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Abstract

We generalize the T pu spaces introduced by Calderón and Zygmund and show that most of
the results obtained in their study of the pointwise estimates for solutions of elliptic partial
differential equations and systems can be generalized in this framework with Lp-conditions.
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1. Introduction

The T pu spaces were introduced in essence by Calderón and Zygmund [8]: for a point x0

of the d-dimensional Euclidean space Rd, p ∈ [1,∞] and a number u ≥ −d/p, T pu (x0)

denotes the class of function f ∈ Lp(Rd) such that there exists a polynomial P of degree
strictly less than u with the property that

r−d/p‖f − P‖Lp(B(x0,r)) ≤ Cr
u (1.1)

for a constant C (which does not depend on r), where B(x0, r) denotes the open ball
centered at x0 with radius r and ‖f‖Lp(E) stands for the usual norm of the space Lp(E) of
the measurable functions on E for which the pth power of the absolute value is (Lebesgue)
integrable. If f ∈ T pu (x0) also satisfies

r−d/p‖f − P‖Lp(B(x0,r)) = o(ru) as r → 0+,

where P is a polynomial of degree less than or equal to u (where we have used the usual
Bachmann–Landau notations), then f is said to belong to tpu(x0). To emphasize the fact
that the integral mean value is involved in the definition of these spaces, let us point out
that f ∈ T pu (x0) with p < ∞ means that we have (

ffl
B(x0,r)

|f − P |p)1/p ≤ Cru. In their
seminal paper [8], the authors use these spaces to obtain pointwise estimates for solutions
of elliptic partial differential equations Ef = g. More precisely, the functions f ∈ T pu (x0)

form a linear space with norm ‖ · ‖Tpu (x0) defined by the sum of ‖ · ‖Lp , the absolute
values of the coefficients of P and the infimum of the constants C in (1.1). The main
theorem can be stated as follows: if all the coefficients of the differential operator E are
of class T∞u (x0), if all components fj and gk are of class Lp and gk ∈ T pv with p ∈ (1,∞),
−d/p ≤ v ≤ u, v 6∈ Z, then there exists a constant C for which, using Euler’s notation
for the derivatives (i.e. Djf designates the derivative of f following the jth component)

‖Dαfj‖T q
v+m−|α|(x0) ≤ C

(∑
k

‖gk‖Tpv (x0) +
∑
j

‖fj‖Wp
m

)
(1.2)

for all j, |α| ≤ m, where q is a number satisfying

• p ≤ q ≤ ∞ if 1/p < (m− |α|)/d,
• p ≤ q <∞ if 1/p = (m− |α|)/d,
• 1/p ≤ 1/q ≤ 1/p− (m− |α|)/d otherwise.

Moreover, if g belongs to tpv(x0), then Dαf belongs to tqv+m−|α|(x0). Another theorem
states that if E is elliptic almost everywhere on a set of positive measure whose points x0

satisfy µ(x0) > c for some constant c > 0, if the coefficients of E are in T∞u (x0) and
g ∈ T pv (x0) for almost every x0 and if f ∈ Lpm, then Dαf belongs to tqv+m−|α|(x0) for

[5]
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almost every x0. Let us remark that there is a common misunderstanding when stating
the hypothesis of this main theorem: the coefficients of E have to belong to T∞u (x0) (see
[8, p. 72], where Tu is defined as T∞u ); the case where these coefficients belong to T pu (x0)

with p <∞ is not considered in [8].
This seminal paper illustrates the fact that classical regularity spaces have played

a significant role in numerous parts of mathematics over the years. Still, it has become
clear that there are appreciable advantages to be gained by adding to such spaces features
that allow to more finely tune their regularity properties. Roughly speaking, the general
idea consists in adding spaces in-between existing spaces; such generalizations have been
investigated in connection with applications in embeddings, entropy numbers, probability
theory, signal analysis, spectral theory and theory of stochastic processes for instance (see
e.g. [17, 12, 10, 5, 11, 22, 30, 28] and references therein). Let us mention that there are
other ways to obtain more general spaces (one can for example use weighted spaces [2]).

As a notable case, the versatility of the generalized Besov spaces (see e.g. [25, 9])
is particularly clear. They can be obtained from the usual Sobolev spaces using some
kind of real interpolation and most of the properties of the usual spaces are preserved in
the generalized version (see e.g. [24]). Lately, such a generalization has been used for the
detection of the law of the iterated logarithm in signals using multifractal formalisms (see
[28, 18, 21]). However, none of these approaches fully takes advantage of the versatility
of the generalized Besov spaces: a pointwise counterpart of such spaces is missing.

The idea is to generalize the pointwise Hölder spaces in order to be able to consider
non-locally-bounded functions (as in [31, 16]) and deal with logarithmic corrections (as
in [28, 21]). In this work, we introduce such spaces, following Calderón and Zygmund in
their study of local behaviors of solutions of elliptic PDE’s [8]. The general idea consists
in replacing the power function r 7→ ru appearing in (1.1) with r 7→ φ(r) (r > 0), where
φ is a function satisfying some basic properties, to obtain the generalized spaces T pφ and tpφ
respectively; typically, such a function φ could be r 7→ ru| ln r| for the detection of the
logarithmic corrections (such an idea is exploited in [10, 30] in the case of the Bessel
potential spaces) or more generally r 7→ ruψ(r), where ψ is any weakly varying function,
i.e. a strictly positive function satisfying

lim
t→0

ψ(rt)

ψ(t)
= 1

for any r > 0 (see [19] for example). Such a choice is natural and observed in many
financial models that are derived from the Brownian motion (e.g. the geometric Brownian
motion used in the Black and Scholes model [15], the Hull and White one-factor model [4],
etc.).

Before investigating these spaces from a fractal point of view [23], we must first
explore their properties as regularity spaces and show that they are still related to some
notion of smoothness. To do so, we follow the ideas of Calderón and Zygmund and show
that most of the properties established in [8] still hold for the generalized versions T pφ
and tpφ; we thus introduce here some generalizations of the results obtained in [8]. In
particular, we obtain the main theorem of [8] (see inequality (1.2) and Theorem 3.4.6)
to the case where the coefficients of E are of class T pu (x0) (and even T pφ (x0)). As already



Generalized T pu spaces 7

mentioned, one of the most remarkable aspects of the spaces of generalized smoothness
is that most of the properties of the usual spaces are preserved in the generalized version
(see e.g. [19, 20, 18, 21, 24], where it is shown that the usual characterizations still hold
in the general settings); this crucial feature of such generalizations is also observed here.
The spaces defined here are thus a natural extension of the usual spaces; moreover they
enlighten the role of the power function in the classical theory.

Although the machinery applied is standard, some subtle arguments must be occa-
sionally introduced to obtain the natural results presented here, since the convergence of
an expression depending on φ(r) is often less obvious than the same statement involving
a power function. Let us also remark that we use here conditions based on Lp-norms
instead of L∞-norms (as already stated for the main theorem of [8]); this is indeed the
main source of difficulty, the use of the generalized space being quite natural.

This paper is organized as follows. First we introduce the generalized spaces T pφ and tpφ,
using Boyd functions and, in the subsequent sections, give some basic properties of such
spaces (completeness, density, embeddings, etc.). Next, we give a generalization of Whit-
ney’s extension theorem, before studying the Bessel operator. We also investigate the
estimations that can be made if the derivatives belong to the spaces T pφ or tpφ. We end
this work by studying the action of the convolution integral operator on T pφ and show
how these spaces can be utilized to examine the regularity of the solutions of an elliptic
partial differential equation.

The notations used here are rather standard; D(Rd) will stand for the class of infinitely
differentiable functions with compact support on Rd.

2. Spaces of generalized smoothness

2.1. The spaces T pφ and tpφ. The generalization of T pu spaces that we shall introduce
relies on the notion of Boyd function.

Definition 2.1.1. A function φ : (0,+∞)→ (0,+∞) is a Boyd function if φ(1) = 1, φ is
continuous and, for all x ∈ (0,+∞),

φ(x) := sup
y>0

φ(xy)

φ(y)
<∞. (2.1)

We denote by B the set of Boyd functions.

If φ ∈ B, then

• φ is submultiplicative; this follows from the fact that
φ(xyz)

φ(z)
=
φ(xz)

φ(z)

φ(xzy)

φ(xz)
≤ φ(x)φ(y) for any x, y, z > 0,

• φ is Lebesgue-measurable, since φ is continuous,
• φ(x) ≥ φ(x) and φ(1/x) ≥ 1/φ(x) for any x > 0.

The fact that φ is submultiplicative allows us to introduce the following notion (see
e.g. [9]):
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Definition 2.1.2. The lower and upper Boyd indices of the function φ ∈ B are respec-
tively defined by

b(φ) := sup
x∈(0,1)

log φ(x)

log x
= lim
x→0

log φ(x)

log x
,

b(φ) := inf
x∈(1,+∞)

log φ(x)

log x
= lim
x→+∞

log φ(x)

log x
.

The change of supremum and infimum into limits in the previous equalities comes
from a classical result (see e.g. [14, Theorem 7.6.2]). Let us point out that we have
−∞ < b(φ) ≤ b(φ) < +∞, since if b is defined as

b(x) :=
log φ(x)

log x
,

then b(x) ≥ b(1/x) for x > 1.

Proposition 2.1.3. Let φ ∈ B, ε > 0 and R > 0; there exist C1, C2, C3, C4 > 0 such that

C1r
b(φ)+ε ≤ φ(r) ≤ C2r

b(φ)−ε for all r ∈ (0, R], (2.2)

C3r
b(φ)−ε ≤ φ(r) ≤ C4r

b(φ)+ε for all r ∈ [R,+∞). (2.3)

Proof. Let us prove (2.2). There exists R0 ∈ (0, 1) such that, for all r ∈ (0, R0),

b(φ)− log φ(r)

log r
≤ ε,

which implies that, for such r,
φ(r) ≤ rb(φ)−ε. (2.4)

Similarly, there exists R1 > 1 such that, for all r ∈ (R1,∞),

φ(r) ≤ rb(φ)+ε. (2.5)

Now, using (2.1), we have
φ(1/r)−1 ≤ φ(r) ≤ φ(r) (2.6)

for all r > 0 and from (2.4)–(2.6), we get

rb(φ)+ε ≤ φ(r) ≤ rb(φ)−ε

for 0 < r ≤ min{R0, 1/R1}. If R ≤ min{R0, 1/R1}, one can take C1 = C2 = 1; otherwise
we can use the continuity of the functions

r 7→ φ(r)

rb(φ)+ε
and r 7→ φ(r)

rb(φ)−ε

on the compact set [min{R0, 1/R1}, R] to find two constants C1, C2 > 0 such that (2.2)
holds. Inequality (2.3) can be obtained by an analogous reasoning.

Remark 2.1.4. Inequality (2.4) can be extended in the following way: for all ε > 0 and
R > 0, there exists C > 0 such that, for all r ∈ (0, R],

φ(r) ≤ Crb(φ)−ε.
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If R > R0, we can use the submultiplicativity of φ to see that, for all r ∈ (0, R],

φ(r) ≤ φ
(
R

R0

)
φ

(
R0

R
r

)
≤ φ

(
R

R0

)(
R0

R

)b(φ)−ε

rb(φ)−ε.

Similarly, we can extend inequality (2.5) using the same approach: for all ε > 0 and
R > 0, there exists C > 0 such that, for all r ∈ [R,∞),

φ(r) ≤ Crb(φ)+ε.

As a corollary to this remark, we have the following result (see e.g. [9], [25]), showing
that the Boyd indices give an integrability criterion for Boyd functions.

Proposition 2.1.5. Let φ ∈ B. If b(φ) < 0, then
´ +∞

1
φ(x)/x dx < ∞, and if b(φ) > 0,

then
´ 1

0
φ(x)/x dx <∞.

We can now introduce the spaces T pφ and tpφ.

Definition 2.1.6. Let x0 ∈ Rd, p ∈ [1,∞] and φ ∈ B be such that b(φ) > −d/p.
A function f ∈ Lp(Rd) belongs to the space T pφ (x0) if there exists a polynomial P of
degree strictly less than b(φ) and a constant C > 0 such that

r−d/p‖f − P‖Lp(B(x0,r)) ≤ Cφ(r) ∀r > 0. (2.7)

Moreover, if we also have

r−d/p‖f − P‖Lp(B(x0,r)) ∈ o(φ(r)) as r → 0+, (2.8)

we say that f belongs to tpφ(x0).

Remark 2.1.7. In the previous definition, the condition b(φ) > −d/p is there to ensure
that the spaces T pφ are not degenerate: if r−d/p < Cφ(r) is satisfied in a neighborhood
of the origin, then any function belongs to T pφ (x0); this inequality is never satisfied if
−d/p < b(φ). This condition could be relaxed in Definition 2.1.6, but the interest of such
an extended definition is not obvious.

Remark 2.1.8. Let us highlight the fact that tpφ(x0) is a “true subspace” of T pφ (x0);
indeed, under the assumptions of the previous definition, if f ∈ Lp(Rd) is such that there
exists a polynomial P of degree strictly less than b(φ) for which

φ(r)−1r−d/p‖f − P‖Lp(B(x0,r)) → 0 as r → 0+,

then there exists R > 0 such that

r−d/p‖f − P‖Lp(B(x0,r)) ≤ φ(r)

for all r ≤ R. Moreover, for r ≥ R, we have

r−d/p‖f − P‖Lp(B(x0,r)) ≤ r
−d/p‖f‖Lp(Rd) + CR(1 + rn)

and an application of Proposition 2.1.3 shows that the right-hand side can be bounded
from above by φ(r), which means that f ∈ T pφ (x0).

Let us study the basic properties of the spaces T pφ .

Proposition 2.1.9. If f ∈ T pφ (x0), then the polynomial P in (2.7) is unique.
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Proof. Of course, if b(φ) ≤ 0, the polynomial appearing in (2.7) must be 0. Now, if
b(φ) > 0, let us suppose that there exist two polynomials P and P ′ of degree strictly less
than b(φ) and C,C ′ > 0 such that, for all r > 0,

r−d/p‖f − P‖Lp(B(x0,r)) ≤ Cφ(r),

r−d/p‖f − P ′‖Lp(B(x0,r)) ≤ C
′φ(r).

Now, if we define Q := P −P ′, then Q is a polynomial of degree n < b(φ). So, if ε > 0

is such that n < b(φ)− ε, then by Proposition 2.1.3 there exists C ′′ > 0 such that

r−d/p‖Q‖Lp(B(x0,r)) ≤ C
′′rb(φ)−ε.

But, if Q is a non-zero polynomial, then the left-hand side must decrease at most like rn,
which contradicts this last inequality.

Remark 2.1.10. If φ ∈ B and if f ∈ T pφ (x0) for some p ∈ [1,∞], then, in particular,
f ∈ L1

loc(Rd). Suppose that b(φ) > 0 (otherwise, the polynomial P in (2.7) is identically
zero) and recall (see [3]) that almost every x ∈ Rd is then a Lebesgue point of f , which
means that

lim
r→0+

r−d‖f − f(x)‖L1(B(x,r)) = 0.

If x0 is a Lebesgue point of f and if P is of degree strictly less than b(φ) such that

r−d/p‖f − P‖Lp(B(x0,r)) ≤ Cφ(r) ∀r > 0,

then we also have

r−d‖f − P‖L1(B(x0,r)) ≤ Cdr
−d/p‖f − P‖Lp(B(x0,r)) ≤ C

′φ(r)

for all r > 0. From the previous relations, we have

|f(x0)− P (x0)| ≤ Cdr−d‖f(x0)− P (x0)‖L1(B(x0,r))

≤ r−d‖f(x0)− f‖L1(B(x0,r)) + r−d‖f − P‖L1(B(x0,r))

+ r−d‖P − P (x0)‖L1(B(x0,r))

≤ r−d‖f(x0)− f‖L1(B(x0,r)) + C ′φ(r) + Cd
∑

1≤|α|<b(φ)

∣∣∣∣DαP (x0)

α!

∣∣∣∣ r|α|.
But, as b(φ) > 0, Proposition 2.1.3 implies that φ(r) converges to 0 as r tends to 0+. As
a consequence, since x0 is supposed to be a Lebesgue point of f , the last upper bound in
the previous inequality tends to 0 as r tends to 0+, which implies f(x0) = P (x0).

Let f ∈ T pφ (x0) and let

P :=
∑

|α|<b(φ)

DαP (x0)

α!
(x− x0)α

be the polynomial which appears in (2.7). Let us set

|f |Tpφ (x0) := sup
r>0

φ(r)−1r−d/p‖f − P‖Lp(B(x0,r))

and
‖f‖Tpφ (x0) := ‖f‖Lp(Rd) +

∑
|α|<b(φ)

|DαP (x0)|
α!

+ |f |Tpφ (x0).
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Proposition 2.1.11. Let x0 ∈ Rd, p ∈ [1,∞] and φ ∈ B be such that b(φ) > −d/p. Then
(T pφ (x0), ‖ · ‖Tpφ (x0)) is a Banach space.

Proof. It is straightforward to show that ‖ · ‖Tpφ (x0) is a norm on T pφ (x0).
Let us now consider a Cauchy sequence (fj)j∈N0

in (T pφ (x0), ‖·‖Tpφ (x0)). For j ∈ N0, let
us denote by Pj the polynomial of degree strictly less than b(φ) such that, for all r > 0,

r−d/p‖fj − Pj‖Lp(B(x0,r)) ≤ |fj |Tpφ (x0)φ(r).

Let f ∈ Lp(Rd) and cα ∈ C (|α| < b(φ)) satisfy fj → f in Lp(Rd) and DαPj(x0)/α!→ cα
in C for all |α| < b(φ). Let us then define

P :=
∑

|α|<b(φ)

cα(x− x0)α.

For all q ∈ N0, we have

φ(r)−1r−d/p‖(f − fq)− (P − Pq)‖Lp(B(x0,r))

= φ(r)−1r−d/p lim
s→∞

‖(fs − fq)− (Ps − Pq)‖Lp(B(x0,r))

≤ lim sup
s→∞

‖fq − fs‖Tpφ (x0) <∞.

Taking the supremum over r > 0 gives us

|f − fq|Tpφ (x0) ≤ lim sup
s→∞

‖fq − fs‖Tpφ (x0) <∞

and passing to the limit for q → +∞ allows us to get

lim
q→+∞

|f − fq|Tpφ (x0) = 0,

which is enough to conclude the proof, as the finiteness of |f |Tpφ (x0) follows from the
triangle inequality.

Proposition 2.1.12. Let x0 ∈ Rd, p ∈ [1,∞] and φ ∈ B be such that b(φ) > −d/p. Then
tpφ(x0) is a closed subspace of T pφ (x0).

Proof. Let (fj)j∈N0
be a sequence of functions in tpφ(x0) for which there exists f ∈ T pφ (x0)

such that fj → f in T pφ (x0) and let us show that f ∈ tpφ(x0). Let P and Pj (j ∈ N0) be
polynomials of degree strictly less than b(φ) such that

r−d/p‖fj − Pj‖Lp(B(x0,r)) ≤ |fj |Tpφ (x0)φ(r) ∀j ∈ N0

and
r−d/p‖f − P‖Lp(B(x0,r)) ≤ |f |Tpφ (x0)φ(r).

If we set R := f − P and Rj := fj − Pj , we know that

sup
r>0

φ(r)−1r−d/p‖Rj −R‖Lp(B(x0,r)) ≤ ‖fj − f‖Tpφ (x0) → 0 as j →∞

and
φ(r)−1r−d/p‖Rj‖Lp(B(x0,r)) → 0 as r → 0+.

Given ε > 0, let J ∈ N0 be such that j ≥ J implies

sup
r>0

φ(r)−1r−d/p‖Rj −R‖Lp(B(x0,r)) < ε/2.
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There also exists ρJ such that, for all r ∈ (0, ρJ ],

φ(r)−1r−d/p‖RJ‖Lp(B(x0,r)) < ε/2.

As a consequence, for such r,

φ(r)−1r−d/p‖R‖Lp(B(x0,r)) < ε,

which proves that f ∈ tpφ(x0).

There is an obvious link between the classical spaces Ck of the k-times continuously
differentiable functions and the spaces tpφ(x0), given by the following remark.

Remark 2.1.13. Let x0 ∈ Rd, p ∈ [1,∞] and φ ∈ B be such that b(φ) > −d/p. First,
if b(φ) < 0 and f ∈ C0(V ), where V is an open neighborhood of x0, then f ∈ tpφ(x0).
Indeed, if R > 0 is such that B(x0, R) ⊆ V then there exists C > 0 such that |f | ≤ C on
B(x0, R) and, for r ∈ (0, R], we have

r−d/p‖f‖Lp(B(x0,r)) ≤ C.

It follows from Proposition 2.1.3 that

r−d/p‖f‖Lp(B(x0,r)) ∈ o(φ(r)) as r → 0+.

Also, if there exists n ∈ N0 such that n < b(φ) ≤ b(φ) < n + 1 and f ∈ Cn+1(V ), then
again f ∈ tpφ(x0). Let P be the Taylor expansion of order n of f at x0. There exists C > 0

such that |f − P | ≤ C(· − x0)n+1 on B(x0, R). Therefore

r−d/p‖f − P‖Lp(B(x0,r)) ≤ Cr
n+1 for r ∈ (0, R],

and the conclusion follows again from Proposition 2.1.3.

2.2. A density result. Let ϕ be a non-negative, real-valued function in D(Rd) such
that ˆ

Rd
ϕ(x) dx = 1 and supp(ϕ) ⊂ B(0, 1).

Let f be a function which belongs to Lp(Rd) for some p ∈ [1,∞) and, for λ > 0,
define fλ by

fλ := λdϕ(λ·) ∗ f. (2.9)

It is well-known that fλ ∈ Lp(Rd) ∩ C∞(Rd) and ‖fλ − f‖Lp(Rd) → 0 as λ→∞. Let us
show that if f ∈ tpφ(x0), then under some basic assumptions on φ, the convergence also
holds in T pφ (x0).

Proposition 2.2.1. Let x0 ∈ Rd, p ∈ [1,∞) and φ ∈ B be such that b(φ) > −d/p and
either b(φ) ≤ 0 or there exists n ∈ N0 such that n < b(φ) ≤ b(φ) < n+ 1. If a function f
belongs to tpφ(x0), then ‖fλ − f‖Tpφ (x0) → 0 as λ→∞.

Proof. Without loss of generality, we can suppose that x0 = 0. Let us first consider the
case where there exists n ∈ N0 such that n < b(φ) ≤ b(φ) < n + 1. Given λ > 0, define
Rλ := fλ − Pλ where Pλ is the Taylor expansion of order n of fλ at 0. Let R := f − P ,
where P is a polynomial of degree n, be such that

φ(r)−1r−d/p‖R‖Lp(B(0,r)) → 0 as r → 0+.
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For r > 0, we have

r−d‖R‖L1(B(0,r)) ≤ Cdr−d/p‖R‖Lp(B(0,r)) ≤ ε(r)φ(r),

where ε(r) → 0 as r → 0+. We can make the assumption that ε(r) is decreasing to 0

as r → 0+.
Let us remark that, for |α| ≤ n, DαPλ(0)→ DαP (0) as λ→∞. Indeed, for λ > 0,

DαPλ(0) = Dαfλ(0)

=

ˆ
Rd
λdϕ(−λy)DαP (y) dy +

ˆ
Rd

(−1)|α|λd+|α|Dαϕ(−λy)R(y) dy.

The first term of the right-hand side tends to DαP (0) as λ tends to infinity and for the
second term, we have∣∣∣∣ˆ

Rd
(−1)|α|λd+|α|Dαϕ(−λy)R(y) dy

∣∣∣∣ ≤ Cϕλd+|α|
ˆ
B(0,1/λ)

|R(y)| dy ≤ ε
(

1

λ

)
λ|α|φ

(
1

λ

)
,

which proves, since |α|<b(φ), that
´
Rd(−1)|α|λd+|α|Dαϕ(−λy)R(y) dy tends to 0 as λ→∞.

Given r > 0 and λ > 0, let us now estimate the quantity ‖Rλ‖Lp(B(x0,r)). For all
x ∈ Rd, we have

Rλ(x) = fλ(x)− Pλ(x)

=

ˆ
Rd

(
λdϕ(λ(x− y))−

∑
|α|≤n

λd+|α|D
αϕ(−λy)

α!
xα
)

(P (y) +R(y)) dy

and since ˆ
Rd

(
λdϕ(λ(x− y))P (y)−

∑
|α|≤n

λd+|α|D
αϕ(−λy)

α!
P (y)xα

)
dy

is equal to λdϕ(λ·) ∗P (which is a polynomial of degree n) minus its Taylor expansion of
order n at 0, this last integral is equal to 0. Therefore,

Rλ(x) =

ˆ
Rd

(
λdϕ(λ(x− y))−

∑
|α|≤n

λd+|α|D
αϕ(−λy)

α!
xα
)
R(y) dy.

It follows, by Young’s inequality, that

‖Rλ‖Lp(B(0,r)) ≤ Cϕ‖R‖Lp(B(0,2r)) +
∑
α≤n

λd+|α|‖RDαϕ(−λ·)‖L1(B(0,1/λ))‖ ·α ‖Lp(B(0,r))

≤ C ′ϕ
(
rd/pε(2r)φ(r) +

∑
α≤n

ε

(
1

λ

)
λ|α|φ

(
1

λ

)
rd/p+|α|

)
for all r ≥ 1/λ. But, as φ(1/λ) ≤ φ(r)φ

(
1
rλ

)
and 1

rλ ≤ 1, we have, thanks to Remark 2.1.4,

φ

(
1

rλ

)
(rλ)|α| ≤ Cδ(rλ)−(b(φ)−δ−|α|) ≤ Cδ,

where δ > 0 has been chosen such that b(φ) − δ − n ≥ 0. Consequently, given r, λ > 0

such that r ≥ 1/λ, we have

‖Rλ‖Lp(B(0,r)) ≤ Crd/pε(2r)φ(r). (2.10)
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On the other hand, if r < 1/λ, Taylor’s formula provides∣∣∣∣λdϕ(λ(x− y))−
∑
|α|≤n

λd+|α|D
αϕ(−λy)

α!
xα
∣∣∣∣ ≤ Cϕ(λ|x|)n+1λd,

which implies

|Rλ(x)| ≤ Cϕ(λ|x|)n+1λd
ˆ
B(0,2/λ)

|R(y)| dy ≤ Cϕ,d(λ|x|)n+1ε

(
2

λ

)
φ

(
2

λ

)
for all x ∈ B(0, r). Therefore,

‖Rλ‖Lp(B(0,r)) ≤ Crd/p(λr)n+1ε

(
2

λ

)
φ

(
1

λ

)
.

Now, using the second part of Remark 2.1.4, we can write

(λr)n+1φ

(
1

λ

)
≤ φ(r)(λr)n+1φ

(
1

rλ

)
≤ Cδ′φ(r)(rλ)n+1−b(φ)−δ′ ≤ Cδ′φ(r),

where δ′ > 0 has been chosen such that n + 1 − b(φ) − δ′ ≥ 0. As a consequence, given
R, λ > 0 such that r < 1/λ, we have

‖Rλ‖Lp(B(0,r)) ≤ Crd/pε
(

2

λ

)
φ(r). (2.11)

From (2.10) and (2.11), we have

φ(r)−1r−d/p‖Rλ‖Lp(B(0,r)) ≤ C
(
ε(2r) + ε

(
2

λ

))
for all r, λ > 0, which naturally implies

φ(r)−1r−d/p‖R−Rλ‖Lp(B(0,r)) ≤ C
(
ε(2r) + ε

(
2

λ

))
. (2.12)

Let us now remark that if we fix ρ > 0 and choose η > 0 such that

b(φ)− η > n,

then, from Proposition 2.1.3, we have

φ(r)−1r−d/p‖R−Rλ‖Lp(B(0,r))

≤ φ(r)−1r−d/p‖f − fλ‖Lp(B(0,r)) + Cd
∑
|α|≤n

|DαP (x0)−DαPλ(x0)|
α!

φ(r)−1r|α|

≤ Cρr−b(φ)+η−d/p‖f − fλ‖Lp(Rd) + Cd,ρ
∑
|α|≤n

|DαP (x0)−DαPλ(x0)|
α!

r−b(φ)+η+|α|

≤ Cρρ−b(φ)+η−d/p‖f − fλ‖Lp(Rd) + Cd,ρ
∑
|α|≤n

|DαP (x0)−DαPλ(x0)|
α!

ρ−b(φ)+η+|α|

for all r > ρ. As we know that ‖f − fλ‖Lp(Rd) → 0 and DαPλ(0) → DαP (0) as λ → ∞
for all |α| ≤ n, we get

sup
r≥ρ

φ(r)−1r−d/p‖R−Rλ‖Lp(B(0,r)) → 0 as λ→∞. (2.13)
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Combining (2.12) and (2.13) leads to

sup
r>0

φ(r)−1r−d/p‖R−Rλ‖Lp(B(0,r)) → 0 as λ→∞, (2.14)

since otherwise there exists ξ > 0 such that for all Λ > 0 there exists λ > Λ for which

sup
r>0

φ(r)−1r−d/p‖R−Rλ‖Lp(B(0,r)) ≥ ξ,

which makes us able to build a sequence (λj)j∈N0 that converges to ∞ and satisfies

sup
r>0

φ(r)−1r−d/p‖R−Rλj‖Lp(B(0,r)) ≥ ξ for all j.

In particular, given j ∈ N0, there exists rj > 0 such that

φ(rj)
−1r
−d/p
j ‖R−Rλj‖Lp(B(0,rj)) ≥ ξ/2. (2.15)

As λj →∞, there exists J1 ∈ N0 such that for all j ≥ J1, ε(2/λj) < ξ/(4C), where C > 0

is the constant appearing in (2.12). Moreover, there also exists ρ > 0 such that, for any
r ∈ (0, ρ], ε(2r) < ξ/(4C). From (2.13), we know that there exists J2 ∈ N0 such that, for
all j ≥ J2,

sup
r>ρ

φ(r)−1r−d/p‖R−Rλj‖Lp(B(0,r)) < ξ/2. (2.16)

Therefore, if j ≥ max{J1, J2}, (2.16) implies rj ≤ ρ and, by (2.12) and (2.15), we finally
get a contradiction.

If we now assume that b(φ) ≤ 0, then R = f and Rλ = fλ. Therefore, by Young’s
inequality, we have

‖Rλ‖Lp(B(0,r)) ≤ Cϕ‖R‖Lp(B(0,2r)) ≤ Cε(2r)φ(r).

If r ≤ 1/λ, let us recall that ε(2r) ≤ ε(2/λ). As a consequence, (2.10)–(2.12) still hold
and we can conclude the proof in the same way, using the fact that

φ(r)−1r−d/p‖R−Rλ‖Lp(B(0,r)) = φ(r)−1r−d/p‖f − fλ‖Lp(B(0,r))

and b(φ) > −d/p.

The last proposition has the following useful corollary.

Corollary 2.2.2. Under the assumptions of Proposition 2.2.1, the space D(Rd) is a
dense subspace of tpφ(x0).

Proof. Let us consider f ∈ tpφ(x0) and the sequence (fj)j∈N0
of functions defined by

fj := fχ
B(0,2j)

(j ∈ N0).

By Lebesgue’s theorem, it is clear that fj → f in Lp(Rd); we will show that fj ∈ tpφ(x0)

(j ∈ N0) and that the convergence also holds in T pφ (x0).
Let P be the polynomial of degree strictly less than b(φ) such that

φ(r)−1r−d/p‖f − P‖Lp(B(x0,r)) → 0 as r → 0+.

First, as fj = f on B(x0, 1), we have

φ(r)−1r−d/p‖fj − P‖Lp(B(x0,r)) → 0 as r → 0+
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for any j ∈ N0. Therefore, given j ∈ N0, fj ∈ tpφ(x0) and

‖f − fj‖Tpφ (x0) = ‖f − fj‖Lp(Rd) + sup
r>0

φ(r)−1r−d/p‖fj − f‖Lp(B(x0,r)).

On the one hand, if r ∈ (0, 2j ] then

φ(r)−1r−d/p‖fj − f‖Lp(B(x0,r)) = 0

and, on the other hand, if r > 2j , by Proposition 2.1.3,

φ(r)−1r−d/p‖fj − f‖Lp(B(x0,r)) ≤ Cr
−(b(φ)−ε+d/p)‖fj − f‖Lp(Rd)

≤ C2−j(b(φ)−ε+d/p)‖fj − f‖Lp(Rd),

where ε > 0 satisfies b(φ) − ε + d/p ≥ 0 and C > 0 satisfies r(b(φ)−ε) ≤ Cφ(r) for all
r ≥ 1. Therefore,

‖f − fj‖Tpφ (x0) ≤ ‖f − fj‖Lp(Rd) + C2−j(b(φ)−ε+d/p)‖fj − f‖Lp(Rd) → 0 as j →∞,

which provides the convergence in T pφ (x0).
The conclusion then follows from Proposition 2.2.1.

2.3. Some embeddings

Notation 2.3.1. Given φ, ψ ∈ B, we will write φ 4 ψ to mean that there exists R,C > 0

such that, for all r ∈ (0, R), we have φ(r) ≤ Cψ(r).

Of course, by continuity, one has φ 4 ψ if and only if, for all R > 0, there exists C > 0

such that φ(r) ≤ Cψ(r) for all r ∈ (0, R).

Proposition 2.3.2. Let φ, ψ ∈ B. If b(ψ) < b(φ) then φ 4 ψ. Conversely, if φ 4 ψ, then
b(ψ) ≤ b(φ).

Proof. Let us first assume that b(ψ) < b(φ) and let ε > 0 be such that

b(ψ) + ε < b(φ)− ε.

By Proposition 2.1.3, given R > 0, there exists C > 0 such that, for all r ∈ (0, R),

φ(r) ≤ Crb(φ)−ε ≤ C ′rb(ψ)+ε ≤ C ′′ψ(r),

which means φ 4 ψ.
If we now assume φ 4 ψ then, in particular, there exists C > 0 such that, for all

r ∈ (0, 1),
φ(1/r)−1 ≤ Cψ(r).

Therefore, for such r, we have

log(φ(1/r))

log(1/r)
≥ log(C)

log(r)
+

log(ψ(r)

log(r)

and letting r → 0+ gives b(φ) ≥ b(ψ).

Proposition 2.3.3. Let x0 ∈ Rd, p ∈ [1,∞] and φ, ψ ∈ B be such that either b(ψ) < 0 or
there exists n ∈ N0 for which n < b(ψ) ≤ b(ψ) < n+ 1. If φ 4 ψ, then T pφ (x0) ↪→ T pψ(x0).
Moreover, if φ(r) ∈ o(ψ(r)) as r → 0+, then T pφ (x0) ↪→ tpψ(x0).
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Proof. Let f ∈ T pφ (x0); there exists a polynomial P of degree strictly less than b(φ) such
that

r−d/p‖f − P‖Lp(B(x0,r)) ≤ |f |Tpφ (x0)φ(r) ∀r > 0.

Let Q = 0, k = l = 0 if b(ψ) < 0 and

Q =
∑
|α|≤n

DαP (x0)

α!
(· − x0)α,

k = n+ 1, l = n if n ∈ N0 satisfies n < b(ψ) ≤ b(ψ) < n+ 1. For any r ≤ 1, we obviously
have, by Proposition 2.1.3,

r−d/p‖f −Q‖Lp(B(x0,r)) ≤ r
−d/p‖f − P‖Lp(B(x0,r)) + r−d/p‖P −Q‖Lp(B(x0,r))

≤ |f |Tpφ (x0)φ(r) + Cd‖f‖Tpφ (x0)r
k ≤ Cφ,ψ‖f‖Tpφ (x0)ψ(r),

while for r > 1,

r−d/p‖f −Q‖Lp(B(x0,r)) ≤ r
−d/p‖f‖Lp(B(x0,r)) + r−d/p‖Q‖Lp(B(x0,r))

≤ r−d/p‖f‖Lp(Rd) + Cd,p‖f‖Tpφ r
l ≤ Cφ‖f‖Tpφ (x0)ψ(r),

which leads to the first part of the proposition.
The second part comes from the inequality

r−d/p‖f −Q‖Lp(B(x0,r)) ≤ |f |Tpφ (x0)φ(r) + Cd‖f‖Tpφ (x0)r
k,

valid for all 0 < r ≤ 1 and the relations φ(r) ∈ o(ψ(r)) and rk ∈ o(φ(r)).

Proposition 2.3.4. Let x0 ∈ Rd, p1, p2 ∈ [1,∞] and p3 be such that

0 ≤ 1

p3
:=

1

p1
+

1

p2
≤ 1

and let φ ∈ B be such that there exists n ∈ N0 for which n < b(φ) ≤ b(φ) < n+ 1. Given
f1 ∈ T p1φ (x0) and f2 ∈ T p2φ (x0), we have f1f2 ∈ T p3φ (x0) with

‖f1f2‖Tp3φ (x0) ≤ Cd,p1,p2,φ‖f1‖Tp1φ (x0)‖f2‖Tp2φ (x0).

Moreover, if f1 ∈ tp1φ (x0) and f2 ∈ tp2φ (x0), then f1f2 ∈ tp3φ (x0).

Proof. We know that, given k ∈ {1, 2}, there exists a polynomial Pk of degree less than
or equal to n such that Rk := fk − Pk satisfies

r−d/pk‖Rk‖Lpk (B(x0,r)) ≤ |fk|Tpkφ (x0)φ(r). (2.17)

Therefore, if we denote by P the sum of the terms of degree less than or equal to n

in P1P2, we have

f1f2 = P1P2 +R1P2 +R2f1 = P + P1P2 − P +R1P2 +R2f1.

Let R := P1P2 − P +R1P2 +R2f1; clearly,∑
|α|≤n

|DαP (x0)|
α!

≤ ‖f1‖Tp1φ (x0)‖f2‖Tp2φ (x0).

Let us first consider r ≤ 1; by Proposition 2.1.3, since

|P1P2(x)− P (x)| ≤ (x− x0)n+1‖f1‖Tp1φ (x0)‖f2‖Tp2φ (x0)
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for x ∈ B(x0, r), we have

r−d/p3‖P1P2 − P‖Lp3 (B(x0,r)) ≤ Cd,p3‖f1‖Tp1φ (x0)‖f2‖Tp2φ (x0)r
n+1

≤ Cd,p1,p2,φ‖f1‖Tp1φ (x0)‖f2‖Tp2φ (x0)φ(r).

Also, for all x ∈ B(x0, r), since |Pk(x)| ≤ ‖fk‖Tpkφ (x0) (k ∈ {1, 2}),

r−d/p3‖R1P2‖Lp3 (B(x0,r)) ≤ r
−d/p2‖P2‖Lp2 (B(x0,r))r

−d/p1‖R1‖Lp1 (B(x0,r))

≤ Cd,p2‖f2‖Tp2φ (x0)|f1|Tp1φ (x0)φ(r).

Using again Proposition 2.1.3, we get

r−d/p1‖f1‖Lp1 (B(x0,r)) ≤ r
−d/p1‖f1 − P1‖Lp1 (B(x0,r)) + r−d/p1‖P1‖Lp1 (B(x0,r))

≤ |f1|Tp1φ (x0)φ(r) + Cd,p1‖f1‖Tp1φ (x0)r
n ≤ Cd,p1,φ‖f1‖Tp1φ (x0),

and thus

r−d/p3‖f1R2‖Lp3 (B(x0,r)) ≤ r
−d/p1‖f1‖Lp1 (B(x0,r))r

−d/p2‖R2‖Lp2 (B(x0,r))

≤ Cd,p1,φ‖f1‖Tp1φ (x0)|f2|Tp2φ (x0)φ(r).

As a consequence, we can write, for r < 1,

r−d/p3‖R‖Lp3 (B(x0,r)) ≤ Cd,p1,p2,φ‖f1‖Tp1φ (x0)‖f2‖Tp2φ (x0)φ(r). (2.18)

If now we consider r > 1, as |R| ≤ |f1| |f2|+ |P |, we get

r−d/p3‖R‖Lp3 (B(x0,r)) ≤ r
−d/p3‖f1‖Lp1 (Rd)‖f2‖Lp2 (Rd) + Cd,pr

n‖f1‖Tp1φ (x0)‖f2‖Tp2φ (x0),

so that (2.18) still holds in this case, by Proposition 2.1.3.
Finally, if f1 ∈ tp1φ (x0) and f2 ∈ tp2φ (x0), we can write

r−d/pk‖Rk‖Lpk (B(x0,r)) ≤ εk(r)φ(r),

with εk(r) > 0 for r > 0 and εk(r) → 0 as r → 0+ (k ∈ {1, 2}). Replacing |fk|Tpkφ (x0)

with εk(r) in the preceding relations, one gets

φ(r)−1r−d/p3‖R‖Lp3 (B(x0,r)) → 0+ as r → 0+,

which is sufficient to conclude the proof.

Corollary 2.3.5. Let x0 ∈ Rd, p1, p2 ∈ [1,∞] and p3 be such that

0 ≤ 1

p3
:=

1

p1
+

1

p2
≤ 1,

and let φ, ψ be functions in B such that b(φ) > 0, b(ψ) ≥ −d/p2, φ 4 ψ and either
b(ψ) ≤ 0 or n < b(ψ) ≤ b(ψ) < n+ 1 for some n ∈ N0. If f1 ∈ T p1φ (x0) and f2 ∈ T p2ψ (x0),
then f1f2 ∈ T p3ψ (x0), with

‖f1f2‖Tp3ψ (x0) ≤ Cd,p1,p2,φ,ψ‖f1‖Tp1φ (x0)‖f2‖Tp2ψ (x0).

Moreover, if f1 ∈ tp1φ (x0) and f2 ∈ tp2ψ (x0), then f1f2 ∈ tp3ψ (x0).
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Proof. If b(ψ) ≤ 0, the embedding is obvious since T pφ (x0) ↪→ tp0(x0) and so, for r > 0,

r−d/p3‖f1f2‖Lp3 (B(x0,r)) ≤ r
−d/p1‖f1‖Lp1 (B(x0,r))r

−d/p2‖f2‖Lp2 (B(x0,r))

≤ Cp1,φ,0‖f1‖Tp1φ (x0)|f2|Tp2ψ (x0)ψ(r).

Otherwise b(ψ) > 0 and f1 ∈ T p1ψ (x0) with

‖f1‖Tp1ψ (x0) ≤ Cφ,ψ‖f1‖Tp1φ (x0).

Using the previous proposition, we get f1f2 ∈ T p3ψ (x0) and

‖f1f2‖Tp3ψ (x0) ≤ Cd,p,ψ‖f1‖Tp1ψ (x0)‖f2‖Tp2ψ (x0) ≤ Cd,p,φ,ψ‖f1‖Tp1φ (x0)‖f2‖Tp2ψ (x0),

which allows us to conclude the proof. The second part can be obtained using the usual
arguments.

Proposition 2.3.6. Let p1, p2 ∈ [1,∞] and p3 be such that 0 ≤ 1/p3 := 1/p1 + 1/p2 ≤ 1

and let φ, ϕ ∈ B be such that −d/p2 ≤ b(ϕ), 0 < b(φ). Let also f1 ∈ T p1φ (x0), f2 ∈ T p2ϕ (x0),
where x0 is a Lebesgue point of f1. Finally let ψ ∈ B be such that b(ψ) > −d/p2, φ 4 ψ

and

• b(ψ)− b(ϕ) < b(φ) if b(φ) ≤ 1,
• b(ψ) − b(ϕ) < 1 if b(φ) > 1 and either b(ψ) < 1 or there exists n ∈ N for which
n < b(ψ) ≤ b(ψ) < n+ 1.

There exists a polynomial P of degree strictly less than b(ψ) such that, for all r > 0,

r−d/p3‖(f1 − f1(x0))f2 − P‖Lp3 (B(x0,r)) ≤ Cp1,p2,φ,ϕ,ψ‖f1‖Tp1φ (x0)‖f2‖Tp2ϕ (x0)ψ(r).

Consequently, if f2 ∈ Lp3(Rd), then (f1 − f1(x0))f2 belongs to T p3ψ (x0), with

‖(f1 − f1(x0))f2‖Tp3ψ (x0) ≤ Cp1,p2,φ,ϕ,ψ‖f1‖Tp1ϕ (x0)

(
‖f2‖Tp2ϕ (x0) + ‖f2‖Lp3 (Rd)

)
.

Proof. We use here the same notations as in the proof of Proposition 2.3.4 and set
g1 := f1 − f1(x0). Let us first consider the case b(φ) ≤ 1; P1 must be a constant and, by
Remark 2.1.10, we have P1 = f1(x0), which allows us to write

r−d/p1‖g1‖Lp1 (B(x0,r)) ≤ |f1|Tp1φ (x0)φ(r). (2.19)

Let us consider each case separately. If b(ϕ) ≤ 0, then

r−d/p2‖f2‖Lp2 (B(x0,r)) ≤ |f2|Tp2ϕ (x0)ϕ(r).

Therefore, if ψ ∈ B is such that b(ψ) < b(φ) + b(ϕ), then, by choosing ε > 0 such that
b(ψ) + ε < b(φ) + b(ϕ)− 2ε, we get, by Proposition 2.1.3,

r−d/p3‖g1f2‖Lp3 (B(x0,r))

≤ r−d/p1‖g1‖Lp1 (B(x0,r))r
−d/p2‖f2‖Lp2 (B(x0,r)) ≤ |f1|Tp1φ (x0)|f2|Tp2ϕ (x0)φ(r)ϕ(r)

≤ C|f1|Tp1φ (x0)|f2|Tp2ϕ (x0)r
b(φ)+b(ϕ)−2ε ≤ C ′‖f1‖Tp1φ (x0)‖f2‖Tp2ϕ (x0)ψ(r)
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for 0 < r ≤ 1, where C,C ′ > 0 only depend on φ, ϕ and ψ. If r > 1, as −d/p2 < b(ψ),
we can use Proposition 2.1.3 to get

r−d/p3‖g1f2‖Lp3 (B(x0,r)) ≤ r
−d/p3‖f1f2‖Lp3 (B(x0,r)) + r−d/p3 |f1(x0)| ‖f2‖Lp3 (B(x0,r))

≤ r−d/p3‖f1‖Lp1 (Rd)‖f2‖Lp2 (Rd) + Cp2,p3r
−d/p2‖f1‖Tp1φ (x0)‖f2‖Lp2 (B(x0,r))

≤ Cp1,p2,ψ‖f1‖Tp1φ (x0)‖f2‖Tp2ϕ (x0)ψ(r).

If b(ϕ) > 0, let us consider ψ ∈ B such that b(ψ) > −d/p2, b(ψ) < b(φ)+ b(ϕ) and φ 4 ψ.
For 0 < r ≤ 1, Proposition 2.1.3 allows us to write

r−d/p3‖g1f2‖Lp3 (B(x0,r))

≤ r−d/p3‖g1P2‖Lp3 (B(x0,r)) + r−d/p3‖g1R2‖Lp3 (B(x0,r))

≤ Cd,p2 |f1|Tp1φ (x0)φ(r)

( ∑
|α|<b(ϕ)

|DαP2(x0)|
α!

)
+ |f1|Tp1φ (x0)|f2|Tp2ϕ (x0)φ(r)ϕ(r)

≤ Cp2,φ,ϕ,ψ‖f1‖Tp1φ (x0)‖f2‖Tpϕ(x0)ψ(r).

Again, the previous inequality holds for r > 1 as well.
Let us now investigate the case b(φ) > 1. For 0 < r ≤ 1 we have, as we know that

P1(x0) = f1(x0),

r−d/p1‖g1‖Lp1 (B(x0,r)) ≤ |f1|Tp1φ (x0)φ(r) + Cd,p1

( ∑
1≤|α|<b(φ)

|DαP1(x0)|
α!

)
r

≤ Cp1,φ‖f1‖Tp1φ (x0)r.

Obviously, this inequality still holds for r > 1. If b(ϕ) ≤ 0, then for all ψ ∈ B such that
b(ψ) > −d/p2 and b(ψ) < b(ϕ) + 1, we have, by Proposition 2.1.3,

r−d/p3‖g1f2‖Lp3 (B(x0,r)) ≤ Cp1,φ‖f1‖Tp1φ (x0)|f2|Tp2ϕ (x0)ϕ(r)r

≤ Cp1,φ,ϕ,ψ‖f1‖Tp1φ (x0)‖f2‖Tp2ϕ (x0)ψ(r)

for 0≤r<1. As b(ψ)>−d/p3, this inequality is also satisfied for r > 1. If b(ϕ) > 0, let us
consider ψ∈B with b(ψ)>−d/p2, b(ψ)<b(ϕ)+1 and φ4ψ. On the one hand, if b(ψ)<1,
Proposition 2.1.3 implies

r−d/p3‖g1f2‖Lp3 (B(x0,r)) ≤ r
−d/p3‖g1P2‖Lp3 (B(x0,r)) + r−d/p3‖g1R2‖Lp3 (B(x0,r))

≤ Cp1,φ‖f1‖Tp1φ (x0)‖f2‖Tp2ϕ (x0)r

+ Cp1,φ‖f1‖Tp1φ (x0)|f2|Tp2ϕ (x0)ϕ(r)r

≤ Cφ,ϕ,ψ‖f1‖Tp1φ (x0)‖f2‖Tp2ϕ (x0)ψ(r)

for 0 < r ≤ 1; again one can easily check that this inequality also holds for r > 1. On the
other hand, if n ∈ N is such that n < b(ψ) ≤ b(ψ) < n+ 1, let us define P as the sum of
terms of degree less than or equal to n in (P1 − f1(x0))P2; we have

g1f2 = (P1 − f1(x0))P2 +R1P2 +R2g1 = P + (P1 − f1(x0))P2 − P +R1P2 +R2g1.
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By setting R := (P1 − f1(x0))P2 − P +R1P2 +R2g1, Proposition 2.1.3 gives

r−d/p3‖R‖Lp3 (B(x0,r)) ≤ r
−d/p3‖g1f2‖Lp3 (B(x0,r)) + r−d/p3‖P‖Lp3 (B(x0,r))

≤ Cp3,ψ‖f1‖Lp1 (Rd)‖f2‖Lp2 (Rd)ψ(r)

+ Cp3,p2,ψ‖f1‖Tp1φ (x0)‖f2‖Lp2 (Rd)ψ(r)

+ Cd,p3‖f1‖Tp1φ (x0)‖f2‖Tp2ϕ (x0)r
n

≤ Cψ,p1,p2‖f1‖Tp1φ (x0)‖f2‖Tp2ϕ (x0)ψ(r)

for r > 1, while for 0 < r < 1 we have

r−d/p3‖R1P2‖Lp3 (B(x0,r)) ≤ Cd,p2 |f1|Tp1φ (x0)‖f2‖Tp2ϕ (x0)φ(r)

≤ Cp2,φ,ψ|f1|Tp1φ (x0)‖f2‖Tp2ϕ (x0)ψ(r),

r−d/p3‖R2g1‖Lp3 (B(x0,r)) ≤ Cp1,φ‖f1‖Tp1φ (x0)|f2|Tp2ϕ (x0)ϕ(r)r

≤ Cp1φ,ϕ,ψ‖f1‖Tp1φ (x0)|f2|Tp2ϕ (x0)ψ(r)

and

r−d/p3‖(P1 − f1(x0))P2 − P‖Lp3 (B(x0,r)) ≤ Cd,p3‖f1‖Tp1φ (x0)‖f2‖Tp2ϕ (x0)r
n+1

≤ Cp1,p2,ψ‖f1‖Tp1φ (x0)‖f2‖Tp2ϕ (x0)ψ(r).

This proves that there exists a constant Cp1,p2φ,ϕ,ψ > 0 such that, for all r > 0,

r−d/p3‖g1f2 − P‖Lp3 (B(x0,r)) ≤ Cp1,p2,φ,ϕ,ψ‖f1‖Tp1φ (x0)‖f2‖Tp2ϕ (x0)ψ(r).

If f2 ∈ Lp3(Rd), then

‖g1f2‖Lp3 (Rd) ≤ ‖f1‖Lp1 (Rd)‖f2‖Lp2 (Rd) + |f1(x0)| ‖f2‖Lp3 (Rd),

which gives the conclusion.

Proposition 2.3.7. Let x0 ∈ Rd, p1, p2 ∈ [1,∞] be such that p1 ≤ p2 and let φ ∈ B be
such that −d/p2 < b(φ). If f ∈ T p2φ (x0) ∩ Lp1(Rd), then f ∈ T p1φ (Rd), with

‖f‖Tp1φ (Rd) ≤ ‖f‖Tp2φ (x0) + ‖f‖Lp1 (Rd).

Moreover, in this case, f ∈ tp2φ (x0) implies f ∈ tp1φ (x0).

Proof. Let P be the polynomial of degree strictly less than b(φ) such that, for r > 0,

r−d/p2‖f − P‖Lp2 (B(x0,r)) ≤ |f |Tp2φ (x0)φ(r).

For such r, we have

r−d/p1‖f − P‖Lp1 (B(x0,r)) ≤ r
−d/p1Cd,p1,p2r

d/p1−d/p2‖f − P‖Lp2 (B(x0,r))

≤ Cd,p1,p2 |f |Tp2φ (x0)φ(r),

which is sufficient to conclude the proof, as f ∈ Lp1(Rd).
The second part can be obtained using the same arguments as usual.
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2.4. Generalization of Whitney’s extension theorem. In this section, we show
that some uniform conditions on a closed set E involving the spaces T pφ and tpφ imply the
belonging to the spaces Bφ(E) and bφ(E) respectively, which we define below. Then, we
show that a function which has such properties can be extended in an open neighborhood
of E into a function which satisfies generalized Hölderian condition type (see [19]).

In what follows we will heavily need the following lemma. Its proof can be found in
[35] for example.

Lemma 2.4.1. Given n ∈ N0, there exists a function ϕ ∈ D(Rd) with support in B(0, 1)

such that, for any polynomial P of degree less than or equal to n and any ε > 0,

ϕε ∗ P = P.

We now introduce the spaces Bφ(E) and bφ(E) of functions which admit a formal
Taylor expansion on a set E ⊂ Rd for which the behavior can be characterized by a
Lipschitz-type condition given by a function φ ∈ B.

Definition 2.4.2. Let E be a subset of Rd and φ ∈ B be such that b(φ) > 0. A bounded
function f on E belongs to the space Bφ(E) if there exist C,M > 0 such that, for all
x0 ∈ E, there exist a polynomial Px0

of degree strictly less than b(φ),

Px0
:=

∑
|α|<b(φ)

fα(x0)

α!
(· − x0)α,

such that f0(x0) = f(x0), |fα(x0)| ≤M for all |α| < b(φ) and

|DαPx(x)−DαPx0(x)| ≤ Cφ(|x− x0|)|x− x0|−|α|

for all x ∈ E satisfying x 6= x0 and all |α| < b(φ).

Definition 2.4.3. Let E be a subset of Rd and φ ∈ B be such that b(φ) > 0. A function f
defined on E belongs to the space bφ(E) if, for any x0 ∈ E, there exists a polynomial Px0

of degree strictly less than b(φ),

Px0
:=

∑
|α|<b(φ)

fα(x0)

α!
(· − x0)α,

for which f0(x0) = f(x0) and

lim
x→x0
x∈E

φ(|x− x0|)−1|x− x0||α||DαPx(x)−DαPx0
(x)| = 0 uniformly in x0 ∈ E.

Proposition 2.4.4. Let E be a closed subset of Rd and let φ ∈ B satisfy b(φ) > 0.

(1) If there exists M > 0 such that f ∈ T pφ (x0) with ‖f‖Tpφ (x0) ≤M for all x0 ∈ E, then
f ∈ Bφ(E) (in the sense that f is equal almost everywhere to a function in Bφ(E)).

(2) If f ∈ tpφ(x0) for all x0 ∈ E, with (2.8) holding uniformly in x0 ∈ E, then f ∈ bφ(E).

Proof. Let us prove (1). We know that for any x0 ∈ E, there exists a polynomial Px0 of
degree strictly less than b(φ) such that Rx0

:= f − Px0
satisfies

r−d/p‖Rx0
‖Lp(B(x0,r)) ≤Mφ(r), (2.20)
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for r > 0, with |DαPx0(x0)|/α! ≤ M for all |α| < b(φ). Moreover, in the light of Re-
mark 2.1.10, one can modify f on a negligible set in order to have f(x0) = Px0

(x0) for
all x0 ∈ E. In particular |f(x0)| ≤M for all x0 ∈ E and f is bounded on E.

Let us take a function ϕ ∈ D(Rd) as in Lemma 2.4.1, let x, x0 be distinct points of E
and set ε := |x− x0|. Let us define, for |α| < b(φ),

Iα := Dα(ϕε ∗ f)(x).

On the one hand, we have

Iα = Dα(ϕε ∗ (Px0
+Rx0

))(x) = (ϕε ∗DαPx0
)(x) + (Dαϕε ? Rx0

)(x)

= DαPx0
(x) + (Dαϕε ∗Rx0

)(x),

and, on the other hand,

Iα = DαPx(x) + (Dαϕε ∗Rx)(x).

So we get, for |α| < b(φ),

DαPx(x) = DαPx0
(x) + (Dαϕε ∗ (Rx0

−Rx)(x)

= DαPx0
(x) +

ˆ
B(x,ε)

ε−d+|α|Dαϕ

(
x− y
ε

)
(Rx0

(y)−Rx(y)) dy.

Setting Cϕ := sup|α|<b(φ) ‖Dαϕ‖∞, we finally get, for |α| < b(φ),

|DαPx(x)−DαPx0
(x)| ≤ Cϕε−|α|

(
ε−d‖Rx0

‖L1(B(x,ε)) + ε−d‖Rx‖L1(B(x,ε))

)
≤ CϕCdε−|α|

(
(2ε)−d/p‖Rx0‖Lp(B(x0,2ε)) + ε−d/p‖Rx‖Lp(B(x,ε))

)
≤ Cφ(|x− x0|)|x− x0|−α,

where the constant C > 0 only depends on Cϕ, M , d and φ.
For (2), let us consider

r−d/p‖Rx0
‖Lp(B(x0,r)) ∈ o(φ(r)) as r → 0+

uniformly in x0 ∈ E, instead of (2.20). Since

|DαPx(x)−DαPx0
(x)| ≤ CϕCdε−|α|

(
(2ε)−d/p‖Rx0

‖Lp(B(x0,2ε)) + ε−d/p‖Rx‖Lp(B(x,ε))

)
for all x, x0 ∈ E with 0 < ε = |x− x0|, we conclude that, given C > 0, there exists η > 0

such that if 0 < |x− x0| < η (x, x0 ∈ E) then

|DαPx(x)−DαPx0
(x)| ≤ Cφ(|x− x0|)|x− x0|−α,

which means that f ∈ bφ(E).

The theorem concluding this section relies on the following lemma, which establishes
the existence of a smooth function on a neighborhood of a closed subset E which is
comparable to the distance from E (see e.g. [35, 8]).

Lemma 2.4.5. Let E ⊂ Rd be a closed set and U = {x ∈ Rd : d(x,E) < 1}. There exist
δ ∈ C∞(U \ E) and C > 0 such that

C−1d(x,E) ≤ δ(x) ≤ Cd(x,E) ∀x ∈ U \ E

and
|Dαδ(x)| ≤ C(α)d(x,E)1−|α| ∀x ∈ U \ E, |α| ≥ 0.
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We will also need the following combinatorial lemma, which can easily be proved by
induction on l ∈ N0.

Lemma 2.4.6. Let l ∈ N0.

• If l = 0 mod 4, then

−1

2

(
l

l/2

)
=

l/2−1∑
j=0

(−1)j
(
l

j

)
=

l∑
j=l/2+1

(−1)j
(
l

j

)
.

• If l = 1 mod 4, then(
l − 1

(l − 1)/2

)
=

(l−1)/2∑
j=0

(−1)j
(
l

j

)
= −

l∑
j= l−1

2 +1

(−1)j
(
l

j

)
.

• If l = 2 mod 4, then

1

2

(
l

l/2

)
=

l/2−1∑
j=0

(−1)j
(
l

j

)
=

l∑
j=l/2+1

(−1)j
(
l

j

)
.

• If l = 3 mod 4, then

−
(

l − 1

(l − 1)/2

)
=

(l−1)/2∑
j=0

(−1)j
(
l

j

)
= −

l∑
j=(l−1)/2+1

(−1)j
(
l

j

)
.

For the following result, we need the notion of finite (forward) difference for a func-
tion f (see e.g. [29]): set ∆1

hf(x)=f(x+h)−f(x) and, given n∈N, ∆n+1
h f(x)=∆1

h∆n
hf(x).

Theorem 2.4.7. Let E ⊂ Rd be a closed set, U = {x ∈ Rd : d(x,E) < 1}, n ∈ N0 and
φ ∈ B be such that n < b(φ). If f ∈ T pφ (x0) satisfies ‖f‖Tpφ (x0) ≤M for some M > 0 and
all x0 ∈ E, then there exists F ∈ Cn(U) such that F = f almost everywhere on E.

Moreover, if m ∈ N0 is such that n < b(φ) ≤ b(φ) < m, then there exists C > 0 such
that for any x ∈ U and any h ∈ Rd \ {0} for which [x, x+ (m− n)h] ⊂ U , we have

|∆m−n
h DαF (x)| ≤ Cφ(|h|)|h|−n for any |α| = n.

Proof. Let us consider the functions ϕ and δ from Lemmata 2.4.1 and 2.4.5 respectively.
We know that we can modify f on a set of measure zero so that f ∈ Bφ(E). Let us define
the function F on U by

F (x) :=

{
f(x) if x ∈ E,
δ(x)−d

´
Rd ϕ((x− y)δ(x)−1)f(y) dy otherwise.

Obviously F ∈ C∞(U \ E). Let x ∈ U \ E and x0 ∈ E be such that |x − x0| = d(x,E).
As x0 ∈ E, there exists a polynomial Px0

of degree less than or equal to n such that
Rx0

:= f − Px0
satisfies

r−d/p‖Rx0‖Lp(B(x0,r)) ≤Mφ(r) for all r > 0.

For any x ∈ U \ E, by setting

Φα(x, ·) = Dα
x (δ(x)−dϕ((x− ·)δ(x)−1),
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we have, by Lemma 2.4.1,

DαF (x) = DαPx0
(x) +

ˆ
Rd

Φα(x, y)Rx0
(y) dy.

One can easily check (by induction) that Φα(x, ·) is of the form

δ(x)−d−kDαϕ((x− ·)δ−1(x))(x− ·)γP (x),

where P (x) is a product of derivatives of the function δ evaluated at x with t factors and
whose sum of orders is equal to w and where k+w− t−|γ| = |α|. Thanks to the property
of the function δ, we have |P (x)| ≤ Cd(x,E)t−w, δ(x)−d−k ≤ C∗d(x,E)−d−k and

|Dαϕ((x− ·)δ−1(x))(x− y)γ | ≤ Cγ,αd(x,E)|γ|,

as Dαϕ((x− ·)δ−1(x))(x− ·)γ does not vanish if |x− ·| ≤ δ(x). We thus have∣∣∣∣ˆ
Rd

Φα(x, y)Rx0
(y) dy

∣∣∣∣ ≤ C1d(x,E)−d−|α|
ˆ
B(x,δ(x))

|Rx0
(y)| dy

for all α ∈ Nd0 and x ∈ U \ E. As there exists C ′ > 0 such that δ(x) ≤ C ′d(x,E) for all
x ∈ U \ E, we can write

|DαF (x)−DαPx0
(x)| ≤ C1d(x,E)−d−|α|

ˆ
B(x,C′d(x,E))

|Rx0
(y)| dy

≤ C1d(x,E)−|α|d(x,E)−d
ˆ
B(x0,(C′+1)d(x,E))

|Rx0
(y)| dy

≤ C2Mφ(d(x,E))d(x,E)−|α|

= C2Mφ(|x− x0|)(|x− x0|)−|α|,

where C2 > 0 is a constant which only depends on ϕ, φ, C1, C ′ and d. Moreover, since
f ∈ Bφ(E), we know that Px0(x0) = f(x0) and for all x1 ∈ E such that x1 6= x0,
DαPx0

(x0) = DαPx1
(x0) +Rα(x0, x1), where Rα satisfies

|Rα(x0, x1)| ≤ Cφ(|x0 − x1|)(|x0 − x1|)−|α| for all |α| ≤ n. (2.21)

Therefore, thanks to Taylor’s formula, we have, for |α| ≤ n and x ∈ Rd,

DαPx0(x) =
∑

|β|≤n−|α|

1

β!
Dα+βPx0(x0)(x− x0)β

=
∑

|β|≤n−|α|

1

β!
(Dα+βPx1

(x0) +Rα+β(x0, x1))(x− x0)β

=
∑

|β|≤n−|α|

1

β!

( ∑
|γ|≤n−(|α|+|β|)

1

γ!
Dα+β+γPx1

(x1)(x0 − x1)γ +Rα+β(x0, x1)

)
(x− x0)β
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and ∑
|β|≤n−|α|

1

β!

∑
|γ|≤n−(|α|+|β|)

1

γ!
Dα+β+γPx1(x1)(x0 − x1)γ(x− x0)β

=
∑

|γ|≤n−|α|

1

γ!

∑
|β|≤n−(|α|+|γ|)

1

β!
Dα+β+γPx1

(x1)(x− x0)β(x0 − x1)γ

=
∑

|γ|≤n−|α|

1

γ!
Dα+γPx1

(x− x0 + x1)(x0 − x1)γ = DαPx1
(x).

Finally, we have

DαPx0(x) = DαPx1(x) +
∑

|β|≤n−|α|

1

β!
Rα+β(x0, x1)(x− x0)β

for all x0, x1 ∈ E and x ∈ Rd. In particular, for |α| ≤ n,

|DαPx0(x)−DαPx1(x)| ≤ C
∑

|β|≤n−|α|

φ(|x0 − x1|)|x0 − x1|−|α|−|β||x− x0||β|,

and as |x− x0| ≤ |x− x1|, we have |x0 − x1| ≤ 2|x− x1|. Therefore,

φ(|x0 − x1|)|x0 − x1|−|α|−|β|

≤ φ(|x− x1|)|x− x1|−|α|−|β|φ
(
|x0 − x1|)
|x− x1|

)(
|x0 − x1|)
|x− x1|

)−|α|−|β|
,

and as |α|+ |β| ≤ n < b(φ), Remark 2.1.4 implies that

φ

(
|x0 − x1|)
|x− x1|

)(
|x0 − x1|)
|x− x1|

)−|α|−|β|
is bounded (by a constant which only depends on φ). We thus have

|DαPx0
(x)−DαPx1

(x)| ≤ Cφ(|x− x1|)|x− x1|−|α| for |α| ≤ n.

This inequality and the upper bound obtained for DαF (x)−DαPx0
(x) give

|DαF (x)−DαPx1(x)| ≤ C(φ(|x−x0|)|x−x0|−|α|+φ(|x−x1|)|x−x0|−|α|) for all x1 ∈ E,

and as |x− x0| ≤ |x− x1|, we get, as before,

|DαF (x)−DαPx1
(x)| ≤ Cφ(|x− x1|)|x− x1|−|α|. (2.22)

Let Fα be the function defined on U by

Fα(x) :=

{
DαPx(x) if x ∈ E,
DαF (x) otherwise.

We have proved that, for |α| ≤ n, Fα ∈ C∞(U \ E) and for x ∈ E and h 6= 0 such that
x+ h ∈ U , we have

Fα(x+ h) =
∑

|β|≤n−|α|

Dα+βPx(x)hβ +Rα(x, x+ h), (2.23)

where
|Rα(x, x+ h)| ≤ Cφ(|h|)|h|−|α|,
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with a uniform constant. More precisely, if h is such that x + h ∈ E, the previous
inequality is satisfied because f belongs to Bφ(E); otherwise x + h ∈ U \ E and the
inequality follows from (2.22). This is sufficient to show that F ∈ Cn(U) and DαF = Fα
on U for all |α| ≤ n. Indeed, (2.23) implies that Fα is continuous on E, and so on U .
Given n ≥ 1, let us fix x ∈ E; if h ∈ R \ {0} is sufficiently small, for j ∈ {1, . . . , d}, we
have

F (x+ hej)− F (x) =

n∑
|β|=1

DβPx(x)(hej)
β +R0(x, x+ h),

which allows us to write∣∣∣∣F (x+ hej)− F (x)

h
− Fej (x)

∣∣∣∣ ≤ n∑
|β|=2

|DβPx(x)| |h||β|−1 +
|R0(x, x+ h)|

|h|

≤
n∑
|β|=2

|DβPx(x)| |h||β|−1 + C
φ(|h|)
|h|

and, as the right-hand side tends to 0 as h tends to 0, we conclude, since 1 ≤ n < b(φ),
that F is differentiable at x and DjF (x) = Fej (x). If we now assume that F is (n− 1)-
times continuously differentiable at x, with DαF (x) = Fα(x) for every |α| ≤ n − 1, we
have, for |α| = n− 1, h ∈ R \ {0} sufficiently small and j ∈ {1, . . . , d},∣∣∣∣Fα(x+ hej)− Fα(x)

h
− F

α+ej (x)

∣∣∣∣ ≤ ∑
|β|=1

|Dα+βPx(x)| |h||β|−1 +
|Rα(x, x+ h)|

|h|

≤
∑
|β|=1

|Dα+βPx(x)| |h||β|−1 + C
φ(|h|)
|h|n

and we conclude, in the same way, that Fα is differentiable at x withDjFα(x) = Fα+ej (x).
Let us now prove that if n < b(φ) ≤ b(φ) < m, then there exists C > 0 such that, for

all x ∈ U and h ∈ Rd such that [x, x+mh] ⊂ U , we have

|∆m−n
h DαF (x)| ≤ Cφ(|h|)|h|−n,

for all |α| = n. So far, we know from (2.21) and (2.22) that the following inequality holds
for all |α| = n, x ∈ U and y in E satisfying x 6= y:

|Fα(x)− Fα(y)| ≤ Cφ(|x− y|)|x− y|−n.

If x ∈ U and h ∈ Rd \ {0} are such that there exists k ∈ {0, . . . ,m − n} for which
x+ kh ∈ E, we can use Lemma 2.4.6 to obtain, setting l = m− n,

|∆l
hD

αF (x)| =
∣∣∣∣ l∑
j=0

(−1)j
(
l

j

)
DαF (x+ jh)

∣∣∣∣
=

∣∣∣∣ l∑
j=0

(−1)j
(
l

j

)
(DαF (x+ jh)−DαF (x+ kh))

∣∣∣∣
≤

l∑
j=0

(
l

j

)
Cφ(|(j − k)h|) |(j − k)h|−n ≤ C ′φ(|h|)|h|−n.
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Let us now consider the case where x + kh ∈ U \ E for all k ∈ {0, . . . , l}; let us first
suppose that d(x,E) ≤ (l+ 1)|h| and take x0 ∈ E such that |x0−x| = d(x,E). Of course
|x0 − x| ≤ (l + 1)|h| and, for all j ∈ {0, . . . , l}, we have |x0 − (x+ jh)| ≤ (2l + 1)|h|. As
before,

|∆l
hD

αF (x)| ≤
l∑

j=0

(
l

j

)
|DαF (x+ jh)−DαF (x0))|

≤ C
l∑

j=0

(
l

j

)
φ(|x+ jh− x0)|) |x+ jh− x0)|−n

and, for all j ∈ {0, . . . , l},

φ(|x+ jh− x0)|)|x+ jh− x0|−n ≤ φ(|h|) |h|−nφ
(
|x+ jh− x0)|

|h|

)(
|x+ jh− x0|

|h|

)−n
.

That being said, we have |x+ jh− x0|/h ≤ 2l + 1 and so, by Remark 2.1.4,

φ

(
|x+ jh− x0|

|h|

)(
|x+ jh− x0|

|h|

)−n
≤ C,

where the constant C only depends on φ and l. Therefore, we can write

|∆l
hD

αF (x)| ≤ C ′φ(|h|)|h|−n.

It remains to consider the case where x + kh ∈ U \ E for all k ∈ {0, . . . , l} and
(l+ 1)|h| < d(x,E). As before, let x0 stand for a point in E such that |x0−x| = d(x,E).
We already know that, for any y ∈ U \ E,

DαF (y) = DαPx0
(y) +

ˆ
Rd

Φα(y, ξ)Rx0
(ξ) dξ.

The function y 7→
´
Rd Φα(y, ξ)Rx0

(ξ) dξ belongs to C∞(U \ E) and, for all β ∈ Nd0,

Dβ

ˆ
Rd

Φα(y, ξ)Rx0
(ξ) dξ =

ˆ
Rd

Φα+β(y, ξ)Rx0
(ξ) dξ.

As the segment [x, x+ lh] is included in U \E, we know, by Taylor’s formula, that there
exist points xβ with |β| = l on the segment [x, x+ lh] such that

∆l
hD

αF (x) = ∆l
h

ˆ
Rd

Φα(x, ξ)Rx0(ξ) dξ =
∑
|β|=l

hβ
ˆ
Rd

Φα+β(xβ , ξ)Rx0(ξ) dξ

=
∑
|β|=l

hβ
ˆ
B(xβ ,Cd(xβ ,E))

Φα+β(xβ , ξ)Rx0
(ξ) dξ,

where C is a constant such that δ(y) ≤ Cd(y,E) for all y ∈ U \E. Moreover, for such y,
we have already obtained

|Φα+β(y)| ≤ C ′d(y,E)−d−(|α|+|β|) = C ′d(y,E)−d−m.

If |β| = l, since xβ ∈ [x, x+ lh], we have

d(xβ , E) ≥ d(x,E)− |x− xβ | ≥ (l + 1)|h| − l|h| = |h|
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and so, if ξ ∈ B(xβ , Cd(xβ , E)),

|ξ − x0| ≤ |ξ − xβ |+ |xβ − x|+ |x− x0| ≤ Cd(xβ , E) + l|h|+ d(x,E)

≤ Cd(xβ , E) + ld(xβ , E) + d(xβ , E) + l|h| ≤ C ′′d(xβ , E).

Therefore,∣∣∣∣ˆ
B(xβ ,Cd(xβ ,E))

Φα+β(xβ , ξ)Rx0
(ξ) dξ

∣∣∣∣ ≤ C ′d(xβ , E)−d−m
ˆ
B(x0,C′′d(xβ ,E))

|Rx0
(ξ)| dξ

≤ C ′Md(xβ , E)−mφ(d(xβ , F ))

≤ C ′Mφ(|h|)|h|−mφ
(
d(xβ , E)

|h|

)(
d(xβ , E)

|h|

)−m
.

Now, as d(xβ , E)/|h| ≥ 1 and b(φ) < m, we know that

φ

(
d(xβ , E)

|h|

)(
d(xβ , E)

|h|

)−m
is bounded by a constant which only depends on φ and m. We can thus write

|∆l
hD

αF (x)| ≤ C ′φ(|h|)|h|−n,

which is what we needed to conclude the proof.

Theorem 2.4.8. Let E ⊂ Rd be a closed set, U = {x ∈ Rd : d(x,E) < 1}, n ∈ N0 and
φ ∈ B be such that n < b(φ). If f ∈ tpφ(x0) for all x0 ∈ E, with (2.8) holding uniformly
in x0 ∈ E, then there exists F ∈ Cn(U) such that F = f almost everywhere on E.

Moreover, if m ∈ N0 is such that n < b(φ) ≤ b(φ) < m, then, for all |α| = n, x ∈ E,
and ε > 0, there exists η > 0 such that, for all 0 < |h| ≤ η for which [x, x+(m−n)h] ⊂ E,

|∆m−n
h DαF (x)| ≤ εφ(|h|)|h|−n.

Proof. The proof is essentially the same as the previous one, using this time the fact that
f ∈ bφ(E) and

r−d/p‖Rx0
‖Lp(B(x0,r)) ∈ o(φ(r)) as r → 0+,

uniformly in x0 ∈ E.

3. Applications to operators

3.1. The Bessel operator. In this section we look at the action of the Bessel operator
of order s,

J sf := F−1
(
(1 + | · |2)−s/2Ff

)
(s ∈ R, f ∈ S ′),

on the spaces T pφ (x0) and tpφ(x0). If φ ∈ B and s ∈ R, then φs will denote the function

φs : (0,+∞)→ (0,+∞), x 7→ φ(x)xs.

It is obvious that φs is again in B and b(φs) = b(φ) + s and b(φs) = b(φ) + s.
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Let us recall that if 0 < s < d+1 then we have J sf = us ∗f , where us is the function
defined for x 6= 0 by

us(x) =
1

(2π)
d−1
2 2s/2Γ(s/2)Γ

(
d−s+1

2

) e|x| ˆ +∞

0

e−|x|t(t+ t2/2)
d−s−1

2 dt.

The following inequality holds for all 0 < s < d and α ∈ Nd0:

Dαus(x) ≤ Cs,αe−|x|(1 + |x|−d+s−|α|). (3.1)

For simplicity, let us introduce the notion of admissible value for a real number.

Definition 3.1.1. Given φ ∈ B, a value s > 0 is said to be admissible (for φ) if one of
the following two conditions is satisfied:

• b(φ) + s < 0,
• there exists n ∈ N0 such that n < b(φ) + s ≤ b(φ) + s < n+ 1.

Theorem 3.1.2. Let x0 ∈ Rd, p ∈ (1,∞], φ ∈ B be such that b(φ) > −d/p and s > 0

be an admissible value for φ. The operator J s maps continuously T pφ (x0) into T qφs(x0),
where

• 1/p ≥ 1/q ≥ 1/p− s/d if p < d/s,
• p ≤ q ≤ ∞ if d/s < p ≤ ∞,
• p ≤ q <∞ if d/s = p.

Proof. Let f ∈ T pφ (x0); we know that there exists a polynomial P of degree strictly less
than b(φ) such that R := f − P satisfies

r−d/p‖R‖Lp(B(x0,r)) ≤ |f |Tpφ (x0)φ(r) for all r > 0. (3.2)

Without loss of generality, we can assume that x0 = 0. We first want to estimate the
following two quantities, for all r > 0 and u ∈ R:ˆ

B(0,r)

|R(x)| |x|−u dx and
ˆ
Rd\B(0,r)

|R(x)| |x|−u dx.

For this purpose, let us set

ϕ(r) :=

ˆ
B(0,r)

|R(x)| dx;

from (3.2), we have
ϕ(r) ≤ Cd|f |Tpφ (0)r

dφ(r). (3.3)

Moreover, using the spherical coordinates in Rd, we can write

ϕ(r) =

ˆ r

0

ψ(ρ) dρ, (3.4)

where

ψ(ρ) := ρd−1

ˆ 2π

0

ˆ π

0

. . .

ˆ π

0

|R(x(ρ, θ1, . . . , θd−1))| dΩd,
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and dΩd stands for sind−2(θ1) · · · sin(θd−2)dθ1 · · · dθd−1. Therefore, for ε > 0 we have

ϕ(r)r−u − ϕ(ε)ε−u =

ˆ r

ε

ρ−uψ(ρ) dρ−
ˆ r

ε

uρ−(u+1)ϕ(ρ) dρ

=

ˆ
B(0,r)\B(0,ε)

|R(x)| |x|−u dx−
ˆ r

ε

uρ−(u+1)ϕ(ρ) dρ.

Consequently,ˆ
B(0,r)\B(0,ε)

|R(x)| |x|−u dx ≤ ϕ(r)r−u + u

ˆ r

0

ρ−(u+1)ϕ(ρ) dρ.

If b(φ) + d− u > 0, thenˆ r

0

ρ−(u+1)ϕ(ρ) dρ ≤ Cd|f |Tpφ (0)

ˆ r

0

ρd−u−1φ(ρ) dρ ≤ Cd|f |Tpφ (0)φ(r)

ˆ r

0

ρd−u−1φ

(
ρ

r

)
dρ

= Cd|f |Tpφ (0)φ(r)rd−u
ˆ 1

0

φ(ξ)ξd−u

ξ
dξ ≤ Cu|f |Tpφ (0)φ(r)rd−u,

thanks to Proposition 2.1.5. Hence, for all r > 0 and u ∈ R such that b(φ) + d− u > 0,ˆ
B(0,r)

|R(x)| |x|−u dx ≤ Cd,u|f |Tpφ (x0)φ(r)rd−u. (3.5)

If we now assume that b(φ) + d− u < 0, then, for all N > 0,
ˆ
B(0,N)\B(0,r)

|R(x)| |x|−u dx = ϕ(N)N−u − ϕ(r)r−u + u

ˆ N

r

ρ−u−1ϕ(ρ) dρ

and, since ϕ(N)N−u tends to 0 as N →∞, we get, thanks to (3.3) and Proposition 2.1.3,

ˆ
Rd\B(0,r)

|R(x)| |x|−u dx ≤ Cu|f |Tpφ (x0)φ(r)rd−u, (3.6)

using the same technique as before.
Let us assume first that 0 < s < d; we have

J sf = us ∗ P + us ∗R,

where us ∗ P is a polynomial of degree strictly less than b(φ) whose sum of coefficients
is bounded by the sum of the coefficients of P . We thus need to estimate us ∗ R. Let us
fix r > 0 and x ∈ Rd such that 2|x| < r; if there exists n ∈ N0 for which n < b(φ) + s ≤
b(φ) + s < n+ 1, by Taylor’s formula, we find that

(us ∗R)(x) =

ˆ
B(0,r)

us(x− y)R(y) dy +
∑
|α|≤n

xα

α!

ˆ
Rd
Dαus(−y)R(y) dy

−
∑
|α|≤n

xα

α!

ˆ
B(0,r)

Dαus(−y)R(y) dy

+
∑

|α|=n+1

ˆ
Rd\B(0,r)

Dαus(Θ(x)x− y)R(y) dy,
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for some Θ(x) ∈ (0, 1). Using (3.1) and then (3.5), we get, for all |α| ≤ n,∣∣∣∣ˆ
Rd
Dαus(−y)R(y) dy

∣∣∣∣
≤ C

(ˆ
B(0,1)

|y|−d+s−|α||R(y)| dy +

ˆ
Rd\B(0,1)

e−|y||f(y)| dy +

ˆ
Rd\B(0,1)

e−|y||P (y)| dy
)

≤ Cα,s|f |Tpφ (0) + Cp‖f‖Lp(Rd) + C
∑

|β|<b(φ)

|DβP (0)|
β!

ˆ
Rd\B(0,1)

e−|y||y|β dy

≤ Cα,s,p,d‖f‖Tpφ (0),

so that ∑
|α|≤n

xα

α!

ˆ
Rd
Dαus(−y)R(y) dy

is a polynomial of degree n whose coefficients are bounded by ‖f‖Tpφ (0). For all |α| ≤ n,
we also have, thanks to (3.5),∣∣∣∣ˆ

B(0,r)

Dαus(−y)R(y) dy

∣∣∣∣ ≤ C ˆ
B(0,r)

|y|−d+s−|α||R(y)| dy ≤ Cα|f |Tpφ (x0)φ(r)rs−|α|.

Now, if |α| = n+ 1 and if |y| ≥ r, then |Θ(x)x− y| ≥ |y|/2 and, assuming that s < d,

|Dαus(Θ(x)x− y)| ≤ C|Θ(x)x− y|−d+s−|α| ≤ C ′|y|−d+s−|α|.

From (3.6), we get∣∣∣∣ˆ
Rd\B(0,r)

Dαus(Θ(x)x− y)R(y) dy

∣∣∣∣ ≤ Cα|f |Tpφ (x0)φ(r)rs−|α|.

If we also assume that 1/p− s/d < 0 and if p′ is the conjugate exponent of p, then, from
−(d− s)p′ < d, since

|us| ≤ C| · |−d+s,

we infer that us ∈ Lp
′
(Rd) and

‖us‖Lp′ (B(0,2r)) ≤ Cr
sr−d/p for all r > 0.

Therefore, by Hölder’s inequality,∣∣∣∣ˆ
B(0,r)

us(x− y)R(y) dy

∣∣∣∣ ≤ ‖us‖Lp′ (B(0,2r))‖R‖Lp(B(0,r))

≤ Crsr−d/p‖R‖Lp(B(0,r)) ≤ C|f |Tpφ (0)r
sφ(r).

This shows that
P ′ = us ∗ P −

∑
|α|≤n

·α

α!

ˆ
Rd
Dαus(−y)R(y) dy

is a polynomial of degree n such that

‖J sf − P ′‖L∞(B(0,2r)) ≤ Cs,φ,p,d|f |Tpφ (0)φs(2r), (3.7)

which means that J sf ∈ T∞φs (0). Moreover, by Young’s inequality,

‖J sf‖L∞(Rd) ≤ ‖us‖Lp′ (Rd)‖f‖Lp(Rd). (3.8)
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From this relation, (3.7) and the fact that the sum of the coefficients of P ′ is bounded
by ‖f‖Tpφ (0), we get

‖J sf‖T∞φs (0) ≤ C‖f‖Tpφ (0).

If we now assume that 1/p− s/d > 0, then∣∣∣∣ˆ
B(0,r)

us(x− y)R(y) dy

∣∣∣∣ ≤ C ˆ
Rd

|RχB(0,r)|
|x− y|d−s

dy = CIs(|RχB(0,r)|) for r > 0,

where Is is the Riesz potential of order s. As a consequence, if q satisfies 1/q = 1/p−s/d,
we have, by the Hardy–Littlewood–Sobolev lemma (see e.g. [32]),

‖Is(RχB(0,r))‖Lq(Rd) ≤ C‖R‖Lp(B(0,r)) ≤ C|f |Tpφ (0)r
d/pφ(r) = C|f |Tpφ (0)r

d/qrsφ(r).

This implies

r−d/q‖J sf − P ′‖Lq(B(0,2r)) ≤ Cs,φ,p,d|f |Tpφ (0)φs(2r) for r > 0,

which means that J sf ∈ T qφs(0). One more use of the Hardy–Littlewood–Sobolev lemma
gives

‖J sf‖Lq(Rd) ≤ C‖f‖Lp(Rd)

and we obtain, using the same arguments as before,

‖J sf‖T qφs (0) ≤ C‖f‖Tpφ (0). (3.9)

If b(φ) + s < 0, let us decompose (us ∗R)(x) as follows:

(us ∗R)(x) =

ˆ
B(0,r)

us(x− y)R(y) dy +

ˆ
Rd\B(0,r)

us(x− y)R(y) dy.

We can use (3.6) again to estimate the second term in this equality; more precisely, we
have ∣∣∣∣ˆ

Rd\B(0,r)

us(x− y)R(y) dy

∣∣∣∣ ≤ Cs|f |Tpφ (x0)φ(r)rs.

We can now use the same reasoning to show that (3.8) and (3.9) still hold in this case.
Let us extend inequalities (3.8) and (3.9) to all the admissible values of s > 0. If s = d,

let 0 < ε < d be such that v := s−ε satisfies 0 < v < d and n < b(φ)+v ≤ b(φ)+v < n+1.
Suppose first that 1/p − s/d > 0; we have 1/p − v/d > 0, which implies J vf ∈ T rφv (0),
with 1/r = 1/p− v/d and ‖J vf‖T rφv (0) ≤ C‖f‖Tpφ (0). From J sf = J εJ vf and

1

r
− ε

d
=

1

p
− s

d
> 0,

we know that J sf ∈ T qφs(0) with 1/q := 1/r − ε/d = 1/p− s/d and

‖J sf‖T qφs (0) ≤ C‖J vf‖T rφv (0) ≤ C‖f‖Tpφ (0).

Now, let us suppose that 1/p − s/d < 0; choosing ε such that 1/p − v/d < 0, we get
J vf ∈ T∞φv (0), with ‖J vf‖T∞φv (0) ≤ C‖f‖Tpφ (0) and we obtain J sf ∈ T∞φs (0), with
‖J sf‖T∞φs (0) ≤ C‖f‖Tpφ (0).

Let us consider the case s = kd + v with k ∈ N0 and 0 < v ≤ d; let us first remark
that if n ∈ N0 satisfies

n < b(φ) + s < b(φ) + s < n+ 1,
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then d ≤ n implies

0 ≤ n− d < b(φ) + s− d ≤ b(φ) + s− d < n− d+ 1

and s − d is still an admissible value. Otherwise, n < d and so n + 1 ≤ d, which means
that we have b(φ)+s−d < 0 and therefore s−d is also an admissible value. Suppose first
that 1/p − s/d > 0; let us prove by induction that J sf ∈ T qφs(0) with 1/q := 1/p − s/d
and ‖J sf‖T qφs (0) ≤ C‖f‖Tpφ (0). The case k = 0 being already known, let us show that if
the assertion is true for k−1, then it is also true for k (k ≥ 1). Since s−d is an admissible
value, J s−df ∈ T rφs−d(0) with 1/r = 1/p− (s− d)/d and

‖J s−df‖T rφs−d (0) ≤ C‖f‖Tpφ (0).

As
1

r
− d

d
=

1

p
− s

d
> 0,

we have J sf ∈ T qφs(0) with 1/q := 1/p− s/d and ‖J sf‖T qφs (0) ≤ C‖f‖Tpφ (0). Now, let us
suppose that 1/p− s/d < 0; let us prove by induction that J sf ∈ T∞φs (0) and

‖J sf‖T∞φs (0) ≤ C‖f‖Tpφ (0).

It remains to show that if the assertion is true for k− 1, then it is also true for k (k ≥ 1).
If 1/p− (s− d)/d < 0, then J s−df ∈ T∞φs−d(0) and ‖J s−df‖T∞φs−d (0) ≤ C‖f‖Tpφ (0). From
what we have obtained before for the case s = d, J sf ∈ T∞φs (0) and

‖J sf‖T∞φs (0) ≤ C‖f‖Tpφ (0).

Otherwise, if 1/p − (s− d)/d > 0, from the previous point, J s−df ∈ T rφs−d(0) with
1/r := 1/p− (s− d)/d, ‖J s−df‖T rφs−d (0) ≤ C‖f‖Tpφ (0) and

1

r
− d

d
=

1

p
− s

d
< 0.

The case s = d yields J sf ∈ T∞φs (0) and ‖J sf‖T∞φs (0) ≤ C‖f‖Tpφ (0). Finally, if
1/p− (s− d)/d = 0, let 0 < ε < d be such that s−d+ ε is still an admissible value. Since
1/p − (s− d+ ε)/d < 0, we have J s−d+εf ∈ T∞φs−d+ε(0) and ‖J s−d+εf‖T∞φs−d+ε (0) ≤
C‖f‖Tpφ (0). We can thus write ‖J sf‖T∞φs (0) ≤ C‖f‖Tpφ (0).

Let us now remark that if f ∈ T pφ (x0) and J sf ∈ T qφs(x0) with q > p, then we can
define Rs := J sf −Ps where Ps is a polynomial of degree strictly less than b(φ) + s such
that

r−d/q‖Rs‖Lq(B(x0,r) ≤ |J
sf |T qφs (x0)φs(r).

If p ≤ p′ ≤ q and q′ ≥ 1 is such that 1/q + 1/q′ = 1/p′, for r > 0 we have

r−d/p
′
‖Rs‖Lp′ (B(x0,r))

≤ Cdr−d/p
′
rd/q

′
‖Rs‖Lq(B(x0,r)) ≤ Cd|J

sf |T qφs (x0)φs(r),

which means that J sf ∈ T p
′

φs
(x0) (using the estimation made by the same polynomial

as the one that gives the belonging to T qφs(x0)). Moreover, if 0 ≤ θ ≤ 1 is such that
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1/p′ = θ/q + (1− θ)/p, we know that

‖J sf‖Lp′ (Rd) ≤ ‖J
sf‖θLq(Rd)‖J

sf‖1−θ
Lp(Rd)

≤ C‖J sf‖θLq(Rd)‖f‖
1−θ
Lp(Rd)

≤ ‖J sf‖Lq(Rd) + ‖f‖Lp(Rd).

We are finally able to prove the three points of the theorem. If p < d/s, let us set
1/p∗ := 1/p − s/d; then p∗ ≥ 1 and from the first part of the proof, J sf ∈ T p

∗

φs
(0) and

‖J sf‖
Tp
∗

φs
(0)
≤ C‖f‖Tpφ (0). Now, from the second part, for q satisfying 1/p ≥ 1/q ≥ 1/p∗,

J sf ∈ T p
∗

φs
(0) and

‖J sf‖T qφs (0) ≤ C(‖J sf‖
Tp
∗

φs
(0)

+ ‖f‖Lp(Rd)) ≤ c‖f‖Tpφ (0).

Let us consider the case p > d/s. The first part of the proof implies that J sf ∈ T∞φs (0)

and ‖J sf‖T∞φs (0) ≤ C‖f‖Tpφ (0). Using the second part of the proof, for p ≤ q ≤ ∞, we
deduce that J sf ∈ T qφs(0) and

‖J sf‖T qφs (0) ≤ C‖f‖Tpφ (0).

For the case p = d/s, let 0 < ε < s such that
1

p
− ε

d
>

1

p
− s

d
= 0,

ε being chosen sufficiently close to s so that it is an admissible value; the first part
of the proof gives that J εf ∈ T qφε(0) and ‖J εf‖T qφε (0) ≤ C‖f‖Tpφ (0) for q such that
1/p ≥ 1/q > 1/p− ε/d. Now,

1

q
− s− ε

d
>

1

p
− ε

d
− s− ε

d
= 0

and, from the first part of the proof, J sf ∈ T qφs(0) and

‖J sf‖T qφs (0) ≤ C‖f‖Tpφ (0).

We can conclude the proof by letting ε→ s−.

This theorem admits the following corollary, regarding the spaces tpφ(x0).

Corollary 3.1.3. Let x0 ∈ Rd, p ∈ (1,∞), φ ∈ B be such that either b(φ) > −d/p
and b(φ) ≤ 0 or there exists n ∈ N0 such that n < b(φ) ≤ b(φ) < n + 1. Consider an
admissible value s > 0 for φ. If f ∈ tpφ(x0), then J sf ∈ tqφs(x0), where

• 1/p ≥ 1/q ≥ 1/p− s/d if p < d/s,
• p ≤ q ≤ ∞ if d/s < p <∞,
• p ≤ q <∞ if d/s = p.

Proof. By Corollary 2.2.2, there exists a sequence of functions (fj)j∈N0
in D(Rd)∩ tpφ(x0)

such that fj → f in T pφ (x0). For such a function, J sfj ∈ C∞(Rd) and Remark 2.1.13
implies that J sfj ∈ trφs(x0) for all r ∈ [1,∞]. But, for all the values of q that we consider,
the preceding theorem implies

‖J s(fj − f)‖T qφs (x0) ≤ C‖fj − f‖Tpφ (x0).

Therefore, J sfj converges to J sf in T qφs(x0). From Proposition 2.1.12, we know that
tqφs(x0) is a closed subspace of T qφs(x0), which gives us the conclusion.
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3.2. Derivatives. In this section, we investigate the estimates that can be made for a
function whose derivatives are known to belong to T pφ (x0) (or tpφ(x0)). For such a task,
we will need the following classical lemma of Sobolev spaces theory (see e.g. [35]).

Lemma 3.2.1. Let 1 ≤ p < d and q be defined by 1/q := 1/p− 1/d. There exists Cp,d > 0

such that, for all f ∈ D(Rd),

‖f‖Lq(Rd) ≤ Cp,d
d∑
j=1

‖Djf‖Lp(Rd).

Let us recall that, if φ ∈ B, then φ1 is the Boyd function defined by

φ1(x) = xφ(x) ∀x > 0.

Theorem 3.2.2. Let x0 ∈ Rd, p ∈ [1,∞), φ ∈ B be such that b(φ) > −d/p and either
b(φ) < −1 or there exists n ∈ N0 ∪ {−1} for which n < b(φ) ≤ b(φ) < n+ 1. If f is such
that Djf ∈ T pφ (x0) for all j ∈ {1, . . . , d} then

(1) if 1 ≤ p < d and f ∈ Lq(Rd) with 1/q := 1/p− 1/d, then f ∈ T qφ1
(x0) and

‖f‖T qφ1 (x0) ≤ Cp,φ
d∑
j=1

‖Djf‖Tpφ (x0), (3.10)

(2) if f ∈ Lq(Rd) where q ∈ [1,∞) is such that 1/p ≥ 1/q > 1/p− 1/d, then f ∈ T qφ1
(x0)

and

‖f‖T qφ1 (x0) ≤ Cp,φ
d∑
j=1

‖Djf‖Tpφ (x0) + ‖f‖Lq(Rd). (3.11)

Moreover, if Djf ∈ tpφ(x0) for all j ∈ {1, . . . , d}, then also f ∈ tqφ1
(x0), with q satisfy-

ing (1) or (2).

Proof. Let us first suppose that f belongs to D(Rd); for j ∈ {1, . . . , d}, let us set

kj : Rd \ {0} → R, x 7→ 1

ωd

xj
|x|d

,

where ωd is the area of the hyper-sphere in Rd. It is easy to check that for x 6= 0, we have∑d
j=1Djkj(x) = 0.
Let us fix x ∈ Rd, given r > 0, set Ωr := {y ∈ Rd : |x − y| ≥ r} and denote by

∂Ωr := {y ∈ Rd : |x− y| = r} the boundary of this set. Using Green’s first identity (see
e.g. [33]), we get

d∑
j=1

ˆ
Ωr

Djf(y)kj(x− y) dy =
1

ωd

ˆ
∂Ωr

f(y)

|x− y|d−1
dσ,

where dσ is the surface area on ∂Ωr. Lebesgue’s theorem implies that the right-hand side
tends to f(x) as r tends to 0+, while the left-hand side tends to

d∑
j=1

ˆ
Rd
Djf(y)kj(x− y) dy.



Generalized T pu spaces 37

Therefore, we have the following representation for f :

f =

d∑
j=1

ˆ
Rd
Djf(y)kj(· − y) dy. (3.12)

Let us prove (2) in the case q = p. Let us first deal with the case b(φ) < −1; for r > 0

and x ∈ Rd such that |x− x0| ≤ r, we can write

f(x) =

d∑
j=1

(f1,j(x) + f2,j(x)),

where we have set

f1,j(x) :=

ˆ
B(x0,2r)

Djf(y)kj(x− y) dy,

f2,j(x) :=

ˆ
Rd\B(x0,2r)

Djf(y)kj(x− y) dy.

By Young’s inequality, we have

r−d/p‖f1,j‖Lp(B(x0,r)) ≤ r
−d/p‖Djf‖Lp(B(x0,2r))‖kj‖L1(B(x0,3r))

≤ Cφ(2)|Djf |Tpφ (x0)φ(r)r. (3.13)

To estimate r−d/p‖f2,j‖Lp(B(x0,r)), let us define the function Fj for r > 0 by

Fj(r) :=

ˆ
B(x0,r)

|Djf(y)| dy =

ˆ r

0

ψj(ρ) dρ,

where we have set, using spherical coordinates in Rd centered at x0,

ψj(ρ) := ρd−1

ˆ 2π

0

ˆ π

0

· · ·
ˆ π

0

|Djf(y(ρ, θ1, . . . , θd−1))| dΩd.

We know that, for r > 0,

r−dFj(r) ≤ Cd|Djf |Tpφ (x0)φ(r) (3.14)

and, for all R > 0, we have

Fj(R)R1−d − Fj(2r)(2r)1−d =

ˆ R

2r

ψj(ρ)ρ1−d dρ+

ˆ R

2r

Fj(ρ)(1− d)ρ−d dρ. (3.15)

Thanks to (3.14) and Proposition 2.1.3, since b(φ) < −1, Fj(R)R1−d tends to 0 as R tends
to +∞. Therefore,ˆ +∞

2r

ψj(ρ)ρ1−d dρ ≤ (d− 1)

ˆ +∞

2r

Fj(ρ)ρ−d dρ ≤ Cd(d− 1)|Djf |Tpφ (x0)

ˆ +∞

2r

φ(ρ) dρ

≤ Cd(d− 1)|Djf |Tpφ (x0)φ(2)φ(r)

ˆ +∞

2r

φ

(
ρ

2r

)
dρ

= Cd(d− 1)|Djf |Tpφ (x0)φ(2)2φ(r)r

ˆ +∞

1

φ(t) dt.

By Proposition 2.1.5, the last integral is bounded and thusˆ +∞

2r

ψj(ρ)ρ1−d dρ ≤ CdCφ,1|Djf |Tpφ (x0)φ1(r),
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where

Cφ,1 := φ(2)

ˆ +∞

1

φ(t) dt. (3.16)

Since

|fj,2(x)| ≤
ˆ
Rd\B(x0,2r)

|Djf(y)|
|x− y|d−1

dy ≤
ˆ
Rd\B(x0,2r)

|Djf(y)|(
1
2 |x0 − y|

)d−1
dy

= Cd

ˆ +∞

2r

ρ1−dψj(ρ) dρ,

we finally obtain

r−d/p‖fj,2‖Lp(B(x0,r)) ≤ CdCφ,1|Djf |Tpφ (x0)φ1(r).

Inequality (3.11) follows from this estimate and (3.13). Now, let us suppose that we have
−1 < b(φ) ≤ b(φ) < 0 and fix r > 0. For any x ∈ B(x0, r), we have

f(x)− f(x0) =

d∑
j=1

(fj,1 + fj,2 − fj,3)(x),

where we have set

fj,1(x) :=

ˆ
B(x0,2r)

Djf(y)kj(x− y) dy,

fj,2(x) :=

ˆ
Rd\B(x0,2r)

Djf(y)(kj(x− y)− kj(x0 − y)) dy

fj,3(x) :=

ˆ
B(x0,2r)

Djf(y)kj(x0 − y) dy.

Once again, we have

r−d/p‖f1,j‖Lp(B(x0,r)) ≤ Cφ(2)|Djf |Tpφ (x0)φ1(r).

Moreover, if x ∈ B(x0, r) and |x0 − y| ≥ 2r, then, for all |h| ≤ |x − x0|, |x0 − y + h| ≥
|x0 − y|/2 and so, by the mean value theorem and the fact that |Dαkj(z)| ≤ C/|z|d for
all z 6= 0 and |α| = 1,

|kj(x− y)− kj(x0 − y)| ≤ Cr|x0 − y|−d.

Therefore,

|fj,2(x)| ≤ Cr
ˆ +∞

2r

ψj(ρ)ρ−d dρ

and reasoning as before, using this time b(φ) < 0, we get

r−d/p‖fj,2‖Lp(B(x0,r)) ≤ CdCφ,2|Djf |Tpφ (x0)φ1(r),

where

Cφ,2 := φ(2)

ˆ +∞

1

φ(t)

t
dt. (3.17)

For the last term, we have

|fj,3(x)| ≤ r
ˆ 2r

0

ψj(ρ)ρ1−d dρ



Generalized T pu spaces 39

and using an equality similar to (3.15), we obtain
ˆ 2r

0

ψj(ρ)ρ1−d dρ ≤ Fj(2r)(2r)1−d + d

ˆ 2r

0

Fj(ρ)ρ−d dρ.

As −1 < b(φ), we have

r−d/p‖fj,3‖Lp(B(x0,r)) ≤ CdCφ,3|Djf |Tpφ (x0)φ1(r),

where

Cφ,3 := φ(2)

(
1 +

ˆ 1

0

φ(t) dt

)
. (3.18)

Again, (3.11) follows from the estimate made of r−d/p‖fj,k‖Lp(B(x0,r)), for all r > 0 and
k ∈ {1, 2, 3}. Finally, if there exists n ∈ N0 such that n < b(φ) ≤ b(φ) < n + 1, let P be
the Taylor expansion of f at x0 of order n + 1, set f̃ := f − P and, for j ∈ {1, . . . , d},
f̃j := Dj f̃ . For r > 0, we have

ˆ
B(x0,r)

|f̃(y)|p dy =

ˆ r

0

ˆ 2π

0

ˆ π

0

· · ·
ˆ π

0

|f̃(x0 + y(ρ,θ1,...,θd−1))|pρd−1 dΩd dρ,

where y(ρ,θ1,...,θd−1) is the point defined by

[y(ρ,θ1,...,θd−1)]j := ρ
∏
k<j

sin(θk) cos(θj) ∀j ∈ {0, . . . , d− 1}

and

[y(ρ,θ1,...,θd−1)]d := ρ
∏
k<d

sin(θk).

Let us set

gj(θ1, . . . , θd−1) :=
∏
k<j

sin(θk) cos(θj) and gd(θ1, . . . , θd−1) :=
∏
k<d

sin(θk).

Using Taylor’s formula, we have, as f̃(x0) = 0,

f̃(x0 + y(ρ,θ1,...,θd−1)) =

d∑
j=1

ˆ ρ

0

f̃j(x0 + y(t,θ1,...,θd−1))gj(θ1, . . . , θd−1) dt.

Therefore, as |gj | ≤ 1, Hölder’s inequality leads to
ˆ
B(x0,r)

|f̃(y)|p dy

≤ Cd,p
ˆ r

0

ˆ 2π

0

ˆ π

0

· · ·
ˆ π

0

ρd−1

ˆ ρ

0

d∑
j=1

|f̃j(x0 + y(t,θ1,...,θd−1)|p dt ρp−1 dΩd dρ

≤ Cd,prd+p−2
d∑
j=1

ˆ 2π

0

ˆ π

0

· · ·
ˆ π

0

ˆ r

0

ˆ r

t

|f̃j(x0 + y(t,θ1,...,θd−1)|p dρ dt dΩd
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≤ Cd,prd+p−1
d∑
j=1

ˆ 2π

0

ˆ π

0

· · ·
ˆ π

0

ˆ r

0

|f̃j(x0 + y(t,θ1,...,θd−1)|p dt dΩd

= Cd,pr
d+p−1

d∑
j=1

ˆ
B(x0,r)

|f̃j(y)|p

|y − x0|d−1
dy.

Moreover, using a similar technique as before, we have, for j ∈ {1, . . . , d},
ˆ
B(x0,r)

|f̃j(y)|p

|y − x0|d−1
dy ≤ |Djf |pTpφ (x0)

φ(r)pr

(
1 +

ˆ 1

0

φ(t)p dt

)
,

which allows us to conclude, as b(φ) > 0, that

r−d/p‖f̃‖Lp(B(x0,r)) ≤ Cd,pCφ,4
d∑
j=1

|Djf |Tpφ (x0)φ1(r), (3.19)

where

Cφ,4 :=

(
1 +

ˆ 1

0

φ(t)p dt

)1/p

. (3.20)

To estimate ‖f‖Tpφ1 (x0), we need information about
∑
|α|≤n+1 |DαP (x0)|/α!. We have

∑
0<|α|≤n+1

|DαP (x0)|
α!

≤ C
d∑
j=1

∑
0<|β|≤n

DβPj(x0)

β!
, (3.21)

where, given j ∈ {1, . . . , d}, Pj is the Taylor expansion of Djf at x0 of order n. It remains
to work on P (x0) = f(x0). For this purpose, let us choose ϕ ∈ D(Rd) such that ϕ = 1 on
B(0, 1) and supp(ϕ) ⊆ B(0, 2). Using (3.12), we obtain

f(x0) = f(x0)ϕ(x0 − x0) =

d∑
j=1

(ˆ
Rd
kj(x0 − y)Djf(y)ϕ(y − x0) dy

+

ˆ
Rd
kj(x0 − y)f(y)Djϕ(y − x0) dy

)
.

For the first term of the right-hand side, we have∣∣∣∣ˆ
Rd
kj(x0 − y)Djf(y)ϕ(y − x0) dy

∣∣∣∣ ≤ Cϕ ˆ
B(x0,2)

|Djf(y)|
|x0 − y|d−1

dy.

For r > 0, we have

r−d/p‖Djf − Pj‖Lp(B(x0,r)) ≤ |Djf |Tpφ (x0)φ(r),

and so

r−d/p‖Djf‖Lp(B(x0,r)) ≤ |Djf |Tpφ (x0)φ(r) + Cd
∑
|β|≤n

|DβPj(x0)|
β!

r|β|.

Since ∑
|β|≤n

|DβPj(x0)|
β!

≤ ‖Djf‖Tpφ (x0),
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we can write, using the same technique as before,ˆ
B(x0,2)

|Djf(y)|
|x0 − y|d−1

dy ≤ CdCφ,5‖Djf‖Tpφ (x0),

where

Cφ,5 := φ(2) + 2n + 2φ(2)

ˆ 1

0

φ(t) dt. (3.22)

For the second term, we have∣∣∣∣ˆ
Rd
kj(x0 − y)f(y)Djϕ(y − x0) dy

∣∣∣∣ ≤ ˆ
B(x0,2)\B(x0,1)

|kj(x0 − y)| |f(y)| |Djϕ(y − x0)| dy

≤ Cϕ
ˆ
B(x0,2)\B(x0,1)

|f(y)| dy ≤ Cϕ,d‖f‖Lp(Rd),

which gives

|f(x0)| ≤ Cϕ,d
(
Cφ,5

d∑
j=1

‖Djf‖Tpφ (x0) + ‖f‖Lp(Rd)

)
.

This relation, (3.19) and (3.21) lead to (3.11). We have thus obtained (2) in the case
p = q.

Let us now prove (1), still considering a function f from D(Rd). As previously, let
us denote by ϕ a function in D(Rd) such that ϕ = 1 on B(0, 1) and supp(ϕ) ⊆ B(0, 2).
If there exists n ∈ N0 ∪ {−1} such that n < b(φ) ≤ b(φ) < n + 1, let P be the Taylor
expansion of f at x0 of order n + 1; otherwise we set P = 0. Finally, define f̃ := f − P
and, for j ∈ {1, . . . , d}, f̃j := Dj f̃ . If 1/q := 1/p− 1/d, thanks to Lemma 3.2.1, we have,
for all r > 0,

r−d/q‖f̃‖Lq(B(x0,r)) ≤ r
−d/q

∥∥∥∥f̃ϕ( · − x0

r

)∥∥∥∥
Lp(Rd)

≤ Cp,dr−d/q
d∑
j=1

(∥∥∥∥f̃jϕ( · − x0

r

)∥∥∥∥
Lp(Rd)

+ r−1

∥∥∥∥f̃Djϕ

(
· − x0

r

)∥∥∥∥
Lp(Rd)

)

= CϕCp,d

d∑
j=1

(rr−d/p‖f̃j‖Lp(B(x0,2r)) + r−d/p‖f̃‖Lp(B(x0,2r))).

Moreover, by hypothesis,

rr−d/p‖f̃j‖Lp(B(x0,2r)) ≤ 2d/pφ(2)|Djf |Tpφ (x0)φ1(r) (3.23)

and, using what we have proved so far,

r−d/p‖f̃‖Lp(B(x0,2r)) ≤ Cd,pCφ
d∑
j=1

|Djf |Tpφ (x0)φ1(r). (3.24)

As before, ∑
|α|≤n+1

|DαP (x0)|
α!

≤ Cϕ,d
(
Cφ,5

d∑
j=1

‖Djf‖Tpφ (x0) + ‖f‖Lq(Rd)

)
. (3.25)
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Another use of Lemma 3.2.1 then gives

‖f‖Lq(Rd) ≤ Cp,d
d∑
j=1

‖Djf‖Lp(Rd) (3.26)

and (3.10) is proved, thanks to relations (3.23)–(3.26).
Now, let us come back to (2) and investigate the case where q ≥ 1 is such that

1/p ≥ 1/q > 1/p− 1/d; we still consider a function f ∈ D(Rd). Again, we use (3.12); as
1/p ≥ 1/q > 1/p − 1/d, there exists p′ ∈ [1,∞) such that 1/q = 1/p + 1/p′ − 1 and, by
Young’s inequality,∥∥∥∥ˆ

Rd
kj(· − y)f̃j(y)ϕ

(
y − x0

r

)
dy

∥∥∥∥
Lq(B(x0,r))

≤ Cϕ‖kj‖Lp′ (B(x0,3r))
‖f̃j(y)‖Lp(B(x0,2r))

and
‖kj‖Lp′ (B(x0,3r))

≤ Cd,p((3r)(d−1)(1−p′)+1)1/p′ = Cd,p(3r)
d/q−d/p+1,

which gives us

r−d/q
∥∥∥∥ˆ

Rd
kj(· − y)f̃j(y)ϕ

(
y − x0

r

)
dy

∥∥∥∥
Lq(B(x0,r))

≤ Cϕ,d,pφ(2)|Djf |Tpφ (x0)φ1(r).

Similarly, using the first part of the proof, we obtain∥∥∥∥ˆ
Rd
kj(· − y)f̃(y)r−1Djϕ

(
y − x0

r

)
dy

∥∥∥∥
Lq(B(x0,r))

≤ Cϕ,d,pr−d/prd/q‖f̃(y)‖Lp(B(x0,2r))

≤ Cϕ,d,pCφφ(2)rd/q
d∑
j=1

|Djf |Tpφ (x0)φ1(r).

This upper bound and (3.25) lead to (3.11).
Now that the theorem has been proved for functions belonging to D(Rd), let us con-

sider a compactly supported function f such that Djf ∈ tpφ(x0), for all j ∈ {1, . . . , d}.
Given λ > 0, let fλ be the function defined by (2.9) and, for j ∈ {1, . . . , d}, define
fλ,j := Djfλ. By Proposition 2.2.1, we know that fλ,j converges to Djf in T pφ (x0)

(j ∈ {1, . . . , d}). Inequalities (3.10) and (3.11) imply that (fλ)λ>0 is a Cauchy sequence
in T qφ1

(x0) (with appropriate q) and thus, by Proposition 2.1.11, (fλ)λ>0 converges in
T qφ1

(x0). As fλ converges to f in Lq(Rd), we conclude that fλ converges to f in T qφ1
(x0).

Moreover, by passing to the limit, we find that inequalities (3.10) and (3.11) still hold
for f . Now, as fλ belongs to D(Rd) and tqφ1

(x0) for all λ > 0, by Proposition 2.1.12, f also
belongs to tqφ1

(x0).
Let us now consider a general function f such that, for all j ∈ {1, . . . , d}, Djf belongs

to tpφ(x0) and let us again take ϕ ∈ D(Rd) with ϕ = 1 on B(0, 1) and supp(ϕ) ⊆ B(x0, 2).
Given ε > 0, we define

fε := fϕ(ε(· − x0)).

By assumption, we know that, for all j ∈ {1, . . . , d}, there exists a polynomial Pj of
degree strictly less than b(φ) such that

φ(r)−1r−d/p‖Djf − Pj‖Lp(B(x0,r)) → 0 as r → 0+.
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Moreover, since we assume that f ∈ Lq(Rd) for some q ≥ p, it follows that f ∈ Lploc(Rd)
and

Djfε = Djfϕ(ε(· − x0)) + εfDjϕ(ε(· − x0))

belongs to Lp(Rd) for all ε > 0. Of course,

φ(r)−1r−d/p‖Djfε − Pj‖Lp(B(x0,r)) ≤ φ(r)−1r−d/p‖Djfϕ(ε(· − x0))− Pj‖Lp(B(x0,r))

+ φ(r)−1r−d/p‖εfDjϕ(ε(· − x0))‖Lp(B(x0,r)).

Now, for r sufficiently small, we have ϕ(ε(·−x0)) = 1 and Djϕ(ε(·−x0)) = 0 on B(x0, r)

and, for such r,

φ(r)−1r−d/p‖Djfε − Pj‖Lp(B(x0,r)) ≤ φ(r)−1r−d/p‖Djf − Pj‖Lp(B(x0,r)),

which shows that Djfε ∈ tpφ(x0). As fε is compactly supported, the previous case shows
that fε ∈ tqφ1

(x0) (for appropriate q). Let us prove that Djfε tends to Djf in T pφ (x0) as
ε tends to 0+. We have

‖Djfε −Djf‖Tpφ (x0) = sup
r>0

φ(r)−1r−d/p‖Djfε −Djf‖Lp(B(x0,r)) + ‖Djfε −Djf‖Lp(Rd)

and
Djfε −Djf = Djf

(
ϕ(ε(· − x0))− 1

)
+ εfDjϕ(ε(· − x0)). (3.27)

A simple application of Lebesgue’s theorem shows that the Lp-norm of the first term of
the right-hand side of (3.27) tends to 0 as ε tends to 0+, while

‖εfDjϕ(ε(· − x0))‖Lp(Rd) ≤ Cϕε‖f‖Lp(B(x0,2/ε)\B(x0,1/ε))

≤ Cϕ,p,q,dε1−d/p+d/q‖f‖Lq(Rd\B(x0,1/ε)).

Since 1−d/p+d/q ≥ 0 by hypothesis and ‖f‖Lq(Rd\B(x0,1/ε)) tends to 0 as ε tends to 0+,
so does ‖Djfε −Djf‖Lp(Rd). Moreover, for 0 < ε < 1, if 0 < r < 1/ε, then Djfε −Djf

vanishes on B(x0, r). If r > 1/ε, then r > 1 and if δ > 0 satisfies b(φ)− δ+ d/p > 0, then
by Proposition 2.1.3,

φ(r)−1r−d/p ≤ Cδ,φr−(b(φ)−δ+d/p) ≤ Cδ,φεb(φ)−δ+d/p,

which finally leads to

sup
r>0

φ(r)−1r−d/p‖Djfε −Djf‖Lp(B(x0,r)) ≤ Cδ,φε
b(φ)−δ+d/p‖Djfε −Djf‖Lp(Rd),

so that Djfε tends to Djf in T pφ (x0) as ε → 0+. Using again the completeness of the
space T qφ1

(x0) and the closedness of tqφ1
(x0), we conclude, by (3.10) and (3.11), that fε

tends to f in T qφ1
(x0) and f ∈ tqφ1

(x0). By passing to the limit in (3.10) and (3.11), we
conclude that those inequalities still hold for f .

It remains to consider the case of a function f such that, for j ∈ {1, . . . , d}, Djf

belongs to T pφ (x0). Let ε > 0 be such that

−d/p < b(φ)− ε ≤ b(φ)− ε < −1

if b(φ) < −1, and
n < b(φ)− ε ≤ b(φ)− ε < n+ 1
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if n ∈ N0 ∪ {−1} satisfies n < b(φ) ≤ b(φ) < n + 1. For such ε, Djf ∈ tpφ−ε(x0) for
j ∈ {1, . . . , d} and it follows from the previous case that Djf ∈ tqφ1−ε

(x0). Moreover, if
1 ≤ p < d and f ∈ Lq(Rd) with 1/q := 1/p− 1/d, then f ∈ T qφ1−ε

(x0) and

‖f‖T qφ1−ε (x0) ≤ Cp,φ−ε
d∑
j=1

‖Djf‖Tpφ−ε(x0). (3.28)

Otherwise, if f ∈ Lq(Rd) with q ∈ [1,∞) satisfying 1/p ≥ 1/q > 1/p− 1/d, then we have
f ∈ T qφ1−ε

(x0) and

‖f‖T qφ1−ε (x0) ≤ Cp,φ−ε
d∑
j=1

‖Djf‖Tpφ−ε(x0) + ‖f‖Lq(Rd). (3.29)

Let us analyse the constants defined in (3.16)–(3.18), (3.20) and (3.22). For a chosen
ε > 0, we have for example

Cφ−ε,1 = φ−ε(2)

ˆ +∞

1

φ−ε(t) dt = φ(2)2−ε
ˆ +∞

1

φ(t)t−ε dt ≤ Cφ

and a similar reasoning applied to (3.17), (3.18), (3.20) and (3.22) shows that we can find
a constant C > 0 such that, for ε small enough, the constant Cp,φ−ε appearing in (3.28)
and (3.29) is bounded by CCp,φ. Moreover, since

‖Djf‖Tpφ−ε(x0) ≤ ‖Djf‖Tpφ (x0),

we can conclude the proof by letting ε→ 0+.

3.3. Singular integral operators. Let us now study the action of the convolution
singular integral operators on the space T pφ (x0). This class of operators was particularly
studied by Calderón and Zygmund in [6, 7], where the authors proved the following crucial
theorem.

Theorem 3.3.1. Set, for ε > 0,

Kεf =

ˆ
Rd\B(·,ε)

k(· − y)f(y) dy,

where

• k is homogeneous (1) of degree −d,
• k has mean value zero on the sphere Σ = {x ∈ Rd : |x| = 1},
• k ∈ Lq(Σ) for 1 < q <∞,
• f ∈ Lp(Rd) with 1 < p <∞.

Then there exists Kf ∈ Lp(Rd) such that Kεf tends to Kf in Lp(Rd), and pointwise
almost everywhere as ε→ 0+. Moreover, if we set

K∗f = sup
ε>0
|Kεf |,

then K∗f ∈ Lp(Rd) and

‖K∗f‖Lp(Rd) ≤ Cp,q‖k‖Lq(Σ)‖f‖Lp(Rd). (3.30)

(1) It means that k(λx) = λ−dk(x) for all λ > 0 and x ∈ Rd \ {0}.
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Remark 3.3.2. In the theorem originally stated by Calderón and Zygmund, the inte-
grability assumption made on k is the following: k + k(−·) ∈ L logL(Σ). This condition
is a little less restrictive, since for a finite measure space (X,A , µ), we have (see [1] for
example)

Lq(X,A , µ) ↪→ L logL(X,A , µ),

for all 1 < q < ∞. But in what follows, we will only need to consider k ∈ Lq(Σ), with
1 < q <∞, in order to take advantage of inequality (3.30).

We will use the following notation:

Notation 3.3.3. Given φ ∈ B, we set

db(φ)eN0 := inf{k ∈ N0 : b(φ) < k}.

Proposition 3.3.4. Let K be the convolution singular integral operator defined by

Kf = p.v.

ˆ
k(· − y)f(y) dy,

where the kernel k ∈ C∞(Rd \ {0}) is homogeneous of degree −d. Assume also that k has
mean value zero on the sphere Σ.

Let p ∈ (1,∞), x0 ∈ Rd and φ ∈ B be such that −d/p < b(φ) and either b(φ) < 0 or
there exists n ∈ N0 for which

n < b(φ) ≤ b(φ) < n+ 1. (3.31)

If f ∈ T pφ (x0), then Kf ∈ T pφ (x0) and

‖Kf‖Tpφ (x0) ≤ Cφ,pM‖f‖Tpφ (x0), (3.32)

where
M := sup

|x|=1

0≤|α|≤db(φ)eN0

|Dαk(x)|.

Moreover, if f ∈ tpφ(x0), then also Kf ∈ tpφ(x0).

Proof. We can assume, without loss of generality, that x0 = 0. If f ∈ T pφ (0) then there
exists a polynomial P of degree strictly less than b(φ) such that

r−d/p‖f − P‖Lp(B(x0,r)) ≤ |f |Tpφ (0)φ(r) for all r > 0,

Let ϕ ∈ D(Rd) be such that ϕ = 1 on B(0, 1) and supp(ϕ) ⊆ B(0, 2); we set

f1 := ϕP and f2 := f − f1.

If b(φ) < 0, then f1 = 0 and obviously f1 ∈ T pφ (0) with ‖f1‖Tpφ (0) ≤ ‖f‖Tpφ (0). Otherwise,
(3.31) holds and if r ≤ 1, r−d/p‖f1−P‖Lp(B(x0,r)) = 0. If r > 1, then, by Proposition 2.1.3,

r−d/p‖f1 − P‖Lp(B(x0,r)) ≤ r
−d/pCϕ,p‖P‖Lp(B(x0,r))

≤ Cϕ,d,p
∑
|α|≤n

|DαP (0)|
α!

r|α| ≤ Cϕ,d,pCφ‖f‖Tpφ (0)φ(r),

which means that f1 ∈ T pφ (0), with

‖f1‖Tpφ (0) ≤ Cϕ,d,pCφ‖f‖Tpφ (0).
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As a consequence,

‖f2‖Tpφ (0) ≤ (1 + Cϕ,d,pCφ)‖f‖Tpφ (0).

Let us now consider ψ ∈ D(Rd) such that supp(ψ) ⊆ B(0, 2) and set, for ε > 0 and
x ∈ Rd,

Iε(x) =

ˆ
Rd\B(0,ε)

k(y)ψ(x− y) dy =

ˆ
B(0,2+|x|)\B(0,ε)

k(y)ψ(x− y) dy.

Using the notation introduced in the proof of Theorem 3.2.2, as k is homogeneous of
degree −d, we have
ˆ
B(0,2+|x|)\B(0,ε)

k(y)ψ(x) dy

= ψ(x)

ˆ 2+|x|

ε

ˆ 2π

0

ˆ π

0

· · ·
ˆ π

0

k(y(ρ,θ1,...,θd−1))ρ
d−1 dΩd dρ

= ψ(x)

ˆ 2+|x|

ε

ˆ 2π

0

ˆ π

0

· · ·
ˆ π

0

k(y(1,θ1,...,θd−1))ρ
−1 dΩd dρ

= ψ(x)(ln(2 + |x|)− ln(ε))

ˆ 2π

0

ˆ π

0

· · ·
ˆ π

0

k(y(1,θ1,...,θd−1)) dΩd = 0,

as k has mean value zero on Σ. Therefore, for ε > 0 and x ∈ Rd,

Iε(x) =

ˆ
B(0,2+|x|)\B(0,ε)

k(y)(ψ(x− y)− ψ(x)) dy.

We will use this equality to show that the sequence (Iε)ε>0 converges uniformly as ε→ 0+.
Indeed, for all x ∈ Rd, if 0 < ε < ε′, since for all y 6= 0, |k(y)| ≤ M |y|−d by the
homogeneity of k, we have

|Iε′(x)− Iε(x)| ≤M
ˆ
B(0,ε′)\B(0,ε)

|y|−d|y| sup
|α|=1

‖Dαψ‖∞ dy = Cψ,dM(ε′ − ε),

which shows that (Iε)ε>0 is uniformly Cauchy. It follows that Kψ is well-defined and Iε
uniformly converges to K(ψ) as ε→ 0+. Moreover, for 0 < ε < 1, we have

|Iε(x)| ≤ |I1(x)− Iε(x)|+ |I1(x)|

≤ Cψ,dM(1− ε) +M

ˆ
Rd\B(0,1)

|y|−d|ψ(x− y)| dy

≤ Cψ,dM(1− ε) +M

ˆ
Rd
|ψ(y)| dy ≤ C ′ψ,dM,

so that ‖K(ψ)‖Rd ≤ C ′ψ,dM . Using the same reasoning, we can show that, for ε > 0 and
α ∈ Nd0,

DαIε =

ˆ
Rd\B(0,ε)

k(y)Dαψ(· − y) dy,

DαIε uniformly converges to DαK(ψ) and ‖K(Dαψ)‖Rd ≤ Cψ,d,αM . As a consequence,
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K(ψ) ∈ C∞(Rd) with DαK(ψ) = K(Dαψ). Moreover, if |x| ≥ 3, then, for ε > 0,

|Iε(x)| ≤M
ˆ
{(x,y): |x−y|>ε,|y|<2}

|x− y|−d|ψ(y)| dy

≤M3d|x|−d
ˆ
Rd
|ψ(y)| dy = CψM3d|x|−d

and so, by Lebesgue’s theorem,K(ψ) ∈ Lp(Rd) with ‖K(ψ)‖Lp(Rd) ≤ Cψ,d,pM . Combining
all these relations, we can claim, using Remark 2.1.13, that K(ψ) ∈ T pφ (0) and there exists
Cψ,d,p > 0 such that ‖K(ψ)‖Tpφ (x0) ≤ Cψ,d,pM .

Now, let us apply this result to the function x 7→ xαϕ(x) in order to obtain a constant
Cϕ,α,d,p such that ‖K(·αϕ)‖Tpφ (0) ≤ Cϕ,α,d,pM , which gives

‖K(f1)‖Tpφ (0) ≤
∑
|α|≤n

|DαP (x0)|
α!

‖K(·αϕ)‖Tpφ (0) ≤ Cϕ,d,pM‖f‖Tpφ (0). (3.33)

For ‖K(f2)‖Tpφ (0), we use Hölder’s inequality to get, for r > 0,

r−d
ˆ
B(0,r)

|f2(y)| dy ≤ C ′ϕ,d,p‖f‖Tpφ (0)φ(r)

and, as in (3.5) and (3.6), we can writeˆ
B(0,r)

|f2(y)| |y|−s dy ≤ Cϕ,d,p,s‖f‖Tpφ (0)φ(r)rd−s if b(φ) + d− s > 0 (3.34)

and ˆ
Rd\B(0,r)

|f2(y)| |y|−s dy ≤ Cϕ,d,p,s‖f‖Tpφ (0)φ(r)rd−s if b(φ) + d− s < 0. (3.35)

Let us now consider the case where condition (3.31) holds and fix r > 0; for x in
B(0, r/2), we have, using Taylor’s formula,

Kf2(x) = lim
ε→0+

ˆ
{(x,y): |x−y|>ε, |y|≤r}

k(x− y)f2(y) dy

+ lim
ε→0+

ˆ
{(x,y): |x−y|>ε, |y|>r}

k(x− y)f2(y) dy

= lim
ε→0+

ˆ
{(x,y): |x−y|>ε, |y|≤r}

k(x− y)f2(y) dy +

ˆ
Rd\B(0,r)

k(x− y)f2(y) dy

= lim
ε→0+

ˆ
{(x,y): |x−y|>ε, |y|≤r}

k(x− y)f2(y) dy

+
∑
|α|≤n

xα

α!

(ˆ
Rd
Dαk(−y)f2(y) dy −

ˆ
B(0,r)

Dαk(−y)f2(y) dy

)

+
∑

|α|≤n+1

xα

α!

ˆ
Rd\B(0,r)

Dαk(Θ(x)x− y)f2(y) dy

for some Θ(x) ∈ (0, 1).
Thanks to the homogeneity of k, we have |Dαk(−y)| ≤ M |y|−d−|α| for |α| ≤ n + 1

and y 6= 0. Using (3.34) and Hölder’s inequality, we get, if q ∈ (1,∞) is the conjugate
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exponent of p,∣∣∣∣ˆ
Rd
Dαk(−y)f2(y) dy

∣∣∣∣ ≤ ˆ
B(0,1)

|f2(y)| |y|−d−|α| dy +

ˆ
Rd\B(0,1)

|f2(y)| |y|−d−|α| dy

≤ C‖f‖Tpφ (0)φ(1) + ‖f2‖Lp(Rd)‖ | · |−d−|α|‖Lq(Rd\B(0,1))

≤ C ′‖f‖Tpφ (0) + C ′′‖f‖Tpφ (0)

for |α| ≤ n. As a consequence,

P ′ :=
∑
|α|≤n

·α

α!

ˆ
Rd
Dαk(−y)f2(y) dy

is a polynomial whose sum of coefficients is bounded by Cφ,p‖f‖Tpφ (0). Similarly, for
|α| ≤ n we have ∣∣∣∣ˆ

B(0,r)

Dαk(−y)f2(y) dy

∣∣∣∣ ≤ Cα,dφ(r)r−α.

Given x ∈ B(0, r/2) and |y| ≥ r, we have |Θ(x)x− y| ≥ |y|/2 and so, by (3.35),∣∣∣∣ˆ
Rd\B(0,r)

Dαk(Θ(x)x− y)f2(y) dy

∣∣∣∣ ≤M2d+|α|
ˆ
Rd\B(0,r)

|f2(y)| |y|−d−|α| dy

≤MCα,dφ(r)r−α

for |α| = n+ 1. Finally, using Theorem 3.3.1, we obtain∥∥∥∥ lim
ε→0+

ˆ
{(·,y): |·−y|>ε, |y|≤r}

k(· − y)f2(y) dy

∥∥∥∥
Lp(Rd)

≤ CpM‖f2‖Lp(B(x0,r)) ≤ (1 + Cϕ,d,pCφ)M‖f‖Tpφ (0)φ(r)rd/p

and we can conclude that there exists a constant Cφ,p,d > 0 such that

r−d/p‖Kf2 − P ′‖Lp(B(0,r)) ≤ Cφ,p,dMφ(r) for r > 0.

If we now assume b(φ) < 0, then, for r > 0 and x ∈ B(0, r/2), we have

Kf2(x) = lim
ε→0+

ˆ
{(x,y): |x−y|>ε, |y|≤r}

k(x− y)f2(y) dy +

ˆ
Rd\B(0,r)

k(x− y)f2(y) dy.

We can deal with the first term of the right-hand side just as we did before, while for the
second we use the estimate∣∣∣∣ˆ

Rd\B(0,r)

k(x− y)f2(y) dy

∣∣∣∣ ≤M ˆ
Rd\B(0,r)

|y|−d|f2(y)| dy ≤ CdMφ(r),

which follows from (3.35). This leads to

r−d/p‖Kf2‖Lp(B(0,r)) ≤ Cφ,p,dMφ(r) for r > 0.

One more use of Theorem 3.3.1 ensures

‖Kf2‖Lp(Rd) ≤ CpM‖f2‖Lp(Rd),

which allows us to conclude, with (3.33), that the desired inequality (3.32) holds.
If we moreover assume that f belongs to tpφ(0), then we know that there exists a

sequence (fj)j∈N0
of functions in D(Rd) such that fj converges to f in T pφ (0) as j →∞.
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By a reasoning similar to the one we made for the function ψ at the beginning of the
proof, we can conclude that, for all j ∈ N0, Kfj belongs to C∞(Rd) and so to tpφ(0) as
well, by Remark 2.1.13. In addition, it follows from (3.32) that Kfj converges to Kf in
T pφ (0) as j tends to infinity and, as tpφ(0) is a closed subspace, we get Kf ∈ tpφ(0).

Corollary 3.3.5. Denote by Yl,m the convolution singular integral operator defined by

Yl,mf := p.v.

ˆ
kl,m(· − y)f(y) dy,

whose kernel is
kl,m := Yl,m

(
·
| · |

)
| · |−d,

where (Yl,m)l,m forms a complete system of orthogonal spherical harmonics (for the def-
inition of spherical harmonics, see e.g. [26, 27]), m being the degree of the harmonic.
Under the assumption of Proposition 3.3.4, there exist constants Cp, Cφ,p > 0 such that

‖Yl,mf‖Lp(Rd) ≤ Cp‖f‖Lp(Rd), ‖Y∗l,mf‖Lp(Rd) ≤ Cp‖f‖Lp(Rd) (3.36)

and
‖Yl,mf‖Tpφ (x0) ≤ Cφ,pm

d−2
2 +db(φ)eN0 ‖f‖Tpφ (x0). (3.37)

Proof. Inequalities (3.36) come from (3.30) and the fact that ‖kl,m‖L2(Σ) = 1. Inequal-
ity (3.37) is obtained from (3.32), using the fact that, for α ∈ Nd0, we have |DαYl,m| ≤
Cαm

d−2
2 +|α| on Σ (see [7]).

A fundamental example of a convolution singular integral operators is given by the
Riesz transform (Rj)1≤j≤d, defined for j ∈ {1, . . . , d} by

Rjf(x) := p.v.
−iΓ

(
d+1

2

)
π
d+1
2

ˆ
xj − yj
|x− y|d+1

f(y) dy.

Let us fix 1 < p <∞ and k ≥ 1; it is known that the following facts hold (see e.g. [7, 8]):

• if f ∈W p
k (Rd), then Rjf ∈W p

k (Rd) and Rj is a continuous operator on W p
k (Rd),

• for l ∈ {1, . . . , d} and f ∈ W p
k (Rd), we have Dl(Rjf) = Rj(Dlf) and Rj(Dlf) =

Rl(Djf),
• if f ∈ Lp(Rd), then

∑d
j=1R2

jf = f .

The operator

Λ := i

d∑
j=1

RjDj

continuously maps W p
k (Rd) into W p

k−1(Rd) and, if k ≥ 2,

Λ2f = −∆f for all f ∈W p
k (Rd).

We also have the identity Djf = −iRjΛf for all f ∈W p
k (Rd). It can also be shown that

for all m ∈ N such that 2m+ 1 ≥ d, there exist a1, . . . , am < 0 and a positive integrable
function hm with derivatives up to order 2m+ 1− d continuous and bounded such that

ΛJ f = f +

m∑
j=1

ajJ 2jf − hm ∗ f

for all f ∈ Lp(Rd) (see [8]).
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Proposition 3.3.6. Let p ∈ (1,∞), x0 ∈ Rd and φ ∈ B be such that either b(φ) < −1

or there exists n ∈ N0 ∪ {−1} for which n < b(φ) ≤ b(φ) < n + 1. The operator DjJ
continuously maps T pφ (x0) into itself.

Proof. Let f ∈ T pφ (x0); from what precedes, we have

DjJ f = −iRjΛJ f = −iRj
(
f +

m∑
j=1

ajJ 2jf − hm ∗ f
)
,

where m has been chosen sufficiently large so that hm ∈ Cdb(φ)eN0 (Rd). Using Re-
mark 2.1.13, we thus have hm ∗ f ∈ tpφ(x0). Moreover, by Theorem 3.1.2 and Propo-
sition 2.3.3, we know that J continuously maps T pφ (x0) into itself. The conclusion is
obtained by applying Proposition 3.3.4 to Rj .

The decomposition of functions into spherical harmonics will lead us to singular inte-
gral operators whose kernel depends on several variables.

Definition 3.3.7. Let q ∈ [1,∞], φ ∈ B be such that b(φ) > 0 and x0 ∈ Rd. Let K be
the singular integral operator of the form

f 7→ a(·)f(·) + p.v.

ˆ
k(·, · − y)f(y) dy,

where

• a is a bounded measurable function,
• for all x ∈ Rd, k(x, ·) is homogeneous of degree −d, has mean value zero on Σ and

belongs to C∞(Rd \ {0}).

The symbol of K is the function

σ(K) : (x, z) 7→ a(x) + k̂(x, z),

where, given x ∈ Rd, k̂(x, ·) is the Fourier transform of k(x, ·) (understood in the dis-
tribution sense). We know that for all x ∈ Rd, k̂(x, ·) belongs to C∞(Rd \ {0}) and is
homogeneous of degree 0 (see e.g. [13]). We say that K is in the class T qφ(x0) if, for all
|α| ≤ 2d+ db(φ)eN0 and z 6= 0, the function

x 7→ Dα
z σ(K)(x, z)

is in T qφ(x0) ∩ L∞(Rd), uniformly on Σ. We then define

‖K‖T qφ(x0) = max

{
sup
|z|=1

0≤|α|≤2d+db(φ)eN0

‖Dα
z σ(K)(·, z)‖T qφ(x0),

sup
|z|=1

0≤|α|≤2d+db(φ)eN0

‖Dα
z σ(K)(·, z)‖L∞(Rd)

}
.

If moreover, for all |α| ≤ 2d + db(φ)eN0 and z 6= 0, the function x 7→ Dα
z k(x, z) belongs

to tqφ(x0) uniformly on Σ, then we say that K is in the class tqφ(x0).
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Remark 3.3.8. Given x ∈ Rd, σ(K)(x, ·) is a homogeneous function of degree zero; it is
proved in [26, 7] that for (x, z) ∈ Rd × Rd \ {0}, we have

k(x, z) =
∑
l,m

al,m(x)Yl,m

(
z

|z|

)
|z|−d, σ(K)(x, z) = a(x) +

∑
l,m

al,m(x)γmYl,m

(
z

|z|

)
,

where γm := imπd/2Γ(m/2)

Γ
(
m+d

2

) and

al,m(x) := (−1)v(m(m+ d− 2))−v
ˆ

Σ

Yl,mL
vk(x, ·) dσ

= (−1)v(m(m+ d− 2))−vγ−1
m

ˆ
Σ

Yl,mL
vσ(K)(x, ·) dσ,

with LF (z) = |z|2∆F (z) and v ∈ N0.

Theorem 3.3.9. Let q ∈ [1,∞], x0 ∈ Rd and φ ∈ B be such that b(φ) > 0. Let K be a
singular integral operator of class T qφ(x0).

(1) al,m ∈ T qφ(x0) ∩ L∞(Rd) and

max{‖al,m‖T qφ(x0), ‖al,m‖L∞(Rd)} ≤ Cφmd/2−2v‖K‖T qφ(x0).

(2) If p ∈ (1,∞) is such that 0 ≤ 1/p∗ := 1/q + 1/p ≤ 1 and if f ∈ Lp(Rd), then, for
almost every x ∈ Rd, Kf(x) and Yl,mf(x) exist and the series

a(x)f(x) +
∑
l,m

al,m(x)Yl,mf(x)

converges absolutely to Kf(x).
(3) K is a bounded operator from Lp(Rd) to Lp

∗
(Rd) ∩ Lp(Rd): there exists a constant

Cp,q > 0 such that, for all f ∈ Lp(Rd),

max{‖Kf‖Lp∗ (Rd), ‖Kf‖Lp(Rd)} ≤ Cp,q‖K‖T qφ(x0)‖f‖Lp(Rd).

(4) Let ψ ∈ B be such that b(ψ) ≥ −d/p, φ 4 ψ and either b(ψ) ≤ 0 or n < b(ψ) ≤
b(ψ) < n+1 for some n ∈ N0. Then K is a bounded operator from T pψ(x0) to T p

∗

ψ (x0):
there exists a constant Cp,q,φ,ψ > 0 such that, for all f ∈ T pψ(x0),

‖Kf‖
Tp
∗

ψ (x0)
≤ Cp,q,φ,ψ‖K‖T qφ(x0)‖f‖Tpψ(x0).

(5) If moreover K is of class tqφ(x0), then al,m belongs to tqφ(x0) and, for all f ∈ tpψ(x0),
Kf belongs to tp

∗

ψ (x0).

Proof. We keep the same notations as in Remark 3.3.8 with v := d+
⌈ b(φ)−1

2

⌉
N0
.

(1) For all x ∈ Rd and z ∈ Σ, let us write

Lvσ(K)(x, z) :=
∑
|α|≤2v

gα(z)Dα
z σ(K)(x, z),

where gα is a product of powers of zj (j ∈ {1, . . . , d}). From the definition of the class of
operators in T qφ(x0), for z ∈ Σ, we have

‖Lvσ(K)(·, z)‖Lq(Rd) ≤ Cv‖K‖T qφ(x0).
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Let us also recall that ‖Yl,m‖L2(Σ) = 1. If q ≥ 2, then, if we denote by q′ the conjugate
exponent of q, then q′ ≤ 2, and by Hölder’s inequality (with the usual modification
if q =∞),

‖al,m‖Lq(Rd) = (m(m+ d− 2))−vγ−1
m

(ˆ
Rd

∣∣∣∣ˆ
Σ

Yl,m(z)Lvσ(K)(x, z) dσ(z)

∣∣∣∣q dx)1/q

≤ Cdmd/2−2v

(ˆ
Rd
‖Yl,m‖qLq′ (Σ)

‖Lvσ(K)(x, ·)‖qLq(Σ) dx

)1/q

≤ Cdmd/2−2v

(
(2π)d/2

Γ(d/2)

)1/q′−1/2

‖Yl,m‖L2(Σ)

(ˆ
Σ

ˆ
Rd
|Lvσ(K)(x, z)|q dx dσ(z)

)1/q

≤ Cd,vmd/2−2v‖K‖T qφ(x0)

(
(2π)d/2

Γ(d/2)

)1/2

= Cd,vm
d/2−2v‖K‖T qφ(x0).

From this, we get ‖al,m‖Lq(Rd) ≤ Cmd/2−2v‖K‖T qφ(x0) and a similar argument can be
applied to obtain the same inequality for ‖al,m‖L∞(Rd).

Now, if q ≤ 2, we have

‖al,m‖Lq(Rd) = (m(m+ d− 2))−vγ−1
m

(ˆ
Rd

∣∣∣∣ˆ
Σ

Yl,m(z)Lvσ(K)(x, z) dσ(z)

∣∣∣∣q dx)1/q

≤ Cdmd/2−2v

(
(2π)d/2

Γ(d/2)

)1−1/q(ˆ
Rd

ˆ
Σ

|Yl,m(z)|q|Lvσ(K)(x, z)|q dσ(z) dx

)1/q

≤ Cd,vmd/2−2v

(
(2π)d/2

Γ(d/2)

)1−1/q

‖K‖T qφ(x0)‖Yl,m‖Lq(Σ)

≤ Cd,vmd/2−2v

(
(2π)d/2

Γ(d/2)

)1/2

‖K‖T qφ(x0)‖Yl,m‖L2(Σ)

= Cd,vm
d/2−2v‖K‖T qφ(x0).

Moreover, for |α| ≤ 2d+ b(φ) + 1 and z ∈ Σ, there exists a polynomial

Pα,z :=
∑
|β|≤n

C(β)
z,α(· − x0)β

of degree n such that ∑
|β|≤n

|C(β)
z,α| ≤ ‖K‖T qφ(x0)

and, for r > 0,

r−d/q‖Dα
z σ(K)(·, z)− Pα,z‖Lq(B(x0,r) ≤ ‖K‖T qφ(x0)φ(r).

Thus,

P =
∑
|β|≤n

(−1)v(m(m+ d− 2))−vγ−1
m

ˆ
Σ

Yl,m(z)
( ∑
|α|≤2v

gα(z)C(β)
z,α

)
dσ(· − x0)β

is a polynomial of degree n for which∑
|β|≤n

∣∣∣∣(m(m+ d− 2))−vγ−1
m

ˆ
Σ

Yl,m(z)
( ∑
|α|≤2v

gα(z)C(β)
z,α

)
dσ

∣∣∣∣ ≤ Cφmd/2−2v‖K‖Tφ(x0)
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and, for r > 0, we can show, in the same way as before, that

r−d/q‖al,n − P‖Lq(B(x0,r)) ≤ Cd,qm
d/2−2v‖K‖T qφ(x0)φ(r).

(2) It is well-known that there exists a constant Cd > 0 such that, form ∈ N0, the num-
ber of spherical harmonics of degree m is bounded by Cdmd−2 (see e.g. [27]). Moreover,
if f ∈ Lp(Rd), from Corollary 3.3.5 we also know that ‖Y∗l,mf‖Lp(Rd) ≤ Cp‖f‖Lp(Rd).
From this, using (1), we can claim that if p∗ ≥ 1 is such that 1/p∗ := 1/p + 1/q,
then

∑
l,m al,mY∗l,mf converges in Lp

∗
(Rd). As a consequence, for almost every x ∈ Rd,∑

l,m al,m(x)Y∗l,mf(x) is finite.

Let us fix ε > 0 and x ∈ Rd such that |al,m(x)| ≤ Cφmd/2−2v; we have
ˆ
Rd\B(x,ε)

k(x, x− y)f(y) dy =

ˆ
Rd\B(x,ε)

∑
l,m

al,m(x)Yl,m

(
x− y
|x− y|

)
|x− y|−df(y) dy

=
∑
l,m

al,m(x)

ˆ
Rd\B(x,ε)

Yl,m

(
x− y
|x− y|

)
|x− y|−df(y) dy,

because y 7→ |x− y|−df(y) is integrable (using Hölder’s inequality) on Rd \B(x, ε) and∣∣∣∣∑
l,m

al,m(x)Yl,m

(
x− ·
|x− ·|

)∣∣∣∣ ≤ Cd,q ∑
m∈N0

md/2−2vmd−2m(d−2)/2‖K‖T qφ(x0) ≤ Cd,q‖K‖T qφ(x0).

Now, if x is a point for which
∑
l,m al,m(x)Y∗l,mf(x) is finite and Yl,mf(x) exists for

all l,m, then, for ε > 0,
ˆ
Rd\B(x,ε)

Yl,m

(
x− y
|x− y|

)
|x− y|−df(y) dy ≤ Y∗l,mf(x),

which allows us to let ε→ 0+ to obtain

Kf(x) = a(x)f(x) +
∑
l,m

al,m(x)Yl,mf(x).

The conclusion follows from the fact that almost every x ∈ Rd is such that the quantity∑
l,m al,m(x)Y∗l,mf(x) is finite, |al,m(x)| ≤ Cφmd/2−2v and Y∗l,mf(x) exists for all l,m, by

countable intersection.
(3) For f ∈ Lp(Rd), we have, from (2) and Corollary 3.3.5,

‖Kf‖Lp∗ (Rd) = ‖af +
∑
l,m

al,mYl,mf‖Lp∗ (Rd)

≤ ‖a‖Lq(Rd)‖f‖Lp(Rd) +
∑
l,m

‖al,m‖Lq(Rd)‖Yl,mf‖Lp(Rd)

≤ ‖a‖Lq(Rd)‖f‖Lp(Rd) + Cp,q,d‖K‖T qφ(x0)‖f‖Lp(Rd)

∑
m∈N0

md/2−2vmd−2

≤ Cp,q‖K‖Tφ(x0)‖f‖Lp(Rd).

The upper bound for ‖Kf‖Lp(Rd) can be obtained in the same way.
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(4) Again, (2), Proposition 2.3.2, Corollaries 3.3.5 and 2.3.5, for f ∈ T pφ (x0), we have

‖Kf‖
Tp
∗

ψ (x0)
≤ Cp,q,φ,ψ

(
‖a‖T qφ(x0)‖f‖Tpψ(x0) +

∑
l,m

‖al,m‖T qφ(x0)‖Yl,mf‖Tpψ(x0)

)
≤ Cp,q,φ,ψ(‖a‖T qφ(x0)‖f‖Tpψ(x0) + ‖f‖Tpψ(x0)‖K‖T qφ(x0)

∑
m∈N0

md−2md/2−2vm
d−2
2 +db(ψ)eN0

)
≤ Cp,q,φ,ψ

(
‖a‖T qφ(x0)‖f‖Tpψ(x0) + ‖f‖Tpψ(x0)‖K‖T qφ(x0)

∑
m∈N0

md−2md/2−2vm
d−2
2 +db(φ)eN0

)
≤ Cp,q,φ,ψ‖K‖T qφ(x0)‖f‖Tpψ(x0).

(5) We keep the notations from (1). By definition of the class tqφ(x0), there exist ε > 0

and ε(r) converging to 0 as r → 0+ such that, for |α| ≤ 2d + b(φ) + 1, z ∈ Σ and r > 0

sufficiently small, we have

r−d/q‖Dασ(K)(·, z)− Pα,z‖Lq(B(x0,r) ≤ ε(r)φ(r).

As a consequence, for such r,

r−d/q‖al,n − P‖Lq(B(x0,r)) ≤ Cε(r)m
d/2−2vφ(r)

and al,n ∈ tqφ(x0). The conclusion comes from the second part of Corollary 2.3.5 and the
fact that tp

∗

ψ (x0) is closed.

Remark 3.3.10. Let us come back to the convolution singular integral operators we
considered in Theorem 3.3.4. For such an operator, the kernel k is independent of the
variable x and ‖K‖∗

Tpφ (x0)
is bounded by the derivatives of k on Σ. Following the path

taken in the last theorem, we can also bound this norm using now the derivatives of σ(K).
Indeed, as k does not depend on x, neither do σ(K) and al,m. Let p ∈ (1,∞) and φ ∈ B,
be as in Theorem 3.3.4, and define

v(φ) :=

{
d if b(φ) < 0,

d+
⌈ b(φ)−1

2

⌉
N0

otherwise,
N := sup

|z|=1
0≤|α|≤v(φ)

|Dασ(K)(z)|.

Using an argument similar to the one used in Theorem 3.3.9, we have

|al,m| ≤ Cmd/2−2vN for all l,m.

For all f ∈ Lp(Rd),

Kf =
∑
l,m

al,mYl,mf almost everywhere,

Kf ∈ Lp(Rd) and, if f ∈ T pφ (x0), then Kf ∈ T pφ (x0) with ‖Kf‖Tpφ (x0) ≤ Cp,φN‖f‖Tpφ (x0).

3.4. Elliptic partial differential equations

Definition 3.4.1. An elliptic partial differential equation at x0 ∈ Rd of order m ∈ N is
a partial differential equation of the form

Ef =
∑
|α|≤m

aαD
αf = g,
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where, for all |α| ≤ m, aα is an s× r matrix of functions and

f =

f1

...
fr

 , g =

g1

...
gs


are vector-valued functions with fj ∈ W p

m(Rd) for all j ∈ {1, . . . , r}; Dα stands for the
weak derivative and

µ(x0) := inf
|ξ|=1

det
[( ∑
|α|=m

a∗α(x0)ξα
)( ∑
|α|=m

aα(x0)ξα
)]

> 0

is the ellipticity constant of E at x0.

In [7], Calderón and Zygmund proved that if E is elliptic with constant coefficients
(aα)|α|=m all of the same order, then we can write

E = KΛm,

where K is an s× r matrix of convolution singular operators, whose matrix of symbols is

σ(K)(z) = (−i)m
∑
|α|=m

aαz
α|z|−m for z 6= 0.

They also showed in [8] that, in this case, there exists an r × s matrix of convolution
singular operators whose matrix of symbols is (2)

σ(H) = [σ(K)∗σ(K)]−1σ(K)∗

and for which HK is the identity operator. From Remark 3.3.10, we can estimate the
dual norm of H on the spaces T pφ (x0), using the ellipticity constant of E and (|aα|)|α|=m.

Now, if
Ef =

∑
|α|≤m

aαD
αf = g

is a general elliptic partial differential equation at x0 ∈ Rd of order m ∈ N, we set

Ex0
:=

∑
|α|=m

aα(x0).

By what precedes, we have Ex0 = KΛm, where K is a matrix of convolution singular
operators for which HK is the identity operator. Then, let us define

h :=

{
(1−∆)m/2f if m is even,
(i+ Λ)(1−∆)

m−1
2 f if m is odd.

Applying H on Ex0f + (E − Ex0)f = g gives

Λmf = Hg +H(Ex0 − E)f

and, as Λ2 = −∆, we obtain, if m is even,

h = Hg +H(Ex0
− E)f + [(1−∆)m/2 − (−∆)m/2]f = Hg +H(Ex0

− E)f + L1(D)f,

(2) The ellipticity of the equation allows us to take the inverse matrix of σ(K)∗σ(K).
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where L1(D) is a differential operator of order m−2 with constant coefficients. Assuming
that m is odd, we get

h = Hg +H(Ex0
− E)f +

[
(i+ Λ)(1−∆)

m−1
2 − Λ(−∆)

m−1
2

]
f

= Hg +H(Ex0 − E)f + L2(D)f + ΛL3(D)f,

where L2(D) (resp. L3(D)) is a differential operator of order m − 1 (resp. m − 3) with
constant coefficients.

In what follows, we choose as the norm of a vector-valued functions the sum of the
norms of its components.

Proposition 3.4.2. Let p1 ∈ (1,∞) and p2 ∈ [1,∞] be such that

0 ≤ 1

p3
:=

1

p1
+

1

p2
≤ 1,

x0 ∈ Rd and φ, ϕ, ψ ∈ B be such that

• 0 < b(φ) and the coefficients of E are functions in T p1φ (x0) for which x0 is a Lebesgue
point,

• φ 4 ψ,
• −d/p2 < b(ψ) and there exists n ∈ Z such that n < b(ψ) ≤ b(ψ) < n + 1 and
g ∈ T p3ψ (x0),
• −d/p2 < b(ϕ) and there exists l ∈ Z such that l < b(ϕ) ≤ b(ϕ) < l+1 and h ∈ T p2ϕ (x0),
• b(ψ)− b(ϕ) < min{b(φ), 1}.

Assume also that there exists p∗ ∈ [1, p3] such that f ∈W p∗

m (Rd). Then h ∈ T p3ψ (x0) with

‖h‖Tp3ψ (x0) ≤ ‖Hg‖Tp3ψ (x0) + Cp1,p2,ϕ,ψ,φ((1 +MN)‖h‖Tp2ϕ (x0) + ‖f‖Wp3
m (Rd)),

where M is the least upper bound of the norm of the coefficients of E in T p2φ (x0) and

N = sup
|z|=1

0≤|α|≤v(ψ)

|Dασ(K)(z)|,

where v(ψ) is defined as in Remark 3.3.10.

Proof. Let us first consider the case of m even; we have f = Jmh and therefore (3),

Dαf = (DJ )αJm−|α|h for |α| ≤ m.

As a consequence, for |α| < m, we have b(ψ) < b(ϕ) + 1, ϕm−|α| 4 ψ and, by Proposi-
tion 3.3.6 and Theorem 3.1.2,

‖Dαf‖Tp2ψ (x0) ≤ Cp2,ψ‖Jm−|α|h‖Tp2ψ (x0) ≤ Cp2,ϕ,ψ‖Jm−|α|h‖Tp2ϕm−|α| (x0)

≤ Cp2,ϕ,ψ‖h‖Tp2ϕ (x0).

If |α| = m, Proposition 3.3.6 gives

‖Dαf‖Tp2ϕ (x0) = ‖(DJ )αh‖Tp2ϕ (x0) ≤ Cp2,ϕ‖h‖Tp2ϕ (x0).

(3) (DJ )α stands for (D1J )α1 . . . (DdJ )αd .
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Let us consider the operators

E1 =
∑
|α|<m

aαD
α and E2 =

∑
|α|=m

(aα(x0)− aα)Dα;

by Corollary 2.3.5, we have

‖HE1f‖Tp3ψ (x0) ≤ Cp3,ψN‖E1f‖Tp3ψ (x0) ≤ Cp1,p2,φ,ψNM
∑
|α|<m

‖Dαf‖Tp2ψ (x0)

≤ Cp1,p2,φ,ϕ,ψNM‖h‖Tp2ϕ (x0).

Let us remark that the assumption b(ψ)− b(ϕ) < min{b(φ), 1} allows us to use Proposi-
tion 2.3.6 to get

‖HE2f‖Tp3ψ (x0) ≤ N‖E2f‖Tp3ψ (x0)

≤ Cp1,p2,φ,ψNM
∑
|α|=m

(‖Dαf‖Tp2ϕ (x0) + ‖Dαf‖Lp3 (Rd))

≤ Cp1,p2,φ,ϕ,ψNM(‖h‖Tp2ϕ (x0) + ‖f‖Wp3
m (Rd)).

Finally, by Proposition 2.3.7, we have

‖L1(D)f‖Tp3ψ (x0) ≤ C
∑

|α|≤m−2

‖Dαf‖Tp3ψ (x0)

≤ Cp2,p3
∑

|α|≤m−2

‖Dαf‖Tp2ψ (x0) + ‖Dαf‖Lp3 (Rd)

≤ Cp2,p3,ϕ,ψ(‖h‖Tp2ϕ (x0) + ‖f‖Wp3
m (Rd)),

which leads to the conclusion.
Let us now assume that m is odd; in this case, we have

Jm+1h = (i+ Λ)J 2f =⇒ (−i+ Λ)Jm+1h = (1−∆)J 2f

=⇒ (−i+ Λ)Jm+1h = f

and therefore,

Dαf =
(
i

d∑
j=1

Rj(DjJ )− iJ
)

(DJ )αJm−|α|h for |α| ≤ m.

Given |α| < m and j ∈ {1, . . . , d}, we have, by Propositions 3.3.4, 3.3.6 and Theo-
rem 3.1.2,

‖Rj(DjJ )(DJ )αJm−|α|h‖Tp2ψ (x0) ≤ Cp2,ϕ,ψ‖h‖Tp2ϕ (x0).

From Theorem 3.1.2 and Proposition 2.3.3, we know that J maps T p2ψ (x0) continuously
into itself and so we also have

‖J (DjJ )Jm−|α|h‖Tp2ψ (x0) ≤ Cp2,ϕ,ψ‖h‖Tp2ϕ (x0).

As a consequence, the inequality

‖Dαf‖Tp2ψ (x0) ≤ Cp2,ϕ,ψ‖h‖Tp2ϕ (x0)
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still holds for all |α| < m. By a similar reasoning,

‖Dαf‖Tp2ϕ (x0) ≤ Cp2,ϕ‖h‖Tp2ϕ (x0) for |α| = m.

Therefore, the upper bounds for ‖HE1f‖Tp3ψ (x0) and ‖HE2f‖Tp3ψ (x0) are still satisfied.
Finally, we also have

‖L2(D)f‖Tp3ψ (x0) ≤ Cp2,p3,ϕ,ψ(‖h‖Tp2ϕ (x0) + ‖f‖Wp3
m (Rd))

and, as Λ = i
∑d
j=1RjDj , Proposition 3.3.4 implies

‖ΛL3(D)f‖Tp3ψ (x0) ≤ Cp3,ψ
∑

|α|≤m−2

‖Dαf‖Tp3ψ (x0) ≤ Cp2,p3,ϕ,ψ(‖h‖Tp2ϕ (x0) + ‖f‖Wp3
m (Rd)),

which gives the conclusion in this case.

Remark 3.4.3. It is still possible to obtain an inequality of some kind if we consider the
case ϕ(r) = r−d/p2 .

If d/p2 /∈ N0, then Theorem 3.1.2 still holds for ϕ, since the assumption b(φ) > −d/p
is just made to guarantee r−d/p ≤ Cφ(r) for r sufficiently large; it can thus be relaxed in
this case. Therefore, Proposition 3.3.6 can also be applied with ϕ, and the inequalities

‖Dαf‖Tp2ψ (x0) ≤ Cp2,ϕ,ψ‖h‖Tp2ϕ (x0) ∀|α| < m,

‖Dαf‖Tp2ϕ (x0) ≤ Cp2,ϕ‖h‖Tp2ϕ (x0) ∀|α| = m

are still valid in this case. Let us also remark that

‖h‖Tp2ϕ (x0) ≤ 2‖h‖Lp2 (Rd) ≤ Cm,p2‖f‖Wp2
m (Rd).

If d/p2 ∈ N0 with p2 < d, let us consider |α| < m; we have

Dαf ∈W p2
1 (Rd) ↪→ Lp∗(Rd),

with 1/p∗ := 1/p2 − 1/d, by Sobolev’s embedding. Therefore, for r > 0,

r−d/p2‖Dαf‖Lp2 (B(x0,r)) ≤ Cd,p2,p∗r
−d/p2rd(1/p2−1/p∗)‖Dαf‖Lp∗ (B(x0,r))

≤ Cd,p2,p∗‖Dαf‖
Wp∗

1 (Rd)
r−d/p

∗

and Dαf ∈ T p2−d/p∗(x0) with

‖Dαf‖Tp2−d/p∗ (x0) ≤ Cd,p2,p∗‖f‖Wp2
m (Rd).

Moreover, as b(ψ) < −d/p2 + 1 = −d/p∗, we get

‖Dαf‖Tp2ψ (x0) ≤ Cd,p2,p∗,ψ‖f‖Wp2
m (Rd).

Of course, for |α| = m, we have

‖Dαf‖Tp2ϕ (x0) ≤ 2‖Dαf‖Lp2 (Rd) ≤ 2‖f‖Wp2
m (Rd)

and we now conclude that

‖h‖Tp3ψ (x0) ≤ ‖Hg‖Tp3ψ (x0) + Cp1,p2,ϕ,ψ,φ((1 +MN)‖f‖Wp2
m (Rd) + ‖f‖Wp3

m (Rd)).

If d/p2 ∈ N0, let us first prove the following lemma.

Lemma 3.4.4. If d > 1, for d ≤ q < ∞, we have the continuous embedding W d
1 (Rd) ↪→

Lq(Rd).
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Proof. Let g be a function in W d
1 (Rd); first let us remark that g ∈ L

d2

d−1 (Rd). Indeed,
gd ∈ L1(Rd), with

‖gd‖L1(Rd) = ‖g‖dLd(Rd) ≤ ‖g‖
d
Wd

1 (Rd)

and, for |α| = 1, by Hölder’s inequality,

‖Dαgd‖L1(Rd) = ‖dgd−1Dαg‖L1(Rd) ≤ d‖g‖d−1
Ld(Rd)

‖Dαg‖Ld(Rd) ≤ d‖g‖dWd
1 (Rd).

Therefore, gd ∈W 1
1 (Rd) with ‖gd‖W 1

1 (Rd) ≤ C‖g‖dWd
1 (Rd)

and, as d > 1, Sobolev’s embed-

ding gives W 1
1 (Rd) ↪→ L

d
d−1 (Rd) and finally g ∈ L

d2

d−1 (Rd) with

‖g‖
L
d2
d−1 (Rd)

≤ C‖g‖Wd
1 (Rd).

Let us prove by induction that any g ∈W d
1 (Rd) belongs to L

(d+k)d
d−1 (Rd) with

‖g‖
L
d(d+k)
d−1 (Rd)

≤ Ck‖g‖Wd
1 (Rd) for all k ∈ N0.

Let us suppose that this property holds for some k ∈ N0 and let (ϕj)j∈N0 be a sequence
of functions in D(Rd) such that ϕj converges to g inW d

1 (Rd). In particular, by induction,
ϕj converges to g in L(d+k) d

d−1 (Rd). Let us recall that for ϕ ∈ D(Rd), we have (see e.g.
[34, Lemma 8.7])(ˆ

Rd
|ϕ(x)|(d+k+1) d

d−1 dx

) d−1
d

≤ d+ k + 1

2

( d∏
l=1

‖Dlϕ‖Ld(Rd)

)1/d
(ˆ

Rd
|ϕ(x)|(d+k) d

d−1 dx

) d−1
d

,

which holds if and only if

‖ϕ‖d+k+1

L
(d+k+1) d

d−1 (Rd)
≤ d+ k + 1

2

( d∏
l=1

‖Dlϕ‖Ld(Rd)

)1/d

‖ϕ‖d+k

L
(d+k) d

d−1 (Rd)
.

This proves that (ϕj)j∈N0 is a Cauchy sequence in L(d+k+1) d
d−1 (Rd). As a consequence,

g ∈ L(d+k+1) d
d−1 (Rd) with

‖g‖
L

(d+k+1) d
d−1 (Rd)

≤ Ck
(
d+ k + 1

2

) 1
d+k+1

‖g‖Wd
1 (Rd).

Let us come back to the above remark. If |α| < m, then Dαf ∈ W d
1 (Rd), so since

−1 < b(ψ) < 0, we can choose d ≤ q <∞ such that b(ψ) < −d/q. By the above lemma,
Dαf ∈ Lq(Rd) and

‖Dαf‖Lq(Rd) ≤ Cq‖Dαf‖Wd
1 (Rd).

It follows that, for r > 0,

r−1‖Dαf‖Ld(B(x0,r)) ≤ Cd,qr
−1rd(1/d−1/q)‖Dαf‖Lq(B(x0,r))

≤ Cd,qr−d/q‖Dαf‖Wd
1 (Rd).

Hence, Dαf ∈ T p−d/q(x0) with

‖Dαf‖Tp−d/q(x0) ≤ Cd,q‖Dαf‖Wd
1 (Rd).
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Since b(ψ) < −d/q, we can write

‖Dαf‖Tdψ(x0) ≤ Cψ,q‖Dαf‖Td−d/q(x0) ≤ Cd,q,ψ‖Dαf‖Wd
1 (Rd).

The previous reasoning for the case |α| = m is still valid and we get again

‖h‖Tp3ψ (x0) ≤ ‖Hg‖Tp3ψ (x0) + Cp1,p2,ϕ,ψ,φ((1 +MN)‖f‖Wp2
m (Rd) + ‖f‖Wp3

m (Rd)).

Definition 3.4.5. Let, p ∈ (1,∞), φ, ϕ ∈ B be such that 0 < b(φ), −d/p < b(ϕ) and
there exists n ∈ Z such that n < b(ϕ) ≤ b(ϕ) < n+ 1. Let us define kp as follows:

• if b(ϕ) = b(ϕ),

kp(φ, ϕ) := min

{
k ∈ N0 :

1

k
(b

(
ϕ) +

d

p

)
< min{1, b(φ)}

}
,

• if n < b(ϕ) < b(ϕ) < n+ 1,

kp(φ, ϕ) := kp(φ, ·b(ϕ)) + min

{
k ∈ N0 :

b(ϕ)− b(ϕ)

k
< min{1, b(φ)}

}
.

Theorem 3.4.6. Let p ∈ (1,∞), q ∈ (1,∞], x0 ∈ Rd and φ, ϕ ∈ B be such that −d/p <
b(ϕ), 0 < b(φ) and there exists n ∈ Z such that n < b(ϕ) < b(ϕ) < n + 1. Let Ef = g

be an elliptic differential equation of order m at x0 such that the coefficients of E are
functions in T qφ(x0) for which x0 is a Lebesgue point. Suppose that

• g ∈ T p1ϕ (x0) with 1/p1 := 1/p+ 1/q,
• φ 4 ϕ and b(ϕ) ≤ b(φ) or b(ϕ)− b(ϕ) ≤ min{1, b(φ)},
• 0 < 1/p′ := kp(φ, ϕ)/q + 1/p < 1,
• f ∈W p

m(Rd) and p∗ := inf{s ≥ 1 : f ∈W s
m(Rd)} ≤ p′.

Then there exists a constant Cp′,φ,ϕ,m such that, for all |α| ≤ m, Dαf ∈ T q′ϕm−|α|(x0) and

‖Dαf‖
T q
′
ϕm−|α| (x0)

≤ Cp′,φ,ϕ(N(1 +MN)kp(φ,ϕ)−1‖g‖T qϕ(x0)

+ kp(φ, ϕ)(1 +MN)kp(φ,ϕ)(‖f‖Wp
m(Rd) + ‖f‖

Wp′
m (Rd)

)

for all q′ ≥ 1 such that

• 1/p′ ≥ 1/q′ ≥ 1/p′ − (m− |α|)/d if 1/p′ > (m− |α|)/d,
• p′ ≤ q′ ≤ ∞ if 1/p′ < (m− |α|)/d,
• p′ ≤ q′ <∞ if 1/p′ = (m− |α|)/d,

where M is the least upper bound of the norm of the coefficients of E in T qφ(x0) and

N = sup
|z|=10≤|α|≤v(ϕ)

|Dασ(K)(z)|.

Proof. Let us first suppose that b(ϕ) = b(ϕ) and set k = kp(φ, ϕ). Let us choose 0 ≤ ε < 1

such that

• 0 < 1−ε
k

(
b(ϕ) + d

p

)
≤ 1+ε

k

(
b(ϕ) + d

p

)
< min{1, b(φ)},

• −dp + j+ε
k

(
b(ϕ) + d

p

)
/∈ Z for all j ∈ {1, . . . , k − 1}.
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We can then define, for j ∈ {0, . . . , k}, the function ψj by

ψj(r) :=


r 7→ r−d/p if j = 0,
r−d/p(ϕ(r)rd/p)

j+ε
k if 1 ≤ j < k,

ϕ if j = k.

For 0 ≤ j < k, we have b(ψj) < b(ϕ) and so ϕ 4 ψj . Moreover, for 1 ≤ j ≤ k,

b(ψj) = b(ψj) = −d
p

+
j + ε

k

(
b(ϕ) +

d

p

)
/∈ Z.

We also have

b(ψ1)− b(ψ0) =
1 + ε

k

(
b(ϕ) +

d

p

)
< min{1, b(φ)}

and, for 1 ≤ j < k,

b(ψj+1)− b(ψj) = −d
p

+
j + 1 + ε

k

(
b(ϕ) +

d

p

)
+
d

p
− j + ε

k

(
b(ϕ) +

d

p

)
=

1

k

(
b(ϕ) +

d

p

)
< min{1, b(φ)},

as well as

b(ψk)− b(ψk−1) =
1− ε
k

(
b(ϕ) +

d

p

)
< min{1, b(φ)}.

Given j ∈ {0, . . . , k}, let us also define pj ∈ (1,∞) by
1

pj
:=

j

q
+

1

p
.

Since h ∈ Lp(Rd), h ∈ T p0ψ0
(x0) and φ 4 ψ1, we can write, using Remark 3.4.3,

‖h‖Tp1ψ1
(x0) ≤ ‖Hg‖Tp1ψ1

(x0) + C1(1 +MN)(‖f‖Wp
m(Rd) + ‖f‖Wp1

m (Rd)).

Now, since f belongs toW p1
m and the coefficients of E are in Lq(Rd), g belongs to Lp2(Rd)

and, from Proposition 2.3.7, also to T p2ψ2
(x0). Furthermore, by Proposition 3.4.2, we have

‖h‖Tp2ψ2
(x0) ≤ ‖Hg‖Tp2ψ2

(x0) + C0(1 +MN)(‖h‖Tp1ψ1
(x0) + ‖f‖Wp2

m (Rd)).

By iterating, we find, for 1 ≤ j ≤ k,

‖h‖
T
pj
ψj

(x0)
≤ ‖Hg‖

T
pj
ψj

(x0)
+ Cj(1 +MN)(‖h‖

T
pj−1
ψj−1

(x0)
+ ‖f‖

W
pj
m (Rd)

).

Now, for 1 ≤ j ≤ k, we have

‖Hg‖
T
pj
ψj

(x0)
≤ Cpj ,ψjN‖g‖Tpjψj (x0)

≤ Cp1,pj ,ψjN‖g‖Tp1ψj (x0) +N‖g‖Lp1 (Rd)

≤ Cp1,p′,φN‖g‖Tp1φ (x0)

and
‖f‖

W
pj
m (Rd)

≤ ‖f‖
Wp′
m (Rd)

+ ‖f‖Wp
m(Rd),

which implies the existence of a constant Cp,p′,φ,ϕ > 0 such that

‖h‖
Tp
′

ϕ (x0)
≤ Cp,p′,φ,ϕ

(
N(1+MN)k−1‖g‖Tpϕ(x0) +k(1+MN)k(‖f‖

Wp′
m (Rd)

+‖f‖Wp
m(Rd))

)
.



62 L. Loosveldt and S. Nicolay

Let us now establish the same inequality under the assumption n < b(ϕ) < b(ϕ) <

n+ 1. If b(ϕ) ≤ b(φ), then we set k1 := kp(φ, · b(ϕ)) and

k2 := min

{
k ∈ N0 :

b(ϕ)− b(ϕ)

k
< min{1, b(φ)}

}
.

We also define

ψj(r) := rb(ϕ)+ j
k2

(b(ϕ)−b(ϕ)) for 0 ≤ j < k2 and ψk2 := ϕ.

For 0 ≤ j < k, we have

b(ψj) = b(ϕ) +
j

k2
(b(ϕ)− b(ϕ)) < b(ϕ) ≤ b(φ),

and so φ 4 ψj . Also,

b(ψj+1)− b(ψj) =
1

k2
(b(ϕ)− b(ϕ)) < min{1, b(φ)}.

From the first part of the proof, we can write, if p0 is defined by 1/p0 := k1/q + 1/p,

‖h‖Tp0ψ0
(x0) ≤ Cp,p0,φ,ϕ

(
N(1 +MN)k1−1‖g‖T qϕ(x0)

+ k1(1 +MN)k1(‖f‖
Wp′
m (Rd)

+ ‖f‖Wp
m(Rd))

)
.

We can proceed as in the first part to get the desired inequality.
Now let us consider the case where b(ϕ) > b(φ) and b(ϕ) − b(ϕ) < min{1, b(φ)}. Let

us choose α such that max{−d/p, n} < α < b(ϕ) and b(ϕ) − α < b(φ); in particular, α
is not an integer. From the first part of the proof, we know that there exists a constant
Cp,p′φ,ϕ > 0 such that

‖h‖
Tp
′′

α (x0)
≤ Cp,p′,φ,ϕ

(
N(1 +MN)k−2‖g‖T qϕ(x0)

+ (k − 1)(1 +MN)k−1(‖f‖
Wp′
m (Rd)

+ ‖f‖Wp
m

)
)

with 1/p′′ := (k − 1)/q + 1/p. Now, Proposition 3.4.2 implies

‖h‖
Tp
′

ϕ (x0)
≤ Cp,φ,ϕ

(
N‖g‖T qϕ(x0) + (1 +MN)(‖h‖

Tp
′′

α (x0)
+ ‖f‖

Wp′
m (Rd)

)
)

≤ Cp,p′,φ,ϕ
(
N(1 +MN)k−1‖g‖Tpϕ(x0) + k(1 +MN)k(‖f‖

Wp′
m (Rd)

+ ‖f‖Wp
m

)
)
,

which gives the desired inequality.
Let us now consider |α| ≤ m and q′ ≥ 1 as in the assumption. If m is even then

‖Dαf‖
T q
′
ϕm−|α| (x0)

= ‖Jm−|α|(DJ)αh‖
T q
′
ϕm−|α| (x0)

≤ Cϕ‖(DJ)αh‖
Tp
′

ϕ (x0)
≤ Cϕ‖h‖Tp′ϕ (x0)

,

by Theorem 3.1.2 and Proposition 3.3.6. If m is odd, we get

‖Dαf‖
T q
′
ϕm−|α| (x0)

=
∥∥∥Jm−|α|(i d∑

j=1

Rj(DjJ )− iJ
)

(DJ )αh
∥∥∥
T q
′
ϕm−|α| (x0)

≤ Cϕ
∥∥∥(i d∑

j=1

Rj(DjJ )− iJ
)

(DJ )αh
∥∥∥
Tp
′

ϕ (x0)
≤ Cϕ‖h‖Tp′ϕ (x0)

,

by Theorem 3.1.2 and Propositions 3.3.4, 3.3.6. From this, the inequality obtained in the
first part of the proof allows us to conclude the proof.
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