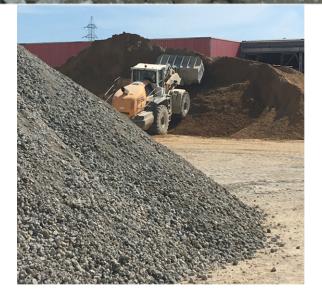


Challenging construction industry with C&DW: opportunities and limits


L. Courard, Z. Zhao, J. Hubert

Argentine Association of Concrete Technology IX international Congress/23th Technical Meeting 2-6 November 2020

What to do?

We are living in a limited world

➢ Energy

Raw materials

> Space

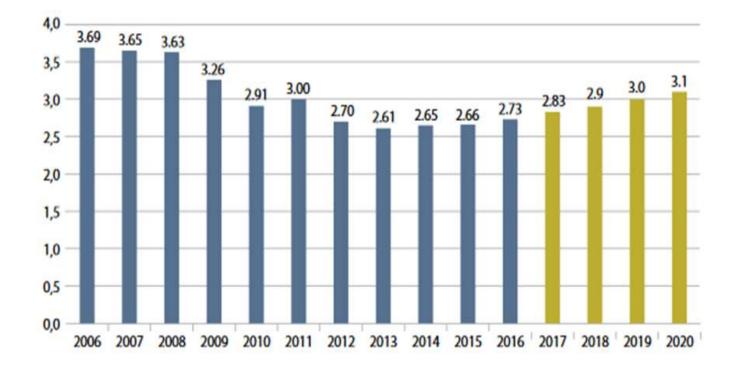
Maximum capacity of resilience of nature

- Ascertainment \rightarrow behaviour
- ► Deposit ↔ market ?

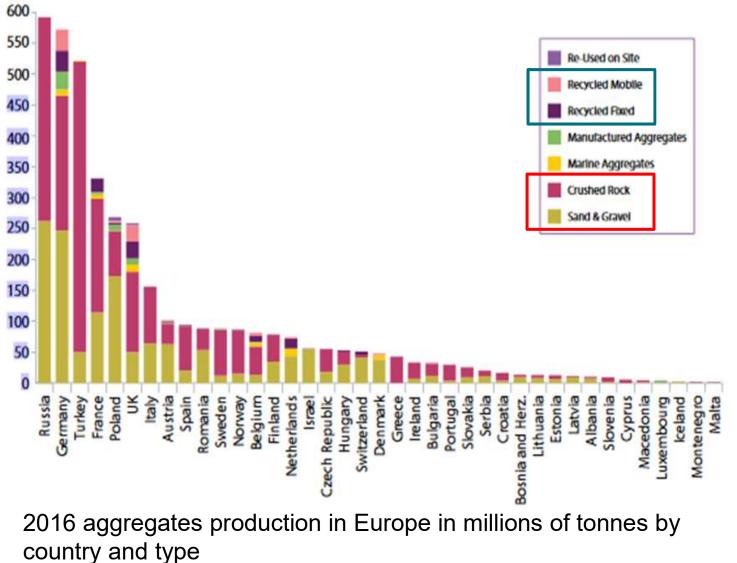
- ► We produce wastes
 - Between 3.4 to 4 billions tons/year or from 80 to 126 tons/second!
 - Each day, human activity is contributing for more than 10 billions kg wastes
 - Annual production of recycled aggregates accounted for 202 million tons in 2015
 - Construction area is producing more or less than 40% of CO₂

We need construction materials

- Cement: 4 billions tons/year (56% from China)
- Concrete: 10 billions tons/year
- Consumption of cement in kg/inh (2018)
 - China: 1704 kg/inh
 - ➢ EU: 309 kg/inh
 - > USA: 287 kg/inh
 - ➢ BE: 550 kg/inh
 - > AR: 270 kg/inh
- Emission of CO₂ (2018): 5-8% world production



- We need construction materials
 - For the EU28 plus EFTA countries, the total 2019 aggregates production is estimated just on 3,00 billion tons. The primary materials came from 26,000 quarries and pits, operated by 15,000 companies (UEPG, 2018, http://www.uepg.eu/statistics/current-trends)



Trend in total EU + EFTA Tonnages (in billions of tonnes) for the production of aggregates

Objectives

- ► 3R: Reduce, Reuse and Recycle
- Using CD&W as sub-base and base material in road construction ("less noble")
- Meeting Sustainable Development Goals: recovery targets to 70% of construction and demolition wastes (CD&W) by 2020 in European Union (<u>Directive 2008/98/EC</u>)
- Reducing use of natural aggregates (preservation of natural resources)

Conditions for recycling: requirements, barriers, applications

- Possible restrictions
 - Transport
 - Transport price = f(quantity, distance)
 - Independent of the <u>quality</u>
 - Interesting recycling if
 - Far landfill
 - High dumping charge
 - Expensive raw materials and difficult supply
 - Standards
 - a material has not specification because it is new and not used
 - a material is a few used because it is uncovered by specifications

Possible applications

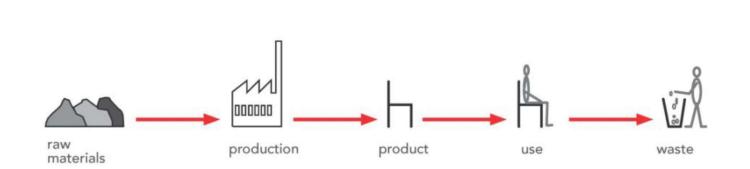
- Filling materials: low requirements, consumed in large quantities, for embankments but transportable over short distances due to costs;
- Aggregates: high quality requirements to lead to finished products of quality identical to that of traditional materials;
- Binders: very precise specifications, properties must remain constant over time;
- Activators: small quantities, which can cause problems of collection, storage, distribution and regularity.

- Evaluation of the opportunity of recycling
 - Technique
 - > Waste characterisation
 - > Durability
 - Consistency of the properties
 - Logistic et economic
 - Deposit and transport
 - Consistency of the production
 - Conditioning
 - Localisation

Evaluation of the opportunity of recycling

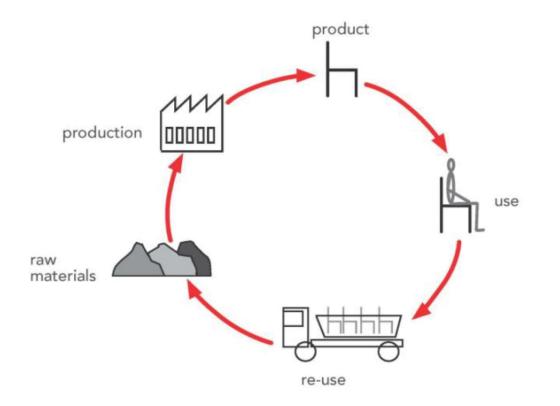
- Environmental et economic
 - Decrease of the quantities in landfill
 - > Regulatory obligation to eliminate

Taxation


We don't recycle ... anything, anyhow, at any price.

°turn too

Conditions for recycling



OLD LINEAR ECONOMY - is about ownership

SOURCE: S. BECKERS (d'après M. BRAUNGART – EPEA, Cradle to Cradle)

C2C - TECHNICAL NUTRIENT CYCLE

Most significative challenges

- the lack of incentive to design for the end-of-life issues for construction products
- the low value of products at end-of-life (economic challenge)
- the construction industry's structure (fragmented supply chain)
- a better recovery of material by means of viable take-back schemes
- higher value markets
- assurance schemes for reused materials

Characterization of Recycled Concrete Aggregates

C&DW recycling

► Transforming wastes ...

into secondary ressources



Flow sheet for material processing

1. Reception of waste from construction and demolition

2. Stockpile

3. Initial processing (crushing, separation, etc.)

4. Mechanical grinder

7. Manual separation of impurities

6. Magnetic classification

5. Primary crushing (Impact crusher)

7. Recycled materials with different maximum size

6. Mechanical grinder

Flow sheet for material processing

1. Reception of waste from construction and demolition

2. Stockpile

3. Initial processing (crushing, separation, etc.)

4. Mechanical grinder

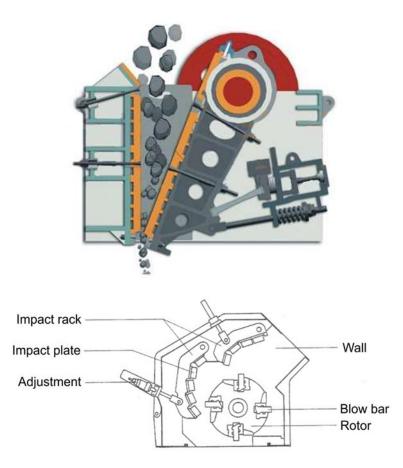
7. Manual separation of impurities

6. Mechanical grinder

6. Magnetic classification

5. Primary crushing (Impact crusher)

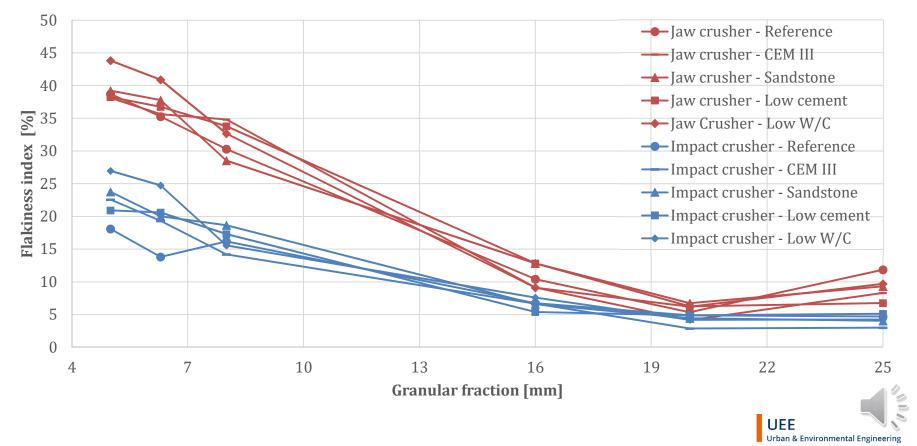
7. Recycled materials with different maximum size



Material processing

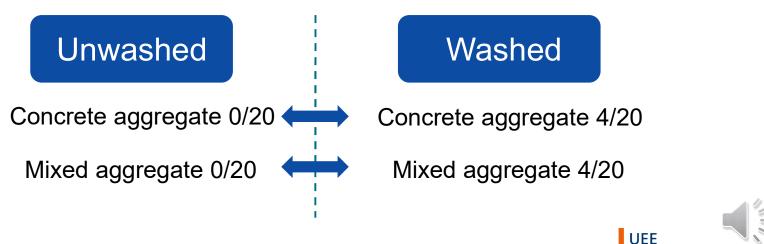
Jaw crusher

- allows producing very fine fractions
- induces the biggest wear
- limited by the primary size of waste to be treated
- Impact crusher
 - to treat bulky waste like concrete slabs
 - does not allow to produce very fine particles
 - generally requires a secondary crushing



Material processing

- The flakiness index decreases with increasing granular fraction and the jaw crusher produces flakier aggregates
- No influence of the concrete composition

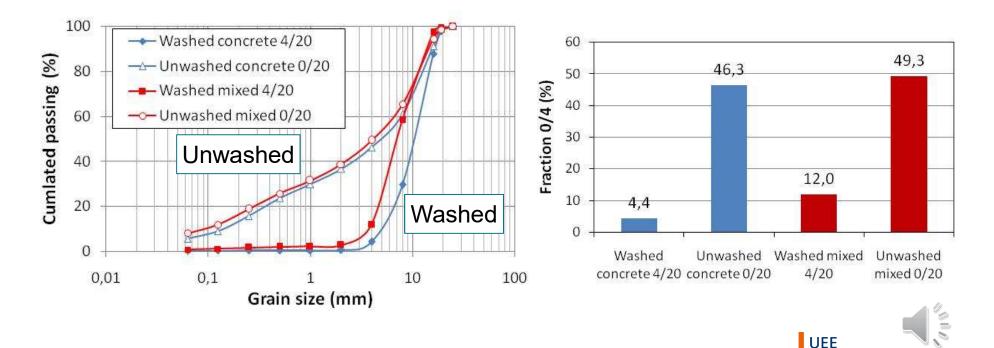


Irban & Environmental Engin

Effect of washing

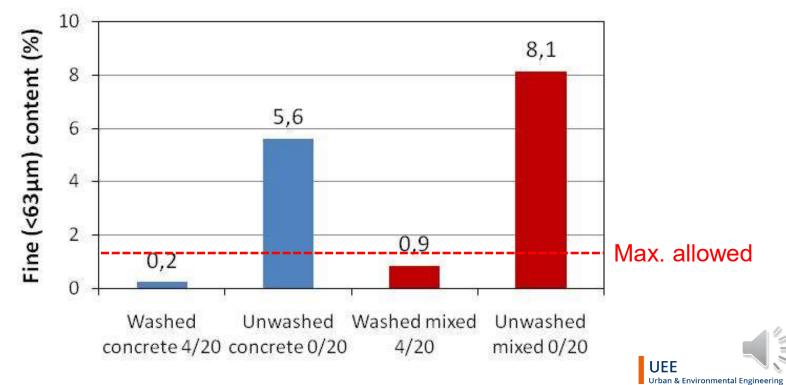
Expectations of washing aggregates:

- Constrain grain size distribution
- Decrease fine content
- Decrease the quantity of unwished components (floating, clay, plaster...)
- Increase resistance to fragmentation

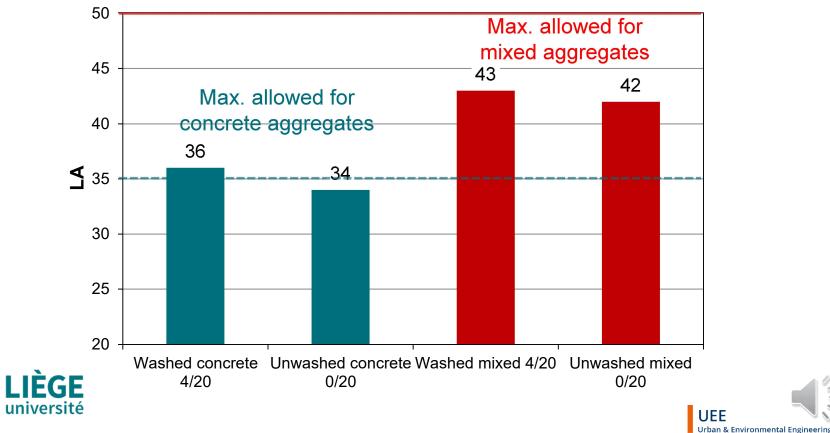

Methodology

Urban & Environmental Engineering

Grain size distribution - aggregates


- 0/4 fraction comprises nearly 50% of the unwashed aggregates composition
- 0/4 fraction a bit higher in mixed aggregates
- Washing significantly reduces the sand fraction of the aggregates

Grain size distribution - aggregates


- Fine content (< 63µm) higher in mixed aggregates and significantly reduced by washing
- Fine fraction higher in mixed aggregates
- Washed aggregates respect regulations in all considered countries

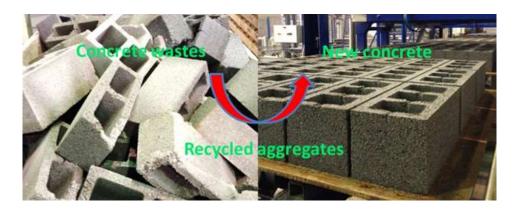
Resistance to fragmentation

- Concrete recycled aggregates have better resistance to fragmentation than mixed aggregates
- No effect of washing

Conclusions

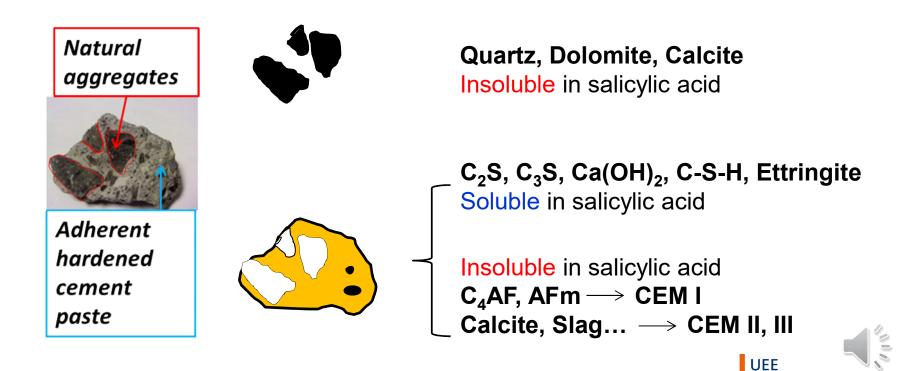
Expectations of washing aggregates:

- Constrain grain size distribution
- Decrease fine conten V
- Decrease the quantity of unwished components (floating, clay, plaster V)
- Increase resistance to fragmentation X


Properties of concrete blocks made with recycled concrete aggregates: from block wastes to new blocks

Materials

- RCA manufactured in laboratory
 - Old concrete from block wastes (C8/10 from Prefer Company)
 - Crushing (jaw crusher in laboratory, opening ≈10mm)
 - Separation of RCA by sieving (0/20mm)
 - Four granular classes: 0/2 2/6.3 6.3/14 14/20

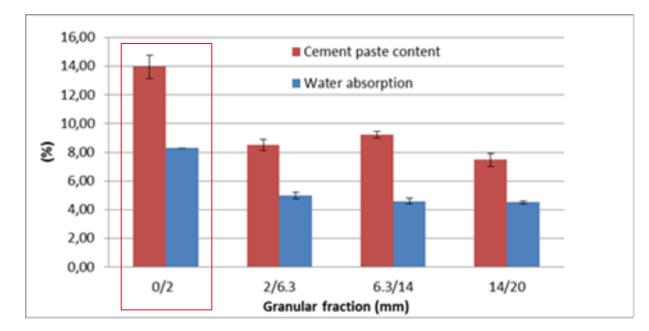


Urban & Environmental Engineering

Properties of RCA

Hardened Cement Paste Content (CPC) of RCA

 Principal soluble and insoluble phases in salicylic acid and methanol dissolution (*Zhao et al., 2013. Journal of Sustainable Cement-Based Materials* 2,186-203)



UEE

Urban & Environmental Engineering

Properties of RCA

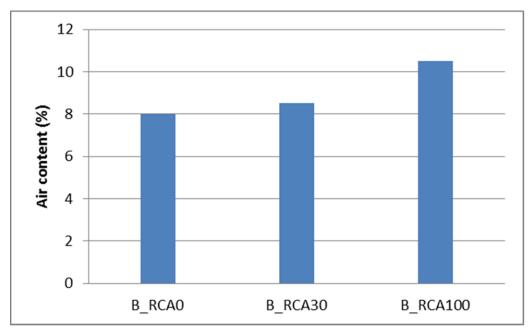
► Water absorption W_A (EN 1097-6)

- CPC and W_A of 0/2mm fraction larger than three coarse fractions
- Recycled sand presents higher CPC and W_A than CRCA

Materials

Mix design

	B_RCA0	B_RCA30	B_RCA100
NA 2/7 (kg)	1080	754	0
RCA 2/6.3 (kg)	0	302	1008
NS 0/2 (kg)	825	825	825
Cement (kg)	150	150	150
Efficient water (kg)	105	105	105
Absorbed water (kg)	13.12	26.00	56.20
W_{eff}/C	0.70	0.70	0.70


- Different substitution rates of NA 2/7 by the same volume RCA 2/6.3 (0, 30, 100%)
- Same W_{eff}/C ratio cement CEM III/A 42.5
- Pre-saturation of aggregates in the mixer 5 min before the addition of cement by half of total water

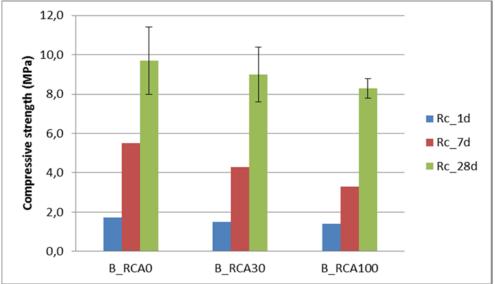
Properties

Fresh properties of concrete (zero slump)

 The air content of concrete increases when the substitution of recycled aggregates increases

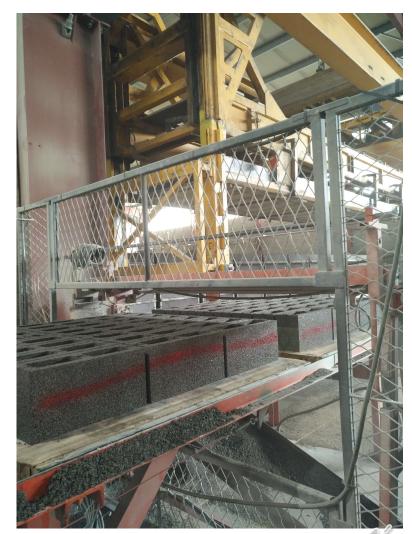
Properties

Density of fresh concrete


 The density of fresh concrete slightly decreases when the substitution of RCA increases

Properties

Compressive strength


- Compressive strengths of concretes with RCA are slightly lower than those of concrete with natural aggregate
- Compressive strength of concrete made with 100% RCA at 28 days is 8 MPa (14.4% decrease)

Conclusions

- Feasibility of using RCA obtained from old concrete block wastes in the new concrete blocks
 - Recycled sand possesses significantly higher cement paste content and higher water absorption than coarse RCA
 - Compressive strength of concrete blocks slightly decreases as the substitution of RCA increases;
 - Rc of B_RCA100 could reach 8 MPa after 28 days without increasing the cement content of the concrete mix

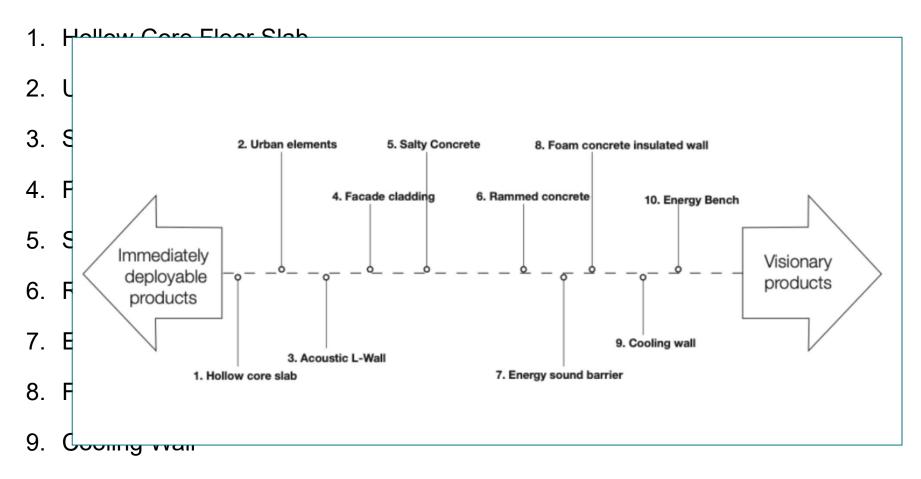


Construction and Demolition Waste: SeRaMCo project

European Regional Development Fund

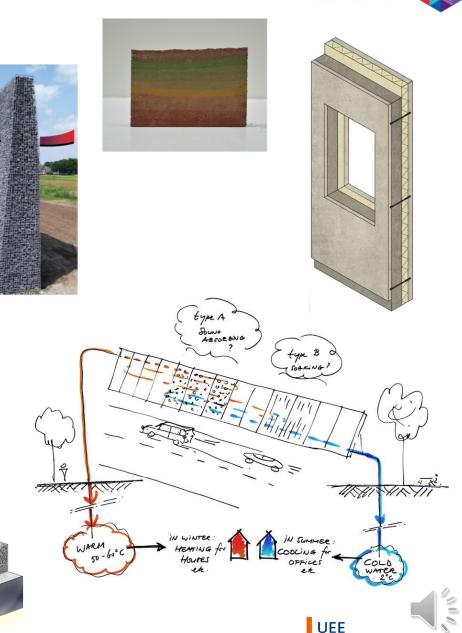
Partnership:11 Partners3 Sub-Partners3 Associated Partners

17 Partners from 5 EU countries (Germany, France, Netherlands, Belgium, Luxemburg)



- 1. Hollow Core Floor Slab
- 2. Urban SeRaMCo Elements
- 3. Sound Absorbing L-Wall
- 4. Façade Cladding
- 5. Salty Concrete
- 6. Rammed Concrete
- 7. Energy Sound Barrier
- 8. Foam Concrete Insulated Wall
- 9. Cooling Wall
- 10. Energy Bench

10. Energy Bench


- 1. Hollow Core Floor Slab
- 2. Urban SeRaMCo Elements
- 3. Sound Absorbing L-Wall
- 4. Façade Cladding
- 5. Salty Concrete
- 6. Rammed Concrete
- 7. Energy Sound Barrier
- 8. Foam Concrete Insulated Wall
- 9. Cooling Wall
- 10. Energy Bench

Urban & Environmental Engineering

- 1. Hollow Core Floor Slab
- 2. Urban SeRaMCo Elements
- 3. Sound Absorbing L-Wall
- 4. Façade Cladding
- 5. Salty Concrete
- 6. Rammed Concrete
- 7. Energy Sound Barrier
- 8. Foam Concrete Insulated Wall
- 9. Cooling Wall
- 10. Energy Bench

Parkour Parc

Recommendations

- Enhance public procurement through the introduction of mandatory percentages of recycled aggregates in large civil engineering projects;
- Develop reuse/reclaimed products programme of support and promotion (e.g. reuse percentage target);
- Introduce end-of-waste criteria for recycled products;
- Develop standards for recycled materials for various utilization for waste that did not meet end-of-waste criteria;
- Facilitate material content traceability;
- Introduce applications for recycled non-aggregates;
- Encourage the construction products and materials supply chain to have much greater provision for taking back and incorporating recycled materials into new products;
- Deploy financial incentive to use recycled aggregates.

Acknowledgment

VALDEM INTERREG FWVL research project

 "Integrative solutions for the valorization of CDW for transborder circular economy" - http://www.valdeminterreg.eu

SeRaMCo INTERREG NWE research project

- "Secondary Raw Materials for Concrete Precast Products (introducing new products, applying the circular economy)" - http://www.nweurope.eu/seramco
- Wallonia Brussels International

Wallonie - Bruxelles International.be

