenomenons can also occur in these animals. 
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The effect of a primary infection with the USUV is published in the journal Viruses. The 

second infection, on the other side, did not induce any hemorrhagic syndrome or clinical sign, 

contrary to what Dr. Savini and his team found in a mouse model. The results of this second infection 

will be discussed in the "General discussion" section. 

 

Figure 26: Kaplan-Meier curve in immunocompetent CD1 mice following two USUV infections 

spaced with 21 days. 

 

(A slide kindly provided by Dr. Alessio Lorusso, Department of Virology, Istituto Zooprofilattico 

Sperimentale dell'Abruzzo e del Molise Giuseppe Caporale, Teramo, Italy) 
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Abstract: Usutu virus (USUV) is a neurotropic flavivirus closely related to West Nile virus (WNV). Its 

enzootic cycle mainly involves mosquitoes and birds. Human infection can occur with occasional, but 

sometimes severe, neurological complications. Since its emergence and spread in Europe over the last 

two decades, USUV has been linked to significant avian outbreaks, especially among Passeriformes, 

including European blackbirds (Turdus merula). Strikingly, no in vivo avian model exists so far to 

study this arbovirus. The domestic canary (Serinus canaria) is a passerine, which is considered as a 

highly susceptible model of infection by WNV. Here, we experimentally challenged domestic canaries 

with two different doses of USUV. All inoculated birds presented detectable amounts of viral RNA in 

the blood and RNA shedding via feathers and droppings during the early stages of the infection, as 

determined by RT-qPCR. Mortality occurred in both infected groups (1/5 and 2/5, respectively) and 

was not necessarily correlated to a pure neurological disease. Subsequent analyses of samples from 

dead birds showed histopathological changes and virus tropism mimicking those reported in 

naturally infected birds. A robust seroconversion followed the infection in almost all the surviving 

canaries. Altogether, these results demonstrate that domestic canaries constitute an interesting 

experimental model for the study of USUV pathogenesis and transmission. 

 

Keywords: domestic canaries; Usutu virus; experimental infection 

 

1. Introduction 

Usutu virus (USUV) is a mosquito-borne virus classified together with the West Nile virus (WNV) in the 

Japanese encephalitis virus (JEV) serogroup, of the family Flaviviridae, genus Flavivirus [1]. It has 

become an endemic pathogen in many European countries and has been co-circulating with WNV, in 

a similar mosquito–bird life cycle, with humans and other mammals being occasional hosts [2–5]. 

USUV infection in humans is often asymptomatic. Nonetheless, an increasing number of cases with 

neurological complications, such as encephalitis or meningoencephalitis, have recently been reported 

[3,6–11]. In terms of animal health, USUV has been responsible for several epornitics in Europe since 

1996 [12]. At least 99 European bird species, belonging to 36 different families [13–16], 
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are currently known to be susceptible to USUV infection. However, only in a few of these avian 

species a fatal disease linked to USUV has been described [17], including the European blackbird 

(Turdus merula) [15,18–21], house sparrow (Passer domesticus) [22,23], grey owl (Strix nebulosa) [24], and 

common scoter (Melanitta nigra) [14]. The reasons for this selective pathogenicity are, still, unknown 

and avian models are critically needed to study the pathogenesis, transmission routes, and virulence 

of USUV. 

Experimental infections of avian species with USUV are scarce and restricted so far to the domestic goose 

(Anser anser f. domestica) [25] and domestic chicken (Gallus gallus domesticus) [26], which were reported 

to be resistant to USUV infection. No experimental infection has been conducted, so far, on a passerine, 

although Passeriformes are suspected to be relevant hosts for the amplification of USUV [27], as in the 

case of WNV [2]. The domestic canary (Serinus canaria) belongs to the same order (Passeriformes) as the 

European blackbird, which is highly susceptible to USUV infection. This species is accustomed to 

captivity and is more convenient to use in the laboratory than wild-caught European blackbirds [28]. 

Further, canaries are considered as an excellent model of infection by WNV [28]. Epidemiological 

surveys carried out in Germany during the period between 2011 and 2013 and during 2017–2018 

detected USUV genomic RNA in these birds, indicating that they can be naturally infected with the 

virus [19,29,30]. However, whether USUV can be pathogenic for this species is still unknown. To 

address this question, we experimentally challenged domestic canaries with two different doses of 

USUV. We investigated clinical signs, RNAemia, RNA shedding, and seroconversion in the surviving 

birds. In parallel, histopathological changes and virus distribution were examined in the lethally 

infected birds. 

2. Materials and Methods 
 

2.1. Virus and Birds 

Usutu virus strain UR-10-Tm belonging to the European lineage 2 (GenBank: KX555624) was used in 

this experiment. It was isolated from a pool of organs including the brain, spleen, kidney, and heart of 

a blackbird found dead during an episode of anomalous mortality, which occurred in 2010 in the 

province of Pesaro Urbino (Italy). 

The virus was amplified in African Green Monkey Vero cells (ATCC®CRL-1586; passage number 
5) and titrated by the 50% tissue culture infective dose (TCID50) technique. 

Fifteen ten-month-old male canaries were obtained from Smet’s breeding facility (Vivegnis, Liege, 

Belgium; certification number: HK51603061). The birds were transported to the biosafety level 2 (BSL-

2) experimental animal facility of the Department of Pathology, Faculty of Veterinary Medicine, Liège, 

Belgium, where they were marked by a unique colored and numerated leg band and housed in 

randomly-composed groups of five per cage with water and grains supplied ad libitum. One week 

later, all birds were blood-sampled and tested for the presence of USUV and WNV antibodies prior to 

the experimental infection (see section: Detection of antibodies to USUV). The animal care and 

procedures performed in this experiment were approved and supervised by the Committee for Ethics 

in Animal Experimentation of the University of Liege, Belgium (Identification code: 18-2024, date of 

approval: 16/08/2018). 
 

2.2. USUV Challenge 

Birds were assigned to three groups: control (n = 5), group A (high dose, n = 5), and group B (low 

dose, n = 5), then anesthetized via isoflurane inhalation. After weighting, groups A and B were 

inoculated using the intraperitoneal route with either a high dose (106TCID50/individual) or a low 

dose (103TCID50/individual) of USUV, respectively, dispersed in 100 µL of cell culture medium 

(Dulbecco’s Minimum Essential Medium (DMEM) supplemented with 1% penicillin/streptomycin). 

The control group was injected with an equivalent volume of the virus-free medium. After infection, 

each group was maintained in a separate wire cage with a removable floor that was cleaned daily. 

 

 

 



Viruses 2020, 12, 164 
 

119 

2.3. Sample Collection 

Following the challenge, birds were monitored twice daily for 15 days post-infection (dpi). A 100 µL 

blood sample was collected from the jugular vein of each bird at 1, 3, 9 and 15 dpi to assess the course of 

RNAemia and antibody response. The blood was then added to phosphate-buffered saline (PBS) in a 

ratio of 1:5 and allowed to clot at 4 ◦C. All the birds were weighed and immature feathers were 

collected according to the same sampling schedule to reduce stress and repetitive anesthesia. 

Droppings were daily collected from the cages during the first week of infection and stored at −80 ◦C 

until use. Birds that succumbed to the infection were necropsied and 50 ± 1 mg of the brain, eye tissues, 

lung, liver, kidney, and intestines were harvested for PCR analysis. Other portions of these organs, as 

well as the heart and spleen, were fixed in 4% formalin for histological and immunohistological 

examinations. Approximately 10 ± 1 mg of immature feathers were, also, collected from each of these 

birds. 
 

2.4. Histopathology and Immunohistochemistry 

Tissue samples preserved in formalin were embedded in paraffin wax, sectioned and then stained with 

hematoxylin and eosin. Slides were also processed for immunohistochemistry (IHC) as described in 

[23] using a mix of monoclonal anti-E protein 4E9 and 4G2 antibodies at a 1/200 dilution. 

2.5. USUV Genome Detection 

RNA was extracted from 125 µl of diluted serum and the viral genome load was measured by RT-

qPCR, as described in [23]. Tissues, feathers and droppings samples were examined using the same 

protocol as [23]. Viral RNA copies (VRC) were calculated by absolute quantification using a standard 

curve, which was constructed as described in [31] using the following primers (T7 promoter-USUVF-

5’TAATACGACTCACTATAGGAAGACATCGTTCTCGACTTTG3’ and USUVR-

5’CAGCACCAGTCTGTGACCAG3’). 

2.6. Detection of Antibodies to USUV 

Serum samples were screened for antibodies using a competitive ELISA kit (ID Screen®West Nile 

Competition Multi-species, Grabels, France) following the manufacturer’s instructions. This kit is able 

to detect immunoglobulins M and G directed against the envelope protein of WNV, which contains 

an epitope common to viruses from the JEV serocomplex, including USUV [32,33]. Blood samples 

collected at day 15 pi were further tested for USUV-neutralizing antibodies, which primarily target 

the USUV envelope glycoprotein [34], using a virus neutralization test in microtiter plates (SN) as 

described in [35]. Neutralization titers were assigned based on the highest dilution of each serum 

where the complete absence of cytopathic effects in the cell monolayer was observed. 

2.7. Statistical Analyses 

Survival curves were plotted and compared using the Log-Rank and the Gehan-Breslow Wilcoxon tests 

(GraphPad Software, La Jolla, CA, USA). 

Levels of RNAemia and virus shedding via droppings and feathers were checked for normality using 

Shapiro–Wilk and Kolmogorov–Smirnov statistics. The logarithmic transformation was performed to 

normalize the distribution of the data revealed as non-parametric. Data were then analyzed using 

ANOVA implemented in Rstudio. p-values < 0.05 were considered statistically significant. 

3. Results 
 

3.1. Survival and Body Weight Changes 

All the infected birds but one showed inactivity and fluffed feathers between days 5 and 9 pi. Two out 

of five birds from group A and one from group B succumbed without showing specific signs  
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prior to death. The survival curves (Figure 1) did not differ statistically between the infected groups, as 

assessed by both the log-rank (Mantel-Cox) χ2 = 2.322, P = 0.3131, and the Gehan-Breslow Wilcoxon 

tests χ2 = 2.305, P = 0.3158. For surviving canaries, no loss in body weight was observed (data not 

shown). However, a loss in the initial body mass ranging from 15.9% to 19.6% was recorded in the 

dead birds. No weight loss or fatality was detected in the control group. 
 

Figure 1. Kaplan–Meier survival curves for canaries intraperitoneally inoculated with 103TCID50 (n = 5) or 

106TCID50 (n = 5) of the Usutu virus. 

3.2. Necropsy and Histopathology Findings 

At necropsy, dead canaries had splenomegaly and pallor of the liver. Histopathological investigations 

revealed severe satellitosis, neuronal necrosis, apoptosis, and neuronophagia in the brain of the 

canary 4 from group A (Figure 2a). The same lesions were milder in the other two dead canaries 

(Figure S1). Other common lesions consisted of slight perivascular infiltrates of lymphocytes and 

plasma cells in the lungs, moderate mononuclear inflammation and necrosis, consistently present in 

the liver (Figure 2b and Figure S2) and very mild in the heart, and histiocytosis with moderate 

lymphoid depletion in the spleen. Acinar cell necrosis and infiltration of lymphocytes and plasma cells 

in the interstitium were found in the lachrymal glands of the canary 4 from group A (Figure 2c). The 

same canary presented macroscopic hemorrhage in the proventriculus, in which severe inflammation 

and necrosis were also seen microscopically (Figure 2d). Canary 4 from group B also presented similar 

lymphoplasmacytic and histiocytic infiltrates in the lamina propria of the proventriculus (Figure S3). 

3.3. Virus Detection by Immunohistochemistry 

All three lethally infected canaries exhibited USUV antigen immunolabeled cardiomyocytes (Figure 

3a). In the liver of the canary which died at day 5 pi, numerous Kupffer cells were IHC-positive. 

Likewise, in the lung (Figure 3b), lachrymal gland (Figure 3c), and small intestine (Figure 3d), positive 

cells, presumably of a leukocytic origin, were randomly distributed. The brain, kidney, spleen, and 

skin were negative for USUV antigen. 
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Figure 2. Pathological findings in the canary number 4 experimentally infected with 106TCID50 of Usutu 

virus: (a) Cerebral cortex. Satellitosis: multiple foci of neuroglia around degenerating/apoptotic neurons. (b) 

Liver. Periportal hepatic inflammation: accumulation of lymphocytes, plasma cells, heterophils, and 

macrophages mostly around the portal area. (c) Lachrymal gland. Necrotic epithelial cells and massive 

lymphocytic and plasmacytic infiltrations within the interstitium. (d) Proventriculus. Marked 

lymphoplasmacytic and histiocytic infiltrates in the lamina propria. Hematoxylin and eosin, Scale bars: 50 

µm. 

3.4. Virus Detection by RT-qPCR 

All birds, except controls, became infected with USUV, based on viral RNA detection by RT-qPCR in the 

serum as early as 1 dpi (Table 1). Very high RNAemia levels were found in the dead canaries during 

the course of their infection (Table 1). The USUV RNAemia showed a significant drop from 3.18–6.22 

log10VRC/mL on day 1 pi to 0.7–2.8 log10VRC/mL on day 15 pi (P < 0.005) and did not statistically 

differ between the infected groups (P = 0.56). No detectable RNAemia was found in the control 

group on days 1, 3, 9, and 15 pi. 
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 4.38 ± 0.03 5.96 ± 0.07 

Dead canary; Insuff. = Insufficient volume. 

1.95 ± 0.52 2.00 ± 0.24 

 
 

 

Figure 3. Immunohistochemical labeling of Usutu virus antigens in experimentally infected canaries using a 

mix of 4E9 and 4G2 anti-E protein monoclonal antibodies. Red-brown staining in antigen-positive cells from the 

heart (a), lung (b), lachrymal gland (c), and small intestine (d). Mayer hematoxylin counterstain, Scale bars: 

10 µm. 

 
Table 1. Usutu virus RNA (expressed in log10 viral RNA copies mL−1) detected by RT-qPCR in the serum 

of experimentally infected canaries. 

Days 
Post-Infection. 

 
 
 

 

(106TCID50) 

 
 
 

Group B 

(103TCID50) 

3 5.99 ± 0.06 5.23 ± 0.04 Insuff. 3.71 ± 0.24 
 

 

4 
 

 

5 5.50 ± 0.12 5.69 ± 0.01 3.83 ± 0.02 1.64 ± 0.21 

1 7.13 ± 0.03 6.34 ± 0.03 2.81 ± 0.25 1.76 ± 0.23 
 

 

2 4.38 ± 0.01 5.80 ± 0.01 Insuff. 2.09 ± 0.29 
 

 

3 6.01 ± 0.02 5.83 ± 0.04 2.37 ± 0.4 1.6 ± 1.38 
 

 

4 
 

 

  8.20 ± 0.21   7.13 ± 0.08 7.33 ± 0.01 

  6.34 ± 0.03 6.73 ± 0.01 7.95 ± 0.08 

 Canary 1 3 5 7 9 15 

 1 5.36 ± 0.01 5.21 ± 0.11   4.73 ± 0.1 0.37 ± 0.01 

Group A 2   7.01 ± 0.02 6.34 ± 0.03     7.01 ± 0.3  
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In the virus-inoculated canaries, virus shedding was shown to occur from 2 to 5 dpi through the 

droppings in group A and from the first day to day 4 pi in group B, reaching a maximum at 1 or 2 dpi 

according to the group (Figure 4a). The detection of USUV RNA in immature feathers also lasted for 

4 days, with a maximum of 4.02 log10 VRC/10mg recorded in group B (Figure 4b). No significant 

differences could be found in RNA shedding via the above-cited routes between groups (P = 0.53 and 

P = 0.614 respectively). The sham-inoculated group did not shed viral RNA via the feathers or 

droppings during the experiment. 

 

 

Figure 4. Viral RNA loads detected by RT-qPCR in (a) droppings and (b) immature feathers from canaries 

infected intraperitoneally with the Usutu virus. 

All samples collected from the dead canaries at necropsy were USUV-positive by RT-qPCR, with high 

RNA amounts in their blood and tissues, as presented in Table 2. 

 
Table 2. USUV RNA loads in domestic canaries which succumbed to the experimental infection with USUV as 

determined by RT-qPCR and expressed in log10 viral RNA copies. 

Bird 

Samples 
Blood Brain Liver Eye Feathers Lung Kidney Intestine 

Group A 

Canary 4 5.39 ± 0.31 7.15 ± 0.09 9.05 ± 0.19 7.18 ± 0.15 4.32 ± 0.09 9.12 ± 0.21 6.22 ± 0.14 6.62 ± 0.02 

Canary 2 4.60 ± 0.81 6.19 ± 0.03 7.40 ± 0.50 3.73 ± 0.02 3.05 ± 0.62 7.26 ± 0.1 7.48 ± 0.03 3.86 ± 0.04 
 

Group B 

Canary 4 7.30 ± 0.41 7.77 ± 0.01 5.05 ± 0.41 3.91 ± 0.3 3.32 ± 0.11 3.41 ± 0.07 4.53 ± 0.13 7.54 ± 0.10 
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3.5. Antibody Response to USUV 

The absence of a previous USUV (and WNV) infection was ensured by negative ELISA results on blood 

samples collected before starting the experiment. Serum samples from all the surviving canaries 15 days 

post-infection, with one exception, showed a positive reaction in the ELISA (Table 3). Similarly, 

neutralizing antibodies to USUV were detected in all the surviving USUV-challenged canaries to 15 dpi, 

except the canary 2 from group B (Table 3). The highest titer of neutralizing antibodies was recorded in 

one canary from group A (1:80). On day 9 pi, the three birds with a sufficient amount of sera for SN 

testing (canary 1 from group A and canaries 1 and 4 from group B) all presented an antibody titer of 

1:20. Serum samples were in insufficient amounts for antibody response assessment on day 3. The 

control group remained serologically negative for USUV infection until the end of the experiment. 

 
Table 3. USUV-challenged canaries analyzed for antibodies against USUV on day 15 post-infection using 

the serum neutralization technique. 

            Surviving Birds                                        ELISA                Neutralizing Antibodies 

 1 +                                     1:80 

Group A (106TCID50) 2 + 1:20 

 3 + 1:40 

 1 + 1:20 

Group B (103TCID50) 2 D <1:5 

 3 + 1:40 

 4 + 1:20 

D: Doubtful. 

 
 

4. Discussion 

In the present study, we questioned the susceptibility of domestic canaries to USUV. To our 

knowledge, this is the first report of experimental infection with this virus in a passerine. After their 

injection with two different doses of USUV, three out of the ten infected birds succumbed to infection, 

in contrast to a high mortality rate (5/5) reported after 5 days of their challenge with as few as 10 PFU 

of WNV [28]. This suggests that USUV is less pathogenic for domestic canaries than WNV. The strain 

of USUV used in this infection could, however, be less virulent compared with the original strain 

(before cell passaging) or other genetically distinct strains. Thus, additional experimental infections 

should be conducted using different USUV strains to draw a general conclusion regarding WNV 

superior lethality in canaries. In natural conditions, infection with USUV could have a greater impact 

on this species, since needle infection may fail to recapitulate the full biological parameters of 

mosquito-borne transmission occurring in nature [36]. In fact, mosquito saliva released during an 

infectious blood meal was shown to increase the severity of infection for a variety of arthropod-borne 

flaviviruses [37–39]. Besides, the intradermal injection of the virus could have better mimicked the 

natural injection route of USUV by the feeding mosquito [40]. The amount of USUV inoculated by 

mosquitoes into a host is currently unknown. Depending on the mosquito species, the dose of WNV 

inoculated by one mosquito during a blood meal ranges between 103.4 and 105.9 PFUs [41]. Thus, the 

103 TCID50 and 106 TCID50 challenge doses may have complied with the amount of USUV inoculated 

in the birds during a mosquito bite. However, in this experiment, morbidity and mortality rates did 

not statistically differ in a dose-dependent manner. In the three dead canaries, higher levels of 

RNAemia compared to the surviving ones were recorded during the infection, which might explain 

the fatal outcome in these birds, regardless of the infective dose. This result is similar to that described 

in the study of VanDalen et al. (2013), in which higher viremia was detected in American robins 

(Turdus migratorius) lethally infected with WNV, although inoculated with the lowest dose [42]. In 
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addition, canaries inoculated with a higher dose of the virus did not develop significantly higher 

RNA load in their blood, similar to Reisen et al. (2006) [43] and VanDalen et al. (2013) [42]. For virus 

detection in the blood, we used the RT-qPCR technique, which is known to be more sensitive than 

titration assays [44]. We did not attempt virus titer measurement from the blood of the canaries; hence, 

their host competence (that is their aptitude to express sufficiently high viremia levels to infect naive 

mosquito vectors after a blood meal) is still unclear. Additional groups including individuals subjected 

to regular sample collection and weight measurement could have helped fill the gap in RNAemia and 

body mass evolution during the entire period of infection. Mortality rates were also preliminary and 

would need larger group sizes to be expressed in a relevant percentage. 

Cloacal and/or oropharyngeal shedding of USUV was previously described following natural [45] 

or experimental [26] infection. Here, relatively high RNA shedding via the droppings (ranging from 

2.3 to 4.3 log10 VRC/50mg) was found during 5 days following the infection. The infectiousness of 

the detected virus particles was not, however, assessed in cell culture. Nevertheless, the non-vector 

borne transmission of WNV was experimentally demonstrated via contaminated food, water, or air in 

birds [46–50] and similar alternative routes for USUV transmission deserve further investigations 

using this avian model. RNA shedding via droppings was unexpectedly detected one day earlier in 

the group inoculated with a low dose. This could be explained by the collection technique of 

droppings from cages, which implied random sampling of canaries rather than a systematic sampling 

of each bird. For this reason, the amount of RNA detected may have not indicated the mean RNA 

shedding in the infected group. Cloacal swabs could offer a more standardized method to study 

RNA shedding kinetics via droppings and permit its correlation with the RNAemia levels in future 

experiments. The presence and persistence of viral load in feather pulp were found in many bird 

species following flaviviral infection [44,51,52] and were suspected to contribute to direct transmission 

via feather picking [44]. Detection and amplification of the Israel turkey meningoencephalitis virus (a 

mosquito-borne flavivirus pathogenic for turkeys) from feathers was even proposed for evaluation of 

proper administration of live vaccines [53]. Our work is the first to demonstrate possible USUV RNA 

shedding via birds’ immature feathers in the early stages of infection. Whether feathers are able to 

disseminate infectious viruses in the environment or not and whether RNAemia levels are correlated to 

the amount of virus shed via feathers are still unsolved. 

USUV pathogenesis in the lethally infected canaries entailed early onset of viremia, followed by a 

rapid viral invasion of all systems, as the virus was detected by RT-qPCR in all organs examined, 

including the brain, heart, liver, spleen, skin, and kidney. This systematic infection is similar to that 

reported in naturally infected birds [13]. Gross lesions in the present study included splenomegaly, pallor 

in the liver, and hemorrhage in the proventriculus, as described in spontaneous USUV infections [18]. 

Besides, similarly to what was previously reported in naturally infected birds [18], severe 

inflammation and necrosis in multiple organs, including the brain, were microscopically observed in 

the canary dead at day 5 pi. However, neurological manifestations and abundant USUV antigen were 

lacking. We also commonly found negative IHC staining in brains from naturally infected birds in 

Belgium [15]. Thus, death resulted more likely from multi-systemic failure than a pure neurologic 

disease, in a similar manner described for WNV infection in highly susceptible species [54,55]. 

Similarly, mild microscopic lesions and USUV antigen distribution patterns in the other two lethally 

infected canaries were inconsistent with the high RNA amounts in their organs and blood. 

Consequently, a part of the RNA detected by RT-qPCR could have been simply circulating in the 

blood. The mechanism leading to the death of these canaries remains unclear. However, the heart 

seems to be highly affected with viral replication, as virus antigens were systematically detected by 

IHC in the myocardium. 

The dissemination of USUV to the eye was here shown by RT-qPCR. This is consistent with the 

detection of abundant USUV antigens within the retina previously reported in experimentally infected 

goose embryos [25]. The necrotic and inflammatory changes in the lachrymal gland of one dead canary, 

along with diffuse lymphoplasmacytic infiltration, could have resulted in a lack of secretory activity 

and contributed to ocular disease. Visual impairment and ocular lesions were described following bird  
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infection with other flaviviruses [56,57]. Vision assessment should be performed in future experimental 

infections with USUV. Further, the lachrymal gland of birds is part of the head-associated lymphatic 

tissue [58]. In the study by Chvala et al. (2004), USUV was detected in macrophages and dendritic cells 

of naturally infected blackbirds [18]. Together, these results demonstrate that USUV may target the 

immune cells in birds, which could play an important role in the spread of the virus in a wide variety 

of tissues, as described for WNV [59] and Tembusu virus [60] (a mosquito-borne flavivirus pathogenic 

for certain waterfowl birds). 

Two weeks after the experimental infection, almost all the surviving canaries showed a humoral 

response and specific neutralizing antibodies against USUV, which further demonstrates their 

susceptibility to USUV infection. Nevertheless, a single specimen from the group infected with the 

lower dose of USUV presented a doubtful serological response using ELISA and an undetectable 

neutralizing antibodies titer by our technique. This finding could be due to a certain heterogeneity in 

the genetic background of the outbred canaries used in this experiment, which mimics the very specific 

host-pathogen interaction that has been described in nature ([13], Supplementary Materials Appendix 

1). Experimental infections of several bird species with WNV have shown that the rise of antibodies 

against WNV occurs between five and 10 dpi [61]. Studies addressing the time-course of antibody 

response and sterilizing immunity against the USUV challenge should be conducted using this avian 

model. In addition, whether neutralizing antibodies to USUV could confer resistance to the infection 

by multiple flaviviruses from the JEV serocomplex, based on the cross-protection 

between these viruses [62–64] should be assessed. This information could be useful in the design of a 

broad-spectrum vaccine to protect birds against lethal infection (e.g., with WNV and USUV) and/or 

limit viral amplification (e.g., of JEV or St. Louis encephalitis virus) in these reservoir hosts. 

5. Conclusions 

In summary, we established that canaries are susceptible to USUV infection and can shed viral RNA via 

droppings and feathers. Further, we showed that USUV-associated mortality was not necessarily 

correlated to a pure neurological disease. These findings match those observed in European blackbirds 

and other Passeriformes when naturally infected with USUV. Further studies in canaries using other 

USUV strains circulating in Europe might contribute to a larger understanding of USUV pathogenesis. 

In addition, alternative transmission routes of USUV can be assessed using this avian model. 

Supplementary Materials: The following are available online at http://www.mdpi.com/1999-
4915/12/2/164/s1, Figure S1: Cerebral cortex of canary 4 (a, low dose) and canary 2 (b, high dose). Satellitosis: 
Foci of neuroglia around degenerating/apoptotic neurons. Figure S2: Liver of canary 2 (high dose). (a) Periportal 
hepatitis (b) Focal hepatitis and necrosis. Figure S3: Proventriculus of canary 4 (low dose). Lymphoplasmacytic 
and histiocytic infiltrates in the lamina propria. Scale bars: 50 µm. 
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Preamble 

As mentioned earlier in the introduction, USUV can accidentally infect several mammalian 

species. Most of these infections remain asymptomatic, except for a few cases in humans, where the 

virus can cause an influenza-like illness and/or a neuroinvasive disease, resembling sometimes a 

WNV infection. 

WNV and USUV share common antigenic characteristics with other flaviviruses of the 

Japanese encephalitis serocomplex, which results in the induction of cross-reactive antibodies. In 

addition to a complicated serological diagnosis, this cross-reactivity can modify the immune response 

to WNV in humans already having neutralizing antibodies against USUV (Sinigaglia et al., 2019). 

Experimental studies in mice have shown that USUV is not pathogenic in immunocompetent mice and 

provides almost complete cross-protection against disease and death (but not against infection) when 

animals are injected with a high dose of a neuroinvasive WNV strain (Blázquez et al., 2015). 

Therefore, cross-reactivity between JEV serocomplex (in which WNV and USUV are included) is an 

attractive vaccine strategy; the main obstacle remaining at this stage is the possibility of occurrence of 

ADE. Thus, the establishment of an immunocompetent murine model susceptible to USUV would 

subsequently allow the evaluation of a vaccine against USUV conferring heterologous protection 

against other related flaviviruses (Lai et al., 2018). 

Beyond a "bird" model for studying the pathogenesis of USUV infection, it is essential to have 

an immunocompetent murine model. Indeed, so far, only IFNAR -/- mice (KO for the type 1 

interferon receptor) have been shown to be susceptible to infection with this virus. However, they 

present a defective innate immune response, which prevents the study of the impact of this immunity 

on the resistance/susceptibility of the host to infection. Our laboratory has a long history of 

establishing murine models of infection with many viruses. According to our experience and the 

scientific literature, mice from the 129/Sv line are systematically among the most susceptible to viral 

infections, including Flaviviridae (Aoki et al., 2014). Thus, this mouse line appears as an excellent 

model of infection for USUV study. 

In murine models of infection, we found that the majority of research teams used the IP route 

of administration to model USUV infection (transmitted under natural conditions by mosquitoes). This 

path circumvents the virus-host interfaces in the skin and the dissemination to the loco-regional lymph 

nodes. As a result, we proposed the use of the intradermal (ID) and intranasal (IN) routes, which have 

never been tested in mice using USUV. On the one hand, the ID route could better mimic the natural 

pathogenesis of mosquito-borne flavivirus infection (Welte et al., 2009). The IN route, on the other 

hand, allowed the evaluation of possible USUV direct transmission, as it was shown for the WNV. 
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Finally, it seemed essential to include in this study strains recently isolated in Belgium, 

belonging to different phylogenetic lineages, to test the hypothesis of a variable virulence between 

these strains. 

Using 129/Sv immunocompetent mice, we evaluated the pathogenicity of different recent 

USUV isolates by different routes of injection. The results of this pilot experiment are published in the 

journal Viruses. 
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Abstract: Usutu virus (USUV) is a mosquito-borne flavivirus that shares many similarities with the 

closely related West Nile virus (WNV) in terms of ecology and clinical manifestations. Initially 

distributed in Africa, USUV emerged in Italy in 1996 and managed to co-circulate with WNV in many 

European countries in a similar mosquito–bird life cycle. The rapid geographic spread of USUV, the 

seasonal mass mortalities it causes in the European avifauna and the increasing number of infections 

with neurological disease both in healthy and immunocompromised humans has stimulated interest in 

infection studies to delineate USUV pathogenesis. Here, we assessed the pathogenicity of two USUV 

isolates from a recent Belgian outbreak in immunocompetent mice. The intradermal injection of USUV 

gave rise to disorientation and paraplegia and was associated with neuronal death in the brain and 

spinal cord in a single mouse. Intranasal inoculation of USUV could also establish the infection; viral 

RNA was detected in the brain 15 days post-infection. Overall, this pilot study probes the suitability of 

this murine model for the study of USUV neuroinvasiveness and the possibility of direct 

transmission in mammals. 

 

Keywords: Usutu virus; immunocompetent; mice; infection; encephalitis 

 

 

1. Introduction 

Usutu virus (USUV) is a mosquito-borne flavivirus of the Flaviviridae family and is closely related to 

WNV [1]. Similar to WNV, its enzootic cycle involves wild birds as reservoirs and a wide range of 

mammals as accidental hosts [2–7], including humans [8]. Since its discovery in 1959, it has been 

isolated from mosquitoes and birds in Europe [9,10], Africa [11], and the Middle East [12]. Until now, 

USUV has never been detected in the United States, but the events of its introduction, endemization, 

and co-circulation with related flaviviruses, such as the St. Louis encephalitis virus and WNV, might 

occur in the future [13]. 

USUV appears to be pathogenic and lethal to certain wild bird species [14,15] while it often causes 

asymptomatic infections in humans [16]. Nevertheless, a few cases of neurological disease in both 

immunocompetent and immunocompromised human patients have been reported [17,18]. It is worth 

mentioning that none of the recent outbreaks of other arboviruses, such as the Zika virus and WNV, 

were predicted [19]. Thus, the evidence of USUV zoonotic potential and pathogenicity in birds 

warrants investigations on its transmission, neuropathogenesis, and countermeasures using study 

models to reduce the economic and sanitary burden it may pose in the future. 
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Experimental infections have shown that USUV pathogenicity is rather limited in immunocompetent 

mammals. Fruit-eating African bats could not be experimentally infected with USUV [20]. Similarly, 

wild-type mice showed mil or limited susceptibility when challenged with low or high doses of 

USUV via the intraperitoneal route (i.p.) [2,21–25], including USUV prototype strain SAAR-1776 

(GenBank: AY453412) [21,22,24], which was isolated by intracerebral inoculation of newborn mice [22]. 

However, in the study of Diagne et al. [2], both subcutaneous and i.p. infections using 103 PFU of this 

strain resulted, respectively, in 30% and 50% of mortalities in 3–4-week-old Swiss Webster (CFW) mice 

after 15 days of infection [2]. Similarly, in the same study, the i.p. inoculation of USUV strain HB81B8 

(GenBank: KC754955) induced 10% of mortality 10 days after the infection [2]. These findings evince 

that the outcome of USUV infection in immunocompetent mice can be highly dependent not only on 

the viral strain or dose but also on the mouse line and age. As a consequence, while no signs nor 

mortality were observed after the i.p. challenge of wild-type 6-week-old 129/Sv mice with 104 PFU of 

the USUV strain Biotec (GenBank: KU760915) [23], the susceptibility of this model to other 

representative USUV strains currently circulating in Europe still remains to be investigated. 

The intracerebral route was successfully used to induce signs and mortalities due to USUV infection 

[2,22]. This route could not, however, mimic the naturally occurring disease in humans as this 

inoculation only reflects viral neurovirulence, whereas the outcome of peripheral inoculation (e.g., 

subcutaneous or i.p.) reflects both neurovirulence and neuroinvasiveness [26]. Thus, researchers have 

capitalized on the ability of suckling mice [21,25] or mice lacking the interferon α/β receptor 
(IFNAR-/-) [23,27] to model USUV neuroinvasiveness and neuropathogenicity [25] and to test the 
effect of some antiviral [27] and vaccine [23] candidates. However, the lack of a fully functional 

immune response in these animals hinders their ability to accurately model disease pathogenesis and 

to investigate the efficacy of certain vaccine candidates [28]. 

Cutaneous infection by the intradermal (i.d.) injection presumably better mimics natural infection in 

humans with mosquito-borne pathogens, including WNV [29,30]. The intranasal inoculation (i.n.) has 

been utilized to evaluate the potential for aerosol transmission of numerous arboviruses [31]. These two 

routes have not yet been utilized to infect mice with USUV. 

In this report, we describe the pathological phenotype of two phylogenetically distinct strains of 

USUV in immunocompetent mice using either i.p., i.d., or i.n. routes of inoculation. 

2. Materials and Methods 
 

2.1. Viruses 

USUV strains USU-BE-Seraing/2017 (GenBank: MK230892, Lineage: Europe 3) and USU-BE-

Grivegnee/2017 (GenBank: MK230891, Lineage: Africa 3) isolated from two European blackbirds 

(Turdus merula) during an avian outbreak in 2017 in Belgium were used for the challenge of mice [4]. 

The viruses were amplified in African Green Monkey Vero cells (ATCC® CRL-1586; passage number 

3), titrated by the 50% tissue culture infective dose (TCID50) technique and stored at −80◦C. 

2.2. Mouse Experiments 

Wild-type 129/Sv mice, purchased from Charles River Laboratories (France), were kept in the 

biosafety level 2 (BSL-2) experimental animal facility of the Department of Pathology, Faculty of 

Veterinary Medicine, Liège, Belgium. Isoflurane inhalation was used for anesthesia prior to the 

infections. Six groups of 6 female 4–5-week-old mice were inoculated with 106 TCID50 of USUV (strain 

“Seraing” or “Grivegnee”) via the i.p., i.d. (in the lower back) or i.n. routes. The inoculums were 

dispersed in 100 µL of cell culture medium (Dulbecco’s Minimum Essential Medium (DMEM) 

supplemented with 1% penicillin/streptomycin). To ensure proper intradermal injection, each inoculum 

was injected into two separate sites, with approximately 50 µL in each site. Three different control 

groups of 6 age-matched female mice were injected with an equivalent volume of medium without a 

virus via the i.p., i.d., or i.n. routes. During the experiments, all animals were monitored daily, weighed, 
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and received water and food ad libitum. Fresh urine and feces samples were collected daily for virus 

detection. Any mouse showing more than 20% of weight loss was anesthetized then euthanized, as 

were all surviving animals 15 days after the infection. Mice were bled prior to infection and euthanasia 

for serological and/or real-time reverse transcription-polymerase chain reaction (RT-qPCR) analysis. 

Brain, spinal cord, lung, heart, liver, spleen, kidney, and small intestine samples were collected from 

the infected animals and processed for histological and immunohistochemical analysis. Portions from 

the brain were also frozen at −80◦C for RT-qPCR assay. Mock-inoculated mice were euthanized at the 

end of the experiment and blood, liver, and brain samples were taken for RT-qPCR analysis. The 

animal care and experiments were approved and supervised by the Committee for Ethics in Animal 

Experimentation of the University of Liege, Belgium (Identification code: 18-2018, permission date: 

31/10/2018). 
 

2.3. Histopathology and Immunohistochemistry 

Tissue samples were fixed in 10% neutral buffered formalin, embedded in paraffin wax, sectioned, and 

then stained with hematoxylin and eosin. For antigen detection, slides were processed for 

immunohistochemistry (IHC) as described in [32]. 

2.4. Viral Detection by RT-qPCR and Isolation in Vero Cells 

For USUV genome detection, total RNA was extracted from serum, urine (200 µL), tissue, and feces 

(50 mg) samples and the viral genome load was absolute-quantified by RT-qPCR using a standard curve, 

which was constructed as described in [33]. Virus isolation on Vero cells [4] was attempted using 

urine and feces samples. 

2.5. Antibodies Detection 

Serum samples collected prior to the infection or at the end of the experiment were screened for 

antibodies to USUV using a competitive ELISA kit (ID Screen® West Nile Competition Multi-species, 

Grabels, France) following the manufacturer’s instructions. The plates of this kit are pre-coated with 

the WNV envelope protein, which cross-reacts with immunoglobulins M and G against viruses from 

the Japanese Encephalitis Viruses serocomplex, including USUV [34,35]. 
 

2.6. Statistical Analysis 

Statistical analysis was performed using the Shapiro–Wilk test for normality followed by the non-

parametric Kruskal–Wallis test and paired t-tests (post hoc comparisons) implemented in r studio to 
define differences between viral RNA copies in the brain from 3 independent groups of subjects. 

Significance was defined by p < 0.05. 

3. Results 
 

3.1. Mortality Rates 

One mouse infected with USUV strain USU-BE-Seraing/2017 via the i.d. route showed a weight drop 

(from 14.64 to 13.28 g), disorientation and half-closed left eye at day 6 post-infection. By day 8, this 

mouse showed paresis of the posterior body and loss of 20% of the initial body weight and was 

euthanized and autopsied. The remaining mice had no clinical signs and gained weight during the 

experiment (data not shown). The control group remained alive and asymptomatic until the end of 

the experiment. 

3.2. Pathological Findings and Antigen Detection by IHC 

While no gross lesions could be observed upon the necropsy of the sick mouse, extensive neuronal death 

and strong USUV antigen signals were observed in the brain (Figure 1). Similar pathological 
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findings in the spinal cord of this specimen were found (Figure 2) but only a few neurons were 

successfully stained using IHC (not shown). 

 

                                                                         (a) 

 
                                                                          (b) 

 
                                                                         (c) 

Figure 1. Cont. 
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                                                       (d) 

Figure 1. The brain of a wild-type 129/Sv mouse injected with the Usutu virus via the intradermal route. 

Massive neuronal death demonstrated by karyorrhexis and karyolysis (a,b) in correlation with intense 

immunohistochemical labeling of USUV antigens (c,d). (a,b) Hematoxylin and eosin staining, (b,c) 

hematoxylin counterstain. Scale bars a and c = 200 µm, magnification 100×; Scale bars b and d = 50 µm; 

magnification 200×. 
 

                                               (a) 

Figure 2. Cont. 
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                                                      (b) 

Figure 2. Spinal cord (gray matter) of a wild-type 129/Sv mouse injected with the Usutu virus via the 

intradermal route. Abundant neuronal death with neuronophagia and moderate satellitosis and gliosis 

(a) and lymphoplasmacytic perivascular cuffs (b). Hematoxylin and eosin staining. Scale bars = 50 µm, 
magnification 200×. 

The remaining mice showed no gross or microscopic lesions on day 15 post-infection. 

Immunohistochemical staining of USUV antigens in their tissues was negative as well. 
 

3.3. Viral Detection by RT-qPCR and Isolation in Vero Cells 

The specimen euthanized on day 8 post-infection presented high RNA loads detected by RT-qPCR in the 
brain (9.38 ± 0.09 log10 VRC/50 mg), liver (4.15 ± 0.11 log10 VRC/50 mg), lung (4.47 ± 0.08 log10 
VRC/50mg), spleen (4.49 ± 0.07 log10 VRC/20 mg), kidney (6.36 ± 0.13 log10 VRC/50 mg), intestine 
(5.1 ± 0.17 log10 VRC/50 mg), and blood (4.99 ± 0.10 log10 VRC/mL). No infectious virus could be 
isolated from the urine, feces, and serum using Vero cell cultures. 

No evidence of virus circulation was found by means of RT-qPCR in the blood of mice euthanized at 15 

days following their infection. Similarly, blood, liver, and brain samples from the mock-inoculated 

groups euthanized at the end of the experiment were USUV-negative using the RT-qPCR. By contrast, 

the USUV genome was detected in the brains of the infected mice (Figure 3). 
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Figure 3. Viral RNA loads measured by RT-qPCR in brain samples (n = 6 per condition) collected from mice 
15 days after their challenge with the Usutu virus via different routes. * p-value < 0.05. A: USU-BE-
Seraing/2017, B: USU-BE-Grivegnee/2017, i.d.: intradermal, i.n.: intranasal, i.p.: intraperitoneal. 
 

While comparable RNA loads were found in the brain of mice infected with both USUV strains (p = 
0.25), significant differences in RNA copy numbers in this organ were detected depending on the 
infection route (p = 0.0018). The i.n. route resulted in higher RNA loads in the brain compared to the 
i.p. and i.d. routes (p = 0.0092 and p = 0.03, respectively). In addition, significantly higher viral RNA 
copies were detected in this tissue with the i.d route when compared to the i.p. route (p = 0.035). 
 

3.4. Antibody Detection 

All mice were negative for antibodies against USUV at the beginning of the experiment. The number 

of seroconverting specimens after 15 days of the infection was variable according to the injection 

route (Table 1). 

 
Table 1. Antibody response against USUV infection tested by competitive ELISA in experimentally infected 

mice. 

USUV Strain 
 

USU-BE-Seraing/2017 USU-BE-Grivegnee/2017 

Infection route P N D P N D 

Intraperitoneal 2 1 3 1 1 3 

Intradermic 2 0 4 3 1 2 

Intranasal 5 0 1 4 0 2 

D: doubtful; N: negative; P: positive. 

 

 
4. Discussion 

The limited virulence of both USUV strains used in this experiment to adult wild-type 129/Sv mice is 

in accordance with other studies using NMRI mice aged 2 weeks or more [25] and adult Swiss mice (5–

6 [22], 8 [21] or 10 [24] weeks old). One of the reasons for the resistance of immunocompetent 
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mice is the IFN response that plays a major role in the control of the in vivo pathogenesis of USUV, as 

well as other flaviviruses such as Zika virus [28]. In fact, contrary to immunocompetent mice, high 

mortality rates were observed after USUV infection in suckling mice (which have not yet developed a 

functional IFN response [21,25]), or in mice knocked-out for the IFN-α/β and/or IFN-γ pathways 

[23,27]. Nonetheless, our study could illustrate the neuroinvasiveness and neurovirulence of USUV in 

an immunocompetent mouse injected via the i.d. route. In naturally infected birds, systemic infection 

with neuronal necrosis and encephalitis are often observed [4,36]. Here, lesions were seen in the 

central nervous system (CNS), while histopathology and IHC revealed no peripheral viral replication, 

indicating a selective infection in the CNS, in a similar manner as described in suckling mice 

experimentally infected with USUV [25]. However, high RNA loads were detected by RT-qPCR in the 

liver, lung, and spleen. These RNA loads might at least in part be associated with the RNAemia and 

residual blood in these tissues, although mice were bled prior to euthanasia. Further, despite RNA 

detection in the kidney, intestine, and blood, no infectious virus could be isolated from the urine, feces, 

and serum using Vero cell cultures. These findings can be explained by the higher sensitivity of RT-

qPCR over cell culture and IHC assays or might reflect the presence of viral RNA without viral 

antigens or infectious particles. 

The factors explaining the induction of neurological disease in a single specimen are uncertain. A 

particular viral–host interaction clearly influenced the course and outcome of the infection in this 

individual, as in a similar manner with the rare natural cases of USUV clinical disease with encephalitis 

in humans [8,37]. Larger group sizes would be needed in future experiments to express the morbidity 

and mortality rates in relevant percentages. Specific mutations in USU-BE-Seraing/2017 [4] involved 

in an increased neuroinvasiveness and/or neurovirulence cannot be ruled out. The experimental 

infection of 129/Sv mice using this strain as well as the prototype strain SAAR-1776, which showed 

potential virulence in wild-type CFW mice [2], would shed light on the genetic determinism of USUV 

pathogenicity in this model. I.d. inoculation could have also been implicated in the outcome of the 

infection, as initial virus dissemination differs according to the injection route. Moreover, although we 

used a higher viral dose compared to that used by Martín-Acebes et al. [23], no signs or mortalities 

were observed following the i.p infection. In fact, initial replication of arthropod-borne flaviviruses is 

thought to occur in skin Langerhans dendritic cells following a mosquito bite or a needle inoculation via 

the cutaneous route [26,29,38]. The infected Langerhans cells migrate from the epidermis to the local 

draining lymph nodes [39] resulting in primary viremia and initiating the immune response [29,40]. 

TLR7 innate signaling in mouse keratinocytes not only plays a role in the host defense but also in WNV 

pathogenesis by promoting Langerhans dendritic cell dissemination from the skin to other peripheral 

organs [41], whereas it contributes to reduced viremia and lethality when WNV infection of mice is 

initiated by i.p. injection [41]. Natural infection is more complex than an intradermal injection, due to 

concurrent injection of the virus intravascularly [42] and of components of mosquito saliva [43–45] by 

the mosquito while probing and feeding on a live host. The effect of natural USUV infection in murine 

models needs to be explored. 

No evidence of virus circulation was found in the blood in mice by RT-qPCR 15 days following the 

infection. However, the USUV genome was detected in their brains, in contrast to the study of 

Blázquez et al. [21], in which no USUV RNA (SAAR-1776 strain) could be detected from 8-week-old 

Swiss mice at any tested time after infection (4 to 35 days). Primary means of USUV entry to the brain 

are still to be determined. The pattern of WNV spread into the CNS may include both hematogenous 

or neuronal routes [46] and vary according to the route of inoculation [47]. In Vero cells, USUV can 

establish a persistent infection for at least 80 days [48]. USUV persistence in the brain and other organs 

of mice should be assessed by more prolonged experiments as well as possible delayed-onset disease. 

The finding that in 129/Sv mice, the i.n. infection is able to spread the virus to other body 

compartments, especially the brain, is unprecedented and raises the possibility of close contact 

transmission of USUV in humans. This hypothesis is reinforced by the results of Vielle et al. [49], which 

showed that human respiratory epithelial cells of the nasal cavity are targets for USUV replication 
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in vitro. Intranasal infection of immunocompetent mice with certain WNV strains resulted in fatal 

encephalitis and death of the animal [47,50–52], and in avian models, bird to bird transmission of 

WNV was experimentally confirmed [53]. A histopathological study including sections from the nasal 

cavity epithelium and the CNS (notably the olfactory bulb) at different stages of the infection would be 

needed to discern lesional patterns compatible with USUV replication in vivo. Further, virus shedding 

from the upper respiratory tract and contact transmission of USUV should be explored using this 

murine model. The i.n. route resulted in higher RNA loads in the brain compared to the i.p. and i.d. 

routes, which could be explained by the direct axonal transport of USUV from the olfactory neurons, 

as described for WNV [54]. 

Virus shedding via urine and feces could not be detected either by RT-qPCR nor cell culture at any 

stage of the infection. This indicates that the fecal-oral transmission of USUV is unlikely to happen in 

this model in our experimental conditions. 

While all mice were negative for antibodies against USUV at the beginning of the experiment, 

positive or doubtful reactions were observed in the majority of the mice. This is indicative of viral 

replication and in accordance with the viral RNA being detected in the brains of all mice. The number 

of seroconverting specimens using the i.n. route was relatively higher compared to that in the 

intraperitoneally and intradermally infected groups. In general, the i.n immunization route favors the 

induction of strong immune responses with vaccine candidates against some important flaviviruses 

in human medicine [55,56]. The relatively high inoculation volume likely resulted in some of the 

virus dripping into the oropharynx and lungs, which could have also contributed to the enhanced 

dissemination of the virus and antibody response induced by this route. The high RNA loads 

maintained in the brain of intranasally infected mice 15 days following the infection in spite of the 

serological immune response can be explained by the function of the blood-brain barrier (BBB). Indeed, 

the BBB represents a highly selective interface between the circulating blood and the brain parenchyma 

and restricts the movement of substances, including antibodies, from the systemic circulation to the 

brain [57,58]. While animals injected via the i.p. route did not show particularly higher seroconversion 

rates 15 days post-infection, they had limited viral loads in their brains compared to the others, which 

is likely linked to a lower rate of viral replication in these individuals rather than an efficient viral 

clearance. 

5. Conclusions 

To our best knowledge, this is the first report of USUV experimental infection in mice using the 
i.d and i.n. routes. Overall, the 129/Sv mouse model showed a variable susceptibility according to the 

route of injection of USUV. Almost all mice survived to the experimental challenge with USUV but 

developed a neuroinvasive infection and a detectable antibody response. The i.d. injection of USUV 

strain USU-BE-Seraing/2017 caused severe neurological disease in a single mouse. The i.n. route turned 

out to be most efficient in terms of antibody-response induction and viral persistence in the brain of 

mice infected with both USUV strains but failed to elicit a clinical disease in our conditions. This pilot 

study gives grounds for further investigations regarding USUV direct transmission and the 

spatiotemporal process of neuroinvasion and neurovirulence of USUV strains using the i.d. and 

i.n. routes. 
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 Recently, a succession of arboviral epidemics and epizootics around the world has drawn the 

attention of the scientific community to the significant threat posed by these emerging pathogens to 

public and animal health. Among these arboviruses, USUV is a neurotropic flavivirus that was isolated 

for the first time in South Africa in 1959. Since its emergence in Europe in 1996, it has spread to a 

large part of the European continent, leading to avian outbreaks and to a growing number of human 

infections, most often considered as asymptomatic or benign. Nevertheless, some cases of (meningo-) 

encephalitis, very similar to cases of WNV infection (Roesch et al., 2019), have been reported. USUV 

and WNV viruses are phylogenetically related and share a similar ecology; the co-circulation of these 

two viruses is frequently observed in several European countries (Zannoli and Sambri, 2019). 

Moreover, USUV is genetically very close to other mosquito-borne flaviviruses, including DENV and 

ZIKV. As such, USUV is a good model for the study of the pathogenesis and the development of 

prophylactic and therapeutic solutions for these flaviviruses. Indeed, USUV is the only member of this 

group that can be handled under biosafety level 2 conditions; further, field strains of USUV are easily 

accessible and have a high degree of natural genetic variation. Despite these advantages, USUV has 

been much less studied than its related flaviviruses and knowledge of its biology and pathogenesis is 

still insufficient. Thus, the potential contribution of various vertebrate species to the maintenance of 

the virus in the environment remains poorly understood. In particular, the susceptibility of animals 

living near humans, such as domestic birds, is still largely unknown. Relevant study designs, modeling 

the events of USUV infection, such as viral replication and innate immune responses, would be very 

useful in understanding the pathogenesis of its infection, especially in humans. However, to date, few 

cell lines and mouse models (IFNAR mice -/-: KO for the type 1 IFN receptor) have been shown to be 

susceptible to infection. No in ovo or in vivo avian models have been so far established.  

In the view of these remarks, several studies presented in this work aimed to provide some 

answers to these questions and to develop adequate experimental models. 

1. Endemization of USUV and genetic diversity in Belgium 

In the first study, we demonstrated that the transmission of USUV is a part of an 

epidemiological cycle involving at least two vertebrate hosts in Belgium. By detecting the virus in 

wild birds and Chiroptera during 2017-2018, on the one hand, and in pools of C. pipiens collected in 

this area in 2016 by RT-qPCR (Cadar et al., 2016) on the other hand, the establishment of a local 

transmission cycle and the endemization of the infection are strongly suggested. Phylogenetic 

analyses, which revealed the circulation of identical or closely related strains in southern Belgium for 

three consecutive years, constitute irrefutable proof of the endemic nature of these strains rather than 

their constant introduction each season. In our study, the USUV Europe 3 lineage was found to be 

predominantly circulating in Southern Belgium in 2017 and 2018. Recent studies in Germany (Michel 

et al., 2019) and the Netherlands (Bas Oude Munnink et al., 2020) showed an increase in the detection 
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of the USUV Africa 3 lineage during the same period. The reason for this dissimilarity is unknown but 

it might be due to the geographic distribution of the collected birds and the sample size included in our 

study. This might also suggest that the USUV Africa 3 lineage is periodically introduced from these 

neighbouring countries while the USUV Europe 3 lineage is endemic in Belgium. Further, since we 

have detected the circulation of a completely new lineage in Belgium which is absent from the 

bordering countries (Europe 1), new introduction events continue to occur. There are, thus, two 

mechanisms contributing to the great genetic diversity of USUV strains in our territory: on one side, 

the overwintering of the virus within local reservoirs (adaptation to native hosts), on the other side, the 

recurrent introduction of new strains of a European or an African origin, most likely via migratory 

birds (Engel et al., 2016; Rubel et al., 2008). Flavivirus circulation monitoring using a conventional 

"pan-flavivirus" PCR is very important to detect the possible introduction of WNV, which is endemic 

in many southern, eastern and central European countries and has recently emerged in birds and 

horses in Germany (Lühken et al., 2019). This surveillance has not demonstrated the circulation of 

other flaviviruses than USUV in birds and Pipistrellus bats of Belgium, to date. 

2. Contribution to the study of USUV virus tropism in avian species 

Through the study 1 of this work, the species tropism within birds has been further expanded 

by the detection of USUV RNA in a set of new avian species, namely the Egyptian Goose (Alopochen 

aegyptiaca), the mallard duck (Anas platyrhynchos), the common scoter (Mellanitta nigra), the 

common swift (Apus apus), the common chaffinch (Fringilla coelebs), the Eurasian wren (Troglodytes 

troglodytes), the tawny owl (Strix aluco) and the white wagtail (Motacilla alba). The mere presence of 

viral RNA in their tissue samples is not, however, sufficient to conclude that they have developed a 

lethal infection (Savini et al., 2011). No pathognomonic lesions or viral antigens in the tissues could 

be observed in these species, with the notable exception of common scoters, which could indicate a 

simple portage or, possibly, a hyperacute infection (Lecollinet et al., 2016).  

The virulence spectrum of USUV was classically limited to passerines, mainly blackbirds 

(Turdus merula) or magpies (Pica pica), and Strigiformes, such as the great grey owl (Strix nebulosa). 

In addition to seroconversions detected in naturally infected species of Anatidae, the domestic goose 

has been described as resistant to this virus during experimental infection (Chvala et al., 2006). Our 

results prove, on the contrary, that Anatidae are not spared from lethal infection by this virus. The 

involved strain belonged to the lineage “Africa 3” and presented a series of unique genetic mutations. 

The emergence of a particularly virulent strain for the Anatidae can not, therefore, be ruled out in the 

forthcoming years.  
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3. Contribution to the study of USUV virulence  

The first phase of this work allowed the isolation of four genetically different USUV field 

strains (lineages Europe 3 and Africa 3). We have also been able to obtain reference strains from other 

different strains circulating in Europe (lineages Europe 1 and 2). Thanks to these strains, we have been 

able to test USUV virulence in two avian models of infection, a Gallus gallus model in ovo and an in 

vivo model, the domestic canary (Serinus canaria) and in a "mammalian" model, 129/Sv mice. These 

experimental infections were conducted in a biosafety level 2 laboratory. 

3.1 In avian hosts under experimental conditions 

The USUV virulence was first investigated in chicken embryos and then in domestic canaries. 

USUV caused lethal infections in chicken embryos, wich is inconsistent with previous studies using 

USUV to infect ECE (Bakonyi et al., 2005, Savini et al., 2011, Segura et al., 2018). In addition to the 

genetic variability of the strains used in these different experiments, the breed of chicken from which 

the fertilized eggs were obtained could have played a role in the susceptibility/resistance of this 

model.  

The lethal effect observed in ovo following infection with the different USUV strains was 

strongly related to the infective dose, whereas the morbidity and mortality rates in canaries did not 

differ statistically in a dose-dependent manner. Nevertheless, mean viremia titers were higher in birds 

which succumbed to the disease regardless of the infective dose, similar to what is observed during 

WNV infection, and this could explain the fatal outcome of infection in these birds (Langevin et al., 

2005; VanDalen et al., 2013). In addition, no lethal effect was observed in chicken embryos with a 

dose of less than 10
4 

TCID50 and USUV poorly replicated in the allantoïc fluid and embryonic tissues 

at a dose of 10
3 
TCID50 or less. On the other side, the same dose of 10

3 
TCID50 was sufficient to induce 

mortality in canaries, which reinforces the general idea of the higher susceptibility of passerines over 

Galliformes. 

3.2 In 129/Sv mice 

In 129/Sv immunocompetent mice, the outcome of the viral infection was very different from 

what has been observed in birds. In fact, mice infected using IP, ID or IN routes, with one exception, 

were resistant to the lethal effect of USUV. This observation is consistent with the study of Martín-

Acebes et al. (2016) and other studies using NMR mice aged two weeks or older (Weissenbock et al., 

2004) and adult Swiss mice (eight weeks old) (Blázquez et al., 2015). The factors explaining the 

induction of neurological disease in a single mouse are uncertain. A particular virus-host interaction 

has clearly influenced the evolution and outcome of the infection in this individual, in the same way as 
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in rare cases of human disease induced by USUV. In addition to possible increased pathogenicity of 

the viral strain used, the ID inoculation could have promoted the virulence of this virus. 

4. Contribution to the study of USUV pathology and cellular tropism 

4.1 In naturally or experimentally infected birds 

Macroscopic observations in the USUV-infected chicken embryos (stunted growth and 

haemorrhage) were similar to those described during the infection with other epornitic mosquito-borne 

flaviviruses, such as WNV (Crespo et al., 2009) and TMUV (Thontiravong et al., 2015; Yan et al., 

2011). Macroscopic lesions in USUV-infected canaries included splenomegaly, pallor of the liver, and 

haemorrhage in the proventriculus, and resembled those described in birds naturally infected with 

USUV in Belgium. Thus, the canary appears as a susceptible model that can reproduce the disease and 

lesions described in the cases of spontaneous infection. 

Microscopically, multifocal necrosis and non-suppurative inflammation were observed only in 

the CAM of the ECE, whereas in the canaries, these lesions affected several organs, including the 

brain. Inconsistently, virus antigens were detected in the brain and pituitary glands of the chicken 

embryos, while IHC labeling of the brain portions from the experimentally infected canaries was 

negative. Similarly, the relative amount of viral RNA in the tissues of naturally infected birds was not 

proportional to the intensity of the lesions. We can, therefore, conclude that the importance of viral 

replication is not necessarily correlated with the intensity of the lesions. As a matter of fact, the 

pathological changes can be, as in the case of WNV infection (King et al., 2007), induced by direct 

viral replication, but also and more significantly by the exacerbated inflammatory response in the host. 

In general, the virus infects major systems and a wide variety of cell types in avian hosts. The 

heart appears to be strongly affected by viral replication, as viral antigens were systematically detected 

by the IHC in the myocardium of the naturally infected blackbirds and common scoters and of the 

experimentally infected chicken embryos and canaries. We have found viral antigens in cells 

morphologically identified as Kupfer cells in the liver and leukocytes in the lacrimal gland, which is a 

part of the head associated lymphoïd tissue (HALT) in birds (Klećkowska-Nawrot et al., 2016). In the 

study by Chvala et al. (2004), USUV was detected in macrophages and DCs of blackbirds (Chvala et 

al., 2004). Together, these results demonstrate that the immune cells may play an important role in the 

USUV pathogenesis in infected birds, as demonstrated for TMUV (Ma et al., 2019), as the virus 

appears to replicate in these cells and disseminate in a wide variety of tissues, including the brain, via 

these cells. 

RT-qPCR analysis demonstrated the USUV tropism for the canary’s eye. This is consistent 

with the presence of viral antigens in the retina of experimentally infected goose embryos (Chvala et 
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al., 2006a) and, in our study, of the chicken embryos on the second and third days of infection. Visual 

impairment and ocular lesions have been described following the infection of birds with other 

flaviviruses (Gamino et al., 2014; Pauli et al., 2007). A vision assessment should be performed during 

future experimental infections with USUV. 

Moreover, our work is the first to demonstrate an excretion of USUV via the immature 

feathers of birds during the early stages of infection. Similarly, during the embryonic development in 

chicken, we have demonstrated for the first time the possibility of viral replication in feather follicles. 

These preliminary observations suggest that feathers can potentially play a role in the spread of the 

virus. The excretion of USUV by droppings and/or oropharyngeal virus shedding have already been 

described in birds following natural (Höfle et al., 2013) or experimental (Chvala et al., 2005) 

infections. Here, the excretion of relatively large vRNA amounts via the droppings was observed 

during the five days following the canary infection. This is consistent with the detection of USUV 

antigens in the intestines of the naturally infected birds or experimentally infected chicken embryos 

and in the kidneys of the naturally infected blackbirds. The infectivity of the detected viral particles 

has, however, not been evaluated in cell culture. Nevertheless, the non-vector-borne transmission of 

WNV has been demonstrated experimentally via the contaminated food, water, predation or contact 

between infected and uninfected birds (Komar et al., 2003) and similar alternative routes for USUV 

transmission deserve to be investigated using this avian model. 

4.2 In 129/Sv mice 

Extensive neuronal death including both necrosis and apoptosis in the brain and spinal cord of 

a single mouse following experimental USUV infection correspond to the lesions described in 

suckling and IFNAR (−/−) mice (Clé et al., 2020; Weissenbock et al., 2004) experimentally infected 

with USUV In addition, these results reflect natural cases of USUV infection in humans, in which 

most individuals have subclinical infections but rare cases develop encephalitis (Pecorari et al., 2009; 

Vilibic-Cavlek et al., 2019). In contrast to birds, the lesions were localized only in the CNS in this 

mouse, and no peripheral replication was detected by histology and IHC. While the skeletal muscle 

has been identified as the only site of peripheral viral replication in NMRI suckling mice 

(Weissenbock et al., 2004), USUV infected and replicated in various tissues and organs, including the 

eyes of Swiss suckling mice (Clé et al., 2020). An inflammation response in the spinal cord with the 

presence of similar cytokines released in the brain was described in Swiss neonatal mice (Clé et al., 

2020). Our experimental design was conceived as such that no mice were euthanized in the early 

stages of infection, during which viremia and multisystem infection did likely occur. The study of the 

viral spread kinetics from different sites of inoculation to other organs would allow answering the 

question of how the virus reaches the CNS. 



Chapter 4                                                                                                                     General discussion-Perspectives 

  154 

The virus shedding via the urine and feces of 129/Sv immunocompetent mice could not be 

detected by either RT-qPCR or cell culture at any stage of the infection. This indicates that, unlike 

birds, the fecal-oral transmission of USUV is unlikely in this model under our experimental 

conditions. RNA shedding via the urine in Swiss neonatl mice appeared 6 days after the infection and 

persisted beyond day 12 post-infection (Clé et al., 2020). These viral particles were not assessed for 

their infectivity in cell culture and further investigations are needed, as for birds, to investigate a 

potential indirect transmission of USUV. 

While the RT-qPCR failed to detect viral circulation in the blood at day 15 post-infection, the 

viral genome was abundantly detected in the brain of the infected mice. In the study by Blázquez et al. 

(2015), viral RNA was not found in the brains of immunocompetent Swiss female mice during the 

experiment (4 to 35 days). This may be due to the age (8 weeks versus 4 in our case) or to the 

difference in viral strains used in both experiments. Moreover, our results clearly indicate that USUV 

was able to invade the brain of these mice, without inducing a clinical manifestation. The means of 

viral entry into the brain remain to be determined. In addition, given the very high loads of viral RNA 

in the brain of our mice on day 15 of infection, it is likely that lesions and symptoms may occur 

beyond this time, justifying a more prolonged experiment. 

In Vero cells, USUV can establish a persistent infection for at least 80 days (Sempere and 

Arias, 2019). The viral persistence in the host is often associated with the development and 

exacerbation of chronic diseases and contributes to the maintenance of the virus in the environment 

within reservoirs (Manzoni and López, 2018). The persistence of USUV in the brain and other organs 

of mice or canaries should be evaluated in longer experiments. 

In 129/Sv mice, the IN route resulted in higher RNA loads in the brain compared to the IP and 

ID routes. These particular high loads confirm a significant viral amplification in the host. Therefore, 

we have shown that in 129/SV mice, the IN infection leads to effective dissemination of the virus to 

other compartments of the body, including the brain. This result is consistent with the observation that 

epithelial cells in the human nasal cavity are targets for the replication of USUV in vitro (Vielle et al., 

2019). The IN inoculation has been used to evaluate the direct transmission potential of many 

arboviruses (Clark et al., 2015) and, in our case, direct contact and/or aerosol transmission of USUV 

are highly suspected, since WNV could be transmitted experimentally by contact in avian hosts 

(Komar et al., 2003). As a result, experimental inoculation of the canaries via the IN route and the 

study of a possible contact transmission would allow a better exploration of this USUV alternative 

way of transmission. 
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5. Contribution to the study of the immune response following USUV infection 

In canaries and mice which survived the USUV infection, a specific humoral immune 

response was detected in the majority of the individuals after 15 days of infection. In canaries, the 

appearance of a strong neutralizing antibody response is likely the key factor in the absence of an 

ADE, hemorrhagic syndrome and death following a second infection with the same virus. Indeed, 

although the ADE has often been associated with cross-reactivity of antibodies against flaviviruses 

(Pierson et al., 2007; Priyamvada et al., 2016), a recent study has shown that it also depends on 

neutralizing antibodies, in particular, the IgG and IgM; only patients with low level of neutralizing 

antibodies presented with ADE (Ly et al., 2018). On the opposite side, the immunocompetent CD1 

mice, which developed a weak immune response during a primary USUV-infection, presented 40% of 

mortality and hemorrhagic lesions compatible with the ADE phenomenon (unpublished results by 

Dr. Alessio Lorusso, Department of Virology, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del 

Molise Giuseppe Caporale, Teramo, Italy). In this perspective, our murine model can be used in an 

interesting comparative study, since it presented variable seroconversion rates according to the 

inoculation route, which is likely to interfere with the ADE. 

Experimental studies have shown that the ADE after WNV infection can be induced in vitro 

using hyperimmune rabbit antisera developed against a wide range of flaviviruses, including members 

of the JEV serocomplex (Beck et al., 2013; Haslwanter et al., 2017). The appearance of an ADE was 

first confirmed in vivo by Dr. Savini and his team in immunocompetent CD1 mice using WNV and 

USUV (unpublished results) while cross-reactivity in the JEV serocomplex has always been 

considered protective in vivo (Beck et al., 2013; Lobigs and Diamond, 2012). Indeed, previous USUV 

infection has been shown to reduce mortality in adult female Swiss mice or suckling mice following 

the infection with a virulent strain of WNV (Blázquez et al., 2015). The primary infection with 

heterologous flaviviruses followed by a second challenge with a virulent viral strain in birds induced 

the increase in neutralizing antibodies, reduction or absence of a viremic phase after the second 

infection, and the subsequent complete or partial clinical protection in finches (Haemorhous 

mexicanus) (Fang and Reisen, 2006) and red-winged blackbirds (Agelaius phoeniceus) (Nemeth et al., 

2009). The possibility of a cross-protection, or conversely, the ADE of WNV infection in canaries, 

following a USUV primo-infection, should be investigated using our model. This could predict the 

impact of WNV circulation in Belgium and its interaction with a bird population already exposed to 

USUV, as it is the case in Germany. 
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6. Conclusions and perspectives 

USUV is responsible for recurrent epizootics since 1996 in European birds and for a rising 

number of infection in humans, with potentially severe, neurological disorders. We have highlighted 

in this work the endemization of this virus in Belgium, with the frequent occurrence of avian 

epizootics and a co-circulation of genetically variable and constantly evolving strains. This spectacular 

potential for genetic evolution and the increasing number of human cases summen a great vigilance in 

terms of public health. That being so, sustained surveillance efforts are needed to rapidly detect an 

adaptation of USUV to new host species (especially poultry) and vectors, and possible evolution of its 

virulence in humans. 

Through the examination of the naturally infected birds or different in ovo and in vivo models 

infected in the laboratory, we focused on the major differences in the pathogenesis of the USUV 

infection. In actual fact, we found that in blackbirds, canaries or chicken embryos, the infection is 

often systemic, whereas in immunocompetent mice, the disease is exceptional and, when it happens, it 

is mainly of a neurological nature. The infection may be unapparent in the Anatidae family, but the 

common scoter, which belongs to this family, is naturally highly susceptible to the infection by a 

strain of USUV belonging to Africa 3 lineage. Identifying molecular determinants associated with 

virulence and host tropism may help anticipate key events leading to the possible emergence of USUV 

in new hosts and territories.  

The chicken embryos and CAM cells were established as highly susceptible models for the 

USUV infection. These models can be further used to study the innate immunity impact on the 

resistance/susceptibility of avian hosts. Such a study will permit us to understand the involvement of 

such factors linked to the genetic backbone of the animal and the particular virulence spectrum of this 

virus. Moreover, as it reflects fetal development in humans, the chicken embryo gives grounds for 

future in vivo studies to model the neuropathogenesis of this virus, whose deleterious effects on the 

developing human neuronal cells were higher than those of ZIKV. Similarly, the ECE could be used 

to test the efficacy of antiviral molecules or to produce vaccines against USUV or related flaviviruses, 

taking advantage of the protective role of cross-reactive antibodies. 

We also established that canaries are susceptible to USUV infection. Subsequent studies on 

the potential interactions between canaries, or chickens from in ovo susceptible and resistant strains, 

and our viral strains isolated in the laboratory would allow comparing the pathogenesis of this virus. 

Moreover, since canaries can shed viral RNA via droppings and feathers, the direct route of 

transmission, which is experimentally demonstrated for WNV, can be evaluated. Similarly, viral 

shedding by the oropharyngeal route should be investigated as well as its contribution to a possible 

direct transmission using this avian model. The use of subcutaneous or ID routes to infect these birds 
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would better mimic the natural mosquito-borne infection. Thus, the study of the modifications created 

in situ by these injection routes would offer a better understanding of the early phase of the USUV 

infection. Similarly, regular measurement of viremia and viral loads during infection in various 

important organs such as the brain, heart, and liver will provide a better understanding of the USUV 

infection kinetics. Finally, possible cross-protection against the WNV infection in canaries offered by 

a priming USUV infection should be investigated, which would allow predicting the impact of the 

WNV introduction in Belgium (and Germany) and its possible interaction with the bird populations 

already exposed to USUV. 

Finally, the logical continuity of our pilot study in mice will be the evaluation of the infection 

kinetics using different injection routes. The possible USUV replication in the respiratory epithelium 

and the olfactory bulbs in intranasally infected mice, as well as the local replication using the ID route, 

will help to understand the course of the early infection phase and the neuro-invasion during the 

infection with this virus. The study of a possible ADE after a double infection by this virus or the 

infection with USUV followed by WNV should be studied using different injection routes. These 

routes having resulted in different humoral responses potentially have an impact on the risk of 

developing an ADE. 
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Appendix 1. - Manuscript: Mosquito-borne epornitic flaviviruses: an update and review 

Table 1: Natural host range of Usutu virus among bird species (Appendix 1 in the review) 

Order Family Species 
Laboratory 
diagnosis 

Country Year References 

Accipitriformes 

Accipitridae 

Bearded vulture (Gypaetus barbatus) 
D + I Austria 2005 (Meister et al., 2008) 

I Germany 2015-2016 (Michel et al., 2018) 

Booted eagle (Hieraaetus pennatus) I Spain 2011 (Jurado-tarifa et al., 2016) 

Cinereous Vulture (Aegypius monachus) I Germany 2016 (Michel et al., 2018) 

Common Buzzard (Buteo buteo) I Germany 2015-2016 (Michel et al., 2018) 

Egyptian Vulture (Neophron percnopterus) I Austria 2006-2007 (Buchebner et al., 2013) 

Golden eagle (Aquila chrysaetos) I Germany 2015 (Michel et al., 2018) 

Long-legged Buzzard (Buteo rufinus) I Germany 2016 (Michel et al., 2018) 

Marsh harrier (Circus aeruginosus) I Austria 2005 (Meister et al., 2008) 

Northern goshawk (Accipiter gentilis) I Germany 2015 (Michel et al., 2018) 

Rüppell’s Vulture (Gyps rueppelli) I Germany 2016 (Michel et al., 2018) 

Short-toed Snake Eagle (Circaetus gallicus) I Spain 2011 (Jurado-tarifa et al., 2016) 

White-headed Vulture (Trigonoceps 
occipitalis) 

I Germany 2016 (Michel et al., 2018) 

Pandionidae Osprey (Pandion haliaetus) D + I Germany 
2000 or/and 
2002-2005 

(Linke et al., 2007) 

Anseriformes Anatidae 

Common scoter (Melanitta nigra) D+I 
Netherlands, 
Belgium 

2018 (Benzarti et al., 2019) 

Emperor goose (Chen canagica) I Spain 2013-2014 (Cano-terriza et al., 2015) 

Egyptian goose (Alopochen aegyptiaca) D Belgium 2017 (Benzarti et al., 2019d) 

Mallard Duck (Anas platyrhynchos) 

I Spain 2011 (Jurado-tarifa et al., 2016) 

I Italy 2012 (Llopis et al., 2015) 

D Belgium 2017 (Benzarti et al., 2019d) 

Mute Swan (Cygnus olor) I Serbia 2012 (Petrović et al., 2013) 

Red-breasted Goose (Branta ruficollis) 

I Switzerland 2006-2007 (Buchebner et al., 2013) Ruddy Shell duck (Tadorna ferruginea) 

Steamer Duck (Tachyeres pteneres) 

Apodiformes Apodidae Common swift (Apus apus) 
I Germany 2015-2016 (Michel et al., 2018) 

D Belgium 2017 (Benzarti et al., 2019d) 
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Caprimulgiformes Caprimulgidae Night jar (Caprimulgus europaeus) D Italy 2010 (Calzolari et al., 2012) 

Charadriiformes Laridae 

Black headed gull (Larus ridibundus) 
I Poland 2006 (Hubálek et al., 2008a) 

I Germany 2015-2016 (Michel et al., 2018) 

Inca Tern (Larosterna inca) I Germany 2012 (Ziegler et al., 2015) 

Yellow-legged gull (Larus michahellis) I Italy 2009 (Tamba et al., 2011) 

Ciconiiformes 
Ciconiidae 

Marabou Stork (Leptoptilos crumeriiferus) 

I Austria 2006-2007 (Buchebner et al., 2013) 

D + I Germany 
2000 or/and 
2002-2005 

(Linke et al., 2007) 

White Stork (Ciconia ciconia) 
I Austria 2006-2007 (Buchebner et al., 2013) 

I Germany 2015 (Michel et al., 2018) 

Phoenicopteridae Greater Flamingo (Phoenicopterus ruber) D + I Switzerland 2006-2007 (Buchebner et al., 2013) 

Coraciiformes 

Alcedinidae Common Kingfisher (Alcedo atthis) D Germany 2011 
(Becker et al., 2012; Jöst et al., 2011; Ziegler et 
al., 2015) 

Halcyonidae 
Laughing Kookaburra (Dacelo 
novaeguineae) 

D + I Switzerland 2006-2007 (Buchebner et al., 2013) 

Columbiformes Columbidae 

Collared dove (Streptopelica decaocto) 
D + I Austria 2005 (Meister et al., 2008) 

D Italy 2010 (Calzolari et al., 2012) 

Domestic pigeon (Columba livia domestica) 

I Greece 2010 (Chaintoutis et al., 2014) 

I Spain 2013-2014 (Cano-terriza et al., 2015) 

I Germany 2014 (Michel et al., 2018) 

D Belgium 2017 (Benzarti et al., 2019d) 

Rock pigeon (Columba livia) I Italy 2012 (Llopis et al., 2015) 

Falconiformes Falconidae 

Barbary Falcon (Falco pelegrinoide) I Germany 2016 (Michel et al., 2018) 

Kestrel (Falco tinnunculus) 

D + I Austria 2005 (Meister et al., 2008) 

I Germany 2011-2013 (Ziegler et al., 2015) 

I Germany 2015 (Michel et al., 2018) 

D Germany 2018 (Michel et al., 2019) 

Galliformes Phasianidae 

Chicken (Gallus domesticus) 
D + I UK 2004 (Buckley et al., 2006) 

I Switzerland 2006-2007 (Buchebner et al., 2013) 

Indian peafowl (Pavo cristatus) 
D + I Austria 2005 (Meister et al., 2008) 

Marsh harrier (Circus aeruginoses) 

Partridge (Alectoris rufa) 
D Italy 2010 (Calzolari et al., 2012) 

I Spain 2011-2012 (Llorente et al., 2013) 

Pheasant (Phasianus colchicus) 

D + I Austria 2005 (Meister et al., 2008) 

I Spain 2011-2012 (Llorente et al., 2013) 

D Italy 2015 (Grottola et al., 2017) 

Turkey (Meleagris gallopavo) D + I UK 2001-2002 (Buckley et al., 2003) 

Gruiformes Rallidae Eurasian coots (Fulica atra) 

I 
Czech 
Republic 

2006 (Hubálek et al., 2008a) 

I 
Czech 
Republic 

2011 (Straková et al., 2015) 

I Netherlands 2016 (Lim et al., 2017) 
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Passeriformes 
(to be continued) 

Acrocephalidae 

Reed warbler (Acrocephalus scirpaceus) 
I Austria 2005 (Meister et al., 2008) 

I Germany 2011-2013 (Ziegler et al., 2015) 

Carrion crow (Corvus corone) 

D + I UK 2001-2002 (Buckley et al., 2003) 

I Germany 2015-2016 (Michel et al., 2018) 

D Germany 2017 (Michel et al., 2019) 

I Austria 2003-2005 (Meister et al., 2008) 

Eurasian jay (Carrulus glandarius) 

D Italy 2009 (Tamba et al., 2011) 

D Italy 2010 (Calzolari et al., 2012) 

D + I UK 2001-2002 (Buckley et al., 2003) 

Corvidae 

European magpie (Pica pica) 

D Italy 2009 (Tamba et al., 2011) 

D Italy 2010 (Calzolari et al., 2012) 

I Germany 2015-2016 (Michel et al., 2018) 

D Belgium 2017 (Benzarti et al., 2019d) 

Hooded crow (Corvus corone cornix) 
I Austria 2005 (Meister et al., 2008) 

I Germany 2015-2016 (Michel et al., 2018) 

Jackdaw (Corvus monedula) 
I Austria 2005 (Meister et al., 2008) 

D Germany 2017 (Michel et al., 2019) 

Eurasian jay (Garrulus glandarius) 
I Austria 2003-2005 (Meister et al., 2008) 

D Italy 2015 (Grottola et al., 2017) 

Emberizidae Reed bunting (Emberiza schoeniclus) I Austria 2005 (Meister et al., 2008) 

Fringillidae 

Eurasian Bullfinch (Pyrrhula pyrrhula) 
D Belgium 2012 (Garigliany et al., 2014) 

D Germany 2018 (Michel et al., 2019) 

Grey-headed Bullfinch (Pyrrhula erythaca) D Germany 2018 (Michel et al., 2019) 

Canary (Serinus canaria domestica) 
D Germany 2011 (Becker et al., 2012; Ziegler et al., 2015) 

D Germany 2018 (Michel et al., 2019) 

Common Chaffinch (Fringilla coelebs) 
I Germany 2011-2013 (Ziegler et al., 2015) 

D Belgium 2017 (Benzarti et al., 2019d) 

European greenfinch (Carduelis chloris) D Switzerland 2006 (Steinmetz et al., 2011) 

Hirundinidae 
Barn Swallow (Hirundo rustica) 

D Austria 2001 (Weissenböck et al., 2002) 

I Austria 2005 (Meister et al., 2008) 

House martin (Delichon urbica) I Austria 2005 (Meister et al., 2008) 

Lacustellidae Savi’s Warbler (Locustella luscinioides) I Germany 2011-2013 (Ziegler et al., 2015) 

Muscicapidae 

Black redstart (Phoenicurus ochruros) I Austria 2005 (Meister et al., 2008) 

Common redstart (Phoenicurus 
phoenicurus) 

D + I Germany 
2000 or/and 
2002-2005 

(Linke et al., 2007) 

European robin (Erythacus rubecula) 

D Austria 2003 (Chvala et al., 2007) 

I Austria 2005 (Meister et al., 2008) 

D Switzerland 2006-2007 (Steinmetz et al., 2011) 

D Belgium 2016 (Garigliany et al., 2017a) 

Pied flycatcher (Ficedula hypoleuca) I Austria 2005 (Meister et al., 2008) 

Motacillidae White wagtail (Motacilla alba) D Belgium 2018 (Benzarti et al., 2019d) 

Panuridae Bearded reedling (Panurus biarmicus) D Austria 2018 (Weidinger et al., 2020) 
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Passeriformes 
(to be continued) 

Paridae 

Blue tit (Cyanistes caeruleus = Parus 
caeruleus) 

D + I Austria 2001-2002 (Weissenböck et al., 2003) 

D Switzerland 2007 (Steinmetz et al., 2011) 

D Austria 2018 (Weidinger et al., 2020) 

D Austria 2003 (Chvala et al., 2007) 

Great tit (Parus major) I Austria 2005 (Meister et al., 2008) 

 I Germany 2011-2013 (Ziegler et al., 2015) 

 I Germany 2015 (Michel et al., 2018) 

Passeridae 

Eurasian tree sparrow (Passer montanus) D Hungary 2017 (Weidinger et al., 2020) 

House sparrow (Passer domesticus) 

D Austria 2001-2002 (Weissenböck et al., 2003) 

D Switzerland 2006-2007 (Steinmetz et al., 2011) 

D Germany 2011 
(Becker et al., 2012; Jöst et al., 2011; Ziegler et 
al., 2015) 

I Germany 2015 (Michel et al., 2018) 

D Belgium 2016 (Garigliany et al., 2017a) 

D Belgium 2017 (Benzarti et al., 2019d) 

D Germany 2018 (Michel et al., 2019) 

D Austria 2018 (Weidinger et al., 2020) 

Sittidae Nuthatch (Sitta europae) 
D Austria 2003 (Chvala et al., 2007) 

I Austria 2005 (Meister et al., 2008) 

Sturnidae 

Common hill myna (Gracula religiosa) D Belgium 2016 (Borm et al., 2017) 

Common Starling (Sturnus vulgaris) 

 

I Austria 2005 (Meister et al., 2008) 

D Italy 2009 (Tamba et al., 2011) 

D Italy 2015 (Grottola et al., 2017) 

D Germany 2011 
(Becker et al., 2012; Jöst et al., 2011; Ziegler et 
al., 2015) 

D Germany 2016 (Michel et al., 2018) 

D Germany 2017-2018 (Michel et al., 2019) 

Golden-breasted Starling (Cosmopsarus 
regius) 

D Germany 2017 (Michel et al., 2019) 

Sylviidae 

Whitethroat (Sylvia communis) 

I Austria 2005 (Meister et al., 2008) 
Garden warbler (Sylvia borin) 

Lesser whitethroat (Sylvia curruca) 

Blackcap (Sylvia atricapilla) 

Troglodytidae Eurasian Wren (Troglodytes troglodytes) D Belgium 2017 (Benzarti et al., 2019d) 
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Passeriformes Turdidae 

Eurasian blackbirds (Turdus merula) 

D + I Austria 2001-2002 (Weissenböck et al., 2003) 

D + I UK 2001-2002 (Buckley et al., 2003) 

D Austria 2003-2005 (Chvala et al., 2007) 

I Austria 2003-2006 (Meister et al., 2008) 

D + I Hungary 2005-2006 (Bakonyi et al., 2007) 

D Switzerland 2006-2007 (Steinmetz et al., 2011) 

D Italy 2007-2008 (Manarolla et al., 2010) 

D Italy 2009 (Tamba et al., 2011) 

D Italy 2010-2011 (Calzolari et al., 2017, 2012) 

D Germany 2011 
(Becker et al., 2012; Jöst et al., 2011; Ziegler et 
al., 2015) 

D 
Czech 
Republic 

2011-2012 (Hubàlek et al., 2014) 

I Italy 2012 (Llopis et al., 2015) 

I Spain 2013 (Ferraguti et al., 2016) 

D Germany 2011-2013 (Ziegler et al., 2015) 

D France 2015 (Lecollinet et al., 2016) 

D Italy 2015 (Grottola et al., 2017) 

I Germany 2014-2016 (Michel et al., 2018) 

D Netherlands 2016 (Rĳks et al., 2016) 

D Belgium 2016 (Garigliany et al., 2017a) 

D Germany 2016 (Michel et al., 2018; Sieg et al., 2017) 

D Belgium 2017-2018 (Benzarti et al., 2019d) 

D Croatia 2018 (Vilibic-Cavlek et al., 2019) 

D Germany 2017-2018 (Michel et al., 2019) 

D 

Austria 

Hungary 

2017-2018 (Weidinger et al., 2020) 

D 
Czech 
republic 

2016-2019 (Hönig et al., 2019) 

Song thrushes (Turdus philomelos) 

D Austria 2003 (Chvala et al., 2007) 

D Spain 2012 (Höfle et al., 2013) 

I Germany 2011-2013 (Ziegler et al., 2015) 

D Germany 2016 (Michel et al., 2018) 

D Germany 2017-2018 (Michel et al., 2019) 

D Austria 2018 (Weidinger et al., 2020) 

I Austria 2005-2006 (Meister et al., 2008) 

Piciformes Picidae 

Great spotted woodpecker (Dendrocopos 
major) 

D Belgium 2012 (Garigliany et al., 2017a) 

D Germany 2017 (Michel et al., 2019) 

D Germany 2012 (Ziegler et al., 2015) 

European Green Woodpecker (Picus 
viridis) 

I Germany 2015 (Michel et al., 2018) 

Pelecaniformes 
(Suliformes) 

Phalacro-
coracidae 

Great Cormorant (Phalacrocorax carbo) I Germany 2016 (Michel et al., 2018) 
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Rheiformes Rheidae Ostrich (Rhea americana) I Spain 2013-2014 (Cano-terriza et al., 2015) 

Sphenisciformes Spheniscidae Humboldt Penguin (Spheniscus humboldti) I Switzerland 2006-2007 (Buchebner et al., 2013) 

Strigiformes Strigidae 

Barn owl (Tyto alba) I Austria 2005 (Meister et al., 2008) 

Boreal owl (Aegolius funerius) 
D Italy 2007 (Manarolla et al., 2010) 

D Switzerland 2006-2007 (Steinmetz et al., 2011) 

Eagle owl (Bubo bubo) 

I Austria 2005 (Meister et al., 2008) 

I Austria 2006-2007 (Buchebner et al., 2013) 

I Spain 2011 (Jurado-tarifa et al., 2016) 

I Germany 2015 (Michel et al., 2018) 

Great grey owl (Strix nebulosa) 

D Italy 2006 (Manarolla et al., 2010) 

D Switzerland 
2006   2007  
2009 

(Steinmetz et al., 2011) 

D Germany 2011-2013 
(Becker et al., 2012; Jöst et al., 2011; Ziegler et 
al., 2015) 

I (one 
juvenile bird) 

D 

Germany 
2011 
2013 
2015 

(Ziegler et al., 2016) 

D Germany 2016 (Michel et al., 2018; Sieg et al., 2017) 

I Germany 2015 (Michel et al., 2018) 

D Netherlands 2016 (Rĳks et al., 2016) 

D Germany 2017-2018 (Michel et al., 2019) 

Hawk owl (Surnia ulala) 

D 

 

Switzerland 2007  2009 (Steinmetz et al., 2011) 

D Germany 2013 (Ziegler et al., 2015) 

D Germany 2017 (Michel et al., 2019) 

Little Owl (Athene noctua) D Germany 2018 (Michel et al., 2019) 

Long eared owl (Asio otus) 

I Austria 2003  2005 

(Meister et al., 2008) 

 

D Italy 2010 (Calzolari et al., 2012) 

I Spain 2011 (Jurado-tarifa et al., 2016) 

I Italy 2012 (Llopis et al., 2015) 

D Germany 2012 (Ziegler et al., 2015) 

I Germany 2015-2016 (Michel et al., 2018) 

D Belgium 2017 (Benzarti et al., 2019d) 

Pygmy owl (Glaucidium passerinum) D Switzerland 2007  2009 (Steinmetz et al., 2011) 

Short-eared Owl (Asio flammeus) I Germany 2016 (Michel et al., 2018) 

Snowy Owl (Bubo scandiacus) 
I Austria 2006-2007 (Buchebner et al., 2013) 

D Germany 2016 (Michel et al., 2018) 
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Strigiformes Strigidae 

Tawny owl (Strix aluco) 

I Austria 2005 (Meister et al., 2008) 

I Germany 2015-2016 (Michel et al., 2018) 

I Belgium 2017 (Benzarti et al., 2019d) 

Tengmaml’s owl (Aegolius funereus) D Switzerland 2007  2008 (Steinmetz et al., 2011) 

Ural Owl (Strix uralensis) 
I Austria 2005 (Meister et al., 2008) 

  2006-2007 (Buchebner et al., 2013) 

Struthioniformes Struthionidae Ostrich (Struthio camelus) I Spain 2013-2014 (Cano-terriza et al., 2015) 
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Table 2: Summary of symptomatic or lethal natural West Nile virus infections in European bird species (Appendix 2 in the review) 

 

Order Family Species 
Laboratory 
diagnosis 

Lineage Country Year References 

Anseriformes Anatidae 
Domestic goose (Anser anser 

domesticus) 
D 1 Hungary 2003 (Glávits et al., 2005) 

Accipitriformes Accipitridae 

Bearded vulture (Gypaetus barbatus) D 2 Austria 2008 (Bakonyi et al., 2013) 

Harris hawk (Parabuteo unicinctus) D 2 Hungary 2008 (Bakonyi et al., 2013) 

Sparrowhawk (Accipiter nisus) 
D + I 2 Hungary** 2004-2005 (Erdély et al., 2007) 

D 2 Austria and Hungary 2008-2009 (Bakonyi et al., 2013) 

White-tailed Eagle (Haliaeetus albicilla) D + I 2 Serbia 2012 (Petrović et al., 2013) 

Charadriiformes Laridae Yellow-legged Gull (Larus michahellis) D 2 Serbia 2012 (Petrović et al., 2013) 

Columbiformes Columbidae Collared dove (Streptopelia decaocto) D 2 Italy 2011 (Savini et al., 2012) 

Falconiformes 

Accipitridae 

Spanish imperial eagle (Aquila adalberti) D 1 Spain 2001-2004 (Höfle et al., 2008) 

Golden eagle (Aquila chrysaetos) D + I 1 Spain 2007 (Angel et al., 2008) 

Northern goshawk (Accipiter gentilis) 

D 2 Austria 2008-2009 (Wodak et al., 2011) 

D 2 Austria and Hungary 2008-2009 (Bakonyi et al., 2013) 

D 2 Italy 2012 (Savini et al., 2013) 

D + I 2 Hungary** 2004-2005 (Bakonyi et al., 2007) 

D 2 Serbia 2012 (Petrović et al., 2013) 

Falconidae 

Peregrine falcon (Falco peregrinus) D 2 Hungary 2009 (Bakonyi et al., 2013) 

Gyrfalcon (Falco rusticolus) D 2 Austria 2008-2009 
(Bakonyi et al., 2013; Wodak 

et al., 2011) 

Galliformes Phasianidae 
Common Pheasant (Phasianus 

colchicus) 
D + I 2 Serbia 2012 (Petrović et al., 2013) 

Passeriformes 

Acrocephalidae 
Sedge warbler 

(Acrocephalus schoenobaenus) 
D 2 Hungary 2009 (Bakonyi et al., 2013) 

Corvidae 

Common magpie (Pica pica) D + I 1 France 2004 (Jourdain et al., 2007) 

Hooded Crow (Corvus cornix) D 2 Serbia 2012 (Petrović et al., 2013) 

Raven (Corvus corax) D 2 Hungary 2009 (Bakonyi et al., 2013) 

Locustellidae Savi’s warbler (Locustella luscinioides) D 2 Hungary 2009 (Bakonyi et al., 2013) 

Muscicapidae 
Black redstart (Phoenicurus ochruros) D 2 Hungary 2009 (Bakonyi et al., 2013) 

Robin (Erithacus rubecula) D 2 Hungary 2009 (Bakonyi et al., 2013) 

Passeridae House sparrow (Passer domesticus) 
D + I 1 France 2004 (Jourdain et al., 2007) 

D 2 Hungary 2009 (Bakonyi et al., 2013) 

Timaliidae Bearded Parrotbill (Panurus biarmicus) D 2 Serbia 2012 (Petrović et al., 2013) 

Psittaciformes Strigopidae Kea (Nestor notabilis) 
D + I 2 Austria 2008-2009 (Bakonyi et al., 2016) 

D 2 Austria 2008-2009 (Bakonyi et al., 2013) 

Strigiformes Strigidae Snowy owl (Nyctea scandiaca) D 2 Austria 2009 (Bakonyi et al., 2013) 

- - Vulture D + I 1 Spain 2014 (Sánchez-gómez et al., 2017) 

**First detection of WNV-lineage 2 in Europe; D: direct; I: indirect 
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Table 3: Natural host range of Bagaza virus among bird species (Appendix 3 in the review) 

 

 

 

 

Lethal infection 

**First detection in Europe  

D: direct; I: indirect 

Table 4: Natural host range of Israel Turkey meningoencephalitis virus among bird species (Appendix 4 in the review) 

Order Family Species 
Laboratory 
diagnosis 

Country Year References 

Galliformes Phasianidae 

Turkeys (Meleagris 
gallopavo) 

 

D Israel  1958 
(Komarov and 
Kalmar, 1960) 

D + I South Africa 1978 
(Barnard et al., 
1980)  

- 

Israel  

  

1995 
(BravermanY et 
al., 2003)  

D + I  1971 
(Lanconescu et 
al., 1972) 

D 1997 
(Davidson et al., 
2000) 

- 2010 
(Davidson et al., 
2012) 

Lethal infection 

D: direct; I: indirect 

Order Family Species 
Laboratory 
diagnosis 

Country Year References 

Columbiformes Columbidae 
Common wood pigeons 
(Columba palumbus) 

D Spain 2010 
(Gamino et 
al., 2012) 

Galliformes Phasianidae 

Red-legged partridges  
(Alectoris rufa) 

Common pheasants (also  
ring-necked pheasants  
(Phasianus colchicus) 

D 

**Spain 2010 

(Agüero et al., 
2011) 

D 
(Gamino et 
al., 2012) 

D 
(Garcia-

Bocanegra et 
al., 2012) 

I Spain 
2011-
2012 

(Llorente et 
al., 2013) 
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Table 5: Natural host range of Tembusu virus among bird species (Appendix 5 in the review) 

Order Family Species 
Laboratory 

diagnosis 
Country Year References 

Anseriformes Anatidae 

Duck 

(Anas platyrhynchos) 

 

D Thailand 2002 (Guinn et al., 2013) 

D China 2010 (Bai et al., 2013) 

D China 2010 (Cao et al., 2011) 

D China 2010 (Huang et al., 2013) 

D China 2010 (Su et al., 2011) 

D China 2010 (Wan et al., 2012) 

D + I China 2010 (Yan et al., 2011) 

D China 2010 (Yun et al., 2012) 

D China 2010-2011 (Wang et al., 2011) 

D Malaysia 2012 (Homonnay et al., 2014) 

D China 2012 (Chen et al., 2013) 

D China 2012 (Zhu et al., 2012) 

D China 2013 (Cheng et al., 2015) 

D China 2013 (Zhu et al., 2015) 

D Thailand 2013-2014 (Thontiravong et al., 2015) 

D China 2015 (Yan et al., 2016) 

  Goose (Anser anser) 

D China 2010 (Huang et al., 2013) 

D China 2011 (M. Liu et al., 2012) 

D China 2012 (Chen et al., 2013) 

Columbiformes Columbidae Pigeon D China - (P. Liu et al., 2012) 

Gallifor-mes Phasianidae 

Chicken 

(Gallus gallus) 

I Malaysia 1976 (Wallace et al., 1977) 

D + I Malaysia 2000 (Kono et al., 2000) 

D + I China 2009 (S. Chen et al., 2014) 

D China 2011 (M. Liu et al., 2012) 

Passeriformes Passeridae House sparrow (Passer domesticus) D China 2010-2011 (Tang et al., 2013a) 

Lethal infection 
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Table 6: Summary of vaccination trials with inactivated West Nile virus vaccines in birds (Appendix 6 in the review) 

Study  Vaccine  Species Protocol Results  

(Malkinson et al., 
2000)* 

Inactivated WNV 1998 
isolate  Domestic geese  

(Anser anser domesticus) 

One i.m or s.c injection or two on 
day 0 and 21  

75% of protection with a single i.m or s.c injection 94% of protection with two 
injections at 21 days apart; 80% of protection with two injections of WNV vaccine 
in field-vaccinated geese 

Heterologous inactivated 
or live ITV vaccine 

One i.m or s.c injection or two on 
day 0 with the killed vaccine and on 
day 21 with the live vaccine 

71 to 92% of protection in laboratory conditions    39% to 72% of protection with 
TME vaccine in field-vaccinated geese   

(Nusbaum et al., 
2003) 

 WNV-Innovator®, Fort 
Dodge Animal Health, 
Fort Dodge, Iowa 50501, 
USA 

Chilean flamingos 
(Phoenicopterus chilensis) 

0.2 ml i.m the on day 0 and 21 Vaccine failure: no antibody response in the 13 birds 
Red-tailed hawks (Buteo 
jamacensis) 

(Johnson, 2005) 

WNV-Innovator®, Fort 
Dodge Animal Health, 
Fort Dodge, Iowa 50501, 
USA 

Red-tailed hawks (Buteo 
jamaicensis)  

0.25 ml, 0.5 ml, 0.75 ml, and  1 ml 
i.m  3 times at 3 weeks of interval 

Greatest seroconversion (58.3%) in the group that received a dose of 1 ml 
administered thrice   Protective immunity in birds is not assessed  

Harris’ hawks (Parabuteo 
unicinctus) 

Cooper’s hawks (Accipiter 
cooperii) 

Swainson’s hawks (Buteo 
swainsonii) 

Prairie falcons (Falco 
mexicanus) 

Peregrine falcons (Falco 
peregrinus) 

American kestrels (Falco 
sparverius) 

Common ravens (Corvus 
corax) 

Turkey vultures (Cathartes 
aura) 

Western screech owls (Otus 
kennicottii) 

Great horned owls (Bubo 
virginianus) 

Burrowing owls (Athene 
cunicularia) 

Barn owls (Tyto alba) 

Bald eagle (Haliaeetus 
leucocephalus) 

Golden eagle (Aquila 
chrysaetos) 

(Samina et al., 
2005)  

Inactivated 1997 WNV 
isolate vaccine 

Domestic geese (Anser anser 
domesticus) 

0.5ml S.c on day 0 and 14 21 80-90% of protection from lethal disease and clinical signs  
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(Bunning et al., 
2007)* 

 

WNV-Innovator®, Fort 
Dodge Animal Health, 
Fort Dodge, Iowa 50501, 
USA 

American Crows (Corvus 
brachyrhynchos) 

2 i.m injections at a 21-day interval 
with 1.0 ml divided equally between 
two sites 

Seroconversion rate: 44% 
No unvaccinated crows survived the challenge  
11% of survival rate in vaccinated animals with killed vs 44-60% in those i.m-
vaccinated with the DNA vaccine 
I.m injection of a WNV DNA vaccine provided better protection than killed 
vaccine but both vaccines did not provide sterile immunity 

(Okesond et al., 
2007) 

WNV-Innovator®, Fort 
Dodge Animal Health, 
Fort Dodge, Iowa 50501, 
USA  

Black-footed penguins 
(Spheniscus demersus) 

1ml i.m on day 0 and 21 

Safe vaccine 

No seroconversion in Attwater’s prairie chickens 

Seroconversions on day 42 vary from 5.9% (little blue penguins) to 80% (black-
footed penguins) 

Antibody protective titer is unknown 

No challenge test 

Little blue penguins (Eudyptula 
minor) 

American flamingos 
(Phoenicopterus ruber) 

1 ml i.m on days 0 and 26 

Chilean flamingos 
(Phoenicopterus chilensis) 

1 ml i.m on days 0, 21, and 42 

Attwater’s prairie chickens 
(Tympanuchus cupido 
attwateri) 

0.5 ml i.m on day 0 then 1 ml s.c. on 
days 34 and 56 

(Samina et al., 
2007) 

Inactivated WNV 
vaccine produced on 
Human retina-derived 
PERC.6® cells 

Domestic geese (Anser anser 
domesticus) 

Two s.c injections at a 2-week 
interval, with 1ml (10

8
 TCID50) 

Safe vaccine 

(53/58) protection of geese compared to no protection 
(0/13) in geese receiving a sham vaccine 

(Davis et al., 2008) * 

WNV-Innovator®, Fort 
Dodge Animal Health, 
Fort Dodge, Iowa 
50501, USA 

Humboldt penguins 
(Spheniscus humboldti) 

1 ml i.m  on day 0 and 16–21 

Safe vaccine 
Seroconversion in all four species 
Greater seroconversion rate than the DNA vaccine 
Longer seropositive titer duration using the killed vaccine 
Antibody protective titer is unknown 
No challenge test 

Magellanic penguins 
(Spheniscus magellanicus) 

Gentoo penguins (Pygoscelis 
papua) 

Rockhopper penguins 
(Eudyptes chrysoscome) 

(Olsen et al., 2008) 

WNV-Innovator®, Fort 
Dodge Animal Health, 
Fort Dodge, Iowa 
50501, USA 

Sandhill Cranes (Grus 
canadensis) 

0,5 ml i.m on days 0, 21, and 28 

Safe vaccine 
Viremia and virus shedding reduction 
No significant antibody response 
No death after challenging test in both vaccinated and control groups 

(Boyce et al., 2011) 

WNV-Innovator®, Fort 
Dodge Animal Health, 

Fort Dodge, Iowa 50501, 
USA 

Island scrub-Jays 
(Aphelocoma insularis) 

i.m injection of 1 ml twice or thrice 
on 3-4 week interval 

(1/13) seroconversion after a single dose 

(5/5) seroconversion after two doses 

No challenge test 

(Angenvoort et al., 
2014)* 

Duvaxyn® WNV 

Gyrfalcons (Falco. Rusticolus) 

1ml in the pectoral muscles 
on day 0 and 28 

A three-injection scheme is recommended for falcons: robust antibody response, 
sterile immunity 
Presence of minor clinical signs, oral and cloacal shedding, viremia and lesions 

Hybrid falcons (F. rusticolus × 
F. cherrug and F. rusticolus × 
F. peregrinus) 
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(Cushing 
et al., 2017)  

WNV-Innovator®, Fort 
Dodge Animal Health, 

Fort Dodge, Iowa 50501, 
USA 

Humboldt penguins 
(Spheniscus humboldti) 

1ml i.m then an annual booster 
vaccination 

Safe vaccine 
Passive antibody transfer from vaccinated adult females to chicks 
Vaccination of chicks at 42 days and again in 56 or 86 days maximized 
protection and minimized interference with maternal antibodies 
No challenge test 

 

* Comparative study between different vaccines 
i.m : intramuscular; s.c: sub-cutaneous; TCID50: 50% Tissue Culture Infective Dose 

Table 7A: Summary of vaccination trials with West Nile virus DNA vaccines in birds (Appendix 7A in the review) 

Study Vaccine Species Protocol Results 

(Jarvi et al., 2008) 
WN-80E recombinant E 
protein with or without 
adjuvant 

Domestic geese (Anser anser 
domesticus) 

5 or 10µg i.m twice at a 4 week-
interval  

Safe vaccine 
WN-80E antigen formulated with ISA720 adjuvant triggers more significant 
antibody response 
Viremia used as a criterion for birds “protection” instead of death 
The use of the adjuvant is necessary to prevent detectable viremia 

(Escribano-romero 
et al., 2013) 

WNV E recombinant (rE) 
protein 

Red-legged partridges 
(Alectoris rufa)  

10µg i.m three times at a 2-weeks 
interval 

Safe vaccine 
100% seroconversion in rE-vaccinated partridges 
No mortalities in vaccinated birds versus 33.3% of mortality of the control group 
Viremia in 14% of the rE vaccinated birds 
rE vaccination fully protected partridges against WN disease and reduced the 
risk of virus spread 

(Jarvi et al., 2013)  
WN-80E recombinant 
protein with Montanide 
ISA720 adjuvant 

Hawaiian geese ēnē (Branta 
sandvicensis) 

Two i.m 10-µg injections   (4 wk 
apart)  

Safe vaccine 
Seroconversion in vaccinated birds with a significant decrease in antibodies titer 
in 6 months post-vaccination 
Protection of the vaccine was not assessed  

 

ISA: International standard on auditing 720 
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Table 7B: Summary of vaccination trials with West Nile virus subunit vaccines in birds (Appendix 7B in the review) 

Study Vaccine Species Protocol Results 

(Turell et al., 2003) pCBWN
1 

Fish crows(Corvus ossifragus) 0.5 mg orally or by i.m inoculation 

Failure of oral vaccination 
56% of the birds developed a detectable antibody response after i.m injection but 
with a short duration (42 days) 
i.m administration of a single dose prevented death (from 50% to 0) and was 
associated with reduced viremia 

(Bunning et al., 
2007)* 

pCBWN 

 

American Crows (Corvus 
brachyrhynchos) 

I.m injection of 0.2 mg  with or 
without adjuvant twice at a 21-day 
interval 

80% of crows developed neutralizing antibodies 
No unvaccinated crows survived the challenge, and survival rates were better 
with the adjuvant vaccine (60% vs 44%) 
I.m injection of a WNV DNA vaccine provided better protection than killed 
vaccine but both vaccines did not provide sterile immunity 

0.5 mg vaccine orally four times at 7-
day intervals 

Vaccine failure 

(Chang et al., 2007) 

pVWN
2 

 

California condors 
(Gymnogyps californianus) 

Two i.m injections (500µg/1 ml/dose, 
3-week apart) 

Safe vaccine 
Strong immunity in adults, nestlings, and newly hatched chicks 
No challenge test 

(Kilpatrick et al., 
2010) 

pCBWN 
American Robins (Turdus 
migratorius) 

i.m injection of 0.175mg 

WNV antibodies undetected after 2 weeks post-vaccination 
Non-infectious viremia in vaccinated birds after the challenge test 
Very small sample sizes of vaccinated (3) and control groups (3) 
Both vaccinated and unvaccinated groups survived after the challenge test 

(Wheeler et al., 
2011)* 

Recombitek* WNV 
equine vaccine (Duluth, 
GA) 

Western Scrub-Jays 
(Aphelocoma californica) 

Two 0.5ml i.m injections 
Necrotic lesions at the site of injection 
Vaccine failure: no significant post-vaccination antibody response 

Fort Dodge** WN-
Innovator® DNA equine 
vaccine (Overland Park, 
KS) 

Four 0.5ml i.m injections Presence of an antibody response 
Both vaccines did not prevent mortality neither pathologic lesions after challenge 
test 
Post-challenge viremia was sufficient to possibly infect susceptible vector 
mosquitoes pCBWN A single 0.5ml i.m injection 

(Boyce et al., 2011)* 

Fort Dodge WN-
Innovator® ** DNA 
equine vaccine 
(Overland Park, KS) 

Island scrub-Jays 
(Aphelocoma insularis) 

1 to 2 mL i.m injection Absence of antibody response: vaccine failure 



  Supplemental material 

  173 

(Redig et al., 2011) pCBWN 
Red-tailed hawks (Buteo 
jamaicensis) 

2 injections at a 3-week interval 

Safe vaccine 
Only 3/14 birds developed low antibody titers 
Viremia was significantly reduced 
None of the hawks in the control group showed any clinical signs after the 
challenge test 

(Fischer et al., 2015) 

Two DNA vaccines 
encoding the 
ectodomain of the E 
protein of WNV lineages 
1 and 2 

Falcons  
Falco rusticolus; F. cherrug; 
F  peregrinus; F. cherrug x 
F. rusticolus; F. peregrine) 

700 μg of WNV-DNA-1 or WNV-
DNA-2 i.m on day 0 and 21 

Local inflammation at the site of injection 
WNV vaccine plasmid is  shed neither orally nor via feces 
Humoral response in (11/20) with low and short-lasting antibodies titers 
Reduced mortality and clinical signs and lower viremia compared to the control 
group after the challenge trial 
Electroporation enhanced antibody response after vaccination with WNV-DNA-1 

75 μg of WNV –DNA-1 i.m 
immediately followed by an in-vivo 
electroporation 

* Comparative study between different vaccines 

** Removed from the commercial market in 2010 

1 A DNA vaccine (pCBWN) expressing WNV prM and E proteins 

2 pCBWN ampicillin resistance genes replaced with a kanamycin resistance gene derived from the pVAX plasmid produced at CDC, National Center for Infectious Diseases, Division of Vector-Borne Infectious 

Diseases (DVBID), Fort Collins, Colorado 

i.m: Intra-muscular; IFU: Infection forming units; PA: Plaque assays 
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Table 7C: Summary of vaccination trials with West Nile virus chimeric vaccines in birds (Appendix 7C in the review) 

Study Vaccine Species Protocol Results 

(Langevin et al., 
2003)  

ChimeriVax®-WN
1
  

Chicken (Gallus gallus) 
Fish crows  (Corvus 
ossifragus) 

s.c injection thrice at days 0, 48 and 
100 

Absence of replication of the chimeric virus or YF-17D virus 
Vaccination failure: only one bird developed low humoral response; higher 
mortality in vaccinated birds than in the control group after the challenge test; 
viremia level similar to unvaccinated birds 

(Pletnev et al., 
2006)  

Chimeric WN/DEN4
2
 

and WN/DEN4-3’∆30 
vaccines 

3 

Domestic geese  
(Anser anser domesticus) 

S.c injection in the nape of the neck 
of 10

4
 PFU of chimeric viruses and 

DEN4 

Vaccine failure: Both chimeras failed to replicate in geese; no protection from 
death. 
Clinical signs and high levels of viremia after the challenge test 
Prior infection with dengue virus in geese did not prevent clinical signs and death 
after WNV infection 

(Young and 
Jefferies, 2013) 

Recombinant 
Adenovirus vaccine 
expressing WNV E or 
NS3 proteins 

Japanese Quail 
(Coturnix japonica) 

5×10
9
 IFU in breast muscle on day 0 

and 28 

Safety of the vaccine not mentioned 
Both vaccines induce humoral and cellular response with more significant 
humoral response seen with rAdE 
No challenge test 

(Angenvoort et al., 
2014)* 

Recombinant live 
canarypox virus 
(RECOMBITEK®- 
Equine rWNV vaccine, 
Merial, US, in the EU 
Proteq West Nile) 

Gyrfalcons (Falco rusticolus) 

1ml in the pectoral muscles on day 
0, 21 and 42 

The canarypox vector virus is  shed neither orally nor via feces 
(RECOMBITEK® twice):  reduction of body weight and local inflammations at the 
injection sites 
Recombinant vaccine prevented mosquito-infection 
A three-injection scheme is recommended for falcons by both vaccines 

Hybrid falcons 
 (F. rusticolus × F. cherrug and 
F. rusticolus × F peregrinus) 

 

* Comparative study 

1WNV pre-membrane prM and envelope E genes  are incorporated into the genome of the 17D non-structural genes of yellow fever virus 

2 (prM) and (E) structural proteins genes of the dengue virus type 4 replaced with the corresponding genes from WNV  

3 Introduction of a 30 nucleotide deletion in the non-coding region of the DEN4 component of chimeric WN/DEN4 

 s.c: sub-cutaneous 
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Table 8: Summary of vaccination trials with TMUV vaccines in birds (Appendix 8 in the review) 

Study Vaccine Species Protocol Results 

(Zhang et al., 2017) 
Beta-propiolactone 
inactivated TMUV-JXSP 
strain 

Duck  
One or two s/c injection of 4 × 10

4
 

PFU in 0.5ml after three weeks 

Safe vaccine 
97% (39/40) of seroconversion on day 21 after one dose with a protection index 
of 87% after the challenge test 
Sterilizing immunity after the second immunization 

(Li et al., 2014) FX2010-180P* Duck 

One i.n or i.m injection of 5.5 log10 
TCID50  

No seroconversion after i.n inoculation 

i.m injection of 3.5 log10 TCID5  
45.0-64.5% of seroconversion 
Sterilizing immunity after virus challenge 
Detection of virus replication in the spleen 

(Sun et al., 2014) 
Du/CH/LSD/110128-
90P** 

Duck 
intracerebral injection of 100 µl 
containing 10

5 
EID50 

Full protective immunity after virus challenge  

(Lin et al., 2015) 
Formaldehyde 
inactivated TMUV-HB 

Beijing ducks 

I.m or s/c Injection of 0.11, 0.33, or 1 
ml of 10

6.9 
50% ELD50/0.1 ml once 

or twice at 14 days interval 

Absence of death after the challenge test in control and vaccinated groups: virus 
isolation as the main criteria for protection 
Up to 80% of protection in ducks receiving two immunizations of 1 ml  
20–90% seroconversion and protection in geese after two immunizations 

Beijing white geese 

(Ma et al., 2016) 
Liposome entrapped or 
Freund’s adjuvanted E 
protein 

Duck I.m injection of 300 µg once or twice  Longer and better immunization with the liposomes group immunized twice  

(Chen et al., 2014) 

Recombinant DEV 
encoding for the 
truncated E (TE) protein 
alone or PrM/TE 
together 

Duck  
S/c injection of 10

6
 TCID50 of 

viruses once or twice at a three 
weeks interval 

Partial protection with rDEV-TE 
Full protection with rDEV-PrM/TE when injected twice 

(Tang et al., 2018) 

Plasmid DNA pSCA1-E 
(expressing E protein) 

Duck I.m injection of  200 μg 

Similar antibody and cellular immune response  
Full protection after challenge test from clinical signs and lesions 

 

Commercial inactivated 
HB strain group, Rinpu, 
Tianjin, China 
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(Zou et al., 2017) 

Recombinant DEV 
expressing 
hemagglutinin (HA) of 
H5N1 and E and prM  

Duck S/c injection of 10
5
 PFU of viruses 

Safe vaccine  
Sterile immunity against N5N1 and TMUV challenge  
Higher levels of IFN-γ and IL-4 and enhanced T-cell proliferative response to HA 
or E protein compared to sham vaccinated ducks 

(Huang et al., 2018) 

DNA vaccine: 
attenuated Salmonella 
typhimurium SL7207 
(pVAX-C) expressing C 
protein 

Duck 
Oral delivery of 10

10 
CFU 0.5 in ml 

volume at day 0 and 16 

Induction of cellular and humoral immune response 
Complete protection from the lethal challenge but  no prevention from clinical 
signs  

(Juan Huang et al., 
2018) 

Naked DNA vaccine 
plasmid pVAX-SME 
expressing E and prM 
proteins 

Duck 

I.m injection of 200 µg in 0.5 ml of 
PBS twice at an interval of 16 days 

Induction of similar specific immune response 
100% survivorship compared to 70% in the control group after the challenge test 
Minor clinical signs during the early stage (1 to 3 days) after challenge  

Oral administration of 10
10

 CFU in 
0.5 ml of PBS twice at an interval of 
16 days 

Attenuated Salmonella 
typhimurium SL7207 
(pVAX-C) expressing E 
and prM proteins 

I.m injection of 0.5 ml containing 6 × 
10

6
 PFU/ml twice at an interval of 16 

days Inactivated vaccine 

(Sun et al., 2018) 

Recombinant attenuated 
NDV (aGM/prM+E) 
expressing prM and E 
proteins 

Duck 

S/c injection of 10
6.0 

EID50 twice at 

day 0 and 14 

Two doses of commercial vaccines 
s/c at day 0 and 14 

Significantly higher humoral immune responses against both NDV and DTMUV 

with a GM/prM+E than with commercial vaccines 

aGM/prM+E-vaccinated group exhibited no NDV shedding after challenge, and 

the LaSota-vaccinated group shed the virus at 1 and 3 dpi 

complete protection against virulent NDV and Better protection from ovarian 

lesions and TMUV shedding (80% and 60% respectively) compared to the 

protection afforded by commercial DTMUV vaccine (60% and 40% respectively).  

Commercial live LaSota 
vaccine (Winsun, 
Guangdong, China) 

Commercial oil emulsion 
DTMUV vaccine (HB 
strain) (Rinpu, Tianjin, 
China)  

 

* strain that emerged from FX2010 after 180 passages in chicken embryo fibroblasts 
** strain that emerged from Du/CH/LSD/110128 after 90 passages in chicken embryos 

CFU: Colony-forming unit; DEV: Duck enteritis virus; EID50: 50% embryo infectious dose; i.m: intra-muscular; i.n: intra-nasal; NDV: Newcastle disease virus; s/c: sub-cutaneous 
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Appendix 2. 

 Manuscript n°2- Usutu Virus Epizootic in Belgium in 2017 and 2018: Evidence of Virus Endemization and Ongoing Introduction Events 

Supplementary table 1. Genetic distance comparison and percentage of similarity in amino acids of the polyprotein sequences of USUV isolates 

Villers/2017 (Genbank: MK230890), Grivegnée/2017 (Genbank: MK230891), Seraing/2017 (Genbank: MK230892) and Richelle/2017 (Genbank: 

MK230893)  

 
MK230890 MK230891 MK230892 MK230893 

 Nucleotides  

MK230890  97.1% 99.6% 98.7% 

MK230891 99.0%  97.1% 97.9% 

MK230892 99.9% 98.9%  98.6% 

MK230893 99.7% 99.2% 99.6%  

                              Amino-acids   
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Supplementary table 2. Amino acid comparison of the polyprotein sequences of the four isolated USUV strains (Seraing/2017, Villers/2017, Richelle/2017 

and Grivegnée/2017). The amino acid positions of sequence differences in the polyprotein are indicated. 

 

 

 

 

 

 

 

 

*Unique substitution 

 

 

 

Protein C ENV 

Strain/position 11 85 105 112 120 124 125 345 369 381 419 472 524 531 637 

MK230890 S R G V V V S N T D M K S I S 

MK230892 S R G V V V S D T D M K S I S 

MK230893 S K G V V I S N M* D M K S I S 

MK230891 N K S L A V F* S T N V E L T T 

Protein NS1 NS2A NS2B NS3 

Strain/ position 889 1001 1035 1219 1236 1268 1287 1322 1334 1420 1576 1602 2059 2094 - 

MK230890 M T V I V F A I A K K I I M - 

MK230892 M T V I V F A I A K R* I I M - 

MK230893 T A I I V F A I A K K I I M - 

MK230891 T A I V A L V V V R K V 
 
I* - 

Protein NS4B NS5 

Strain/position 2287 2325 2445 2460 2607 2798 2803 3060 3427 3428 - 

MK230890 I V R L V K T K N V - 

MK230892 I I* R L I R T K N V - 

MK230893 M V K F V K S K N V - 

MK230891 M V K F V K S R S I - 

 Amino acid substitution without a change in amino acid charge 

 Introduction of charged amino acid 

 Charged amino acid replaced by uncharged amino acid 
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Supplementary Table 3 

Unique nucleotide substitutions in the sequences of the four isolates of USUV (Villers/2017: 

MK230890; Grivegnée/2017: MK230891; Seraing/2017: MK230892 and Richelle/2017: MK230893) 

Nucleotide Protein MK230890 MK230891 MK230892 MK230893 

156 
C 

 C->T 

470  C->T
1 

  

882 
PrM 

 T/A->C   

900   C->T*  

1129 

E 

 A->G  

1202  C->T
2 

1356 C/T->A  

1926  G/T->A 

2571 
NS1 

 C->T  C->T 

3097  A->G*  A->G* 

4311 

NS2B 

  T->C  

4332 A->G  

4491  G->A  

4614 

NS3 

 C/G->T  

4668  A->G  

4823   A->G
3 

 

5595  T->C*   

5667   A->G  

6252  C->T  

6378  G->A
4 

 

6948 

NS4B 

 T->C  

7069  G->A
5 

 

7395  T->C  

7470  G/T->A  

7915 

NS5 

 G->A  

8498  A->G  

9786 C->T  

10176  C->T 

10378  G->A   

* Common with Central African Republic strain KC754958 
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1
 Synonymous to amino-acid substitution A/S->F ; 

2
 Synonymous to amino-acid substitution 

T->M; 
3
 Synonymous to amino-acid substitution K->R; 

4
 Synonymous to amino-acid 

substitution M->I; 
5
 Synonymous to amino-acid substitution V->I 

Annex. Preparation of reverse genetics systems for the study of USUV 

Introduction 

 Definitions and general overview 

Reverse genetics consist in the modification of one or more genes by mutations, deletions or 

insertions within a genome, in order to analyze the effect of these "directed" changes at the level of the 

organism. Unlike traditional genetics, which rely on the observation of the phenotype genetic basis, 

reverse genetics evolve inversely, by analyzing the phenotypic results of specifically modified genetic 

sequences (Niyokwishimira et al., 2018). 

In virology, reverse genetics is defined as the reconstitution of infectious virus from 

complementary DNA (cDNA) of the viral genome (Neumann and Kawaoka, 2004). Obtaining an 

artificial DNA, a copy of the RNA virus genome allows scientists to easily manipulate its genome, by 

suppressing/modifying genes or by adding exogenous sequences (reporter gene, therapeutic or other) 

(Bemont, 2007; Lemay, 2011). This genomic manipulation permits to evaluate the impact of certain 

genetic changes on the biology and pathogenicity of viruses and to develop therapeutic strategies and 

attenuated vaccines (see examples section). 

For RNA viruses of positive polarity, the concept of reverse genetics is relatively simple. The 

vRNA serves as mRNA that can be directly translated by ribosomes. Therefore, the "naked" vRNA is 

infectious; the introduction of a vRNA into a host cell results in the immediate expression of viral 

proteins, followed by assembly and secretion of infectious virions. Thus, to establish a reverse 

genetics system, a cDNA copy of the transfected virus genome into a permissive cell serves as a 

template for vRNA synthesis (Fellow et al., 2013). 

The first demonstration of reverse genetics for a positive-strand RNA virus dates back to 1981 

and led to the production of infectious poliovirus (Racaniello, V.R. and Baltimore, 1981). Since then, 

many reverse genetics techniques have been used to produce wild-type and recombinant viruses for 

the majority of positive-sense RNA viruses, such as coronaviruses (Almazan et al., 2016) and 

picornaviruses (Rieder et al., 1993). The first reverse genetics model for the flavivirus study was 

published in 1989 and described the production of the YFV 17D vaccine strain. The virus was 

produced by cloning two segments of the genome into separate plasmids, and then both segments were 

assembled by in vitro ligation and amplified by in vitro transcription prior to transfection into cells 
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(Rice et al., 1989). Subsequently, reverse genetics models have been described for a large number of 

other flaviviruses (Atieh et al., 2016; Aubry et al., 2015b; Ávila-Pérez et al., 2018; Bredenbeek et al., 

2003; Maeda et al., 2008). However, no reverse genetic system exists so far to produce infectious 

USUV.  

 Reverse genetics techniques 

To date, two reverse genetics strategies have been described for the flaviviruses production: 

the infectious clone and the infectious subgenomic fragments (ISA: Infectious Subgenomic 

Amplicons). These strategies are detailed in a review by Aubry et al. (2015). 

- Infectious clone 

An infectious clone is a cDNA obtained by PCR or de novo synthesis from complete genomic 

viral RNA, which can be stably incorporated into a vector (most often a plasmid) and from which the 

genomic RNA can be obtained by two strategies: either by in vitro transcription of the cDNA or by 

direct transfection into cells (Aubry et al., 2015b; Ruggli and Rice, 1999) (Figure 1). 

 In vitro transcription of cDNA 

This strategy consists of the in vitro transcription of an infectious RNA genome from a cDNA 

copy covering the entire viral genome, under the control of a prokaryotic (or bacteriophage) RNA 

polymerase promoter (for example, T7 or SP6). In this case, the last nucleotide of the viral genome is 

followed by the ribozyme sequence of the delta hepatitis virus (HDVr) to generate a correct 3' end 

(Perrotta and Been, 1991). Once transcribed, the vRNA is transfected into permissive cells to recover 

infectious virus (Khromykh et al., 2001; Ruggli and Rice, 1999). 

 Direct transfection of permissive cells 

This approach consists of the construction of a complete infectious cDNA clone containing the 

viral genome flanked by a eukaryotic polymerase II promoter at the 5' end, typically the 

cytomegalovirus promoter (pCMV), required for the transcription initiation, and the ribozyme 

sequence of the hepatitis delta virus (as a terminator of the polymerase II) followed by the simian virus 

40 polyadenylation signal (HDVr/SV40pA) at the 3' end to properly generate the 3’ UTR. The full-

length cDNA is usually assembled into a low copy number plasmid for its stable propagation in 

bacteria. In this system, the infectious cDNA clone is directly transfected into permissive cells, where 

the vRNA is primarily transcribed into the nucleus by cellular RNA polymerase II, with additional 

amplification steps in the cytoplasm driven by the viral polymerase (Ávila-Pérez et al., 2018). 
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Figure 1: The construction technique of infectious clones (Aubry et al. 2015b). 

A double-stranded cDNA copy of an RNA virus genome is stably incorporated into a vector and 

amplified in a bacterial host. After purification of the construct, the infectious viruses are obtained 

either by direct transfection of permissive cells when a eukaryotic promoter is used or by transfection 

of genomic RNA obtained by in vitro transcription when a bacteriophage promoter is used. 
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          The construction of complete cDNA clones is often hampered by the toxicity and instability of 

the flavivirus genome when propagated in bacterial hosts used to amplify the cDNA fragment (Ruggli 

and Rice, 1999). This bacterial toxicity is attributed to nucleotide sequences, called "cryptic 

promoters", within the flavivirus genome, in the coding sequences for the E and NS1 proteins (Pu et 

al., 2011; Ruggli and Rice, 1999) or in the 5’ UTR (Li et al., 2011), capable of inducing the 

transcription of toxic proteins. In addition, the presence of a large number of clones could lead to the 

production of too high levels of proteins that are toxic to the bacteria (Ruggli and Rice, 1999). This 

protein production is promoted by the use of an effective promoter such as the pCMV (Aubry et al., 

2015b). Genomic instability is still not well understood (Siridechadilok et al., 2013).  

The instability of JEV cDNA clones was attributed to accidental transcription from phage or 

bacterial promoters into the vectors used (Sumiyoshi et al., 1992). Similarly, spontaneous genetic 

rearrangements were observed when the WNV 5’ UTR of the cDNA was forward-cloned downstream 

of the bacterial promoters, but not in the opposite direction, suggesting that genetic instability of 

flaviviruses results from abnormal transcription induced by bacterial promoters (Yamshchikov et al., 

2001). As a result, each construct must be carefully sequenced to verify the absence of accidental 

mutations after cloning (Siridechadilok et al., 2013). In addition, several approaches have been 

developed to overcome the toxicity and instability of the complete cDNA genome, such as the use of 

low copy number plasmids or the inactivation of cryptic E. coli promoters (Aubry et al., 2015b, Ávila-

Pérez et al., 2018). 

In order to completely avoid the use of hosts to amplify the cDNA, "bacteria-free" techniques 

have been developed (Edmonds et al., 2013). Infectious viral RNA can be obtained by the 

transcription of a complete cDNA template obtained by long or overlap extension PCRs (Aubry et al., 

2015b). In the latter technique, primers are designed so that the ends of the products contain 

complementary sequences. When these PCR products are mixed, denatured, and amplified, the strands 

with the corresponding sequences at their 3' ends overlap and act as primers for each other. The 

extension of these overlapping sequences by the DNA polymerase produces a single DNA fragment 

(Hoa et al., 1989; Horton et al., 1989) (Figure 2). 

The first successful recovery of infectious RNA virus by PCR without intermediate cloning of 

the cDNA in microbial vectors has been described by Gritsun and Gould (1995). Two fragments 

forming the genome of TBEV were linked together by ligation or "PCR fusion", and after in vitro 

transcription, the vRNA was directly injected into mice by the IC route, leading to the production of 

infectious viruses (Gritsun and Gould, 1995). Subsequently, other techniques based on the infectious 

clone were developed to even avoid the use of an in vitro transcription, namely Gibson assembly and 

Circular Polymerase Extension Cloning. In the Gibson technique, and through the use of three 

enzymes (an exonuclease, a DNA polymerase, and a DNA ligase), several overlapping cDNA 
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fragments forming the complete genome of DENV and vector amplicons were assembled during a 

single isothermal reaction. The generated circular product is then directly transfected into competent 

cells to recover infectious virus (Siridechadilok et al., 2013). The Circular Polymerase Extension 

Cloning approach is based on the use of a high fidelity DNA polymerase to assemble multiple RT-

PCR produced amplicons with overlapping ends (the first and the last fragment comprise overlapping 

ends with the vector) in the correct order in a vector, directly transfected into permissive cells 

(Edmonds et al., 2013). 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Overlap PCR technique to generate the cDNA of the West Nile fever virus genome (Maeda 

et al. 2009). 

I: Three overlapping cDNA fragments are produced by reverse transcription; II: A series of PCR 

cycles were used to link the fragments to each other. Each fragment serves as a primer for the other 

due to the overlapping zones; III: In the presence of specific primers, the fusion product (complete 

cDNA) is amplified. 

Similarly, it is conceivable to assemble these different cDNA fragments and to directly 

produce viral RNA in cellulo, which facilitates the procedure and shortens its duration. This technique 

is called ISA (Infectious Subgenomic Amplicons).  
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- Infectious Subgenomic Amplicons (ISA) Technique  

The ISA technique consists in the PCR amplification of up to 10 fragments of cDNA 

fragments covering the entire genome with overlapping regions of approximately 70 to 100 bp, which 

recombine spontaneously after their co-transfection into permissive cells and form infectious viruses 

(Aubry et al., 2014; Driouich et al., 2019) (Figure 3). The first and the last fragment are respectively 

flanked at the 5' end by the pCMV and at the 3' end by the HDVr/SV40pA. This approach has been 

successfully applied in mammalian and mosquito cells to recover many flaviviruses, such as DENV, 

JEV, WNV, and ZIKV (Atieh et al., 2017, 2016; Aubry et al., 2014; De Fabritus et al., 2016). A 

method derived from ISA, called ISA-lation, was also proposed to recover infectious viruses directly 

from nucleic acids derived from clinical/animal samples (Aubry et al., 2015a). In these methods (i.e. 

ISA and ISA-lation), the most laborious part is the production of the terminal fragments with pCMV 

and HDVr/SV40pA sequences. This task requires either a fusion PCR with the pCMV and 

HDVr/SV40pA sequences or a de novo synthesis of DNA. To simplify this work, the coding 

sequences for pCMV and HDVr/SV40pA can be provided as separate amplicons comprising 

respectively the first and last 30 nucleotides of the viral genome. This technique, called "Haiku", has 

been successfully applied for the production of the JEV (Diala et al., 2018). 

The ISA method may, however, be associated with a low recombination efficiency of the 

cDNA fragments in cellulo (Ávila-Pérez et al., 2018), often related to the transfected cells type (Diala 

et al., 2018). Therefore, the virus amount produced after transfection could be low, which would have 

a negative impact on the successful recovery of recombinant viruses harboring, for example, mutations 

that affect one or more stages of the virus replication cycle (Ávila-Pérez et al., 2018). 
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Figure 3: The ISA and its derived Haiku techniques (Aubry et al., 2014 and Diala et al., 2018). 

A: The complete viral genome, flanked at the 5' end by the human cytomegalovirus promoter (pCMV) 

and at the 3' end by the ribozyme of the hepatitis virus followed by the simian virus 40 

polyadenylation signal (HDVr/SV40pA) is PCR-amplified into three overlapping cDNA fragments. 

 

B: The coding sequences for pCMV and HDVr/SV40pA comprising respectively the first and last 30 

nucleotides of the viral genome are provided separately. 

A and B: Direct transfection of PCR products into competent cells allows the recovery of infectious 

virus. 
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 Recovery of infectious flaviviruses 

To generate flaviviruses, permissive cells (usually Vero cells) are transfected with the genetic 

material (infectious in vitro-transcribed RNA from a cDNA clone, infectious cDNA clones, or 

infectious subgenomic amplicons). Like vRNAs, the infectious RNA transcripts are directly translated 

into the cytoplasm, producing the viral proteins required for viral replication. However, the full-length 

infectious clones and subgenomic amplicons require primary transcription in the nucleus by cellular 

RNA polymerase II and subsequent synthesis of vRNA in the cytoplasm. A cytopathogenic effect is 

observed after a few days, depending on the viral strain and the reverse genetics technique used. One 

or more additional passages on the same permissive cells may be required to obtain a working viral 

stock with adequate viral titers (Ávila-Pérez et al., 2018). 

While it was recognized that the phenotype of a given virus was directly related to the 

consensus sequence, it has now been shown that the "mutant spectrum" as a whole also plays an 

important role in the replication and capacity of the virus to adapt to new environments (Ciota et al., 

2007; Holmes and Moya, 2002). The first consequence of the reverse genetics systems uses lies in the 

mutant spectrum. Indeed, the transfection of an infectious clone generates a genetically homogenous 

viral population, where the spectrum of mutants is limited or completely absent, which could lead to a 

modification of the original viral phenotype (Ciota et al., 2007). In contrast, the use of new "bacteria-

free" methods, requiring the intervention of DNA polymerases, known to make errors during the PCR 

amplification, could lead to genetic variability. The obtained phenotype would, therefore, be 

dependent on the reverse genetics technique used, which should be chosen according to the objective 

of the experiment (Table 1). For example, if the goal is to study the effect of a single mutation, it 

would be appropriate to work with a homogeneous viral population of viruses using an infectious 

clone. However, if the goal is to study the host-virus interactions, it would be interesting to keep the 

original mutant spectrum to more-closely mimic what happens during the natural cycle of the virus, 

using the ISA method or several infectious clones (Aubry et al., 2015b). 
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Table 1: Reverse genetics techniques for flavivirus production 

Approach Principle Advantages Limitations 

 

Infectious 

clone 

In vitro 

transcription of 

cDNA 

Direct transfection 

of viral RNA into 

cells by 

electroporation 

Superior efficiency in 

infectious virus 

production than with 

plasmid Transfection 

- Requires an in vitro 

transcription step with 

errors producing 

undesirable mutations - 

Instability of the cloned 

cDNA in bacteria 

Direct 

transfection of 

permissive cells 

Plasmids containing 

the viral genome 

directly transfected 

into the cell 

Unnecessary in vitro 

transcription 

Instability of the cloned 

cDNA in bacteria 

ISA 

cDNA genomic 

fragments assembly 

in cellulo 

Quick and easy 

transfection 

Heterogeneous viral 

populations 

The reverse genetics systems allow the manipulation of viral genomes and are, therefore, 

outstanding tools for research in virology and antiviral therapeutics and vaccines. 

 Reverse genetics as a research tool 

The genome manipulation has permitted to evaluate the effect of certain genetic changes, 

especially directed mutations. Thus, using a recombinant DENV virus, a mutation in the NS4B protein 

(G124A) allowed the inhibition of viral replication in mosquito cells and not in mammalian cells 

(Fujiki et al., 2018). Point mutations in the NS5 protein of WNV have altered viral replication in vivo 

and in vivo in a host-dependent manner (Slyke et al., 2012). Five point-mutations have been 

introduced into the genes coding for the E-glycoprotein DI and DII of the JEV (E107, E138, E279, 

E315, E439) (Arroyo et al., 2001) and WNV (E280, E316, and E440) (Arroyo et al., 2004) and 3 

mutations were also introduced into the genes encoding the DIII of TBEV (residues E308, E310, 

E311) (Mandl et al., 2000). In this latter example, these mutations reduced neurovirulence in mice. 

Other genetically modified viral mutants of WNV or DENV have been generated to allow the 

identification of a large number of virulence determinants within the structural/NS genes and the 3' 

UTR of the vRNA and the importance of the E protein glycosylation on viral replication and 

infectivity (Hanna et al., 2005; Liu et al., 2003; Men et al., 1996; Yap et al., 2017). 

Thus, each study identified a direct association between a specific viral genomic region or a 

specific site and the corresponding biological properties of the virus. Likewise, the identification and 

understanding of the mechanisms involved in the viral escape of the host immune responses have 
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greatly advanced through reverse genetics. For example, the incorporation of an NS2A-A30P mutation 

into the WNV genome led to a faster and higher IFN-α/β response in A549 cells compared to wild-

type WNV. In vivo, this mutation drastically reduced the neuroinvasion and neurovirulence capacity of 

this virus in mice (Liu et al., 2006). 

The genetic determinants responsible for the vector specificity of the flaviviruses have also 

been investigated by reverse genetics. In order to explore the role of UTRs in host specificity, chimeric 

genomes have been generated, in which the 5’ and 3' UTRs, as well as regions coding for the DENV C 

protein, were replaced, separately or in combination, with those of Langat virus (transmitted by ticks). 

None of the chimeric genomes produced detectable virus after transfection, suggesting that the UTRs 

can not be exchanged between flaviviruses transmitted by ticks and mosquitoes (Tumban et al., 2011). 

To explore the key molecular basis underlying the direct transmissibility of flaviviruses, an 

S156P mutation in the E protein DI of TMUV was introduced. This mutation resulted in a 

modification of the E protein conformation and a glycosylation disruption at the aa 154 of this protein, 

which reduced virus replication in the lungs and abolished direct transmission in ducks. These data 

indicate that the 156S residue of E protein is critical for tissue tropism and the direct transmissibility 

of TMUV in ducks (Yan et al., 2018). 

Finally, reverse genetics approaches have made it possible to obtain recombinant flaviviruses 

expressing a reporter gene which can be monitored in real-time. One application of such a system is 

the study of viral tropism in vivo. The reporter gene can be used to identify cell targets during an 

infection, how these cells migrate after exposure to the virus or the mechanism by which a virus can 

enter the CNS (Aubry et al., 2015b). Commonly used reporter systems include fluorescent proteins, 

such as the green fluorescent protein (GFP), bioluminescent reporters, such as firefly luciferase, 

Renilla luciferase, and Gaussia luciferase (Gluc); in addition to other reporters, such as the neomycin 

resistance gene (Yongfeng et al., 2016). These reporters can be expressed in many ways. For example, 

they are expressed separately by the introduction of an internal ribosome entry site IRES or the self-

cleaving peptide of the foot-and-mouth disease virus (2AFAMD) (Yongfeng et al., 2016). Infectious 

clones capable of expressing high levels of a reporter gene in the infected cells have been described for 

WNV (Pierson et al., 2005; Puig-Basagoiti et al., 2005), TMUV (S. Chen et al., 2018; He et al., 

2019), ZIKV (Gadea et al., 2016; Shan et al., 2017) and DENV (Suphatrakul et al., 2018; Zou et al., 

2011). However, for most of these viruses, as well as other RNA viruses and some DNA viruses 

containing a small genome, the instability of reporter gene expression during viral replication is a 

recurring difficulty (Julander et al., 2006; Yongfeng et al., 2016). 
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 Reverse genetics as a therapeutic tool 

Reverse genetics systems have contributed to the characterization of antiviral agents. A 

suspected mutation conferring resistance against a given agent can be introduced into the viral 

genome. Thus, for DENV, mutations in the genes encoding the E and NS5 proteins conferred 

resistance against the "Brequinar" molecule (Qing et al., 2010) while others located in the genes 

encoding the NS3 protein maintained effective viral replication after treatment with the inhibitory 

molecule "BP13944" (Yang et al., 2014). 

 Reverse genetics as a prophylactic tool 

It is important to note that many reverse genetic approaches have been used for the 

development of attenuated vaccines (Almazan et al., 2016; Aubry et al., 2015b; Hall et al., 2003; 

J. Huang et al., 2018; Martínez-Sobrido et al., 2016; Nogales and Martínez-Sobrido, 2017). A 

chimeric virus may be composed of genes encoding structural proteins of one flavivirus and NS 

proteins of another flavivirus. Developed for the first time against different strains of DENV (Bray and 

Lai, 1991), this technique was applied to several flaviviruses, such as WNV, using the NS gene of the 

YFV vaccine strain, called "strain 17D", known for its effectiveness and safety in the humans 

vaccination (Arroyo et al., 2004). 

Reverse genetics has become crucial in the study of viral pathogenesis, especially the 

involvement of mutations in the tropism or virulence. Reverse genetics systems, with or without a 

reporter gene, have been developed for a variety of flaviviruses, including WNV, a close relative of 

USUV. In order to develop such systems for USUV and given the difficulties in implementing these 

methods in flaviviruses, several approaches have been attempted. 

Using the genome of viral strains isolated/detected during USUV epizootics in 2016 and 2017 

in Belgium, we implemented two reverse genetics strategies, namely the "infectious clone" technique 

and the ISA technique. 
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Material and methods 

Construction of infectious USUV clones using Overlap PCR. The strategy we followed for 

the construction of a full-length infectious cDNA constructed from the overlapping genomic 

fragments encoding the USU-BE-Flemalle/2016 strain (Genbank: KY263624, European 3 lineage) 

schemes in Figure 4. 

 

Figure 4: Schematic representation of the strategy used for the construction of an infectious clone of 

USUV (Flémalle strain) 

 

 Generation of overlapping genomic fragments 

The USUV genomic RNA was transcribed into cDNA using the Super Script® III First-Strand 

Synthesis System kit (Invitrogen, Carlsbad Ca, USA) according to the manufacturer's protocol. Next, 

the primers shown in Table 5 were used to amplify 7 overlapping cDNA fragments, covering the 

complete viral genome, using the HotStarTaq® Plus Master Mix Kit (Qiagen, Hilden, Germany). 
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Table 2: Primers used for the amplification of cDNA fragments covering the complete genome of 

USUV (Bakonyi et al., 2004) 

 

The mixes were placed in the thermocycler (Mastercycler epgradient S, Eppendorf, France) and the 

following cycle was applied:                                          

                                                95°C, 5 min 

                                          95°C, 30 sec 

                                          55°C, 30 sec 

                                          72°C, 1 min 

                                          72°C, 1 min 

After 1% agarose gel electrophoresis, the desired size bands were cut and the DNA was 

purified using the Nucleospin Gel and PCR Clean-Up kit (Macherey-Nagel, Düren, Germany) 

according to the manufacturer's recommendations. 

  

Fragment Primers Sequence (5’—3’) 
Size 

(pb) 

Overlap-

PCR1 

Size 

(pb) 

Overlap-

PCR2 

Size 

(pb) 

Overlap

-PCR3 

 

1 

USUV_GF 

USUV_1727R 

AGWYGTTSGYCTGYGTGAGC 

GATTGCTTTGTGGCATGGGG 

1727 
USUV_GF

 

USUV_3320

R 

 

3320 

USUV_GF

USUV_68

02R 

6802 

USUV_

GF 

USUV_1

1014 

2 

USUV_1560F 

USUV_3320R 

GTTGAACACCGAGGCATACTAC

AT 

CCTGGGCAATAGTCAAAGTC 

1761 

3 

 

USUV_3241F 

USUV_4778R 

CGGCGTGAAGGTTACAAAGT 

ATAGCTGCCCCTCTTGTGGT 

1538 

USUV_3241

F 

USUV_6802

R 

 

3562 
4 

 

USUV_4541F 

USUV_6802R 

GGACACCATGGGCAATAATACC

T 

TGAGCAGAGCCAGCAATA 

2262 

5 

USUV_6661F 

USUV_9057R 

GTTTTCTTGCTCCTCGTTCA 

CCCCATCATGTTGTAAATGC 

2397 

 

- 

 

USUV_66

61F 

USUV_ 

11014R 

4

354 

6 

USUV_8987F 

USUV_10823

R 

AAATGGTGGACGAAGAAAGG 

AACAGTTCGCATCACCGTCT 

1837 
USUV_8987

F 

USUV_1101

4R 

 

2028 

7 

USUV_10673

F 

USUV_11014

R 

GGGACCCTGCCTATTGG 

AGATCCTGTGKTCTWSYYCMCC

AYCAG 

342 

40 X 

Xcycles 
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 Fusion of overlapping genomic fragments 

To fuse the cDNA fragments in pairs, the Phusion® Hot Star II Hight Fidelity kit (Thermo 

Fisher Scientific, Vilnius, Lithuania) was used according to the protocol and the following 

temperature cycle: 

1
st
 PCR (without primers): 

25µl mix 

21µl H2O  

DNA: 2µl  

                             98°C, 1 min 

                             98°C, 30 sec 

                             55°C, 30 sec 

                             72°C, 3 min 

                             72°C, 3 min 

2
nd

 PCR: 

          + primers: 2µl 

                              98°C, 1 min 

                              98°C, 30 sec 

                              55°C, 30 sec 

                               72°C, 3 min 

                                72°C, 3 min 

Two other kits were also tested to improve the PCR results: 

- Herculase Hotstart DNA polymerase (Agilent Technologies, Texas, USA); 

- LongAmp® Hot Start Taq 2X Master Mix (New England Biolabs, Inc., Beverly, MA, USA). 

At each step, cloning in a plasmid and sequencing by the Sanger technique of the fragment 

obtained by PCR were carried out. The PCRII-Topo vector included in the TOPO® TA Cloning Kit 

15 X 

Xcycles 

25 X 

cycles 
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(Invitrogen, California, USA) was used. The principle of this cloning, called TA-cloning, is based on 

the ability of the Taq polymerase to add an A to each 3' end of the PCR product, which gives the 

possibility of cloning it directly into a vector having 3'-T ends. The PCR product is, then, mixed with 

the vector and the complementary 3'-A and 3'-T ends are linked by the action of a ligase. 

The PCR was performed on the white colonies to control the presence of the insert within the 

plasmid using the HotStarTaq®Plus Master Mix Kit (Qiagen, Hilden, Germany). Then a culture of 

PCR positive bacteria was performed. Plasmid DNA incorporating USUV genomic sequences was 

purified using the NucleoSpin® Plasmid QuickPure kit (Macherey-Nagel, Düren, Germany). 

 Generation of pCMV HDVr/SV40 fragments 

In order to allow the attachment of the RNA polymerase II and initiate the transcription of the 

viral RNA, a promoter must be located upstream of the full-length cDNA fragment. It is possible to 

use either bacteriophage promoters (eg. T7/SP6) or an RNA polymerase II promoter, such as the 

cytomegalovirus promoter (pCMV) (Khromykh et al., 2001). The bacteriophage promoters are used to 

produce large amounts of viral RNA in vitro from cDNA, which will then be directly transfected into 

permissive cells. In contrast, pCMV is used to generate viral RNA in cellulo after transfection (Aubry 

et al., 2015b). The delta hepatitis virus ribozyme sequence, followed by the simian virus 

polyadenylation signal 40 (HDVr/SV40pA), is necessary to generate a correct 3' end of the virus (Zou 

et al., 2011). 

The pCMV and HDVr/SV40pA were amplified from a pCDNA4 plasmid. Then, the pCMV 

was flanked at its 3' end with the initial 40 nucleotides of the USU-BE-Flémalle/2016 strain and the 

HDVr/SV40pA at its 5' end with the 40 terminal nucleotides of the same strain. This was intended to 

create areas of overlap in these two fragments with the viral genome, allowing them to fuse. 

The primer 3plus program (https://amorce3plus.com/cgi-bin/dev/amorce3plus.cgi) allowed us 

to design primers to amplify pCMV and HDVr/SV40pA (Table 3). Two PCRs per fragment were 

performed using the Phusion® Hot Star II High Fidelity Kit.  

  

15 X 

cycles 

Standard protocol:  

 98°C, 1 min       

98°C, 30 sec  

55°C, 30sec   

72°C, 30 sec 

 72°C, 30 sec 
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Table 3: Primers used for the amplification of the pCMV promoter and HDVr/SV40pA signal 

 Primers PCR1 5’—3’ Primers PCR2 5’—3’ Size (pb) 

pCMV 

F : AGTAATCAATTACGGGGTCA 

R : GAGCTCTGCTTATATAGACC 

 

 

F :GTTGACATTGATTATTGACTAGTTATTAATAG

TAATCAATTACGGGGTCA 

R : 

AAACAATACTAAGTAGTAGAGCTCACGCAGAC

GAACGACTGAGCTCTGCTTATATAGACC 

628 

HDVr/SV

40 pA 

F : CATGGTCCCAGCCTCCTC 

R : TCACTGCATTCTAGTTGTGGT 

F :CCGAAAATTGTGGCTGATGGTGAACTAGACC

ACAGGATCTGGCCGGCATGGTCCCAGCCTCCTC 

R :AATTTCACAAATAAAGCATTTTTTTCACTGCA

TTCTAGTTGTGGT 

355 

The overlap PCR allowing to add the pCMV and the HDVr/SV40pA to the 5’ and 3' ends of 

the first and the last fragments of the viral genome, respectively, was attempted using the Phusion kit 

with a hybridization temperature gradient ranging from 45 to 65°C. 

De novo construction of infectious USUV clones and transfection assays. 

A pRP plasmid, based on the pCDNA3 vector, and encoding the genome of a recombinant 

USU-BE-Seraing/2017 strain (Genbank: MK230892, Lineage Europe 3, isolated during the USUV 

epizootic in Belgium in 2017) was de novo synthesized (VectorBuilder, Hermannstr, Neu-Isenburg, 

Germany). We used Geneious 10.2.3 (Biomatters, New Zealand) for the computational design of this 

plasmid. We chose as a reporter gene the Gluc, which is a smaller molecule with higher signal 

intensity than the firefly and Renilla luciferases (Kato et al., 2014). We, then, opted for a strategy in 

which a reporter protein is expressed as an additional part of the structural protein region of the 

flavivirus and then excised from the viral polyprotein by FMD peptide 2A (2AFAMD) (Zou et al., 

2011). Hence, the Gluc gene was inserted after the first 33 aa of the capsid protein, which was 

duplicated in the C-terminal portion of 2AFAMD to allow proper cyclization of the viral genome (Zou 

et al., 2011). Finally, we inserted between the pCMV and the viral genome a promoter of the RNA 

polymerase I (non-coding RNA transcription) and between the end of the genome and the pA signal a 

"terminator" of the RNA polymerase I (to stop transcription of the genomic RNA in the right place) 

(Figure 5). 
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The E. coli bacteria transformed with this plasmid were incubated in LB Broth medium 

(36 g/l) at 37°C overnight. Then, midi-preps were made. USUV-permissive Vero 6 cells (ATCC® 

CRL-1586) were cultured in 6-well plates and grown in Dulbecco's Minimum Essential Medium 

(DMEM) containing 10% fetal calf serum and 1% penicillin-streptomycin, up to 80-85% confluency. 

The purified plasmid was then transfected into cells using lipofectamine (Lipofectamine 3000®, 

Qiagen, Valencia, CA, USA) according to the manufacturer's protocol. Two control wells were 

transfected with 3 μg of an empty plasmid. After a 12-hour-incubation, the cells were rinsed with PBS 

(Phosphate-Buffered Saline, Gibco) and DMEM supplemented with 2% fetal calf serum and 1% 

penicillin-streptomycin was added. After one week of incubation, the culture supernatant was 

recovered, centrifuged and then dispensed onto a new 6-well plate seeded with Vero cells at 80% 

confluency. Another cell-blind passage was performed 7 days later. At the end of each passage, two  

 

Figure 5: A screenshot showing the location of the reporter gene, the promoter and the 

terminator of the RNA polymerase I. 

200 μl supernatant samples per well were analyzed by USUV-specific RT-qPCR.  

Production of infectious USUV using the ISA technique. 

 USU-BE-Flemalle/2016 strain 

The principle of this technique applied to our project is presented in Figure 6. Three sequences 

forming the complete genome of the strain USU-BE-Flemalle/2016 with the pCMV and 
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HDVr/SV40pA (each carrying an overlapping sequence with the first and the last sequence of the viral 

genome) were constructed. These sequences were then transfected into Vero 6 cells according to the 

protocol described in (Aubry et al., 2014). 

 

Figure 6: Schematic representation of the HAIKU technique for the production of Usutu virus 

(Flémalle strain) 

Viral RNA was used to amplify the complete genome by RT-PCR into 7 overlapping cDNA 

fragments. The fragments were then fused to produce 3 overlapping sequences. The human 

cytomegalovirus promoter (pCMV) and the hepatitis delta ribozyme, followed by the simian virus 40 

polyadenylation signal (HDVr/SV40pA) flanked by the first 40 and last nucleotides of the viral 

genome, were then added separately to promote genome transcription and subsequent replication of 

the virus. The fragments were finally transfected into Vero cells to recover infectious USUV after nine 

days. 

 USU-BE-Seraing/2017 strain 

The principle of this technique applied to our project is presented in Figure 7. The genomic 

RNA of the USU-BE-Seraing/2017 strain was transcribed into cDNA using the Super Script® IV 

First-Strand Synthesis System kit (Invitrogen, Carlsbad Ca, USA) using random hexamers according 

to the manufacturer's recommendations. 
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Figure 7: Schematic representation of the strategy to obtain overlapping genomic fragments coding 

for the USU-BE-Seraing/2017 strain. 

The primers shown in Table 4 were used to amplify the overlapping cDNA fragments which 

cover the complete genome of this viral strain. 
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Table 4: Primers used to amplify overlapping genomic fragments coding for the USU-BE-

Seraing/2017 strain 

Primer Sequence Size (bp) 

USUV1_G             

USUV1727_R 

AGWYGTTSGYCTGYGTGAGC 

GATTGCTTTGTGGCATGGGG 
1727 

F1623                                   

R2820 

TTTAATGACTTGGCCCTCC 

AGCTCTTTCCCCAAGCCTTC 
1214 

2F2770                               

2R5577 

TCAGCACCACAGAGATTGGC 

CATTGGTGTCTGGGAACGGA 
2827 

3F5517                                

3R8293                                

3R8293 (correction)(8352) 

AGTTGAGTTGGGTGAAGCGG 

GGGACTCGAACCAATCCTCC 

ACTGACCCAGTACATCTCATGGTTGGAATTTCTGGAA

AGAGGGACTCGAACCAATCCTCC 

2777 

Fser2id(8266)                  

Rser2id(9695) 

TTGGAAGTTCTACAACGGAG 

ACACAATCATCTCCACTCAC 
1430 

F9605(F9644correctio) 

F9644                                       

R11035 

CCCGGAAAACCAAATACGCTGTGAGAACCTGGCTCTT

TGAGAACGGAGAAGAAAGGGTGA 

AGAACGGAGAAGAAAGGGTGA 

AGATCCTGTGGTCTAGTTCACCATCAGCCAC 

1422 

The 3’ terminal sequence of pCMV and the 5' terminal one of HDVr/SV40pA were modified 

with the primers shown in Table 5. 
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Table 5: Primers used for the amplification of pCMV and HDVr/SV40pA flanked by 

genome end sequences of the strain USU-BE-Seraing/2017 

Primer Sequence 
Size  

(bp) 

pCMV1F       

pCMV1R         

pCMV correct R1 

TCAATTACGGGGTCATTAGTTCA 

GCTCTGCTTATATAGACCTCCCA 

TGGGAGGTCTATATAAGCAGAGCTCGTTTAGTGAACCGTGTTTTTGG

AGGATCGTGAGAT 

551 

pCMV2F 

pCMV2R 

pCMV correct R2 

GTTGACATTGATTATTGACTAGTTATTAATAGTAATCAATTA

CGGGGTCATTAGTTCA 

AAACAATACTAAGTAGTAGAGCTCACGCAGACGAACGACTCGGTTC

ACTAAACGAGCTCTGCTTATATAGACCTCCCA 

ACTGCCGGCACTGTGTTAATCTCACGATCCTCCAAAAA 

641 

HDV/SV40,1F 

HDV/SV40,1R 

CATGGTCCCAGCCTCCTC                  

TCACTGCATTCTAGTTGTGGT 
164 

HDV/SV40,2F 

HDV/SV40,2R 

CCGAAAATTGTGGCTGATGGTGAACTAGACCACAGGATCTGGCCGG

CATGGTCCCAGCCTCCTC 

AATTTCACAAATAAAGCATTTTTTTCACTGCATTCTAGTTGTGGT 

232 

>correction1FHDV 

>Correction1RHDV 

AATTGTGGCTGATGGTGAAC           

TTCACTGCATTCTAGTTGTG  

>Correction2FHDV 

>CorrectionR2 

HDR/SV40 

CCGAAAATTGTGGCTGATGGTGAAC 

CTCAGGGTCAATGCCAGCGCTTAATTTCACAAATAAAGCATTTTTTT

CACTGCATTCTAG 
 

 

Subsequently, to optimize the transfection, we tried to reduce the number of fragments (Figure 

8). Thus, the first two sequences were replaced by a single one using, instead of a degenerated primer 

USUV_1G, a more specific primer of the strain Ser1_F TGTTTTTGGAGGATCGTGAG. The same 

reverse primer was used for the PCR. 
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Figure 8: Schematic representation of the new strategy using 5 overlapping segments covering the 

complete genome of the USU-BE-Seraing/2017 strain and final structures of pCMV and 

HDVr/SV40pA. 

 

For the transfection of USUV-permissive Vero cells, the protocol described by (Aubry et al., 

2014) was applied. To detect a viral amplification, a 200-μl-supernatant sample was taken at each 

passage and tested by PCR for the presence of USUV. The cells were also observed to detect 

cytopathic effects indicative of the virus amplification. 
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Results 

Construction of infectious USUV clones by Overlap PCR. 

 Generation of overlapping genomic fragments 

We succeeded in producing classical PCR 5 overlapping fragments with the standard protocol 

(Figure 9 A). The last two sequences were obtained at a hybridization temperature of 48 ° C (Figure 9 

B). 

 

 

 

Figure 9: Gel electrophoresis showing (A) the first 5 fragments and (B) the last two overlapping 

fragments produced by PCR. 

The cloning of sequences 1 and 4 was successfully performed (Figure 10).  

 

Figure 10: Gel Electrophoresis showing PCR results in the colonies after the cloning of sequence 1. 

 Fusion of the overlapping genomic fragments 

The overlap PCR allowed to fuse the fragments 1 + 2, 3 + 4, 6 + 7 and 5 + 6 + 7 (Figure 11). 

B 

1

500 

1

500 

Positive colony 
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Figure 11: Gel Electrophoresis showing PCR overlap results 

In the end, 3 sequences were obtained but their fusion could not be obtained. Only the cloning 

of the last sequence 5+6+7 was realized (Figure 12). 

 

Figure 12: Gel electrophoresis showing PCR results on colonies after (5 + 6 + 7) sequences cloning. 

 

 Generation of pCMV HDVr/SV40 fragments 

The pCMV and HDVr/SV40pA fragments were amplified by PCR (Figure 13) and then 

verified by sequencing (Figure 14). The pCMV had an abnormal insertion of exogenous nucleotides of 

an unknown origin. Thus, the procedure was repeated and we successfully obtained the correct 

sequence of nucleotides. 

 

1

500 

A B 1

+2 

5

+(6+7) 
6

+7 

Positive colony 

5kb 
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Figure 13: Gel electrophoresis showing the pCMV and HDVr/SV40pA fragments. 

 

 

 

Figure 14: Screenshots showing the pCMV and HDVr/SV40pA sequences visualized using 

Geneious 10.2.3. 

Arrow: abnormal insert within the pCMV 

De novo construction of infectious USUV clones and transfection assays. 

The PCR analysis of the transfected wells with the infectious plasmid revealed the absence of 

USUV-genomic RNA during the 3 passages. Similarly, no cytopathic effects were observed during 

these 3 passages.  
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Infectious virus production by the ISA technique. 

 USU-BE-Flémalle/2016 strain 

The three sequences covering the complete viral genome were successfully amplified. The 

pCMV and HDVr/SV40 were amplified and verified by sequencing and then two transfections were 

attempted according to the standard protocol, not allowing the rescue of infectious USUV. 

 USU-BE-Seraing/2017 strain 

All USUV fragments, pCMV and HDVr/SV40pA were amplified successfully. They were 

subsequently verified by sequencing (Figure 15). 

The three assays for transfection of these fragments into permissive Vero cells did not allow 

rescuing infectious virus at this stage. 

 Sequence 1 

  

 Sequence 2 
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 Sequence 3 

 

 

 Sequence 4 

 

 Sequence 5 

 

 pCMV 
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 HDVr/SV40pA 

Figure 15: Screenshots showing USUV genomic fragments, the pCMV and HDVr/SV40pA 

sequences visualized using Geneious 10.2.3. 

 

Discussion 

 

Reverse genetics has become critical to understand the pathogenesis of viral infections. The 

modification of the viral genome has been used in the development of recombinant flaviviruses with 

reporter genes to quantify viral replication in real-time and to monitor viral proteins or viruses by in 

vitro and in vivo imaging (Y. Chen et al., 2018; Gadea et al., 2016; He et al., 2019; Pierson et al., 

2005; Puig-Basagoiti et al., 2005; Shan et al., 2017; Suphatrakul et al., 2018; Zou et al., 2011). 

Currently, there is no published study on USUV using this approach, despite initiated attempts many 

years ago, which proves the complexity of its implementation. The process of producing infectious 

flavivirus is often laborious and many difficulties can be faced, including the toxicity of certain viral 

sequences in bacterial hosts (Aubry et al., 2015b). In addition, infectious clones are predisposed to 

spontaneous genetic rearrangements or mutations, making this type of construct particularly unstable 

within bacteria or permissive cells (Aubry et al., 2015b). 

The establishment of an effective reverse genetics system to generate infectious USUV has 

gone through several phases during the 3 years of this thesis work. In the first phase, we initiated the 

generation of an infectious clone of genomic length, from overlapping cDNA fragments, using overlap 

extension PCR as a technique to fuse these fragments. The construction of a single fragment covering 

the entire genome has proved to be very complicated, especially because of the presence of repeated 

regions in the genome. We have therefore turned to de novo synthesis of this infectious clone in a 

plasmid.  

In this plasmid, we have chosen the Gluc as a reporter, which has many advantages over 

fluorescent reporters, in particular by the absence of autoluminescence (Yongfeng et al., 2016). The 
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location of this reporter gene was chosen to maintain the 5' CS essential for the cyclization of the 

genome. To do this, we duplicated the coding sequence for the first 33 amino acids of the capsid 

protein, on both sides of the reporter gene, like the constructions reported in the literature for other 

flaviviruses (He and al., 2019, Shan et al., 2017, Zou et al., 2011). Another location of the reporter 

gene in the flavivirus genome has successfully generated recombinant WNV. In fact, the gene 

encoding for the GFP (Julander et al., 2006; Pierson et al., 2005) or the Renilla luciferase (Puig-

Basagoiti et al., 2005) was cloned into the 3’ UTR of the viral genome under the control of the IRES 

sequence of encephalomyocarditis virus. However, the reporter gene in the recombinant viruses was 

unstable after few passages (Julander et al., 2006, Pierson et al., 2005, Puig-Basagoiti et al., 2005) 

which encouraged scientists to use more frequently the above-described alternative constructions.  

Numerous transfection tests, with optimized conditions, will be necessary to recover 

infectious virus using this plasmid. In our study, our first construct had a sequencing error, as the virus 

genome was terminated in the 3’ end with “TCTA”, while the flavivirus genome typically terminates 

with TCT (Setoh et al., 2017). This additional nucleotide (A), present in the sequence of many USUV 

strains published in GenBank, would have been added by the Taq polymerase used for the PCR. This 

nucleotide was deleted from the plasmid by site-directed mutagenesis. Moreover, the duplication of 

the 5’ CS generates two possible cyclization sites, which likely reduces the efficiency of virus 

replication. Thus, other scientists have introduced silent mutations within the second duplicated 5' CS 

in order to keep only the first (He et al., 2019; Shan et al., 2017). We will implement this strategy to 

optimize our plasmid. In addition, we need to analyze the events following the transfection to ensure 

that both promoters included in the construct (one for RNA polymerase II for mRNA synthesis, the 

second for RNA polymerase I to generate copies of vRNA) work effectively. Indeed, the positive 

polarity of the viral genome compels us to place these two promoters successively and in the same 

direction on the plasmid, which can affect their efficiency by competition and steric hindrance. An 

alternative way would be to use two different plasmids, one for the synthesis of the viral polyprotein, 

the other to generate copies of the vRNA. 

In parallel, we initiated the preparation of genomic fragments according to the modified ISA 

technique (Haiku). Several transfection assays will also be needed to recover infectious virus. New 

constructions are currently in preparation. For both types of constructs, the transfection method needs 

to be optimized (other methods, such as calcium phosphate transfection, have been shown to be more 

effective for some viruses). Other cell types (C6/36 mosquito cells, chicken CAM cells) or co-cultures 

(HEK293 and Vero, for example) will be tested. The variation in the DNA concentration used for the 

transfection could also improve the results of these techniques. Finally, the co-transfection of a 

plasmid or genomic fragments of the virus with a viral protein expression vector is a proven method 

for other viruses (Niyokwishimira et al., 2018) and will be implemented. The collaboration will be 
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established with the laboratory of the research institute for development at the University of Aix-

Marseille (Emerging Viruses Unit), which was the first to implement the ISA method for flaviviruses. 
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