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Abstract

Generalized additive models (GAMs) are a well-established statistical tool for

modeling complex nonlinear relationships between covariates and a response as-

sumed to have a conditional distribution in the exponential family. To make

inference in this model class, a fast and flexible approach is considered based on

Bayesian P-splines and the Laplace approximation. The proposed Laplace-P-

spline model contributes to the development of a new methodology to explore

the posterior penalty space by considering a deterministic grid-based strategy

or a Markov chain sampler, depending on the number of smooth additive terms

in the predictor. The approach has the merit of relying on a simple Gaussian

approximation to the conditional posterior of latent variables with closed form

analytical expressions available for the gradient and Hessian of the approximate

posterior penalty vector. This enables to construct accurate posterior pointwise

and credible set estimators for (functions of) regression and spline parameters

at a relatively low computational budget even for a large number of smooth

additive components. The performance of the Laplace-P-spline model is con-

firmed through different simulation scenarios and the method is illustrated on

two real datasets.
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1. Introduction

Generalized additive models (GAMs) (Hastie & Tibshirani, 1986, 1987) extend

generalized linear models (Nelder & Wedderburn, 1972) by having nonlinear

smooth functions of quantitative covariates entering the linear predictor: they

enable to relate in a flexible way covariates to the mean of a conditional distri-

bution in the exponential family. The monograph of Hastie & Tibshirani (1990)

gives a thorough introduction to additive regression structures and largely con-

tributed to the dissemination of this model class. Ruppert et al. (2003) and

Wood (2017) provide a complete and comprehensive treatment of GAMs, em-

phasizing on semiparametric methods and penalized regression splines.

There exists a large variety of regression splines in the literature for modeling

the smooth terms in a GAM, for instance P-splines (Eilers & Marx, 1996), thin

plate splines (Wood, 2003), O’Sullivan penalized splines (Wand & Ormerod,

2008) or adaptive splines (Krivobokova et al., 2008) to cite some popular in-

stances. P-splines refer to a penalized B-splines basis, i.e. a basis defined on

a compact support and constructed from a set of polynomial pieces joined to-

gether by “knots”, where the penalty acts upon differences of adjacent B-spline

coefficients. This article focuses exclusively on P-spline smoothers for two main

reasons. First, the penalty matrix can be effortlessly constructed from basic

difference formulas, keeping the penalization scheme simple and the P-spline

approach numerically stable. Second, the attractiveness of P-splines lies in its

rather natural extension to a Bayesian setting (Lang & Brezger, 2004) and from

the efficiency of working with sparse bases and penalties for sampling-free ap-

proximate Bayesian inference (without requiring stochastic draws from a target

distribution such as in Markov chain Monte Carlo (MCMC) methods).

As MCMC techniques can be subject to poor chain convergence and tend

to carry a heavy computational burden, Rue et al. (2009) introduced an ap-

proximate Bayesian methodology based on Laplace approximations termed In-

tegrated Nested Laplace Approximations (INLA), a completely sampling-free
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framework that delivers accurate and fast approximations of posterior marginals

in structured additive regression models. More recent articles on fast approx-

imate likelihood or Bayesian-based inference include Luts et al. (2014), Wand

(2017) and Hui et al. (2019) among others. Taken separately, P-splines and

INLA have made an impressive impact in the statistical community and initi-

ated a flourishing literature in diversified domains (see e.g. Eilers et al., 2015;

Rue et al., 2017), yet a few references attempted to unify the strength of both

approaches. Fraaije et al. (2015) designed field experiments to study vegetation

patterns and plant diversity in riparian areas and relied on P-splines to model

the response of plant species, with INLA as the underlying fitting mechanism.

Ventrucci & Rue (2016) focus on the prior choice for the precision hyperpa-

rameter that controls the amount of smoothness in a Bayesian P-spline setting.

They propose penalized complexity priors, an alternative prior to the classic

Gamma family and use INLA to derive the posterior of spline coefficients. In

survival analysis, Gressani & Lambert (2018) combine P-splines with Laplace

approximations to develop an inferential tool in the class of promotion time cure

models.

In the present article, we borrow some ideas from INLA and combine them

with P-splines to design the Laplace-P-spline (LPS) methodology, a novel uni-

fied approach for approximate Bayesian inference in generalized additive models.

Although INLA is a well-tailored approach for making inference in a variety of

statistical models, there is room for further computational improvements when

considering the specific class of GAMs. In particular, the use of numerical dif-

ferentiation techniques in INLA to obtain finite difference approximations to the

gradient and Hessian matrix of the posterior penalty vector can be replaced by

their exact analytical expressions, yielding more efficient algorithms for model

fitting. Furthermore, as the computational cost grows exponentially with the

dimension of the penalty vector, in grid-based derivation of the marginal poste-

rior of the regression parameters, alternative strategies are required to explore

the posterior penalty space when the number of additive terms is large. Our

methodology is free of the numerical differentiation scheme found in INLA, as
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it relies on closed analytical expressions for the gradient and Hessian required

during computation. It enables not only to fasten our code, but also offers

a clear insight on the equations governing the implementation of the model.

Moreover, we exploit this analytical availability to develop a novel cost-effective

grid exploration algorithm to explore the posterior of the hyperparameters cor-

responding, in our specific context, to the penalty parameters controlling the

smoothness of each additive term. The method accounts for possible asymme-

tries in the posterior hyperparameter space by applying a moment-matching

technique with reference to the skew-normal family. Finally, in response to

the “curse of dimensionality” related to the increase in computational resources

with the hyperparameter dimension, we suggest to embed a regular MCMC

algorithm to explore the hyperparameter posterior instead of the classic grid

exploration when the dimension grows above a certain threshold.

The remainder of the article is outlined as follows. In Section 2, the Bayesian

Laplace-P-spline generalized additive model is formulated and the Laplace ap-

proximation to the conditional posterior of regression and spline parameters is

derived. Section 3 is devoted to posterior inference on these parameters. To

efficiently explore the approximate marginal posterior of the penalty parame-

ters, we propose a strategy that alternates between a deterministic grid and an

independence Metropolis-Hastings sampler depending on the number of smooth

additive components. The chosen penalty values are then used to approximate

the marginal posterior for the vector of regression and spline parameters with

their associated pointwise credible intervals. A detailed simulation study is pre-

sented in Section 4 with comparisons against a popular benchmark method.

Section 5 illustrates the LPS model on two real datasets and Section 6 closes

the paper with concluding remarks and sketches future research prospects.

2. The Laplace-P-spline generalized additive model

2.1. Flexible modeling with Bayesian P-splines

We consider a GAM where the response variable has a distribution belonging to

the one-parameter exponential family yi ∼ EF(γi,κ) characterized by densities

of the form:
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p(yi; γi,κ) = exp

(
yiγi − s(γi)

κ
+ c(yi,κ)

)
, (1)

where s(·) is a twice continuously differentiable real-valued function and c(·, ·)

another real function, κ > 0 is a known scale or dispersion parameter and

γi is the natural or canonical parameter. Using well-known properties of the

score function (McCullagh & Nelder, 1989), one can show that the mean and

variance of the response are E(yi) := µi = s′(γi) and Var(yi) = κs′′(γi) re-

spectively. Let D = {(yi,xi, zi) : i = 1, . . . , n} be a sample of n independent

observations, where xi = (xi1, . . . , xiq)
T is a vector of continuous covariates and

zi = (zi1, . . . , zip)
T a vector of additional covariates (possibly categorical). The

link function g(·) relates the mean response to the additive predictor as follows:

g(µi) := %i = β0 + β1zi1 + · · ·+ βpzip + f1(xi1) + · · ·+ fq(xiq), i = 1, . . . , n, (2)

with regression coefficients β0, β1, . . . , βp. In the spirit of the P-spline approach

proposed in Eilers & Marx (1996), the unknown smooth functions fj , j =

1, . . . , q are modeled with rich cubic B-spline bases and a discrete penalty on

neighboring spline coefficients is imposed for controlling the roughness of the

fit. Mathematically:

fj(xij) =

K∑
k=1

θjkbjk(xij), j = 1, . . . , q, (3)

where for simplicity the same number K of basis functions bjk(·) is assumed

for every fj . The vector of B-spline coefficients associated to function fj is

θj = (θj1, . . . , θjK)T , while the collection of all spline coefficients present in

the model is θ = (θT1 , . . . ,θ
T
q )T and the vector of B-spline functions at xij is

written as bj(xij) = (bj1(xij), . . . , bjK(xij))
T . Model flexibility is compensated

by a roughness penalty on finite differences of the coefficients of contiguous B-

splines, θTP(λ)θ, with block diagonal matrix P(λ) expressed compactly using

a Kronecker product:

5



P(λ) := diag(λ1, . . . , λq)⊗ P =


λ1P 0 . . . 0

0 λ2P . . . 0
... . . .

. . . 0

0 . . . 0 λqP

 ,

where λ = (λ1, . . . , λq)
T is a vector of positive penalty parameters and P =

DT
r Dr+εIK is a penalty matrix resulting from the product of rth order difference

matrices Dr of dimension (K − r)×K to which a diagonal perturbation εIK is

added (with ε = 10−6, say), so that P is full rank. From a Bayesian perspective,

Lang & Brezger (2004) suggest to obtain the roughness penalty by imposing a

multivariate Gaussian prior on the spline amplitudes θ|λ ∼ Ndim(θ)

(
0,P−1(λ)

)
.

Furthermore, a Gaussian prior is assumed on the regression coefficients β =

(β0, . . . , βp)
T , more specifically β ∼ Ndim(β)(0, V

−1
β ) with matrix Vβ = ζIp+1

and small precision (say ζ = 10−5). The latent vector of the model is written

as ξ = (βT ,θT )T and includes the regression and spline coefficients with prior

distribution ξ|λ ∼ Ndim(ξ)

(
0,
(
Qλξ
)−1)

and precision matrix:

Qλξ := Qξ(λ) =

Vβ 0

0 P(λ)

 .

Without loss of generality, the covariates zi are centered around their mean

value. Let z̄l = n−1
∑n
i=1 zil, l = 1, . . . , p and write the centered design matrix

Z and B-spline matrices Bj for j = 1, . . . , q as follows:

Z =


1 (z11 − z̄1) . . . (z1p − z̄p)
...

...
...

...

1 (zn1 − z̄1) . . . (znp − z̄p)

 , Bj =


bj1(x1j) . . . bjK(x1j)

...
...

...

bj1(xnj) . . . bjK(xnj)

 .
To reach an identifiable model, we impose the following centering on the B-spline

matrices B̃j = Bj−(1n1TL/L)B̆j , j = 1, . . . , q, where 1n and 1L are column vec-

tor of ones of length n and L respectively and B̆j is a B-spline matrix computed
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on a fine grid of equidistant values on the domain of fj . This identifiabil-

ity constraint centers the additive functional components around their average

value. To ensure that all spline coefficients can be estimated in a unique way,

we follow Wood (2017) and fix the Kth element of each spline vector θj to

zero and delete the Kth column in B̃j and difference matrix Dr. Hence B̃j has

K−1 columns and the vector of regression and spline parameters has dimension

dim(ξ) = q × (K − 1) + p+ 1.

Following Jullion & Lambert (2007), robust priors are specified on the rough-

ness penalty parameters with a conjugate Gamma family having a hierarchical

structure:

λj |δj ∼ G(ν/2, (νδj)/2), j = 1, . . . , q.

An uninformative distribution is imposed on the hyperparameter δj :

δj ∼ G(aδ, bδ), j = 1, . . . , q,

with mean aδ/bδ and variance aδ/b
2
δ . The authors show that when aδ = bδ

are calibrated to a small value (say 10−4), the fitted curves are not sensitive

to the value taken by ν (here ν = 3). The penalty parameters are gathered

in the vector η = (λT , δT )T and the vector of (additive) predictor variables

is % = (%1, . . . , %n)T . Taking into account the identifiability constraint, the

additive predictor in (2) can be expressed compactly as % = Bξ, where B is

a side by side configuration of design matrices, B = [Z : B̃1 : · · · : B̃q] and

corresponds to the full design matrix of the model. The Bayesian model is

summarized as follows:

yi|ξ ∼ EF(γi,κ), i = 1, . . . , n,

ξ|λ ∼ Ndim(ξ)

(
0,
(
Qλξ
)−1)

,

λj |δj ∼ G(ν/2, (νδj)/2), j = 1, . . . , q,

δj ∼ G(aδ, bδ), j = 1, . . . , q.
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2.2. Approximated conditional posterior of the latent vector

Let us denote by `(ξ;D) = (1/κ)
∑n
i=1 (yiγi − s(γi))+c, with c :=

∑n
i=1 c(yi,κ)

(for ease of notation) the log-likelihood function following from Equation (1).

From the standard theory of exponential families, we know that the score vector

is given by∇ξ`(ξ;D) = BTWDg(y−µ), where W := diag(w1, . . . , wn) is a diag-

onal matrix with weights on the diagonal defined as wi :=
(
Var(yi)[g

′(µi)]
2
)−1

and Dg = diag(g′(µ1), . . . , g′(µn)). Moreover, the observed Fisher informa-

tion matrix (equal to the negative Hessian of the log-likelihood) is given by

−∇2
ξ`(ξ;D) = BTWB. Using Bayes’ theorem, the conditional posterior of ξ is

proportional to the product of the likelihood and prior, which can be written

as p(ξ|λ,D) ∝ exp
(
`(ξ;D)− (1/2)ξTQλξ ξ

)
. Using the Newton-Raphson algo-

rithm, we compute the mode ξ̂λ of the conditional posterior p(ξ|λ,D) and use

Laplace’s method to approximate the latter by a normal density denoted by

p̃G(ξ|λ,D). Mathematically, Laplace’s method for approximating a multivari-

ate (and differentiable) posterior distribution, say p(x|D), consists in, first, com-

puting the posterior mode x̂ by maximizing either analytically or numerically

log p(x|D), and, second, computing the Hessian matrix of log p(x|D) evaluated

at x̂, i.e. H(x̂). The resulting Laplace approximation to p(x|D) is a Gaussian

distribution with mean x̂ and variance-covariance matrix equal to −(H(x̂))−1,

see e.g. Bornkamp (2011). After convergence of the Newton-Raphson algorithm,

the Laplace approximation to the conditional posterior latent vector is a Gaus-

sian distribution with mean ξ̂λ = (BT W̃B + Qλξ )−1$̃ and covariance matrix

Σ̂λ = (BT W̃B+Qλξ )−1, where W̃ is the weight matrix at convergence and $̃ is

the vector at convergence that results from the sequence $(0),$(1),$(2), . . . ,

with $(0) := (1/κ)BT
(
y−µ

(
ξ(0)

))
+BTW

(
ξ(0)

)
Bξ(0) computed from an ini-

tial guess ξ(0), e.g. a zero vector for the regression and spline parameters. The

Laplace approximation p̃G(ξ|λ,D) will be used to approximate the integrand

entering the computation of the marginal posterior for ξ:

p(ξ|D) =

∫
Rq++

p(ξ|λ,D) p(λ|D) dλ. (4)
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2.3. Approximated marginal posterior of the penalty parameters

An indispensable intermediate step to reach an approximated version for the

marginal posterior of ξ in (4) is to obtain the marginal posterior of the vector of

penalty parameters p(λ|D). In that endeavor, we first derive an approximation

of p(η|D) in the philosophy of Leonard (1982), Tierney & Kadane (1986) and

Rue et al. (2009) and show how δ can be integrated out, resulting in an ap-

proximation of the marginal posterior for the roughness penalty vector λ. The

gradient and Hessian of that log posterior are analytically derived and will be

very useful to explore the support of the posterior distribution of the penalty

vector. The posterior of the hyperparameter vector is given by:

p(η|D) =
p(ξ,η|D)

p(ξ|η,D)

∝ L(ξ;D)p(ξ|η)p(η)

p(ξ|η,D)

∝

exp (`(ξ;D)) p(ξ|λ)

(
q∏
j=1

p(λj |δj)

)(
q∏
j=1

p(δj)

)
p(ξ|λ,D)

,

where L(ξ;D) is the likelihood function. An approximation p̃(η|D) to the above

marginal posterior of η is obtained by substituting the Laplace approximation

to p(ξ|λ,D) (cf. Section 2.2) and by evaluating the resulting expression at the

posterior mode ξ̂λ. Let us express the natural parameter in the generalized

additive model as γi = %i = bTi ξ, with bTi the row vector corresponding to

the ith row of matrix B. Using the previous suggestion and noting that the

determinant of the block diagonal matrix involved in the prior p(ξ|λ) is given

by |Qλξ |
1
2 ∝

∏q
j=1 λ

(K−1)/2
j , we obtain:

p̃(η|D) ∝ exp

(
1

κ

n∑
i=1

[
yib

T
i ξ̂λ − s

(
bTi ξ̂λ

)]
− 1

2
ξ̂
T

λQ
λ
ξ ξ̂λ

)

×

(
q∏
j=1

δ
( ν2+aδ−1)
j exp

(
−δj

(
bδ +

ν

2
λj

))) ( q∏
j=1

λ
( ν+K−3

2 )
j

)
× |BT W̃B +Qλξ |−

1
2 . (5)
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As Gamma priors have been chosen for the penalty parameters λj and δj , one

recognizes in (5) the conditional conjugacy for δj , as δj |λj ,D ∼ G
(
ν
2 + aδ, bδ +

ν
2λj
)
. Under these prior specifications, the integration of (5) with respect to δ

is tractable and yields the (approximate) marginal penalty posterior:

p̃(λ|D) =

∫ +∞

0

· · ·
∫ +∞

0

p̃(η|D) dδ1 . . . dδq

∝ |BT W̃B +Qλξ |−
1
2 exp

(
1

κ

n∑
i=1

[
yib

T
i ξ̂λ − s

(
bTi ξ̂λ

)]
− 1

2
ξ̂
T

λQ
λ
ξ ξ̂λ

)

×

(
q∏
j=1

λ
( ν+K−3

2 )
j

)(
q∏
j=1

(
bδ +

ν

2
λj

)−( ν2+aδ))
. (6)

Applying a log transform on the penalty parameters vj = log(λj), j = 1, . . . , q

and using the multivariate Jacobian formula on (6), we obtain the following

expression for the (log-) posterior of the log penalty vector:

log p̃(v|D) =̇ −1

2
log |BT W̃B +Qv

ξ |+
ν +K − 1

2

q∑
j=1

vj +
1

κ

n∑
i=1

yib
T
i ξ̂v

− 1

κ

n∑
i=1

s
(
bTi ξ̂v

)
− 1

2
ξ̂
T

vQ
v
ξ ξ̂v −

(ν
2

+ aδ

) q∑
j=1

log
(
bδ +

ν

2
exp(vj)

)
, (7)

where =̇ denotes equality up to an additive constant, Qv
ξ is the symmetric block

diagonal matrix:

Qv
ξ =

 ζIp+1 0p+1,q×(K−1)

0q×(K−1),p+1 diag(exp(v1), . . . , exp(vq))⊗ P



and ξ̂v :=
(
BT W̃B +Qv

ξ

)−1
$̃. The gradient ∇v log p̃(v|D) and Hessian

∇2
v log p̃(v|D) of expression (7) can be analytically derived, see Appendix A

for full details. These expressions will turn to be useful to explore the marginal

posterior of the penalty parameters.
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Although some similarities are apparent between LPS and INLA, especially in

the approach for approximating the hyperparameter vector p(η|D), there are

noteworthy methodological differences. Classic INLA is inherently focusing on

posterior marginals of univariate latent variables, while LPS is natively mul-

tivariate and emphasizes on approximating the marginal joint posterior latent

vector (4). Also, the smooth terms of the GAM model are exclusively mod-

eled with P-splines, with full-fledged analytical availability of the gradient and

Hessian of the posterior penalty vector, whereas INLA uses numerical differen-

tiation techniques. Another fundamental difference lies in the specification of

the vector ξ: INLA works with a latent vector having a dimension proportional

to the sample size n, while in LPS it is independent of n.

3. Posterior inference on the marginal latent vector

3.1. Exploration of the posterior penalty vector

An approximation to the marginal posterior of the latent vector ξ (including

the regression and spline parameters in the generalized additive model) can be

obtained by integrating out the penalty parameters as in (4). Obtaining such

a quadrature requires to explore the posterior of the penalty parameters λ =

exp(v). Two strategies are suggested according to the dimension q of the penalty

vector. When q is small or moderate (say q ≤ 4), a grid strategy is proposed that

is sensitive to asymmetries in the response surface p̃(v|D), with the skew-normal

family of distributions forming the backbone to handle asymmetry. As the

computational cost of constructing a grid grows with dimension q, we suggest,

when q is large, an alternative strategy relying on MCMC (Yoon & Wilson,

2011; Gómez-Rubio & Rue, 2017) to draw a set of points in the domain of the

posterior of the penalty parameters.

This hybrid approach alternates between a deterministic grid and a sampling

scheme, giving to the end-user a complete and rapid tool to fit GAMs in a

full Bayesian framework even when the number of smooth functions is large.

A preliminary milestone for both strategies is to find the posterior mode v̂ of
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log p̃(v|D) as it represents the “center of gravity” from which the exploration will

depart. To this end, a Newton-Raphson algorithm is implemented in which we

take advantage of the analytical forms for the gradient and Hessian of log p̃(v|D)

to speed up the computational process. Once v̂ is obtained, we proceed with

posterior exploration.

3.2. Hybrid exploration alternating between grids and independence sampling

An elementary approach to explore p̃(v|D) could rely on a multivariate Gaussian

approximation to the posterior of the log penalty parameters v, i.e. p̃G(v|D) =

Ndim(v)

(
v̂,
(
−H∗

)−1)
, where the covariance matrix is obtained from the Hessian

H∗ = ∇2
v log p̃(v̂|D) evaluated at the mode v̂. However, as already pointed in

Martins et al. (2013), the presence of potential asymmetries would not be cap-

tured by a Gaussian approximation. Instead, to efficiently explore the posterior

penalty space, a grid strategy is proposed, which implicitly takes into account

asymmetries by using skew-normal distributions to approximate the conditional

posterior of each penalty parameter through a moment-matching approach. The

skew-normal family was first introduced by Azzalini (1985), see Azzalini (2014)

for more details. In the univariate case, a random variable X has a skew-normal

distribution denoted by X ∼ SN(µ, ς2, ρ) if its probability density function at

x ∈ R is:

p(x) =
2

ς
ϕ

(
x− µ
ς

)
Φ

(
ρ

(x− µ)

ς

)
, (8)

where µ ∈ R is a location parameter, ς ∈ R+ a scale parameter and ρ ∈ R a

shape parameter regulating skewness. Also, ϕ(·) and Φ(·) denote the standard

Gaussian density function and its cumulative distribution function respectively,

such that setting ρ = 0 yields the N (µ, ς2) distribution.

We suggest to approximate the conditional posterior distribution of (vj |v̂−j ,D)

(j = 1, ..., q) with a skew-normal distribution by matching its first three empiri-

cal moments with the theoretical ones for the density in (8), where v̂−j denotes

the vector v̂ without the jth entry. Appendix B shows the derivations to obtain

µ∗, ς∗ and ρ∗ in the approximating skew-normal distribution SNj(µ
∗, ς∗2, ρ∗)

through moment matching.
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Once a skew-normal distribution SNj(µ
∗, ς∗2, ρ∗) has been adjusted to the con-

ditional p̃(vj |v̂−j ,D), we construct an equidistant grid {vjm}Mm=1 of size M from

the 2.5th to the 97.5th quantiles of the skew-normal fit denoted by SNj,0.025 and

SNj,0.975 respectively. This process is repeated across all dimensions j = 1, . . . , q

and a Cartesian product of the univariate grids is taken, ending up with a to-

tal of Mq (multivariate) grid points. Next, a filtering strategy is implemented

to get rid of quadrature points associated to a small posterior mass. Let us

consider the normalized posterior R(v) = p̃(v|D)/p̃(v̂|D) and use the prop-

erty that −2 logR(v) is approximately distributed as a chi-square distribution

with dim(v) degrees of freedom denoted by χ2
dim(v). Then, an approximate

(1 − α) credible region for v is defined by the set of values in Rdim(v) such

that R(v) ≥ exp
(
−.5χ2

dim(v);1−α

)
. As an illustration, take α = 0.05 and

dim(v) = 2. If we decide to concentrate on quadrature points in the 95% cred-

ible region for v, then the preceding result would suggest to discard values v

in the bivariate grid for which R(v) < exp(−.5χ2
2;0.95) = .05, leaving M̃ grid

points. Figure 1 highlights the skew-normal match and the final grid in an ex-

ample with q = 2 nonlinear smooth functions in the additive predictor and data

generated from a Poisson response with sample size n = 250.

−3 −2 −1 0 1 2

0.
0

0.
2

0.
4

0.
6

0.
8

v1

Target

SN−match

Normal−match

−3 −2 −1 0 1

−
1

0
1

2
3

v1

v 2

Figure 1: Left: Skew-normal fit (dotted) and naive Gaussian match (dashed) to the condi-

tional p̃(v1|v̂2,D) (gray). The skew-normal fit is closer to the target and captures the lack of

symmetry present in the target. Right: Final grid construction to explore p̃(v|D).
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When the number of smooth functions q in the additive model is above a cer-

tain threshold (say q > 4), the preceding computational strategy becomes too

demanding as the number of quadrature points (following from the Cartesian

product of the grid points for each penalty parameter exp(vj) (j = 1, . . . , q))

explodes. A cost-effective alternative relies on MCMC to sample values from the

posterior p̃(v|D). More thoroughly, an independence sampler is implemented

using a multivariate Student-t proposal distribution tϑ(v̂, (−H∗)−1) with den-

sity h(v|v̂), degrees of freedom (ϑ = 3, say), a mean set at the posterior mode

v̂, and variance-covariance matrix (ϑ/(ϑ− 2))(−H∗)−1.

Algorithm 1 summarizes the strategy to explore p̃(v|D). When q ≤ 4, a

grid is constructed using a Cartesian product of marginal grids delimited by

quantiles of approximating skew-normal densities. Exploration in larger dimen-

sions relies on the independence Metropolis-Hastings sampler. This algorithm

is used in the next section to approximate the marginal posterior of the vector

of regression and spline coefficients.

Algorithm 1: Exploration of p̃(v|D)

1: If q ≤ 4 do (Grid strategy, cf. Section 2.5.1)

2: for j = 1, . . . , q do

3: Compute the skew-normal match SNj(µ
∗, ς∗2, ρ∗) to p̃(vj |v̂−j ,D).

4: Construct a Cartesian grid {vjm}Mm=1 from SNj,0.025 to SNj,0.975.

5: end for

6: Compute the Cartesian product of the univariate grids C = ×qj=1{vjm}Mm=1.

7: Choose α and keep the M̃ values in C such that R(v) ≥ exp
(
−.5χ2

q;1−α
)
.

8: else do (Independence sampling, cf. Section 2.5.2)

9: Choose an initial value v(0) = v̂.

10: for m = 1, . . . , M̃ do

11: Generate v(prop) ∼ h(v|v̂).

12: Compute the acceptance probability α = min

(
1,

p̃
(
v(prop)|D

)
h
(
v(m−1)|v̂

)
p̃
(
v(m−1)|D

)
h
(
v(prop)|v̂

)).

13: Draw u ∼ U(0, 1).

14: If u ≤ α, set v(m) = v(prop), else set v(m) = v(m−1).

15: end for
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3.3. Approximate marginal posterior of the latent vector

Using the Laplace approximation discussed in Section 2.2, the posterior of the

latent vector ξ can be obtained as follows:

p(ξ|D) =

∫
Rq++

p(ξ|λ,D) p(λ|D) dλ

≈
∫
Rq++

p̃G(ξ|λ,D) p̃(λ|D) dλ

≈
∫
Rq
p̃G(ξ| exp(v),D) p̃(v|D) dv, (9)

where the last line follows from the change of variable in log-scale. Using Algo-

rithm 1, we get a set of quadrature points {v(m)}M̃m=1. Defining:

ωm =
p̃(v(m)|D)∑M̃
m=1 p̃(v

(m)|D)
, m = 1, . . . , M̃ , (10)

when q ≤ 4 and ωm = 1/M̃ otherwise, Equation (9) suggests to approximate

p(ξ|D) by:

p̃(ξ|D) =

M̃∑
m=1

ωm Ndim(ξ)

(
ξ̂v(m) , Σ̂v(m)

)
, (11)

where ξ̂v(m) =
(
BT W̃B +Qv(m)

ξ

)−1
$̃ and Σ̂v(m) =

(
BT W̃B +Qv(m)

ξ

)−1
are

the conditional posterior mode and variance-covariance matrix resulting from

the iterative Laplace approximations proposed in Section 2.2. Note that the

computational cost of reevaluating the conditional posterior mode and variance-

covariance for each penalty exp(v(m)) in the grid can be reduced by adding an

extra layer of approximation by replacing W̃ in the Newton-Raphson procedure

by its value W̃v̂ at the posterior mode. A point estimate for the latent vector

is given by the posterior mean of (11), which is a mixture of the location com-

ponents, i.e. ξ̂ =
∑M̃
m=1 ωm ξ̂v(m) .

Approximate pointwise credible intervals for latent elements ξh, h = 1, . . . ,dim(ξ)

can be straightforwardly obtained by starting from the finite mixture given

in (11). The approximate posterior for the hth latent element is p̃(ξh|D) =
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∑M̃
m=1 ωm N1

(
ξ̂h,v(m) , Σ̂hh,v(m)

)
, where ξ̂h,v(m) is the hth entry of vector ξ̂v(m)

and Σ̂hh,v(m) is the hth entry on the diagonal of matrix Σ̂v(m) . The latter expres-

sion can be used to construct a (1− α)× 100% quantile-based credible interval

for ξh. To obtain pointwise set estimates of a smooth function fj , let {xl}Ll=1

be an equidistant (fine) grid on the domain of fj and ξθj be the subvector of ξ

corresponding to the spline vector θj = (θj1, . . . , θjK−1)T . Also, denote by b̃l

the vector of B-splines in the basis evaluated at xl. The function fj at point

xl is thus modeled as fj(xl|ξθj ) = b̃Tl ξθj and from (11) the posterior of ξθj is

approximated by the finite mixture:

p̃(ξθj |D) =

M̃∑
m=1

ωm NK−1
(
ξ̂θj ,v(m) , Σ̂θj ,v(m)

)
, (12)

where Σ̂θj ,v(m) is a submatrix of Σ̂v(m) corresponding to the variance-covariance

matrix of ξθj . As fj(xl|ξθj ) is a linear combination of the spline vector, a natural

candidate to approximate the posterior p(fj(xl|ξθj )|D) is to use a mixture of

univariate normals:

p̃(fj(xl|ξθj )|D) =

M̃∑
m=1

ωm N1

(
b̃Tl ξ̂θj ,v(m) , b̃Tl Σ̂θj ,v(m) b̃l

)
.

A quantile-based credible interval for fj at point xl can easily be computed from

the above (approximate) univariate posterior.

4. Simulations

The performance of the LPS approach (with cubic B-splines and a third or-

der penalty) is assessed through different simulation scenarios and compared

with results obtained using the gam() function from the mgcv package in R

(Wood, 2017), a popular and established toolkit for estimating GAMs. Options

of the gam() function are carefully chosen so that the generated results can

be meaningfully compared to these obtained using our LPS approach. In par-

ticular, both approaches share the same dimension and order for the B-spline
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basis, as well as the same order for the difference penalty. The restricted maxi-

mum likelihood (REML) method is used by the gam() routine for selecting the

penalty parameters λ. It corresponds to an empirical Bayes approach in the

sense that a Bayesian log marginal likelihood is maximized with respect to λ

in a context where penalties come from Gaussian priors on the spline coeffi-

cients (Marra & Wood, 2011; Wood et al., 2013). Newton’s method is used to

numerically optimize the REML smoothing parameter estimation criterion. A

detailed description of the gam() estimation procedure can be found in Wood

(2011, 2017).

4.1. Estimation of linear parameters and additive functional components

The simulation setting entails S = 500 replications of a data set of size n =

300 with three covariates in the linear part generated independently as zi1 ∼

Bern(0.5), zi2 ∼ N (0, 1) and zi3 ∼ N (0, 1). The full model is g(µi) = −1.50 +

0.70zi1 − 0.80zi2 + 0.40zi3 + f1(xi1) + f2(xi2) + f3(xi3), for i = 1, . . . , n with

regression coefficients β0 = −1.50, β1 = 0.70, β2 = −0.80, β3 = 0.40 and

smooth additive terms f1(xi1) = −4x6i1 + 2x2i1 + cos(2πxi1) − 0.1, f2(xi2) =

3x5i2 + 2 sin(4xi2) + 1.5x2i2 − 0.5, and f3(xi3) = sin(3πxi3). The covariates for

the smooth functions are independent draws from the Uniform distribution on

the domain [−1, 1]. The above functions are specified as a linear combination

of cubic B-splines with a third order penalty and K = 15 B-splines in [−1, 1].

The frequentist properties of the Bayesian estimators are measured by the bias,

the empirical standard error (ESE), the root mean square error (RMSE) and

coverage probability (CP) of the 90% and 95% (pointwise) credible intervals for

the linear coefficients. Four scenarios are considered for the response variable,

namely (I) Generation from a Poisson distribution yi ∼ Poisson(µi), with µi =

exp(%i) to illustrate the case of count data, (II) Generation from a Gaussian

yi ∼ N (µi, σ
2 = 0.3), with µi = %i, (III) Generation from a Binomial yi ∼

Bin(15, pi) and (IV) Generation from a Bernoulli yi ∼ Bern(pi) to illustrate the

case of binary responses with success probability pi = exp(%i)/(1 + exp(%i)) for

Binomial and Bernoulli cases.
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Table 1 shows the simulation results and comparisons with the gam() function.

For all the considered data types, the Laplace-P-spline approach exhibits non-

significant biases and the estimated coverage probabilities are consistent with

their nominal level. Also, the ESE and RMSE show a behavior comparable

to what is observed with the gam() output. For the Bernoulli scenario, ESEs

are smaller with LPS, but biases are slightly larger than with gam(). The fre-

quentist coverage of credible intervals remain compatible whatever the method

used.

Data Parameters Bias CP90% CP95% ESE RMSE

β1 = 0.70 0.001 ( 0.003) 87.4 (88.2) 94.0 (94.6) 0.122 (0.122) 0.122 (0.121)

Poisson β2 = −0.80 0.006 ( 0.003) 91.0 (90.8) 95.8 (95.6) 0.061 (0.061) 0.062 (0.061)

β3 = 0.40 -0.001 ( 0.000) 90.0 (90.0) 95.8 (96.4) 0.060 (0.060) 0.060 (0.059)

β1 = 0.70 0.001 ( 0.001) 90.6 (90.0) 96.4 (96.4) 0.065 (0.065) 0.065 (0.065)

Normal β2 = −0.80 -0.001 (-0.001) 89.0 (89.4) 94.8 (95.0) 0.033 (0.033) 0.033 (0.033)

β3 = 0.40 0.000 ( 0.000) 89.6 (90.2) 94.8 (95.2) 0.034 (0.034) 0.033 (0.034)

β1 = 0.70 0.004 ( 0.006) 89.8 (90.8) 94.8 (95.0) 0.090 (0.090) 0.090 (0.091)

Binomial β2 = −0.80 0.011 ( 0.008) 88.8 (88.6) 93.6 (94.2) 0.047 (0.048) 0.049 (0.048)

β3 = 0.40 -0.003 (-0.001) 92.6 (92.6) 96.4 (96.8) 0.042 (0.042) 0.042 (0.042)

β1 = 0.70 -0.077 (-0.008) 87.4 (87.8) 93.0 (93.0) 0.320 (0.349) 0.329 (0.349)

Bernoulli β2 = −0.80 0.082 ( 0.005) 87.6 (91.8) 93.0 (96.4) 0.155 (0.175) 0.175 (0.174)

β3 = 0.40 -0.038 ( 0.003) 88.6 (89.8) 93.2 (94.0) 0.159 (0.176) 0.163 (0.176)

Table 1: Simulation results with the LPS method for S = 500 replicates of sample size
n = 300 for different types of response (Poisson, Normal, Binomial and Bernoulli). The
values in parentheses are estimation results from the gam() function.

Coverage properties of approximate 90% pointwise credible intervals for the ad-

ditive terms f1, f2 and f3 are reported in Table 2 for selected values of the

covariate on [−1, 1]. An asterisk superscript is added to the estimated coverage

to point a statistically significant difference with the nominal value. Results of

the gam() function are labeled “MGCV”. In addition to the LPS approach, Ta-

ble 2 also highlights the coverage performance of LPSMAP, where each penalty

parameter is replaced by its posterior mode λ̂ = exp(v̂) in our Laplace-P-spline

method. For LPSMAP the uncertainty in the selection of λ is ignored (like in
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Wood’s approach), such that the mixture in Equation (12) is omitted and the

point estimate of the latent vector and its associated variance-covariance matrix

become ξ̂v̂ =
(
BT W̃B +Qv̂

ξ

)−1
$̃ and Σ̂v̂ =

(
BT W̃B +Qv̂

ξ

)−1
respectively.

With LPSMAP, an approximate (1−α)×100% credible interval for function fj

at point xl is computed from a frequentist perspective, f̂j(xl)±zα/2
√

b̃Tl Σ̂θj ,v̂b̃l.

As can be seen from Table 2, the LPS and LPSMAP methods perform well

in the Poisson, Normal and Binomial scenarios as estimated frequentist coverage

probabilities are close to the nominal level at almost all selected covariate values.

The gam() results also show a similar performance across all scenarios. Com-

paring LPS and LPSMAP, we observe that omitting the penalty uncertainty

globally translates into a slight decrease in percentage points for the estimated

coverage probability. Yet, the LPSMAP approach still exhibits close to nominal

coverage for all the functions. In terms of computational speed, the LPSMAP

approach is approximately four times faster than the LPS approach and five

times slower than gam() (≈ 0.05 seconds vs 0.26 seconds).

In the Bernoulli setting where the information content for a given sample

size is much smaller than under the other simulation scenarios, all the consid-

ered methods exhibit effective frequentist coverages below the nominal value as

illustrated in Table 3 with n = 300. It corresponds to situations where the esti-

mates of the additive terms provided by LPS(MAP) or gam() can be inaccurate.

The pronounced undercoverage in this setting is explained by the poor informa-

tion conveyed by a binary random variable that translates into oversmoothing

of the additive functional components as highlighted in Figure 2. However, as

expected, increasing the sample size in the Bernoulli scenario yields frequentist

coverage probabilities close to their nominal value (cf. Table 3 with n = 2000)

both for the LPS(MAP) and gam() methods.

The effective frequentist coverages of 90%, 95% and 99% pointwise credi-

ble intervals averaged over 200 uniformly distributed values of the covariate on

[−1, 1] and S = 500 dataset replications in the Poisson, Normal and Binomial

settings are reported in Appendix C. Again, the LPS and LPSMAP method-

ologies display estimated coverages close to their nominal value in all scenarios.
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Note that gam() and LPSMAP rely on a similar approach for selecting the op-

timal posterior penalty value. Hence, the simulation results suggest that our

penalty selection scheme is at least as efficient as what is implemented in gam()

for estimating the smooth components in the additive part of the model.

Data f Method -0.95 -0.70 -0.50 -0.20 0.00 0.20 0.50 0.70 0.95

f1 LPS 86.0∗ 89.8 91.6 91.2 88.2 91.4 87.0 88.4 87.6
f1 LPSMAP 85.8∗ 89.2 89.6 90.8 88.2 91.4 86.0∗ 87.6 87.0
f1 MGCV 87.8 91.6 92.0 90.6 90.6 92.0 89.4 92.2 89.0

Poisson f2 LPS 93.2 82.8∗ 89.2 84.4∗ 91.2 89.2 86.2∗ 92.6 87.4
f2 LPSMAP 92.4 81.4∗ 87.4 81.4∗ 90.2 89.0 85.2∗ 92.4 86.8
f2 MGCV 92.6 87.6 90.8 89.8 92.4 91.0 89.8 92.2 89.0

f3 LPS 89.8 87.8 87.2 88.6 90.2 86.2∗ 86.8 90.4 90.6
f3 LPSMAP 88.8 87.2 86.0∗ 87.6 90.2 86.0∗ 86.0∗ 89.2 90.6
f3 MGCV 90.4 88.6 90.8 90.6 91.2 88.4 88.6 91.8 91.0

f1 LPS 90.2 92.8 92.0 91.0 91.6 92.4 92.4 92.6 90.2
f1 LPSMAP 90.0 92.2 91.6 91.0 91.6 92.0 91.6 92.6 89.8
f1 MGCV 90.4 92.8 91.4 91.4 91.8 91.6 92.4 92.0 90.4

Normal f2 LPS 91.6 90.4 91.2 94.8∗ 92.2 93.6∗ 91.2 90.0 89.4
f2 LPSMAP 91.2 89.4 90.0 94.6∗ 91.6 94.0∗ 90.8 90.0 89.2
f2 MGCV 92.0 90.4 90.8 94.4∗ 92.0 93.8∗ 92.0 91.2 89.6

f3 LPS 90.4 92.0 90.6 92.4 90.8 87.4 89.4 92.6 89.6
f3 LPSMAP 90.4 92.2 90.4 92.2 90.6 88.0 89.0 92.4 89.2
f3 MGCV 89.8 92.4 91.8 91.6 90.0 88.8 89.8 92.4 89.6

f1 LPS 88.4 94.0∗ 89.2 93.0 91.0 96.0∗ 91.6 90.8 88.2
f1 LPSMAP 87.6 93.0 87.6 92.8 90.6 96.0∗ 91.4 91.0 88.0
f1 MGCV 88.6 93.8∗ 89.4 93.4∗ 90.6 96.2∗ 93.2 91.4 89.0

Binomial f2 LPS 89.8 92.6 86.8 90.8 93.6∗ 92.8 86.8 92.0 84.2∗

f2 LPSMAP 89.2 91.8 85.4∗ 90.2 93.6∗ 92.2 86.8 91.0 83.8∗

f2 MGCV 90.0 94.4∗ 87.6 92.2 93.8∗ 92.4 90.4 91.6 86.8

f3 LPS 87.8 91.0 87.8 90.6 90.6 86.8 87.4 92.4 90.4
f3 LPSMAP 87.6 90.6 87.2 89.8 90.6 86.6 86.2∗ 92.2 90.0
f3 MGCV 88.6 91.0 89.4 91.8 89.8 89.4 89.4 92.6 90.6

Table 2: Effective frequentist coverages of 90% pointwise credible intervals for the functions
f1, f2, f3 at selected domain points for Poisson, Normal and Binomial data over S = 500
replications of sample size n = 300 for the Laplace-P-spline (LPS), the LPS omitting the
mixture (LPSMAP) and gam() (MGCV) methods. An asterisk points a statistically significant
difference with the nominal value.
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Data f Method -0.95 -0.70 -0.50 -0.20 0.00 0.20 0.50 0.70 0.95

f1 LPS 85.4∗ 78.0∗ 0.6∗ 35.0∗ 1.4∗ 47.0∗ 1.0∗ 84.0∗ 82.2∗

f1 LPSMAP 86.2∗ 78.2∗ 0.6∗ 25.6∗ 0.6∗ 46.0∗ 0.4∗ 84.6∗ 82.2∗

f1 MGCV 84.8∗ 77.6∗ 42.0∗ 76.4∗ 38.2∗ 77.4∗ 42.0∗ 82.2∗ 85.2∗

Bernoulli f2 LPS 86.8 82.6∗ 62.0∗ 34.4∗ 86.6 52.4∗ 58.6∗ 89.6 73.0∗

(n=300) f2 LPSMAP 83.2∗ 72.8∗ 60.6∗ 26.8∗ 84.2∗ 42.6∗ 58.0∗ 84.8∗ 66.6∗

f2 MGCV 87.8 77.0∗ 84.8∗ 66.0∗ 90.0 72.2∗ 83.8∗ 79.6∗ 83.2∗

f3 LPS 88.0 80.4∗ 2.6∗ 1.2∗ 96.0∗ 1.2∗ 2.2∗ 71.0∗ 77.8∗

f3 LPSMAP 87.6 82.0∗ 2.2∗ 1.2∗ 92.8 1.2∗ 1.8∗ 65.0∗ 62.6∗

f3 MGCV 87.4 84.2∗ 52.0∗ 51.0∗ 90.0 48.8∗ 49.0∗ 83.6∗ 86.8

f1 LPS 90.0 89.8 87.4 94.2∗ 87.4 91.8 87.6 89.8 86.6
f1 LPSMAP 89.4 90.2 87.0 94.0∗ 87.6 92.0 86.8 88.6 86.6
f1 MGCV 89.8 91.2 90.6 93.2 90.8 91.6 90.6 89.2 87.8

Bernoulli f2 LPS 88.8 90.8 87.0 89.8 93.0 90.8 86.6 91.2 86.8

(n=2000) f2 LPSMAP 87.6 90.6 86.2∗ 89.0 92.6 90.6 86.6 90.4 86.6
f2 MGCV 89.2 91.8 88.8 90.6 93.2 91.4 90.0 90.6 91.2

f3 LPS 90.2 88.2 86.0∗ 87.6 93.2 84.8∗ 84.4∗ 89.2 91.2
f3 LPSMAP 90.4 87.8 84.8∗ 87.2 93.0 83.8∗ 83.0∗ 89.2 90.6
f3 MGCV 90.8 88.6 89.6 91.4 92.2 88.6 87.0 90.2 91.2

Table 3: Effective frequentist coverages of 90% pointwise credible intervals for the functions
f1, f2, f3 at selected domain points for Bernoulli data over S = 500 replications of sample
size n = 300 and n = 2000 for the Laplace-P-spline (LPS), the LPS omitting the mixture
(LPSMAP) and gam() (MGCV) methods. An asterisk points a statistically significant differ-
ence with the nominal value.
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Figure 2: Estimation of smooth additive terms (gray curves) for S = 500 dataset replications

of size n = 300 in the Bernoulli scenario with LPS. The dashed line is the pointwise median

of the gray curves and the black curves are the target functions.
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The simulation results confirm the attractiveness of the Laplace-P-spline model

for pointwise and set estimation of the regression parameters in the linear part

as well as of the smooth additive components. To enhance the estimation ac-

curacy of our approach in the case of extremely discrete responses such as, for

example, Bernoulli data, a possibility is to improve the approximation to the

conditional posterior p̃G(ξ|λ,D) by correcting for location and skewness as sug-

gested in Rue et al. (2009). Beyond such extreme binary data configurations,

the simple Laplace approximation underlying LPS and LPSMAP suffices for

precise inference.

To complete the simulation study, we compare the LPSMAP methodology

against BayesX (Umlauf et al., 2015), a fully Bayesian contender that can be

used to fit structured additive regression models with MCMC. In particular,

we use the R2BayesX package and fit the GAM in the Poisson scenario with

the bayesx() routine using a chain of size 10, 000 and a burn-in of size 1, 000.

Cubic B-spline bases are used to model the smooth terms with a second order

penalty. In Table 4, we report the estimated 95% coverage of credible inter-

vals for the smooth additive components of the model on selected points in the

interval [−1, 1] for S = 200 replicates with sample size n = 300.

Data f Method -0.95 -0.70 -0.50 -0.20 0.00 0.20 0.50 0.70 0.95

f1 LPSMAP 89.0∗ 96.0 94.5 97.0 91.0 97.0 93.5 96.5 91.5
f1 BAYESX 94.0 98.5 91.5 95.5 94.5 94.5 94.0 95.5 88.5∗

Poisson f2 LPSMAP 95.5 96.5 94.5 91.0 97.0 92.0 93.5 98.0 92.5
f2 BAYESX 93.0 94.0 95.5 93.5 96.5 92.5 91.0 94.0 84.5∗

f3 LPSMAP 92.5 96.0 92.5 94.5 96.0 95.0 95.5 97.0 92.5
f3 BAYESX 93.0 97.5 94.5 93.5 96.5 94.0 95.5 96.5 95.5

Table 4: Effective frequentist coverages of 95% pointwise credible intervals for the functions
f1, f2, f3 at selected domain points for Poisson data over S = 200 replications of sample size
n = 300 for LPSMAP and BayesX. An asterisk points a statistically significant difference with
the nominal value.

The estimated frequentist coverage probabilities are close to the 95% nomi-

nal level for both methods. There is however a notable difference in terms of

computational cost for model fitting. While the routines underlying BayesX

take on average 6.53 seconds to fit the GAM for each dataset, the LPSMAP
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methodology requires only 0.26 seconds (on average) for the fit. In other words,

LPSMAP is approximately 25 times faster than BayesX while maintaining the

same coverage performance for credible intervals on the smooth terms. With

more additive terms (q = 6), the computational gain is maintained and we mea-

sured that LPSMAP is faster than BayesX by a factor of (approximately) 7.

When q increases, most of the computational budget underlying LPSMAP to

fit the GAM is dedicated to the Newton-Raphson algorithm to compute the pos-

terior mode v̂. Coding that optimization part in C++ (the language underlying

BayesX) would further improve the speed of LPSMAP.

4.2. Computational costs

A notable feature of the Laplace-P-spline methodology is its low computational

cost despite being fully Bayesian. In fact, our algorithm (underlying a fully

Bayesian approach) is purely written in R (without any parallelization) and

takes approximately 0.26 seconds per dataset in the above scenario as compared

to 0.05 seconds for the gam() function (coding an empirical Bayes approach) for

simulations performed on a machine equipped with an Intel Xeon E-2186M CPU

running at a clock speed of 2.90 GHz. Considering that the gam() algorithm is

neither fully Bayesian nor entirely written in R (as most of the script relies on

C code which is much faster), the Laplace-P-spline toolkit can be considered

a serious competitor for approximate full Bayesian inference in GAMs when

smooth functions are modeled with P-splines. To illustrate the computational

behavior of LPS and LPSMAP against sample size for fixed dimension q = 3,

we consider an increasing sequence of sample sizes from n = 200 to n = 3000 in

steps of 200 and for each considered sample size compute the average wall clock

time (elapsed real time) in seconds with the proc.time() function in R over 10

different samples. In Figure 3 (a) the elapsed time to estimate the GAM model

with LPS and LPSMAP is plotted against sample size to depict the involved

computational resources. Both curves show a linear increase with sample size.

LPSMAP is faster than LPS as it does not require a grid construction to explore

the support of the marginal posterior of the penalty parameters, but rather fix
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them at their posterior mode. Figure 3 (b) highlights the computational time

of LPS(MAP) against sample size n on a log scale.
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Figure 3: (a) Real elapsed time in seconds as a function of sample size for LPS and LPSMAP.

(b) Log of computational time (in seconds) of LPS(MAP) against log sample size.

4.3. Simulation study with more additive terms.

A large number q of smooth functions in the additive predictor implies an in-

creased computational burden. Algorithm 1 suggests to prefer independence

sampling over a grid construction to explore the marginal posterior of the

penalty parameters when q > 4, see Section 3.2 for details. To illustrate how

the Laplace-P-spline model performs with a larger number of smooth functions,

we simulate S = 500 datasets of size n = 300 and a Markov chain sample of size

500 for each replicate with the following additive terms:

f1(x1) = 0.5(2x51 + 3x21 + cos(3πx1)− 1),

f2(x2) = 1.3x52 + sin(4x2) + 0.75x22 − 0.25,

f3(x3) = sin(4πx3),

f4(x4) = exp(−x34) sin(2πx24)− 0.1,
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f5(x5) = 0.8x25(x35 + 2 exp(−3x45 + log(2x5 + π)))− 0.65,

f6(x6) = 1.5
(
0.1 sin(2πx6) + 0.2 cos(2πx6) + 0.3 sin2(2πx6)

+0.4 cos3(2πx6) + 0.5 sin3(2πx6)
)
− 0.22.

There are three additional covariates specified as in Section 4.1 with regression

coefficients β0 = −1.20, β1 = 0.50, β2 = −0.40 and β3 = 0.70. The covariates of

the smooth functions are drawn independently from the Uniform distribution on

the domain [−1, 1]. Each smooth function is modeled using a linear combination

of 15 cubic B-splines associated to equidistant knots on [−1, 1] and a third order

penalty to control smoothness. Two scenarios are considered for the generating

process of the response, namely (1) a Gaussian model yi ∼ N (µi, σ
2 = 0.5) and

(2) a Binomial model yi ∼ Bin(20, pi), with pi the success probability and a logit

link function. Table 5 shows the simulation results of the Laplace-P-spline ap-

proach combined with MCMC (cf. Section 3.2). The estimation results obtained

with the gam() function from the mgcv package are shown in parenthesis.

Estimated biases shown in Table 5 are almost similar for the two differ-

ent approaches and nearly equal to zero in the considered data scenarios. In

addition, the reported coverage probabilities are close to their corresponding

nominal value and analogous results appear for the ESE and RMSE with the

LPS and gam() algorithms. Figure 4 illustrates the estimation results for the

six additive smooth terms with the proposed Laplace-P-spline methodology in

the Binomial case. For each graph, there are S = 500 gray curves representing

the estimates of the corresponding unknown smooth function (black) entering

the additive predictor. The dashed curve represents the pointwise median of

the 500 estimated curves. For each smooth term, the observed estimates are

close to the target, even with highly oscillating functions (e.g. f3 and f6). For

function f6, small bumps arising near main curvatures can be better captured

by increasing the number of B-splines in the basis.
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Data Parameters Bias CP90% CP95% ESE RMSE

β1 = 0.50 0.001 ( 0.001) 87.8 (87.4) 94.0 (94.6) 0.096 (0.095) 0.096 (0.095)

Normal β2 = −0.40 0.003 ( 0.003) 86.8 (87.4) 94.8 (95.0) 0.047 (0.047) 0.047 (0.047)

β3 = 0.70 0.003 ( 0.003) 86.2 (86.8) 93.2 (92.2) 0.049 (0.049) 0.049 (0.049)

β1 = 0.50 -0.007 (-0.003) 89.6 (89.6) 93.4 (94.0) 0.078 (0.078) 0.079 (0.078)

Binomial β2 = −0.40 0.003 ( 0.000) 88.8 (89.6) 94.4 (94.4) 0.041 (0.041) 0.041 (0.041)

β3 = 0.70 -0.009 (-0.003) 87.8 (88.2) 94.2 (95.0) 0.043 (0.043) 0.044 (0.043)

Table 5: Simulation results for S = 500 replicates of sample size n = 300 for Normal and
Binomial data when independence sampling is used to draw samples from p̃(v|D). The values
in parentheses are estimation results from the gam() function.

Figure 4: Estimation of smooth additive terms f1, . . . , f6 (gray curves) for S = 500 dataset

replications of size n = 300 in the Binomial scenario. The dashed line is the pointwise median

of the gray curves.

With q = 6, our LPS methodology coupled with MCMC (LPS-MCMC) requires

(to build a chain of length 500) on average 4.70 seconds for a dataset of size n =

300. In Table 6, we provide computation times of the LPS-MCMC algorithm

to estimate the GAM for different dimensions q and sample sizes. As expected

the computation time increases with q and n. Figure 5 gives an overview of the
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average computational times required to estimate the GAM with the LPS and

LPS-MCMC algorithms for an increasing number of additive terms. When q ≤ 4

the LPS approach is faster, but in larger dimensions the LPS-MCMC algorithm

(with an independence sample of length 500) requires less computational budget

than the grid construction in LPS.

Dimension Average computation time (in seconds)

n = 300 n = 1000 n = 3000

q = 1 1.86 2.78 7.00
q = 2 2.10 3.46 11.60
q = 3 2.51 4.66 15.09
q = 4 3.04 6.53 21.04
q = 5 3.82 8.83 27.55
q = 6 4.70 11.46 36.08

Table 6: Average computation time (in seconds) of the LPS-MCMC algorithm over S = 20
samples of size n ∈ {300, 1000, 3000} for different dimensions q ∈ {1, 2, 3, 4, 5, 6}.
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Figure 5: Logarithm of the average computation time (in seconds) of LPS (dahsed) and

LPS-MCMC (solid) over S = 20 samples of size n = 300 and dimensions q ∈ {1, 2, 3, 4, 5, 6}.
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5. Applications

5.1. Model for the number of doctor visits

We apply our Laplace-P-spline model in the context of a health-care study

on Medicaid eligibles. The data are from the 1986 Medicaid Consumer Sur-

vey sponsored by the Health Care Financing Administration in the USA. This

Medicaid database has first been studied by Gurmu (1997) in the framework of

a semi-parametric hurdle model and later by Sapra (2013) as an econometric

application of generalized additive models using the mgcv package in R. Our

analysis will focus on a sample of n = 485 adults who meet the requirement for

eligibility in the Aid to Families with Dependent Children (AFDC) program.

The response variable is the number of doctor visits (office/clinic and health

center) over a period of 120 days. The explanatory variables included in the

linear part of the GAM are Children (Total number of children in the house-

hold), Race (0=other; 1=white) and Maritalstatus (0=other; 1=married). The

variables modeled in the smooth nonlinear part are taken to be Age, the house-

hold annual Income (in US dollars), a variable measuring the ease of Access

to health services with values in the interval (0=low access; 100=high access)

and the first principal component built from three health-status variables (func-

tional limitations, acute conditions, chronic conditions) denoted by PC1 with

larger positive numbers meaning poorer health. Descriptive statistics of these

variables are detailed in Gurmu (1997). The GAM model with a Poisson condi-

tional distribution Poisson(µi) (i = 1, ..., n) for the number of doctor visits can

be written as follows:

g(µi) = β0 + β1Childreni + β2Racei + β3Maritalstatusi

+f1(Agei) + f2(Incomei) + f3(Accessi) + f4(PC1i), i = 1, . . . , n,

where g(·) is the log-link and the smooth functions fj are modeled using a linear

combination of 15 cubic B-splines penalized by a third order penalty. The B-

spline bases are defined over the domain [xj,min, xj,max], where xj,min (xj,max) is

the minimum (maximum) of the covariate values on which fj is defined. Given
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the moderate number of additive terms (q = 4), the posterior penalty space is

explored via the grid strategy of Section 2.5.1.

Table 7 summarizes the estimation results for the parametric linear part of

the GAM. The results highlight a negative and significant relationship between

the number of children in a household and the (mean) number of doctor visits.

The demographic variable Race has a non-significant effect on the the mean

response, while a negative and significant relationship between Maritalstatus

and the (mean) number of doctor visits is observed. Figure 6 displays the

estimated smooth functions (solid curves) and the associated 95% approximate

pointwise credible intervals (gray surfaces).

Parameters Estimates CI 90% sdpost

β1 (Children) -0.179 [-0.239; -0.122] 0.036
β2 (Race) -0.127 [-0.263; 0.005] 0.081
β3 (Maritalstatus) -0.234 [-0.431; -0.043] 0.118

Table 7: Estimation results for the parametric linear part of the GAM. The second column is
the parameter estimate, the third column gives the associated 90% credible interval and the
last column is the posterior standard deviation.

As in Gurmu (1997), we observe a concave relationship between the mean re-

sponse and Age with a peak in the average number of visits arising around

Age=28. As most of the AFDC beneficiaries are women the concave pattern

of Age may be explained by pregnancy-related visits during fertile periods and

less frequent visits in later periods of life. The socio-economic variable Income

exhibits no significant effect on the mean number of doctor visits when Income

is below $10,000. Hence an increase in income for poor households with an

annual income below $10,000 is (on average) not reflected by an increase in the

number of doctor visits. However, when the annual income goes above $10,000

individuals tend to care more about their health and the (average) number

of medical visits increases. Furthermore for the variable Access, we observe a

strong oscillation of the mean response around a linear trend in the domain

[0, 70], suggesting that for low to moderate health service availability, the mean

number of doctor visits remains stable.
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Figure 6: Estimated smooth functions (solid curve) and 95% approximate pointwise credible

intervals (gray surface) for variables Age, Income, Access and PC1.

With regard to health-status variables gathered in PC1 the results are as ex-

pected. Indeed, we observe a clear upward trend, i.e. the average number of

medical visits increases with poorer health conditions.

5.2. Nutritional study

In a second application, we implement our methodology to analyze data from a

nutritional epidemiology study. More thoroughly, we are interested in modeling

the relationship between the plasma beta-carotene level and several explanatory

variables related to individual factors and dietary characteristics. Human cells

are driven by an important dynamic called the oxidation process, an energy

delivery mechanism that is crucial for a proper functioning at the cellular level.

By-products of the oxidation process are molecules known as free radicals. An

imbalance between free radicals and antioxidant defenses generates oxidative

stress which in turn triggers carcinogenesis. Beta-carotene is an antioxidant

acting as a free radical scavenger and has been shown to prevent various cancer

types and other diseases (Comstock et al., 1992; Rimm et al., 1993 and Zhang

et al., 1999).
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The dataset provided by Stukel (2008) on plasma beta-carotene levels has n =

314 observations on 14 variables. Factors influencing beta-carotene plasma con-

centration levels have been studied by Nierenberg et al. (1989), who found that

beta-carotene level had a positive relationship with dietary beta-carotene con-

sumption and tends to be larger for females, whereas a negative relation ap-

peared with current smoker status. The dataset was also analyzed by Liu et al.

(2011) who develop a variable selection procedure to identify the significant lin-

ear components in a semiparametric additive partial linear model. The LPS

model is implemented on the data to study the relationship between the loga-

rithm of beta-carotene plasma level (in ng/ml) and various explanatory variables

retained as significant by the analysis in Liu et al. (2011).

The linear part of the additive model will include the BMI or Quetelet

index (weight/height2), the dietary beta-carotene consumption (Betadiet) (in

mg/day), Gender (0=Male; 1=Female), a binary indicator Smoking status

(0=non smoker; 1=current smoker) and the covariates Fiber and Fat indicating

the hectograms of fiber and fat respectively consumed on a daily basis. The non-

linear part of the model will encompass the variables Age (in years) and the log

of Cholesterol consumption (in mg/day). To summarize, the GAM model with

an identity link is given by yi = log(Betaplasmai) ∼ N (µi, s
2) where s2 = 0.559

is the empirical variance of the response and the mean is modeled as:

µi = β0 + β1BMIi + β2Betadieti + β3Genderi + β4Smokingi + β5Fiber

+β6Fat + f1(Agei) + f2(log(Cholesteroli)), i = 1, . . . , n.

In Table 8, we report the estimation results of the linear part. All variables

are significant, except Betadiet. There is a negative association between BMI

and the mean log plasma beta-carotene level meaning that for a fixed height,

individuals with lower weight tend to have (on average) higher plasma beta-

carotene concentrations. As in Nierenberg et al. (1989), we find that females

and non-smokers tend to have a significantly larger beta-response level. A pos-

sible explanation is that smoke actually deteriorates beta-carotene molecules

through an oxidation process. Finally, fiber consumption increases the mean
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plasma beta-carotene level, with the consumption of vegetables on a daily basis

helping to maintain antioxidants at a high level, while a high-fat diet tends to

have a negative effect on the mean response.

Figure 7 highlights the estimated smooth functions for Age and log Choles-

terol. For variable Age the shape of the estimated function is similar to what

is observed in Liu et al. (2011). There is a positive association with the mean

response when Age is smaller than 45 years or greater than 65 years. On the

other hand, the relation of the mean response to the log-cholesterol level does

not appear significant.

Parameters Estimates CI 90% sdpost

β1 (BMI ) -0.034 [-0.046; -0.022] 0.007
β2 (Betadiet) 0.047 [-0.009; 0.101] 0.033
β3 (Gender) 0.300 [ 0.076; 0.520] 0.135
β4 (Smoking) -0.301 [-0.515; -0.093] 0.128
β5 (Fiber) 2.396 [ 0.804; 3.938] 0.956
β6 (Fat) -0.245 [-0.493; -0.003] 0.149

Table 8: Estimation results for the parametric linear part of the GAM for the nutritional
study. The second column is the parameter estimate, the third column gives the associated
90% credible interval and the last column is the posterior standard deviation.
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Figure 7: Estimated smooth functions (solid curve) and 95% approximate pointwise credible

intervals (gray surface) for variables Age and log(Cholesterol) of the nutritional study dataset.

32



6. Concluding remarks

In this article, we have put forward a new methodology for approximate Bayesian

estimation in Generalized additive models (GAMs) by unifiying P-splines and

Laplace approximations. The Laplace-P-spline model is endowed with closed

form expressions for the gradient and Hessian of the log posterior penalty vec-

tor. These analytical forms constitute a valuable asset for a computationally

efficient and precise exploration strategy of the posterior penalty space that in

turn leads to an accurate approximation of the joint posterior latent vector (in-

cluding the regression and spline parameters in the generalized additive model)

even when the number of smooth functions is large.

Extensive simulation studies show that the algorithms underlying LPS and

LPSMAP exhibit good estimation quality with respect to the considered per-

formance metrics, as shown for instance by non-significant biases or frequen-

tist coverage probability of credible intervals appreciably close to their nominal

value. Furthermore, our approximate Bayesian approach has proved to be reli-

able in terms of estimation performance with respect to smooth additive terms.

Finally, even though the Laplace-P-spline approach works from a complete

Bayesian perspective, the computational budget required for inference is rela-

tively low as compared to existing methods fully relying on MCMC algorithms.

A future research challenge will be to summarize the algorithms in a software

package to disseminate the LPS and LPSMAP approaches. Moreover, it would

be interesting to explore the idea to handle models for spatial data or with

additional hierarchy levels.
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Appendix A

This appendix provides in full details the analytical derivations of the gradient

and Hessian associated to the (log-) posterior of the log penalty vector:

log p̃(v|D) =̇ −1

2
log |BT W̃B +Qv

ξ |︸ ︷︷ ︸
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+
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, (13)

where for notational convenience, we define M̃v
ξ :=

(
BT W̃B +Qv

ξ

)−1
.

Gradient associated to the penalty in a GAM

To obtain the gradient of log p̃(v|D), the partial derivatives of the latter quantity

with respect to vj , j = 1, . . . , q are required. The partial derivative of Term I

in (13) can be obtained using Jacobi’s formula:
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where P̃vj is a (symmetric) block diagonal matrix defined as:

P̃vj :=
∂

∂vj
(BT W̃B+Qv

ξ ) =

 0p+1,p+1 0p+1,q×(K−1)

0q×(K−1),p+1 diag(0, . . . , exp(vj), . . . , 0)⊗ P

 .

Derivation of Term II with respect to vj simply equals the scalar (ν+K− 1)/2:
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For Term IV we use the chain rule and obtain:
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The partial derivative of Term V is obtained as follows:
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With regard to the derivative of Term VI we have:
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intermediate results for Terms I-VI, the gradient ∇v log p̃(v|D) has the following

entries:

∂ log p̃(v|D)

∂vj
= −1

2
Tr
(
M̃v
ξ P̃vj

)
︸ ︷︷ ︸

Term VII

+

(
ν +K − 1

2

)
− 1

κ

n∑
i=1

yib
T
i Υ̃j

v$̃︸ ︷︷ ︸
Term VIII

+
1

κ

n∑
i=1

s′
(
bTi M̃v

ξ$̃
)

bTi Υ̃j
v$̃︸ ︷︷ ︸

Term IX

+ $̃
T

Υ̃j
vQ

v
ξM̃v

ξ$̃︸ ︷︷ ︸
Term X

−1

2
$̃
T

Υ̃j
v$̃︸ ︷︷ ︸

Term XI

−
(
ν
2 + aδ

)
1 + 2bδ

ν exp(vj)︸ ︷︷ ︸
Term XII

, j = 1, . . . , q.

Hessian associated to the penalty in a GAM

First, we focus on the diagonal entries. The derivative of Term VII is:

∂

∂vj
Tr
(

(BT W̃B +Qv
ξ )−1P̃vj

)
= Tr

(
∂

∂vj
(BT W̃B +Qv

ξ )−1P̃vj

)
= Tr

(
−M̃v

ξ P̃vjM̃v
ξ P̃vj + M̃v

ξ P̃vj

)
= −Tr

((
M̃v
ξ P̃vj

)2
− M̃v

ξ P̃vj

)
.
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Let us derive the intermediate result:

∂Υ̃j
v

∂vj
=

∂

∂vj
M̃v
ξ P̃vjM̃v

ξ

=

(
∂M̃v

ξ

∂vj
P̃vjM̃v

ξ + M̃v
ξ

∂P̃vj
∂vj
M̃v
ξ + M̃v

ξ P̃vj
∂M̃v

ξ

∂vj

)
=

(
−M̃v

ξ P̃vjM̃v
ξ P̃vjM̃v

ξ + M̃v
ξ P̃vjM̃v

ξ − M̃v
ξ P̃vjM̃v

ξ P̃vjM̃v
ξ

)
=

(
−2
(
M̃v
ξ P̃vj

)2
M̃v
ξ + Υ̃j

v

)
. (15)

Partial differentiation of Term VIII yields:

∂

∂vj

(
1

κ

n∑
i=1

yib
T
i Υ̃j

v$̃

)
=

∂

∂vj
Tr

(
1

κ

n∑
i=1

yib
T
i Υ̃j

v$̃

)

=
∂

∂vj

(
1

κ

n∑
i=1

yiTr
(
bTi Υ̃j

v$̃
))

=
∂

∂vj

(
1

κ

n∑
i=1

yiTr
(
$̃bTi Υ̃j

v

))

=
1

κ

n∑
i=1

yi
∂

∂vj
Tr
(
$̃bTi Υ̃j

v

)
=

1

κ

n∑
i=1

yiTr

(
$̃bTi

(
∂Υ̃j

v

∂vj

))
,

and using intermediate result (15), one obtains for Term VIII:

∂

∂vj

(
1

κ

n∑
i=1

yib
T
i Υ̃j

v$̃

)
= − 1

κ

n∑
i=1

yiTr

(
$̃bTi

(
2
(
M̃v
ξ P̃vj

)2
M̃v
ξ − Υ̃j

v

))

= − 1

κ

n∑
i=1

yiTr

(
bTi

(
2
(
M̃v
ξ P̃vj

)2
M̃v
ξ − Υ̃j

v

)
$̃

)

= − 1

κ

n∑
i=1

yib
T
i

(
2
(
M̃v
ξ P̃vj

)2
M̃v
ξ − Υ̃j

v

)
$̃.
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For Term IX, we have:

∂

∂vj

(
1

κ

n∑
i=1

s′
(
bTi M̃v

ξ$̃
)

bTi Υ̃j
v$̃

)
=

1

κ

n∑
i=1

(
s′′(bTi M̃v

ξ$̃)

∂

∂vj
Tr
(
bTi M̃v

ξ$̃
)(

bTi Υ̃j
v$̃
)

+ s′(bTi M̃v
ξ$̃)

∂

∂vj
Tr
(
bTi Υ̃j

v$̃
))

.

Using (14) and intermediate result (15) we have for Term IX:

∂

∂vj

(
1

κ

n∑
i=1

s′
(
bTi M̃v

ξ$̃
)

bTi Υ̃j
v$̃

)
=

1

κ

n∑
i=1

(
s′′(bTi M̃v

ξ$̃)
(
−bTi Υ̃j

v$̃
)

(
bTi Υ̃j

v$̃
)

+ s′(bTi M̃v
ξ$̃)bTi

(
−2
(
M̃v
ξ P̃vj

)2
M̃v
ξ + Υ̃j

v

)
$̃

)

= − 1

κ

n∑
i=1

(
s′(bTi M̃v

ξ$̃)bTi

(
2
(
M̃v
ξ P̃vj

)2
M̃v
ξ − Υ̃j

v

)
$̃

+s′′(bTi M̃v
ξ$̃)

(
bTi Υ̃j

v$̃
)2)

.

The partial derivative of Term X is obtained as follows:

∂

∂vj

(
$̃
T

Υ̃j
vQ

v
ξM̃v

ξ$̃
)

=
∂

∂vj
Tr
(
$̃
T

Υ̃j
vQ

v
ξM̃v

ξ$̃
)

=
∂

∂vj
Tr
(
$̃$̃

T
Υ̃j

vQ
v
ξM̃v

ξ

)
= Tr

(
$̃$̃

T ∂

∂vj

(
Υ̃j

vQ
v
ξM̃v

ξ

))
= Tr

(
$̃$̃

T

(
∂Υ̃j

v

∂vj
Qv
ξM̃v

ξ + Υ̃j
v

∂Qv
ξ

∂vj
M̃v
ξ

+Υ̃j
vQ

v
ξ

∂M̃v
ξ

∂vj

))

= Tr

(
$̃$̃

T

((
− 2

(
M̃v
ξ P̃vj

)2
M̃v
ξ + Υ̃j

v

)
Qv
ξM̃v

ξ

+Υ̃j
vP̃vjM̃v

ξ − Υ̃j
vQ

v
ξ Υ̃j

v

))
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= Tr

(
$̃
T

(
− 2

(
M̃v
ξ P̃vj

)2
M̃v
ξQ

v
ξM̃v

ξ + Υ̃j
vQ

v
ξM̃v

ξ

+Υ̃j
vP̃vjM̃v

ξ − Υ̃j
vQ

v
ξ Υ̃j

v

)
$̃

)

= −2$̃
T
(
M̃v
ξ P̃vj

)2
M̃v
ξQ

v
ξM̃v

ξ$̃ + $̃
T

Υ̃j
v

(
Qv
ξ + P̃vj

)
M̃v
ξ$̃

−$̃T
Υ̃j

vQ
v
ξ Υ̃j

v$̃.

Partial differentiation of Term XI gives us:

∂

∂vj

(
$̃
T

Υ̃j
v$̃
)

=
∂

∂vj
Tr
(
$̃
T

Υ̃j
v$̃
)

=
∂

∂vj
Tr
(
$̃$̃

T
Υ̃j

v

)
= Tr

(
$̃$̃

T ∂Υ̃j
v

∂vj

)

= Tr

(
$̃$̃

T

(
−2
(
M̃v
ξ P̃vj

)2
M̃v
ξ + Υ̃j

v

))
= Tr

(
$̃
T

(
−2
(
M̃v
ξ P̃vj

)2
M̃v
ξ + Υ̃j

v

)
$̃

)
= −2$̃

T
(
M̃v
ξ P̃vj

)2
M̃v
ξ$̃ + $̃

T
Υ̃j

v$̃.

Finally derivation of Term XII gives us:

∂

∂vj

(
ν
2 + aδ

)(
1 + 2bδ

ν exp(vj)

) =
bδ
(
1 + 2aδ

ν

)
exp(−vj)(

1 + 2bδ
ν exp(vj)

)2 .

Using the differentiation results for Terms VII-XII, the diagonal elements of the

Hessian of log p̃(v|D) are:
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∂2 log p̃(v|D)

∂v2j
=

1

2
Tr

((
M̃v
ξ P̃vj

)2
− M̃v

ξ P̃vj

)
+

1

κ

n∑
i=1

yib
T
i

(
2
(
M̃v
ξ P̃vj

)2
M̃v
ξ − Υ̃j

v

)
$̃

− 1

κ

n∑
i=1

(
s′(bTi M̃v

ξ$̃)bTi

(
2
(
M̃v
ξ P̃vj

)2
M̃v
ξ − Υ̃j

v

)
$̃

+s′′(bTi M̃v
ξ$̃)

(
bTi Υ̃j

v$̃
)2)

−2$̃
T
(
M̃v
ξ P̃vj

)2
M̃v
ξQ

v
ξM̃v

ξ$̃

+$̃
T

Υ̃j
v

(
Qv
ξ + P̃vj

)
M̃v
ξ$̃ − $̃

T
Υ̃j

vQ
v
ξ Υ̃j

v$̃

+$̃
T
(
M̃v
ξ P̃vj

)2
M̃v
ξ$̃ −

1

2
$̃
T

Υ̃j
v$̃

−
bδ
(
1 + 2aδ

ν

)
exp(−vj)(

1 + 2bδ
ν exp(vj)

)2 , j = 1, . . . , q.

Regarding the off-diagonal components, note that for index s 6= j we have for

Term VII:

∂

∂vs
Tr
(
M̃v
ξ P̃vj

)
= Tr

(
∂M̃v

ξ

∂vs
P̃vj

)
= −Tr

(
M̃v
ξ P̃vsM̃v

ξ P̃vj

)
.

Let us define Υ̃s
v := M̃v

ξ P̃vsM̃v
ξ and consider the following intermediate result:

∂Υ̃j
v

∂vs
=

∂

∂vs
M̃v
ξ P̃vjM̃v

ξ

=

(
∂M̃v

ξ

∂vs
P̃vjM̃v

ξ + M̃v
ξ

∂P̃vj
∂vs
M̃v
ξ + M̃v

ξ P̃vj
∂M̃v

ξ

∂vs

)
=

(
−M̃v

ξ P̃vsM̃v
ξ P̃vjM̃v

ξ − M̃v
ξ P̃vjM̃v

ξ P̃vsM̃v
ξ

)
= −

(
Υ̃s

vP̃vjM̃v
ξ + M̃v

ξ P̃vj Υ̃
s
v

)
. (16)
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Result (16) can be used to obtain the differentiation of Term VIII:

∂

∂vs

(
1

κ

n∑
i=1

yib
T
i Υ̃j

v$̃

)
=

∂

∂vs
Tr

(
1

κ

n∑
i=1

yib
T
i Υ̃j

v$̃

)

=
∂

∂vs

(
1

κ

n∑
i=1

yiTr
(
bTi Υ̃j

v$̃
))

=
1

κ

n∑
i=1

yi
∂

∂vs
Tr
(
$̃bTi Υ̃j

v

)
=

1

κ

n∑
i=1

yiTr

(
$̃bTi

∂Υ̃j
v

∂vs

)

= − 1

κ

n∑
i=1

yiTr
(
$̃bTi

(
Υ̃s

vP̃vjM̃v
ξ + M̃v

ξ P̃vj Υ̃
s
v

))
= − 1

κ

n∑
i=1

yiTr
(
bTi

(
Υ̃s

vP̃vjM̃v
ξ + M̃v

ξ P̃vj Υ̃
s
v

)
$̃
)

= − 1

κ

n∑
i=1

yib
T
i

(
Υ̃s

vP̃vjM̃v
ξ + M̃v

ξ P̃vj Υ̃
s
v

)
$̃.

To derive Term IX, we also use result (16):

∂

∂vs

(
1

κ

n∑
i=1

s′
(
bTi M̃v

ξ$̃
)

bTi Υ̃j
v$̃

)
=

1

κ

n∑
i=1

(
s′′(bTi M̃v

ξ$̃)

∂

∂vs
Tr
(
bTi M̃v

ξ$̃
)(

bTi Υ̃j
v$̃
)

+s′(bTi M̃v
ξ$̃)

∂

∂vs
Tr
(
bTi Υ̃j

v$̃
))

=
1

κ

n∑
i=1

(
s′′(bTi M̃v

ξ$̃)
(
−bTi Υ̃s

v$̃
)(

bTi Υ̃j
v$̃
)

+s′(bTi M̃v
ξ$̃)

(
−bTi

(
Υ̃s

vP̃vjM̃v
ξ + M̃v

ξ P̃vj Υ̃
s
v

)
$̃
)

= − 1

κ

n∑
i=1

(
s′(bTi M̃v

ξ$̃)bTi

(
Υ̃s

vP̃vjM̃v
ξ + M̃v

ξ P̃vj Υ̃
s
v

)
$̃

+s′′(bTi M̃v
ξ$̃)

(
bTi Υ̃s

v$̃
)(

bTi Υ̃j
v$̃
))

.
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Partial differentiation of Term X goes as follows:

∂

∂vs

(
$̃
T

Υ̃j
vQ

v
ξM̃v

ξ$̃
)

=
∂

∂vs
Tr
(
$̃
T

Υ̃j
vQ

v
ξM̃v

ξ$̃
)

=
∂

∂vs
Tr
(
$̃$̃

T
Υ̃j

vQ
v
ξM̃v

ξ

)
= Tr

(
$̃$̃

T ∂

∂vs

(
Υ̃j

vQ
v
ξM̃v

ξ

))
= Tr

(
$̃$̃

T

(
∂Υ̃j

v

∂vs
Qv
ξM̃v

ξ + Υ̃j
v

∂Qv
ξ

∂vs
M̃v
ξ

+Υ̃j
vQ

v
ξ

∂M̃v
ξ

∂vs

))

= Tr

(
$̃$̃

T

(
−
(

Υ̃s
vP̃vjM̃v

ξ + M̃v
ξ P̃vj Υ̃

s
v

)
Qv
ξM̃v

ξ

+Υ̃j
vP̃vsM̃v

ξ − Υ̃j
vQ

v
ξM̃v

ξ P̃vsM̃v
ξ

))

= Tr

(
$̃
T

(
−
(

Υ̃s
vP̃vjM̃v

ξ + M̃v
ξ P̃vj Υ̃

s
v

)
Qv
ξM̃v

ξ

+Υ̃j
vP̃vsM̃v

ξ − Υ̃j
vQ

v
ξM̃v

ξ P̃vsM̃v
ξ

)
$̃

)
= −$̃T

Υ̃s
vP̃vjM̃v

ξQ
v
ξM̃v

ξ$̃

−$̃TM̃v
ξ P̃vj Υ̃

s
vQ

v
ξM̃v

ξ$̃

+$̃
T

Υ̃j
vP̃vsM̃v

ξ$̃ − $̃
T

Υ̃j
vQ

v
ξ Υ̃s

v$̃.

Partial differentiation of Term XI gives us:

∂

∂vs

(
$̃
T

Υ̃j
v$̃
)

=
∂

∂vs
Tr
(
$̃
T

Υ̃j
v$̃
)

=
∂

∂vs
Tr
(
$̃$̃

T
Υ̃j

v

)
= Tr

(
$̃$̃

T ∂Υ̃j
v

∂vs

)
= −Tr

(
$̃$̃

T
(

Υ̃s
vP̃vjM̃v

ξ + M̃v
ξ P̃vj Υ̃

s
v

))
= −Tr

(
$̃
T
(

Υ̃s
vP̃vjM̃v

ξ + M̃v
ξ P̃vj Υ̃

s
v

)
$̃
)
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= −$̃T
Υ̃s

vP̃vjM̃v
ξ$̃ −

(
$̃
TM̃v

ξ P̃vj Υ̃
s
v$̃
)T

= −$̃T
Υ̃s

vP̃vjM̃v
ξ$̃ − $̃

T
Υ̃s

vP̃vjM̃v
ξ$̃

= −2$̃
T

Υ̃s
vP̃vjM̃v

ξ$̃.

Finally, using the above results, the off-diagonal elements s = 1, . . . , q; j =

1, . . . , q and s 6= j of the Hessian of log p̃(v|D) are:

∂2 log p̃(v|D)

∂vs ∂vj
=

1

2
Tr
(
M̃v
ξ P̃vsM̃v

ξ P̃vj

)
+

1

κ

n∑
i=1

yib
T
i

(
Υ̃s

vP̃vjM̃v
ξ + M̃v

ξ P̃vj Υ̃
s
v

)
$̃

− 1

κ

n∑
i=1

(
s′(bTi M̃v

ξ$̃)bTi

(
Υ̃s

vP̃vjM̃v
ξ + M̃v

ξ P̃vj Υ̃
s
v

)
$̃

+s′′(bTi M̃v
ξ$̃)

(
bTi Υ̃s

v$̃
)(

bTi Υ̃j
v$̃
))

−$̃T
Υ̃s

vP̃vjM̃v
ξQ

v
ξM̃v

ξ$̃ − $̃
TM̃v

ξ P̃vj Υ̃
s
vQ

v
ξM̃v

ξ$̃

+$̃
T

Υ̃j
vP̃vsM̃v

ξ$̃ − $̃
T

Υ̃j
vQ

v
ξ Υ̃s

v$̃ + $̃
T

Υ̃s
vP̃vjM̃v

ξ$̃.

To summarize, the gradient and Hessian entries of log p̃(v|D) are:

Gradient ∇v log p̃(v|D) entries for j = 1, . . . , q:

∂ log p̃(v|D)

∂vj
= −1

2
Tr
(
M̃v
ξ P̃vj

)
+

(
ν +K − 1

2

)
− 1

κ

n∑
i=1

yib
T
i Υ̃j

v$̃

+
1

κ

n∑
i=1

s′
(
bTi M̃v

ξ$̃
)

bTi Υ̃j
v$̃ + $̃

T
Υ̃j

vQ
v
ξM̃v

ξ$̃

−1

2
$̃
T

Υ̃j
v$̃ −

(
ν
2 + aδ

)
1 + 2bδ

ν exp(vj)

.
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Hessian ∇2
v log p̃(v|D), diagonal elements j = 1, . . . , q:

∂2 log p̃(v|D)

∂v2j
=

1

2
Tr

((
M̃v
ξ P̃vj

)2
− M̃v

ξ P̃vj

)
+

1

κ

n∑
i=1

yib
T
i

(
2
(
M̃v
ξ P̃vj

)2
M̃v
ξ − Υ̃j

v

)
$̃

− 1

κ

n∑
i=1

(
s′(bTi M̃v

ξ$̃)bTi

(
2
(
M̃v
ξ P̃vj

)2
M̃v
ξ − Υ̃j

v

)
$̃

+s′′(bTi M̃v
ξ$̃)

(
bTi Υ̃j

v$̃
)2)

−2$̃
T
(
M̃v
ξ P̃vj

)2
M̃v
ξQ

v
ξM̃v

ξ$̃

+$̃
T

Υ̃j
v

(
Qv
ξ + P̃vj

)
M̃v
ξ$̃ − $̃

T
Υ̃j

vQ
v
ξ Υ̃j

v$̃

+$̃
T
(
M̃v
ξ P̃vj

)2
M̃v
ξ$̃ −

1

2
$̃
T

Υ̃j
v$̃

−
bδ
(
1 + 2aδ

ν

)
exp(−vj)(

1 + 2bδ
ν exp(vj)

)2 , j = 1, . . . , q.

Hessian ∇2
v log p̃(v|D), off-diagonal elements s = 1, . . . , q; j = 1, . . . , q,

j 6= s:

∂2 log p̃(v|D)

∂vs ∂vj
=

1

2
Tr
(
M̃v
ξ P̃vsM̃v

ξ P̃vj

)
+

1

κ

n∑
i=1

yib
T
i

(
Υ̃s

vP̃vjM̃v
ξ + M̃v

ξ P̃vj Υ̃
s
v

)
$̃

− 1

κ

n∑
i=1

(
s′(bTi M̃v

ξ$̃)bTi

(
Υ̃s

vP̃vjM̃v
ξ + M̃v

ξ P̃vj Υ̃
s
v

)
$̃

+s′′(bTi M̃v
ξ$̃)

(
bTi Υ̃s

v$̃
)(

bTi Υ̃j
v$̃
))
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Υ̃s
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ξQ

v
ξM̃v

ξ$̃ − $̃
TM̃v
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vQ
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ξM̃v

ξ$̃

+$̃
T

Υ̃j
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ξ$̃ − $̃
T

Υ̃j
vQ

v
ξ Υ̃s

v$̃ + $̃
T

Υ̃s
vP̃vjM̃v

ξ$̃.

To assess the accuracy of the above gradient and Hessian equations associated to

log p̃(v|D), we have implemented a procedure in R that compares the analytical

results with the numerical derivatives of log p̃(v|D) obtained with the grad()

and hessian() functions of the numDeriv package at 50 randomly selected
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points v ∈ R3 with vj ∼ Uniform(−4, 8), j = 1, 2, 3 and the response generated

from a Poisson distribution. Numerical and analytical derivative results turn

out to be very similar, a clear indication that the derived analytical results are

accurate.

Appendix B

In this appendix, we show the derivations related to the skew-normal fit to

the conditional p̃(vj |v̂−j ,D). The skew-normal distribution denoted by X ∼

SN(µ, ς2, ρ) has probability density function:

p(x) =
2

ς
ϕ

(
x− µ
ς

)
Φ

(
ρ

(x− µ)

ς

)
. (17)

The first moment and the second and third central moments of X are given by:

E(X) = µ+ ς

√
2

π
ψ,

E
(
(X − E(X))2

)
= ς2

(
1− 2

π
ψ2

)
,

E
(
(X − E(X))3

)
=

1

2
(4− π) ς3

(
2

π

) 3
2

ψ3,

where ψ = ρ/
√

1 + ρ2 ∈ (−1, 1). These theoretical moments will be matched

with the empirical moments of the the conditional distributions p̃(vj |v̂−j ,D),

where v̂−j is the vector v̂ without the jth entry. The empirical moments of the

conditionals are computed on an equidistant grid {vjl}Ll=1 with interval length

∆l and correspond to:

Mj1 =

L∑
l=1

vjl p̃(vjl|v̂−j ,D) ∆l,

Mj2 =

L∑
l=1

(vjl −Mj1)2 p̃(vjl|v̂−j ,D) ∆l,

Mj3 =

L∑
l=1

(vjl −Mj1)3 p̃(vjl|v̂−j ,D) ∆l.
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The skew-normal fit to p̃(vj |v̂−j ,D) is found by matching the empirical and

theoretical moments, i.e. the following system needs to be solved:

Mj1 = µ+ ς

√
2

π
ψ (18)

Mj2 = ς2
(

1− 2

π
ψ2

)
(19)

Mj3 =
1

2
(4− π) ς3

( 2

π

) 3
2

ψ3. (20)

From (19), we isolate ς:

ς =

√
Mj2(

1− 2
π ψ

2
) > 0. (21)

Plugging (21) in (20) yields:

Mj3 =
1

2
(4− π)

M
3
2
j2(

1− 2
π ψ

2
) 3

2

( 2

π

) 3
2

ψ3

⇔ ψ3(
1− 2

π ψ
2
) 3

2

=
2Mj3π

3
2

(4− π)M
3
2
j22

3
2

⇔ ψ3(
1− 2

π ψ
2
) 3

2

=
Mj3π

3
2

(4− π)
√

2 M
3
2
j2

⇔ ψ(
1− 2

π ψ
2
) 1

2

=
M

1
3
j3π

1
2

(4− π)
1
3 2

1
6 M

1
2
j2

.

Let κ :=M
1
3
j3π

1
2 /(4− π)

1
3 2

1
6 M

1
2
j2, so that the above equation becomes:

ψ = κ

(
1− 2

π
ψ2

) 1
2

⇔ ψ2 +
2κ2

π
ψ2 − κ2 = 0

⇔ ψ2

(
1 +

2κ2

π

)
− κ2 = 0.

The discriminant of the above quadratic equation is ∆ = 4
(

1 + 2κ2

π

)
κ2 > 0.

Even though there are two solutions, the only solution retained is the one whose

47



sign is the same as the sign of the third empirical central moment. Indeed, ifMj3

is negative/positive, ψ∗ (and by extension ρ∗) should also be negative/positive

to capture the negatively/positively skewed pattern of p̃(vj |v̂−j ,D). Hence using

the sign(·) function:

ψ∗ = sign(Mj3)

√
4
(
κ2 + 2κ4

π

)
2 + 4κ2

π

. (22)

So, we have ρ∗ = ψ∗/
√

1− (ψ∗)2 and plugging (22) in (21), we recover:

ς∗ =

√
Mj2(

1− 2
π (ψ∗)2

) . (23)

Finally, the location parameter is given by:

µ∗ =Mj1 − ς∗
√

2

π
ψ∗. (24)

The skew-normal fit to the conditional p̃(vj |v̂−j ,D) is denoted by SNj(µ
∗, ς∗2, ρ∗)

and can be used for the grid construction strategy.

Appendix C

90% 95% 99%

Data Method f1 f2 f3 f1 f2 f3 f1 f2 f3

Poisson LPS 87.6 87.0 89.1 93.0 92.6 94.4 98.0 98.1 98.9
LPSMAP 86.7 85.6 88.7 92.4 91.6 94.0 97.7 97.4 98.7
MGCV 89.8 89.6 90.3 94.4 94.4 95.1 98.8 98.7 99.1

Normal LPS 90.8 91.1 91.0 95.6 95.8 95.8 99.2 99.0 99.3
LPSMAP 90.6 90.7 90.9 95.4 95.4 95.6 99.2 99.0 99.3
MGCV 91.1 91.5 91.2 95.8 95.8 95.8 99.3 99.1 99.3

Binomial LPS 90.2 89.3 90.3 95.0 94.5 95.3 98.8 98.8 99.1
LPSMAP 89.9 88.8 90.1 94.7 94.1 95.1 98.7 98.6 99.1
MGCV 91.2 90.2 90.9 95.4 95.1 95.6 99.0 98.9 99.2

Effective frequentist coverages of 90%, 95% and 99% pointwise credible intervals averaged over
200 uniformly distributed values of the covariate x in [−1, 1] for Poisson, Normal and Binomial
data with S = 500 replications of sample size n = 300 for the Laplace-P-spline (LPS), the
LPS omitting the mixture (LPSMAP) and gam() (MGCV) methods.
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